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Abstract

Navigating through the exponentially large chemical space to search for desirable
materials is an extremely challenging task in material discovery. Recent develop-
ments in generative and geometric deep learning have shown promising results
in molecule and material discovery but often lack evaluation with high-accuracy
computational methods. This work aims to design novel and stable crystalline ma-
terials conditioned on a desired band gap. To achieve conditional generation, we: 1.
Formulate crystal design as a sequential decision-making problem, create relevant
trajectories based on high-quality materials data, and use conservative Q-learning
to learn a conditional policy from these trajectories. To do so, we formulate a
reward function that incorporates constraints for energetic and electronic properties
obtained directly from density functional theory (DFT) calculations; 2. Evaluate
the generated materials from the policy using DFT calculations for both energy
and band gap; 3. Compare our results to relevant baselines, including a random
policy, behavioral cloning, and unconditioned policy learning. Our experiments
show that conditioned policies achieve targeted crystal design and demonstrate the
capability to perform crystal discovery evaluated with accurate and computationally
expensive DFT calculations.

1 Introduction

The widespread enthusiasm in exploiting artificial intelligence (AI) for scientific discovery [40] has
resulted in various methodologies to integrate existing scientific knowledge and large databases to
design and test new hypotheses more quickly. Recently, AI has shown favorable results in expediting
the discovery of new chemical structural entities (e.g., small molecules, materials, and polymers)
[15, 44, 2, 36]. While several studies have focused on small molecule design for applications in drug
discovery, there has also been an upsurge in attention for AI-based material discovery [27, 37, 21, 25].
Among solid-state materials, crystalline substances are abundant in nature and are extensively used in
industry for designing batteries, semiconductors and photovoltaic systems. The set of known and
experimentally observed crystalline materials is an infinitesimally tiny fraction (around 200,000) of
the exponentially large chemical space spanning over 100 elements in the periodic table and 230
space groups in 3 dimensions [34, 47]. Determining a way to navigate through this large space to
select chemical candidates with desired properties would be immensely beneficial for a plethora of
applications like designing energy-efficient semiconductors and combatting climate change.
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Besides the complex nature of the chemical space, designing stable crystalline materials using
computational chemistry is a long-standing challenge primarily due to the time-consuming density
functional theory (DFT) calculations to estimate energetic and electronic properties of materials.
Previous works have utilized generative adversarial networks (GANs) [30], diffusion models [42],
and reinforcement learning (RL) [24], in addition to advanced crystal representation schemes for
generating crystals [6, 9]. However, we identify two major gaps in the existing literature for AI-based
material discovery. Firstly, most methods do not incorporate quantum mechanics-based first-principles
calculations in the learning model, and instead use ML approximators. Studies that incorporate DFT
computations in their ML pipeline for material design usually focus on smaller and very specific
chemical systems (with limited number of elements or constraints on the space group) that might
not generalize well to diverse chemical systems [24, 46]. Secondly, state-of-the-art generative AI
methods, such as diffusion models, predict the identities and positions of all atoms simultaneously,
which is orthogonal to sequence based RL methods that also have more established exploration
methods applicable to vast search spaces.

In this work, we further the state-of-the-art in the crystal design problem by developing a model that
learns to sequentially construct crystal skeleton graphs by optimizing for both lower total energy
and desired band gap value (energy gap between the valence and conduction bands in solids), as
computed by DFT. In our case, the crystal lattice parameters and positions of atomic sites are known
beforehand (crystal skeleton), and the task is to learn a conditional policy that can sequentially fill
atoms to generate a stable and valid crystal with a desired band gap energy. To alleviate the issue of
time-consuming DFT calculations when integrated into the scientific discovery loop, we apply offline
reinforcement learning using the conservative Q-learning (CQL) approach [18], which is known to
mitigate overestimation and out-of-distribution issues when agents are trained with static datasets in an
offline manner. We construct a state transition dataset from high-quality nonmetallic crystal structures
present in the Materials Project database. The reward function is carefully formulated to penalize high
energies and large deviations from the desired band gap. Further, we leverage an expressive graph
neural network (GNN) for crystal representation that ensures invariance to periodicity, translation,
and rotation. Through our work, we aim to accelerate the process of high-throughput virtual screening
(HTVS) for materials, where usually elements are combinatorially substituted in a known crystal
structure and optimized using DFT calculations. Overall, our contributions are three-fold, as follows:

1. DFT Evaluation of Crystal Structures with Reinforcement Learning: Our targeted
formulation of the reward function for offline RL is crafted from total energy and band
gap values computed using first-principles DFT calculations, widely used in computational
chemistry. The reward function penalizes high energy and large deviations from the desired
band gap to a policy conditioned on a targeted band gap value.

2. Conservative Offline Reinforcement Learning Approach: Using CQL as our offline RL
framework, we show that conservatism, combined with the right amount of importance for
the energy and band gap terms in the reward function, can result in an intuitive approach
for generating crystals with a favorable shift in the distribution of properties of interest.
Considering our task has a very sparse reward scheme, allows no exploration, and has a high
dimensional action space and limited data, we highlight the important challenges that could
be addressed in the future.

3. Open-Source Crystal Structure Design Trajectory Data: To ensure consistency in our
reward calculation, we evaluate ∼ 20k crystal structures using the Quantum Espresso [11]
package for DFT calculation and subsequently construct offline RL trajectories based on the
data. We release the dataset of trajectories and calculations as part of the paper to enable
research to further improve our work. We use an open-source DFT calculator that is highly
reproducible and consistent for all the structures evaluated. Prior work used different types
of proprietary DFT software, which is difficult for the research community to reproduce.

2 Related Works

Automated Materials Design. Prior work has explored the application of various types of methods
to crystal structure design, including evolutionary algorithms, simulated annealing, particle swarm
optimization, and high-throughput screening [12, 8, 41]. Machine learning based methods have
been more recently applied, primarily to molecular design problems, but also to periodic crystal
structures [23, 6]. Moreover, there have been notable works using machine learning based methods to
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approximate the evaluation of material properties and behaviors [26, 21]. This includes approximating
DFT outputs directly for different systems, such as ground-state crystal structures for a variety of
applications, such as catalysts [3, 4]. The recent progress in graph neural networks and generative
models has led to their successful application in materials design [10, 4]. GANs have been well
explored for crystal structure design [30, 46, 16]. However, these approaches restrict the complexity
of the problem to a fixed crystal system or a smaller chemical space. [47] proposed a physics-guided
GAN model using convolutional layers to learn the generative distribution of stable crystals, and
the evaluation of generated crystals was done using DFT. CDVAE [42] introduced a diffusion-based
framework with highly expressive graph representation learning techniques to generate stable and
valid crystal structures in 3 dimensions. [49] used their Distributional Graphormer to generate
structures of carbon polymorphs with the desired band gap. [24] focused on building an online RL
framework with DFT integrated reward function for surface reconstructions. However, they use the
tight-binding version of DFT (DFTB), whose accuracy is lower than full DFT calculations. Other
relevant works include [31, 38, 20] and [48].

Offline Reinforcement Learning. Offline RL [22, 33] enables for learning an optimal policy
directly from trajectories, making it possible to utilize knowledge from existing crystal structures.
The ability to learn from previously determined crystal structures reduces the need for costly DFT
calculations during training, which are necessary for online RL methods. Many recently proposed
offline RL methods focus on managing distribution shift between the offline data and the learned
policy [29, 17, 45], with Conservative Q-Learning (CQL) [18] proving to be a particularly robust
approach. CQL has shown success in training large capacity models and performing better with
suboptimal data, which makes it a particularly good fit for our crystal structure design case.

3 Background

3.1 Crystals

Solid-state crystals are characterized by ordered and periodic arrangement of atoms in 3 dimensional
space. They consist of unit cells, which are the smallest group of atoms that form the repeating pattern
of the crystal. A crystal’s composition and arrangement of atoms give rise to distinct electronic
properties usually determined by experimental or simulation-based density functional theory (DFT)
calculations. In 3 dimensions, we can mathematically express the unit cell U as follows.

U =
{
w1l1 + w2l2 + w3l3 | 0 ≤ wi < 1

}
, (1)

where l1, l2, l3 ∈ R3 are primitive translation vectors that define the periodic translation symmetry
of the crystal. Discrete linear transformations can be performed to obtain unit cells at different
locations with∇ = c1l1 + c2l2 + c3l3, where c1, c2, and c3 are integers, thus generating the entire
3-dimensional lattice. Therefore, a 3-dimensional lattice Λ is defined as all integral combinations of
lattice basis vectors

Λ =
{
c1l1 + c2l2 + c3l3 | ci ∈ Z

}
. (2)

For a crystal with N atoms, where the atom positions are given by X = {x0, · · · ,xN−1}, the
corresponding position of atom u in a unit cell translated by c1l1 + c2l2 + c3l3 is given by

x′
u = xu + c1l1 + c2l2 + c3l3. (3)

Further, there are 230 space groups in the 3-dimensional space, each of which describes a specific
crystal symmetry. Every crystal in the database is associated with one space group number (1–230)
depending on the arrangement of atoms in the crystal lattice. The order is based on the increasing
complexity of symmetry elements and their combinations. For instance, space group number 1 is the
simplest and least symmetric crystal system (triclinic), and 230 has the highest degree of symmetry
(cubic).

3.2 Crystal Representation

A natural way to represent crystals is using graphs, with atoms as nodes and edges that connect
neighboring or bonded atoms. However, using simple graphs is often not expressive enough to
incorporate the inherent periodicity in crystals. In this work, we adopt multigraphs, following
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[43] to represent crystal structures. In multigraphs, two nodes can be connected by more than
one type of edge. In the context of crystals, consider a graph G = (V,E) with nodes (atoms)
V = {v0, · · · , vN−1} and edges (neighboring atoms) E = {euv,(c1,c2,c3)|0 ≤ u ≤ N − 1, 0 ≤ v ≤
N − 1, c1, c2, c3 ∈ Z, u, v ∈ V }. Here, euv,(c1,c2,c3) is a directed edge from atom u to atom v in a
unit cell translated by c1l1 + c2l2 + c3l3. If c1 = c2 = c3 = 0, it corresponds to an edge between
u and v in the same unit cell. Likewise, if c1 = 1, c2 = c3 = 0 it corresponds to an edge between
atom u in the original unit cell and atom v in a unit cell translated by l1. This way, multigraphs carry
information about the entire 3 dimensional structures of crystals.

3.3 Offline Reinforcement Learning

While online RL methods demand frequent agent-environment interactions, offline RL exploits
existing data [33], which is useful when receiving rewards or feedback from the environment
is computationally expensive or physically implausible. As previously mentioned, our reward
formulation depends on the energies and band gaps of crystals computed by DFT. Given that the
time it takes to perform DFT simulation ranges between 6 seconds to more than 20 minutes for each
input, depending on its size and type, it is highly infeasible to train an online reinforcement learning
algorithm for this problem. Additionally, the high dimensional action space and the extremely
complex reward landscape with narrow modes demand large amounts of exploration while learning
in an online manner. Offline RL aims to learn from a static dataset D consisting of state transitions,
i.e., (st,at, st+1, rt) obtained from a behavioral policy πβ(a|s) to learn an offline policy πo(a|s).
However, directly adopting popular RL (e.g., deep Q-learning) approaches in a data-driven manner
causes two major issues – 1) the learned policy becomes out-of-distribution from the behavioral policy,
and 2) values of some states are over-estimated. Both these issues go hand-in-hand. Addressing these
issues, [18] proposed conservative Q-learning (CQL), which regularizes Q-values by concurrently
optimizing for the Bellman error to learn a conservative and lower-bound Q function. The optimization
objective of the DQN [28] version (discrete action space) of CQL is given below

min
θ
ωEs∼D

[
log

∑
a′

exp(Qθ(s,a
′))− Es,a∼D

[
Qθ(s,a)

]]
+ (4)

1

2
Es,a,s′,r∼D

[
Qθ(s,a)−

(
r + γmax

a′
Qθ′(s′,a′)

) ]2
.

Here, ω controls the amount of conservatism, i.e., higher the value of ω, the more the preference for
a conservative policy that better fits the data. Qθ′ is the target network. When the action space is
discrete, learned discrete offline policy is therefore

πo(a|s) = argmax
a

Qθ(s,a). (5)

3.4 Density Functional Theory

DFT is a quantum mechanics-based simulation model that is used to compute the electronic structure
of multi-atom systems, thereby estimating several properties including total energy, formation
energy, and band gap. This is achieved by iteratively solving the Kohn–Sham equations [19]. For
evaluating crystal structures, we make use of the open-source Quantum Espresso software suite [11] to
perform self-consistent field (SCF calculations) using the Perdew–Burke-Ernzerhof (PBE) exchange-
correlation functional. However, the PBE functional is known for its systematic underestimation of
band gap energies [35], and is less accurate than functionals like HSE06 [13] or other self-energy
approximations like GW [1]. Nevertheless, we used PBE because of its lower computational costs
and superiority over DFTB. The output produced by the DFT simulation consists of two important
properties that we are interested in – total energy (in Rydberg) and band gap (in eV). Using total
energy, we can also compute the formation energy (in eV). We also faced multiple new crystals
failing to complete DFT simulation due to unknown properties (e.g., spin, magnetization) as part of
our evaluation.
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Figure 1: a) Our design approach centers on filling in the composition of predefined crystal using
an RL policy. b) To successfully train an RL policy, we obtain data from Materials Project [14],
recompute relevant property values using open-source DFT (Quantum Espresso [11] and create
trajectories for offline RL. c) We train a graph neural network based policy based on MEGNet [5] to
achieve property conditioned crystal generation.

4 Methods

4.1 RL Formulation

The RL formulation of our problem follows a MDP defined asM = ⟨S,A, T , R, γ⟩, where S denotes
the state space, A denotes the action space, T (s′|s,a) : S × S × A → [0, 1] is the environment
transition probability function, R(s,a) : S × A → R is the reward function, and γ ∈ [0, 1] is a
discount factor denoting the preference for long term rewards over short term rewards. In our setup,
the state space consists of empty, partially or fully filled multigraphs (G(V,E)) of crystal structures.
The action spaceA consists of atomic elements from which the agent has to choose to assign an atom
at a given atomic site in a unit cell. Starting with initial state s0, which is the graph G0 of an empty
crystal skeleton, the sequential construction of a crystal of N atoms can be represented as a trajectory,
as shown in Figure 1a.

4.1.1 Reward Function

For this property-driven crystal design problem, our reward function is expected to penalize high
positive total energies (Etot) and large deviations from a desired property of interest (e.g., band gap),
whose value is denoted by p̂. In the context of training an offline RL agent with batches of transitions,
we aim to minimize the deviation between the ground truth property p of the crystal and p̂ (desired
property). This bi-objective optimization can be addressed by using a linear combination of terms
that individually optimize for lower energy and desired property. In other words, for a crystal with N
atoms, the terminal reward, which is also equal to the return in this case, can be expressed in terms of
its total energy Etot and ground truth property p as follows.

rN (Etot, p̂, p) = α1gE(Etot) + α2gp(p, p̂). (6)

Here, gE(Etot) enforces lower total energy, gp(p, p̂) enforces p and p̂ to be close, and α1 and α2

are design parameters that control the importance of each of the terms. We emphasize that this
formulation of the reward function is only reasonable when the magnitudes of gE(Etot) and gp(p, p̂)
are comparable. However, because of the large discrepancy in the magnitudes of the total energy
(Rydberg units) and the band gap (eV units), we devise gE(Etot) such that the energy term is scaled
down to lower magnitudes, and propose an appropriate distance function for gp(p, p̂) in the range.
To achieve this, we perform log-scaling of the total energy value, and apply an exponential distance
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function to penalize large deviations from the desired property yielding:

rN = α1 log10 (−Etot) + α2 exp

[
− (p− p̂)2

β

]
. (7)

This introduces another design parameter β, which essentially influences the sharpness of the mode
of reward surface, with a lower value of β resulting in a higher level of sharpness [15].

4.2 Q-Network and State Representation

Our conditional Q-network Qθ(s,a; p̂) consists of two components: 1) a graph neural network
that extracts meaningful state representation of the input multigraph; 2) linear layers for computing
Q-values from this representation. To represent and process multigraphs in an expressive manner,
we adopt the MEGNet model [5], a universal graph machine learning framework for molecules and
materials. MEGNet provides an effective way of iterative information exchange among node, edge
and state features, which is particularly useful for chemical entities. For a crystal graph G(V,E,y; p̂)
conditioned on the desired property p̂, V and E are sets of nodes and edges, and y corresponds to
the global state-level feature. For the N atoms in a unit cell, the categorical feature of the nodes
H = {hu}N−1

u=0 denote the one-hot encoding of the atom type in each of the nodes. It includes an
additional dimension to indicate whether the node is currently filled or unfilled with an atom. Edges
connect neighboring atoms based on the CrystalNN scheme proposed by [32] for determining the
presence and type (i.e., (c1, c2, c3) triplet) of edges. The set of edge features T = {tuv,(c1,c2,c3)}
represents the Gaussian distance between the position of atom u in the reference unit cell and atom v
in a unit cell shifted by c1l1 + c2l2 + c3l3

tuv,(c1,c2,c3) = exp

[
−
d2uv,(c1,c2,c3)

ρ

]
, (8)

duv,(c1,c2,c3) =
√

(xv + c1l1 + c2l2 + c3l3 − xu)2, (9)

where xu,xv ∈ R3 are the positions (Cartesian coordinates) of atoms u and v in the reference unit
cell. The state-level feature y is expressed as follows:

y = [z||f ], z = [a, b, c, ϕ1, ϕ2, ϕ3,S, p̂], (10)

where, a, b, c are the lengths of the edges of the lattice (a = ∥l1∥, b = ∥l2∥, c = ∥l3∥), ϕ1, ϕ2, ϕ3 are
the angles of the lattice, S is the space group number of the crystal, p̂ is the desired property that the
policy is conditioned on, and f is a categorical feature, which we refer to as focus – it instructs the
policy which unfilled node to focus on for atom type prediction in the following step. The categorical
features H and f are passed through embedding layers to obtain embedded feature maps H̃, f̃ .
Numerical features T and y are passed through multilayer perceptrons (MLPs)

ỹ =MLP ([z||f̃ ]). (11)

A graph G̃ with embedded and encoded features is then passed through K MEGNet layers, followed
by a readout layer (Appendix A.2) to obtain a graph-level representation, which is then passed through
an MLP to obtain conditioned Q-values for all actions in A.

G̃(k+1) =MEGNET (G̃(k)) ∀ k = 0, · · · ,K − 1 (12)

ψ(G̃(K)) = READOUT (G̃(K)) (13)

Qθ(s = G; p̂) =MLP (ψ(G̃(K))) (14)

4.3 Dataset

For this study, we used a subset of the Materials Project database, referred to as MP-20, that was
previously used by [42]. MP-20 consists of ∼ 45k metallic and nonmetallic crystals with different
structures and compositions, covering 88 elements in the periodic table. All of them have at most 20
atoms. For our experiments, we excluded metallic crystals with zero band gap2. Metals constituted

2Metallic crystals, being conductors, have a zero band gap because of the overlapping conduction and valence
bands.
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more than 60% of the data, leading to class imbalance challenges while conditioning the model with
a nonzero band gap. Next, we used Quantum Espresso to determine the total energies and band gaps
of all nonmetallic crystals in the training and validation set. In the end, our training set included 8832
crystals, and our validation set included 2486 crystals.

4.4 State Transitions for Offline RL

As shown in Figure 1, we generated a static dataset for training the offline policy using episodic
trajectories consisting of (st,at, st+1, rt) transitions from MP-20 crystals. We applied a determin-
istic policy πβ(a|s), where the actions correspond to the original element identities of the atom
at a specific position of interest in an empty or partially constructed crystal skeleton graph. Each
trajectory of an episode starts with the initial state s0, which is a graph G0 of a crystal skeleton, where
all atom identities are hidden. Through the focus feature f , we are explicitly providing the order of
traversal through the nodes of the graph, thereby simplifying the problem further. To mitigate the
effects of bias due to this order dependency, we obtain up to 5 trajectories for each crystal by varying
the order of nodes with breadth-first traversals of the graph from different source nodes. This way,
we obtained ∼ 520k transitions to train our offline RL policies.

5 Experiments

In this study, we focus on designing stable (i.e., low energy) crystals that have a desired band gap
(p̂) of 1.12 eV, 2 eV, 3 eV, and 4 eV, which fall within the semiconductor range. To determine the
amount of conservatism required for better performance, we varied the CQL ω term using weights
of 1 and 5, with the latter being more conservative than the former. Furthermore, we investigate the
effect of the design parameters of the reward function in Equation (7) (i.e., coefficients α1, α2, β)
on generating favorable crystals. After an initial hyperparameter sweep, we choose the coefficients
as follows: α1 = {0, 1}, α2 = {5, 10}, β = {1, 3}. Our baselines are 1) Random Policy, 2)
Behavioral Cloning (BC)3, and 3) Unconditional CQL Policy (where p̂ is removed in the state
feature vector and the reward is only in terms of Etot). For evaluating the model, we start with
an empty crystal skeleton graph G0 as the initial state s0, and perform a rollout using the learned
conditional offline policy πo(a|s, p̂) to sequentially fill atoms in the crystal. We then perform a
pre-simulation assessment of the generated crystals using the following metrics – 1) Compositional
Validity: a generated crystal is valid if it has an overall neutral charge, as computed by SMACT [7],
2) Accuracy, which is the fraction of correctly predicted atoms, and 3) Similarity, which measures
the similarity of the predicted atoms with the ground truth, i.e., two atoms are similar if they belong
to the same class of elements4. Our results are shown in Table 1 for 1.12 eV and Table 2 for 4 eV.

Next, we performed DFT simulation for all the valid crystals to estimate the total energy and band
gap. The post-simulation metrics are 1) Earth Mover Distance (EMD) between the generated and
true band gap distributions (Γp

true), 2) Earth Mover Distance between the generated and true
total energy distributions (ΓE

true), 3) % of crystals that have the band gap value in the desired range
(ν), which in our case is from p̂− 0.25 eV to p̂+ 0.25 eV, and 4) Out-of-distribution design (κ) –
% of generated crystals that have band gaps in the desired range but whose corresponding ground
truth crystals do not have band gaps in the desired range. The results are shown in Figure 2. We
also performed the experiments by incorporating formation energy (per atom) in the reward scheme
instead of total energy, as detailed in Appendix E.

5.1 Analysis of Pre-simulation Metrics

For all band gap targets, as seen in Table 1 (for 1.12 eV) and Table 2 (for 4 eV), the more conservative
model (i.e., ω = 5) generally performs better in terms pre-simulation metrics. The metrics were also
influenced by the magnitude of the reward function – the higher the magnitude, lower the accuracy,
and in most cases, the lower the validity of generated structures. This is interesting because when
the magnitude of the reward is lower or ω is higher, the conservative term in the CQL objective in
Equation (4) becomes dominant, resulting in the net maximization of Q-values of state-action pairs

3Trained with supervised classification loss
4Classes – transition metals, post-transition metals, group 1 metals, group 2 metals, nonmetals, lanthanides,

actinides, halogens, and noble elements
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present in the dataset. Evidently, behavioral cloning (BC), being the most conservative approach with
no reward signal, performed the best for all pre-simulation metrics, which can be attributed to BC’s
better prediction capacities attributed to supervised learning. However, this might not be helpful from
the perspective of property-driven crystal design where the CQL-based policies outperform BC in κ
in most cases, as described next in Section 5.2 outlining relevant case studies.

(a) % Desired range for different band gaps
targets for various policies. Conditioned poli-
cies outperform random policy and compete
with unconditional policies in designing crys-
tals in the desired property range.

(b) % of generated crystals with property in
the desired range with corresponding ground
truth crystals outside the desired range.

(c) Band gap EMD (generated vs. true) for
various policies showing that unconditioned
policies reproduce the original dataset better.
Lower is better.

(d) Energy EMD (generated vs. true) for
various policies showing that unconditioned
policies reproduce the original dataset better.
Lower is better.

Figure 2: Results for conditioned CQL policies on all band gap design targets. Conditioned and more
conservative policies perform better in the κ metric in some cases, while unconditioned policies,
including behavioral cloning, perform better at reproducing the original distribution. Random policies
fail to reproduce the original distribution and achieve desired properties.

5.2 Band Gap Design Case Studies: Targeting 1.12 eV, 2 eV, 3 eV & 4 eV

The results in Figure 2, which include a well-performing policy for all the design cases, show some
clear trends: 1) For some targets (e.g. 1.12 eV, 3eV), conditioned policies (with ω = 5) generate
more materials in the desired property range when the corresponding true materials have properties
outside the desired range (Figure 2b). Examples of such materials are shown in Figure 3. 2) Greater
conservatism leads to more materials in the desired range as shown by the fact that ω = 5 outperforms
ω = 1 in all design cases. 3) Unconditioned policies manage to recreate the original distributions
better than conditioned distributions. This is shown by better performance in pre-simulation metrics
and in the plots in Figure 2c and Figure 2d, holding for both energy and band gap. 4) Random
policies are not effective in generating valid and desired crystal structures. It is likely that the random
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Figure 3: Examples of cases where the crystal generated by our model has the band gap in the desired
range, i.e., (p̂− 0.25, p̂+ 0.25), while the ground truth crystal has the band gap outside the desired
range. In most cases, it can be observed that some of the elements are common in the true and
generated crystals. This indicates selective atomic substitutions for favorable band gap shifts.

policy generated a small subset of valid metal-like crystals given the close to zero average band gap
shown in Figure 4a. Random policy generates many unrealistic crystals with high formation energies
(Figure 8f), and many of the DFT runs validating the crystals failed (Table 3). Full experimental
results of pre-simulation metrics included in Table 1 and Table 2 also show poor performance of
random policy. As shown in Figure 2, the higher values of p̂ are more challenging because: 1)
Most samples in the dataset have a lower band gap value (Appendix C) making the number of
samples with a higher band gap that get exposed to the model while training a very small fraction, 2)
Underestimation of band gaps by DFT, which causes an unfavorable shift from the expected band
gap distribution.

6 Conclusion and Future Work

We show that it is possible to train reinforcement learning based policies that can design valid crystal
compositions conditioned on a crystal structure skeleton and a target property, such as the band gap,
evaluated on precise and expensive computational chemistry engines, such as DFT. We demonstrate
that offline RL methods can be used to learn distributions of design trajectories for valid crystal
structures and provide tuning based on desired properties. While our results suggest that one can
train policies for materials design problems, there is still significant space for future work to improve
the performance, robustness, and capabilities of the RL policies. First, our current approach only
considers crystal structure composition, which can be extended to include additional design variables,
such as crystal lattice parameters and atomic positions, for greater design flexibility to design more
performant materials. Second, the dataset we used for offline RL is still limited in size given the large
cost of generating the dataset in a consistent manner and evaluating the reward function for structures
generated by the policy. This leaves significant room for future work in creating large pretraining
datasets and accelerating the evaluation of crystal structures through more optimized high-throughput
DFT or machine learning based approximators. Third, much algorithmic work remains in designing
better policies for materials design that can further improve the performance of conditional design.
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7 Code and Data Availability

The source code and data for this work can be obtained from
https://github.com/chandar-lab/crystal-design.
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A Experimental Details

A.1 Pre-simulation Results

Accuracy (%) Similarity (%) Validity (%)
CQL Weight ω = 1 ω = 5 ω = 1 ω = 5 ω = 1 ω = 5
Random 0.0115 0.1254 NaN
BC 52.26 71.98 85.00

No Condition 49.77 51.53 70.85 71.26 81.50 82.54
(0− 5− 1) 38.64 48.85 61.23 69.38 69.99 77.84
(0− 5− 3) 43.02 46.43 65.01 67.04 73.57 78.44
(0− 10− 1) 36.54 43.72 59.3 65.18 73.33 80.81
(0− 10− 3) 35.16 42.42 57.48 64.15 71.20 81.30
(1− 5− 1) 42.11 47.72 64.00 68.12 75.62 80.29
(1− 5− 3) 40.59 47.57 63.70 67.26 72.93 76.51
(1− 10− 1) 35.02 43.18 58.63 65.13 67.82 75.14
(1− 10− 3) 35.38 43.81 57.23 65.58 61.87 77.19

Table 1: Pre-simulation metrics for band gap design case of 1.12 eV with (α1−α2−β) corresponding
to the terms of the reward function in Equation (7) with the policy in Figure 2 and best by metric
highlighted. Unconditional policies perform better on pre-simulation metrics while conditioned
policies produce target designs shown as in Figure 2 and discussed in Section 5.2.

Accuracy (%) Similarity (%) Validity (%)
CQL Weight ω = 1 ω = 5 ω = 1 ω = 5 ω = 1 ω = 5
Random 0.0115 0.1254 NaN
BC 52.26 71.98 85.00

No Condition 49.77 51.53 70.85 71.26 81.50 82.54
(0− 5− 1) 41.82 48.09 64.34 68.82 80.21 82.18
(0− 5− 3) 39.46 47.61 61.59 68.24 74.46 80.09
(0− 10− 1) 33.24 39.42 60.78 53.42 62.39 67.82
(0− 10− 3) 35.24 41.47 57.14 64.06 64.40 75.54
(1− 5− 1) 38.80 46.79 60.09 68.77 70.80 80.17
(1− 5− 3) 42.06 47.49 63.36 68.35 78.32 81.0
(1− 10− 1) 36.52 42.21 59.57 65.07 76.55 74.41
(1− 10− 3) 35.94 42.91 56.8 64.2 68.95 77.63

Table 2: Band gap design case of 4 eV with similar nomenclature and conclusions as Table 1.

The full algorithmic description as well as relevant hyperparameters related to the model architecture
and policy training are shown below:

A.2 MEGNet

• Number of MEGNet blocks: 3
• Node embedding dimensions: 16
• Edge embedding dimensions: 1
• State embedding dimensions: 8
• READOUT Function: Order-invariant set2set [39]

A.3 Offline RL

• Number of steps trained: 500000
• Discount factor: 0.99
• Batch size: 1024
• Learning rate: 3e− 4
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(a) Average Band Gap for various policies.
Greater CQL conditioning (ω = 5) yields
greater alignment to the desired band gap for
conditioned policies.

(b) Average total energy for various poli-
cies yielding valid crystals with energy be-
low 0. Possible reasons for random policy
having the lowest energies are provided in
Section 5.2.

Figure 4: Analysis of average band gap and average energy of generated crystals in the validation set.

A.4 DFT Parameters (Quantum Esperesso)

For performing DFT calculations, we use the Quantum Espresso [11] simulation suite. The details
of the DFT parameters are given below. For simplicity, this configuration was used for all crystals,
and the evaluation is consistent for the training and generated crystals. Note that we do not perform
structure relaxation in any of the cases.

• Calculation: SCF

• Tolerance: 1e− 6

• Number of Bands: 256

• k-points: (3-3-3)

• Occupations: fixed (since our training set consists only of nonmetallic crystals)

• Diagonalization: David

• ecutrho: 245

• ecutwfc: 30

• mixing_beta: 0.7

• degauss: 0.001

• Default charge: 0

• Maximum iterations: 1000

A.4.1 Handling Failures

It is important to note that DFT can be best leveraged once we know certain properties of the crystals
– for example, charge, magnetization, and metallicity. Considering the difficulty in determining these
properties for completely unknown crystals, we standardized the evaluation procedure by using the
same DFT configuration for all crystals (except for the crystal-specifc parameters like number of
atoms, species, and pseudopotentials directory). However, this resulted in multiple crystals failing
DFT simulation. Some of the errors are explained below.

• Charge is wrong. Smearing is needed.: This error mainly occurs because of unpaired
electrons in the system, and can be resolved by changing the occupation to ‘smearing’
instead of ‘fixed’. However, doing so will not help in determining the band gap of crystals,
as it will only output the Fermi energy. Another way is to set the ‘nspin’ parameter to 2
and specify the total magnetization value as an additional input to Quantum Espresso. This
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helped us resolve most of the failures for the MP-20 crystals in the training and validation
set because the total magnetization value is retrievable from the Materials Project, but for
the newly generated crystals, we had to ignore those that failed because of this error. The
error could also occur if the generated crystal is metallic, and this property is also difficult
to identify directly from the structure and composition.

• NOT converged in 1000 iterations: For some crystals, the DFT simulation did not converge
even after 1000 iterations. These crystals were ignored while constructing the offline dataset,
and also when evaluating the policy-generated crystals.

• Time limit exceeded: For constructing the offline dataset using known crystals, we used a
flexible time limit to ensure none of the crystals were discarded because of time restrictions.
However, while performing DFT simulation for the policy-generated crystals, due to the
high-throughput nature of our evaluation pipeline, we had to ignore crystals that did not
converge in 15 minutes.

• Too few bands: This error occurs when the number of bands specified, through ‘nbnds’
parameter is insufficient for the crystal system being simulated. This error was largely
resolved by specifying a higher number of bands. In our case, we used 256 bands for all
crystals.

Overall, during evaluation of generated crystals, only 50-70% of the valid crystals successfully
underwent DFT simulation to output the energy and band gap (Table 3), and the rest failed because
of the above errors.

A.4.2 % DFT Success

Table 3 shows the percentage of policy-generated crystals that successfully underwent DFT simulation
based on failure handling strategies discussed in Appendix A.4.1.

% DFT Success
CQL Weight ω = 1 ω = 5
Random 14.99
BC 67.48

No Condition 70.97 59.92
CQL(p̂ = 1.12 eV) 51.92 61.68

CQL(p̂ = 2 eV) 53.76 69.06
CQL(p̂ = 3 eV) 54.18 67.71
CQL(p̂ = 4 eV) 52.31 66.48

Table 3: % Generated valid crystals that successfully underwent DFT simulation, for random policy
and each of the trained models. Most of the crystals generated by the random policy failed DFT
simulation.

B Limitations

The important limitations of this work are that the scope is limited to predicting only the atom
types, given all other information about the skeleton of the crystal and the order of traversal, and the
training data is small and limited to nonmetals. Considering computational challenges attributed to
DFT calculations, we had to restrict our design parameter space to a very small set, but it would be
interesting to see the results after an extensive analysis after training models with several values of
ω, α1, α2, and β. Due to the significant underestimation of band gaps by DFT, most of the generated
crystals had an estimated band gap value of 0.0, which hindered our evaluation and analyses. This
explains the very low fraction of generated crystals having a greater band gap.

C True Distributions of Properties

This section shows the true distribution of the band gaps and total energies for both training and
validation data.
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(a) Band Gap Distribution (Training Data) (b) Band Gap Distribution (Validation Data)

(c) Energy Distribution (Training Data) (d) Energy Distribution (Validation Data)

(e) Formation Energy Distribution (Training
Data)

(f) Formation Energy Distribution (Validation
Data)
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D Full Experimental Post-Simulation Metrics

We provide full experimental for our reward function design parameters for both the 1.12 eV design
case (Table 1 and Figure 6 and 4 eV case (Table 2 and Figure 7) below. The tables include evaluation
of both the pre-simulation and post-simulation metrics described in Section 5.

(a) Average band gap (b) Average energy

(c) Band gap Wasserstein distance (generated
vs true)

(d) Energy Wasserstein distance (generated
vs true)

(e) % Desired range (0.87-1.87eV)

Figure 6: Full design parameter values for all learned policies for the band gap design case of 1.12
eV. Nomenclature of the table is (α1 − α2 − β) corresponding to the terms of the reward function in
Equation (7)
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(a) Average band gap (b) Average energy

(c) Band gap Wasserstein distance (generated
vs true)

(d) Energy Wasserstein distance (generated
vs true)

(e) % Desired range (3.75-4.25)

Figure 7: Full design parameter values for all learned policies for the band gap design case of 4.0
eV. Nomenclature of the table is (α1 − α2 − β) corresponding to the terms of the reward function in
Equation (7)

E Experiments with Formation Energy

In the previous experiments where total energy is leveraged, through our unique reward scheme, we
only aim to design crystals with desired band gaps that are generally considered stable so they can be
used for practical purposes. However, total energy is less meaningful when it comes to comparing the
stability of different crystals. In order to design a reward scheme that better captures the energetic
properties of crystals in a relative sense rather than absolute, we performed another set of experiments
with formation energy per atom, Eform instead of total energy. Although energy above hull is
the best-known metric to compare thermodynamic stability, formation energy is particularly easier
to calculate for new chemical compositions and is more suitable for integration in our RL pipeline,
considering the high-throughput nature of our analysis. Since the units of formation energy are
converted to electron-volts per atom (eV/atom), we redefined our reward function in Equation (7) as
follows.

rN = α1 exp

(
−Eform

β1

)
+ α2 exp

[
− (p− p̂)2

β2

]
. (15)

With α1 = 1, α2 = 10, β1 = 5, β2 = 3, the post-simulation results corresponding to targets 1.12 eV
and 4 eV are shown in Figure 8.
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E.1 Formation Energy Calculation

The formation energy per atom was calculated using the total energies of the crystals and their
constituent elements. The total energies of the isolated elements (88 in the action space) were
calculated by performing SCF calculations on the most stable elemental crystals (i.e., 0 formation
energy) present in the Materials Project. For elements that do not have a stable elemental crystal (e.g.
Lu) or those that have large number of atoms in the elemental crystal (e.g. P, Se), the total energies
were calculated for a single atom inside a primary cubic cell of length 10Å. For a crystal with N
atoms, the formation energy (per atom) calculation is defined as follows.

Eform =
Etot −

∑
i
Ni

ni
Etot,i

N
(16)

Here, Ni is the number of atoms of the constituent element i present in the crystal, ni is the number
of atoms (sites) of i in the elemental crystal, and Etot,i is the total energy of i in the most stable
elemental crystal form.

F Algorithm

Algorithm 1 Training Conditional CQL: DQN Version for Crystal Design with Target Property p̂

Construct dataset D of size ND consisting of transitions (s,a, s′, r) using known crystals
Load D in Replay Buffer B
Initialize Q-network Qθ and target network Qθ′ , batch size B
for j = 1 to max_steps do

Sample B transitions, {(si,ai, s
′
i, ri)}Bi=1 from B

Compute TD loss

LTD
i (θ) =

{
(Qθ(si,ai; p̂)− (ri + γmaxaQθ′(s′i,a; p̂)))

2 if s′i is not terminal
(Qθ(si,ai; p̂)− ri)2 otherwise

LTD(θ) = 1
B

∑B
i=1 L

TD
i (θ)

Compute conservative loss, LC(θ) = 1
B

∑B
i=1 [log

∑
a exp(Qθ(si,a; p̂))−Qθ(si,ai; p̂)]

Compute total CQL loss LCQL(θ) = ωLC(θ) + 1
2L

TD(θ)

Compute gradients and backpropogate: θ ← θ − η∇LCQL(θ), η is the learning rate
Update target network parameters θ′

end for
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(a) % Desired range for the two band gaps tar-
gets (1.12 eV and 4 eV) for various policies.
Conditioned policies outperform random pol-
icy and compete with unconditional policies
in designing crystal in the desired property
range.

(b) % of generated crystals with property in
the desired range with corresponding ground
truth crystals outside the desired range.

(c) Band gap EMD (generated vs true) for
various policies showing that unconditioned
policies reproduce the original dataset better.
Lower is better.

(d) Formation energy EMD (generated vs
true) for various policies showing that un-
conditioned policies reproduce the original
dataset better. Lower is better.

(e) Average Band Gap for various policies.
Greater CQL conditioning (ω = 5) yields
greater alignment to the desired band gap for
conditioned policies.

(f) Average formation energy for various poli-
cies yielding valid crystals with energy below
0. The average formation energy of randomly
generated crystals is high and positive.

Figure 8: Results for conditioned CQL policies on both band gap design targets (1.12 eV and 4 eV)
with formation energy in the reward function (Equation (15)). Conditioned and more conservative
policies perform better in the κ metric when the target is 1.12 eV, while unconditioned policies,
including behavioral cloning, perform better at reproducing the original distribution. Random policies
fail to reproduce the original distribution and achieve desired properties.
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