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ABSTRACT

Although Deep Neural Networks (DNNs) such as Vision Transformers (ViTs)
have demonstrated superior performance in medical imaging tasks, the training of
DNNs usually requires large amounts of high-quality labeled training data, which
is usually difficult or even impractical to collect in the medical domain. To address
this issue, Generative Data Augmentation (GDA) has been employed to improve
the performance of DNNs trained on augmented training data comprising both
original training data in the standard benchmark datasets and synthetic training
data generated by generative models such as Diffusion Models (DMs). How-
ever, the synthetic data generated by GDA universally suffer from noise, and such
synthetic data can severely hurt the performance of classifiers trained on the aug-
mented training data. Existing works, such as data selection and data re-weighting
methods aiming to mitigate this issue, usually depend on a given clean metadata
or external classifier. In this work, we propose a principled sample re-weighting
method, Informative Data Selection (IDS), based on an established information
theoretic measure, the Information Bottleneck (IB), to improve the performance of
DNNSs trained for thorax disease classification with GDA. Extensive experiments
demonstrate that IDS successfully assigns higher weights to more informative
synthetic images and significantly outperforms existing data selection and data
re-weighting methods in GDA for thorax disease classification. The code of IDS
is available at https://anonymous.4open.science/r/IDS-20D1.

1 INTRODUCTION

Recent studies have pushed forward the development of deep neural networks (DNNs) for applica-
tions in medical imaging, such as disease classification for chest X-rays (Guendel et al., 2018; Xiao
et al., 2023). Pioneering efforts utilized convolutional neural networks (CNNs), like U-Net (Ron-
neberger et al., 2015), to foster representation learning from radiography images. Lately, Vision
Transformers (ViTs) (Dosovitskiy et al., 2020) have also been employed to harvest informative
medical representations from these images (Xiao et al., 2023), leveraging their proficiency in han-
dling long-range dependencies among features. While CNNs and ViTs have achieved promising
results, their effectiveness largely depends on the quality and volume of the available data and anno-
tations (Feng et al., 2020). However, collecting a large dataset of high-quality annotations in medical
domains is notably challenging (El Jiani et al., 2022; Xiao et al., 2023) or even impractical (Esteva
et al., 2021; Price & Cohen, 2019; Ali et al., 2023; Ramudu et al., 2023) due to resource limita-
tions or privacy issues. To overcome this issue, self-supervised learning (SSL), such restorative
learning (Xiao et al., 2023), has been utilized to procure representations from unlabeled data. More
recently, following the success of generative models (Rombach et al., 2022; Akrout et al., 2023),
generative data augmentation (GDA) (Sariyildiz et al., 2023; Lei et al., 2023; Azizi et al., 2023b;
Trabucco et al., 2024a), aiming to synthesize labeled training data using deep generative models,
has also emerged as a potent strategy to enrich training datasets.

Generative Data Augmentation (GDA) for Disease Classification. Data scarcity and the lack
of high-quality labeled training data is a long-standing challenge in medical imaging and also
general computer vision. To address this issue, the literature has conducted extensive studies in
GDA (Saryildiz et al., 2023; Lei et al., 2023; Azizi et al., 2023b; Trabucco et al., 2024a), such as
that based on Generative Adversarial Networks (GANs) (Zhang et al., 2021; Li et al., 2022) and
Diffusion Models (DMs) (He et al., 2023b; Tian et al., 2023; Yuan et al., 2022; Bansal & Grover,
2023; Vendrow et al., 2023), which have demonstrated promising results in applications in both
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Figure 1: Figures in the first row illustrate examples of thresholded Grad-CAM visualization for
OTR, REVAR and IDS. For each of the examples, we also present the ground-truth bounding box
for the disease. The thresholded heatmap areas are considered as the disease localization areas. loU
score between the disease localization area and the ground-truth bounding box is shown below each
example. A synthetic image with a higher IoU score is considered a more informative sample for
this disease as a larger portion of the predicted disease localization area overlaps with the ground-
truth bounding box of the disease. Figures in the second row illustrate the correlation between IoU
scores for disease localization and importance weights for OTR (Guo et al., 2022), REVAR (Jain
et al., 2024), and IDS in the CheXpert dataset. The disease name and Spearman Correlation Coeffi-
cients (SCC) (Spearman, 1961) are attached in the parenthesis. A larger absolute value of a positive
SCC between two variables indicates a stronger positive correlation, which refers to a correlation
between two variables where as one variable increases, the other variable tends to increase as well.
The range of ToU and the range of the importance weight, which is [0, 1] x [0, 1], is divided into
30 x 30 cells evenly, and the color of each cell is proportional to the number of synthetic images
whose IoU sores and importance weights fall in that cell. As a result, a cell with more blue indi-
cates more synthetic images falling in that cell. The red lines in the figures are the linear regression
results between the IoU scores and the importance weights, which visualizes the correlation. It can
be observed that the linear regressors in red suggest a stronger positive correlation between the loU
scores and the importance weights by our IDS than that for competing baselines, which is further
quantitatively evidenced by the higher SCC for IDS than the competing baselines. The correlation
analysis on NIH ChestX-ray14 is illustrated in Figure 4 in Section D.2 of the appendix.

general computer vision (Sariyildiz et al., 2023; Azizi et al., 2023b; Trabucco et al., 2024a) and
medical imaging, such as medical image classification (Akrout et al., 2023) and medical anomaly
detection (Wolleb et al., 2022). Motivated by this observation, this paper aims to improve the perfor-
mance of DNNs trained for thorax disease classification with the augmented training data comprising
both original training images in the benchmark datasets and synthetic images generated by DMs.

Challenges in GDA for Disease Classification. Albeit the potential of GDA, the synthetic data
generated by GDA universally suffer from noise (He et al., 2023a; Azizi et al., 2023a), and such
synthetic data can severely hurt the performance of classifiers trained on the augmented training data.
To address this issue, the literature widely adopts data selection (Chhabra et al., 2024) or sample re-
weighting methods (He et al., 2023a), which use re-weighted or selected synthetic data when training
the classifier. Existing sample re-weighting methods (Shu et al., 2019; Guo et al., 2022; Jain et al.,
2024) typically depend on training a meta-network using certain clean metadata, hoping that such a
network can assign higher importance weights to more informative training samples. However, all
these methods assume the existence of such clean metadata, and it is not clear how such metadata
can be obtained for the medical task considered in this paper without efforts from medical experts.
The existing work that is the closest to our setup is CBF (He et al., 2023a), which introduces a CLIP
Filter strategy to rule out noisy synthetic data. The CLIP Fiter employs CLIP zero-shot classification
confidence to assess the quality of the synthesized data, and the synthetic data with low-confidence
are filtered out. The performance of CBF highly depends on the zero-shot image classification
capability of a vision-language model, CLIP (Radford et al., 2021), which is pre-trained on a huge
dataset of image and text pairs. However, as a method highly depending a vision-language model
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pre-trained on generic data, CLIP may not be able to render reliable predictions on the specialized
data, such as the X-rays for thorax disease classification considered in this paper.

In summary, the current medical imaging and general machine learning literature lack a principled
sample re-weighting method for GDA which does not depend on a given clean metadata or exter-
nal classifiers. The major contribution of this paper is a principled sample re-weighting method
based on an established information theoretic measure, the Information Bottleneck (IB), which does
not require either clean metadata or external classifiers and exhibits superior performance over the
competing methods under the GDA setup for thorax disease classification.

Our Contributions. We propose a principled sample re-weighting method, Informative Data Se-
lection (IDS), for training DNNs with GDA, which assigns higher importance weights to more
informative samples based on an IB theoretic framework. The detailed contributions of this paper
are presented as follows.

First, to the best of our knowledge, IDS is among the first to perform sample re-weighting in GDA
by employing a principled IB framework in the sample re-weighting process where each synthetic
image receives an importance weight, aiming to improve the accuracy of the classifier trained on the
augmented data comprising the original training data and the re-weighted synthetic data. In contrast
to existing works in sample re-weighting (Shu et al., 2019; Guo et al., 2022; Jain et al., 2024) and
data selection (Chhabra et al., 2024; He et al., 2023a), IDS does not require either clean metadata or
external classifiers.

Second, the sample re-weighting network is optimized for reducing the IB loss on the synthetic data,
such that the IB principle, learning features more strongly correlated with class labels while decreas-
ing their correlation with the inputs, is better adhered. To achieve this goal, the importance weights
generated by the sample re-weighting network are applied to the input features and representations
of the synthetic data to compute weighted class centroids in both the input feature space and rep-
resentation space, which are then used to compute the IB loss on the synthetic data. To minimize
the IB loss with minibatch-based SGD algorithms, we further derive a separable variational upper
bound of the IB loss, termed the VIB. In the training process, the cross-entropy loss re-weighted by
the importance weights and the VIB are iteratively optimized to update the weights in the classifi-
cation network and the sample re-weighting network. As evidenced by the results in Section 4.2,
IDS significantly outperforms state-of-the-art data re-weighting (Shu et al., 2019; Guo et al., 2022;
Jain et al., 2024) and data selection methods (He et al., 2023a; Chhabra et al., 2024) for thorax dis-
ease classification on three thorax disease classification benchmarks, CheXpert (Irvin et al., 2019),
COVIDx (Pavlova et al., 2022), and NIH ChestX-ray14 (Wang et al., 2017), demonstrating the su-
periority of IDS in selecting informative synthetic data for GDA.

To demonstrate the superiority of IDS in selecting informative samples, we study the correlation
between the Intersection over Union (IoU) score for disease localization and importance weights
learned by the baseline sample re-weighting methods (Guo et al., 2022; Jain et al., 2024) and IDS.
The IoU score for disease localization is computed between the disease localization area predicted
by our IDS and the competing baselines and the ground-truth bounding box of the disease in the
X-ray images. Examples of disease localization areas are illustrated in the first row of Figure 1. A
synthetic image with a higher IoU score between the disease localization area and the ground-truth
bounding box is considered a more informative sample for this disease because a higher IoU means
a larger portion of the predicted disease localization area overlaps with the ground-truth bounding
box of the disease. More details on the ablation study can be found in Section 4.3 of the paper. The
Spearman Correlation Coefficient (SCC) (Spearman, 1961) is used to quantitatively measure the cor-
relation, and a larger absolute value of a positive SCC indicates a stronger positive correlation. Both
quantitative and visualization results in Figure 1 illustrate a stronger positive correlation between
the IoU scores and the importance weights learned by our IDS than that for competing baselines,
demonstrating the superiority of IDS for assigning higher importance weights to more informative
synthetic images to improve the accuracy of the classifier trained on the augmented data.

2 RELATED WORKS
2.1 MEDICAL IMAGE ANALYSIS WITH DEEP LEARNING

Deep learning has made remarkable progress in photographic image analysis (Lin et al., 2017b;a),
sparking interest in applying it to medical imaging. Convolutional neural networks (CNN5) like U-
Net (Falk et al., 2018; Zhou et al., 2018) pioneered this field, achieving state-of-the-art performance
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across various tasks such as image classification (Wang et al., 2019; Ma et al., 2020), object detec-
tion (Falk et al., 2019; Zhou et al., 2018; Yang & Yu, 2021), and semantic segmentation (Yang & Yu,
2021; Yao et al., 2021). More recently, vision transformers, inspired by the success of transform-
ers in natural language processing (Vaswani et al., 2017), have outperformed state-of-the-art CNNs
on various computer vision benchmarks (Zhu et al., 2021; Cai et al., 2023). Their self-attention
mechanism can better model long-range dependencies compared to CNNs’ local convolutions (Li
et al., 2023b). Given the scarcity of high-quality annotations, self-supervised contrastive learning
techniques (Chen et al., 2020a; Caron et al., 2020; Xiao et al., 2023) have gained traction for pre-
training networks in this domain (Zhou, 2021; Xiao et al., 2023; Chen et al., 2021). However,
the high similarity between radiographic images due to standardized protocols (Xiang et al., 2021;
Haghighi et al., 2022) poses challenges compared to photographic images (He et al., 2020; Chen
et al., 2020b). To address this, recent works utilize restorative strategies like masked autoencoders
(MAE) (He et al., 2022) for pre-training (Xiao et al., 2023).

2.2  EXISTING WORKS ABOUT INFORMATION BOTTLENECK

The Information Bottleneck (IB) principle (Tishby et al., 2000) posits that an optimal DNN com-
presses its input data, preserving only the information that is essential for predicting the target out-
puts, thereby maximizing the mutual information between the representations and the target out-
puts while minimizing the mutual information between the input and the representations. Deep
VIB (Alemi et al., 2017) first integrates the IB principle as a training objective for deep neural net-
works. Both empirical (Lai et al., 2021; Zhou et al., 2022) and theoretical (Amjad & Geiger, 2020;
Kawaguchi et al., 2023) works prove that DNNs better adhering to the IB principle show stronger
performance. In the medical imaging domain, the IB principle is also widely adopted to learn dis-
criminative task-oriented image representations (Demir et al., 2021; Wang et al., 2023; Schott et al.,
2024; Li et al., 2023a). MIB-Net (Wang et al., 2023) multiplies a contribution score map with the
input image to force the network to learn representations that are more correlated with the target
task. IB-TransUNet (Li et al., 2023a) introduces an information bottleneck block in to compress
redundant features and reduce the risk of overfitting in medical image segmentation tasks. In con-
trast with existing works that utilize the IB principle to enhance the image representation learning
capabilities of DNNs, our method is the first that utilizes the IB principle for selecting high-quality
synthetic data to augment the training of DNN for the medical image classification task.

2.3 EXISTING WORKS ABOUT GENERATIVE DATA AUGMENTATION, DATA SELECTION AND
SAMPLE RE-WEIGHTING

Generating synthetic informative training data as data augmentation, or generative data augmenta-
tion (GDA), for improving the performance of DNNs remains a vital yet challenging research area.
Existing works (Sartyildiz et al., 2023; Lei et al., 2023; Azizi et al., 2023b; Trabucco et al., 2024a)
predominantly focus on synthesizing training data through deep generative models, such as Gener-
ative Adversarial Networks (GANs) (Zhang et al., 2021; Li et al., 2022) and diffusion models (He
et al., 2023b; Tian et al., 2023; Yuan et al., 2022; Bansal & Grover, 2023; Vendrow et al., 2023).
In the medical domain, researchers have also explored employing generative models to synthesize
training images for data augmentation, addressing the lack of high-quality labeled data (Shin et al.,
2018; Zhu et al., 2017; Jiang et al., 2018; Sharma & Hamarneh, 2019; Cha et al., 2020; Akrout et al.,
2023) in tasks such as medical image classification (Shin et al., 2018) and medical anomaly detec-
tion (Akrout et al., 2023). Despite works showing that synthetic images can improve the training
of DNNs for medical tasks, they often overlook the fact that synthetic data produced by generative
models can introduce noise (Azizi et al., 2023b; Trabucco et al., 2024b; Na et al., 2024), which
underscores the critical need for careful quality control in using the generated synthetic data for data
augmentation. To mitigate this issue, recent works focus on three directions: improving the quality
of the synthetic data, data selection, and data re-weighting. The first category of methods seeks to
directly improve the quality of the generated synthetic data by refining the generation process of
diffusion models to (Sariyildiz et al., 2023; Lei et al., 2023; Zhou et al., 2023). The second category
of methods, data selection (Wu et al., 2021; Nguyen et al., 2020; Song et al., 2023; Lin et al., 2023;
He et al., 2023a; Chhabra et al., 2024), which aims to select a high-quality subset from the noisy
training data to improve the performance of deep learning models, can also be used to select high-
quality synthetic data. For example, Classifier-based Filtering (CBF) (He et al., 2023a) proposes
to select synthetic images with high CLIP zero-shot classification confidence. The third category,
data re-weighting, uses soft data selection by assigning importance weights to training samples (Mo
et al., 2019; Shu et al., 2019; Guo et al., 2022; Jain et al., 2024). Methods like Meta-Weight-Net
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(Shu et al., 2019), OTR (Guo et al., 2022), and REVAR (Jain et al., 2024) employ meta-learning to
adaptively learn sample weights from a clean meta dataset, enhancing robustness against noise or
bias in the training data (Shu et al., 2019; Guo et al., 2022; Jain et al., 2024).

3 INFORMATIVE DATA SELECTION

Given the original training set Dyey = {z;, yi}fvzl for Thorax disease classification, we aim to

generate synthetic training set Dyyn = {Z;, J; }j\il with diffusion models and train a classifier on the

augmented training set Dyyg = Dreat U Dsyn. To mitigate the negative effects of potential abundant
noise in the synthetic training samples, we propose Informative Data Selection (IDS) to re-weight the
synthetic training samples with a sample re-weighting network. The sample re-weighting network
is trained by minimizing the variational upper bound for the Informative Bottleneck (IB) loss on the
synthetic training set in the hope that more informative synthetic training samples can have higher
weights, thus improving the performance of the classifier trained on the augmented training set.

In Section 3.1, we first describe the details for generating the synthetic training samples with dif-
fusion models. Next, we derive the variational upper bound for the IB loss in Section 3.2. In
Section 3.3, we describe the training of the re-weighting network and the classifier network in IDS.

3.1 GENERATING SYNTHETIC TRAINING SAMPLES WITH DIFFUSION MODELS

To generate labeled synthetic training samples, we train a conditional Latent Diffusion Model
(LDM) (Rombach et al., 2022) with Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) on the
latent features of the images in the training set, which are generated by an off-the-shelf pre-trained
variational autoencoder (VAE) model from Stable Diffusion (Rombach et al., 2022). Detailed formu-
lations of the training and inference of diffusion models, LDM, and CFG are deferred to Section B.1
of the appendix. We use Diffusion Transformers (DiTs) (Peebles & Xie, 2023) as the backbones of
the LDMs in our works. Let v, and vq be the fixed pre-trained encoder and decoder. The encoder
of the VAE is first applied to generate the latent features {hi}ivzl Of Drear, where h; = ve(x;) is the

latent feature of the i-th image. The parameters of the LDM w are trained on {h;, yz}fil by mini-
mizing the loss £y py in Equation (18) in Section B.1 of the appendix. Algorithm 1 in Section B.1
of the appendix describes the training algorithm of the LDM.

M
Once the training of the LDM is finished, the latent features {hj } are generated for a set of pre-
j=1

defined synthetic labels {(7?7}JM=1 using Equation (17) in Section B of the appendix. The synthetic

training images {Z; }jw:l are then generated by applying the pre-trained decoder on the latent features

~ M ~ )
{hj} o where T; = v4 (hj). In our work, we set the synthetic labels {y; };Vil to be the same as
j:

the original label set {7; }]Nil Algorithm 2 in Section B.1 of the appendix describes the generation

process of the synthetic training set. After obtaining the synthetic training set Dyyn = {Z;, y; };\il

with the LDM, we can combine it with the original training set D, to obtain the augmented training
set Dayg = Dreat U Dyyn. Next, the classifier network in IDS can be trained together with the sample
re-weighing network on D, as described in Section 3.3.

3.2 VARIATIONAL UPPER BOUND FOR THE IB L0OSS

In order to assign higher importance weights to more informative synthetic training samples, we
propose to train the re-weighting network by minimizing the IB loss on the synthetic training set. To
achieve this goal, we first derive a variational upper bound for the IB loss, which can be optimized by
standard SGD algorithms. Given the synthetic training set Dy, = {Z;, 7 }jlvil, we first specify how
to compute the IB loss, IB(©) = I(Z(0), X) — I(Z(©),Y), where © is the weights of a neural net-
work, X is a random variable representing the input feature of the synthetic training sample, which

takes values in {Z; }jj\il, Z(©) is a random variable representing the learned feature of the synthetic
training sample, which takes values in {Z; (@)};\il with Z; (©) being the learned feature for the j-th
synthetic training sample. Y is a random variable representing the synthetic class label, which takes
. c c
values in {y; }?_1. We define C(0,0) = {{cgnp”t)(ﬁ)}k , {cge‘“)(e, (9)}]C } as the class cen-
= =1 =1
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troids of the input features and the learned features on the synthetic training set, where 6 denotes the
parameters of the sample re-weighting network. The formulas for the computation of C(6, ©) can

be found in Equation (3). We abbreviate Z(©) as Z, ¢ (6) as ¢,"™", and ¢/** (6, ©) as ¢{** for
simplicity of the notations. Then we define the probability that Z; belongs to class a as Pr [2 € a] =
exp (-2 [I7)

S ()

M
4 3 o(z;, ) with ¢(2;, ) = Similarly, we define the prob-
J=1

- M _
ability that Z; belongs to class b as Pr [X € b] = 15 ¢(x;,c™"). Moreover, we have the
i=1

~ ~ M . ~ ~
joint probabilities Pr |Z € a, X € b] = & 3 65, ) p(@;, ™) and Pr [Z €aY = y} =
j=1

M
o 2 oz, ) Iz _,y where Ty is an indicator function. As a result, we can compute
j=1

. . A~ 0~ C C ~ ~ pr[iea,Xeb] A~ 0~
the mutual information I(Z,X) = azz:l b;Pr ZeaX€ b} log wZean]Re]’ I(Z)Y) =
c c = S Pr[Z\Ea,?:y]
> > Pr|Z€a,Y =y|log —=— =, and then compute the IB loss IB(C(6, ©), ©, Dgyn).

a=1y=1 Pr[?Ea]Pr[Yzy]

Given a variational distribution Q(Z € a|Y = y) fory € {1,...,CYand a € {1,...,C},
the following theorem gives a variational upper bound, VIB(C(6,©),©, Dyy,), for the IB loss
IB(C(Q, 9)7 97 Dsyn)-

Theorem 3.1.
IB(C(#,0),0,Dyy,) < VIB(C(6,0),0, Dyn), (D
where

VIB(C(0,0),0,Dyn) = VIB(C(0,0),0,z;), ()

-

~
I
—

VIB(C(0.0),0,;) ; 2, i) (@, ™) log 6(T5, ¢™)

S
Il
—_

Il
Mo iMe =l-
] Mo

ISR

$(Z, L5 _y log Q(Z € alY = y).

S]
Il
—
<
Il
—

VIB(C(6,©),0,Z;) can be interpreted as the information bottleneck upper bound for the j-th syn-
thetic image. The proof of this theorem follows by applying Lemma A.1 and Lemma A.2 in Sec-
tion A of the supplementary. We remark that VIB(©) is ready to be optimized by standard SGD
algorithms because it is separable and expressed as the summation of losses on individual training
points. In order to compute VIB(O) before a new epoch starts, we need to update the variational

distribution Q®) at the end of the previous epoch.

3.3 FORMULATION OF INFORMATIVE DATA SELECTION (IDS)

Given the original training set Dyeq = {2, yl}f\il and the synthetic training set Dy, = {Z;, J; };Vil
generated by the diffusion model, we aim to train an image classifier fo(+) on the augmented training
set Dyg = Dreat U Dyyn, Where fo(-) is a DNN and © denotes its network parameters. However,
training the classifier directly on the augmented training set can hurt the performance of the classifier
due to the potential abundant noise in the synthetic images in Dsy,. To address this issue, we train
a sample re-weighting network gy(-) to learn importance weights {go(Z;) € [0, 1]};‘11 for training
samples in the synthetic training set Dy, Where gq(+) is a DNN and 6 denotes its parameters. We
remark that the re-weighting network plays a role similar to that of the meta networks in (Shu et al.,
2019; Jain et al., 2024), which generate the importance weights for training samples.

To train the sample re-weighting network gg(-), such that more informative samples in Dy, can
have higher weights, we train gy (-) by optimizing the variational upper bound of the IB loss, VIB,
on the synthetic training set Dy,. To compute the VIB on the synthetic training set Dsy,, we first
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compute the class centroids for the input features and the image representations using all the images
in the augmented training set D,,,. Let f¢(-) denote the representation learning backbone of the
image classifier fo(-) excluding the last linear layer. The class centroids for the input features and
the image representations can be computed by

E —1 Tillgy, =y + Z ~190(Z5)%; Wiz =y
Zi:l I[{y1:=k} + Zj:l go(% J)]I {y;=k}
Sy willgy i + 3000 00(85) 06 (@) g,
ity Lyomny + 0500 90(%5) Lig =ty

)

™ (0) =

A (9,0) = , (3)

where k € [C] is the class index and C' is the number of classes. Ty is an indicator function. Next,
the VIB on the synthetic training set Dy, can be computed using Equation (3). With the sample re-
weighting network gg(-), the overall training loss for the classifier fg(-) on the augmented training
set Dyyg is

M
1 N o~
Etraln(e S) Daug ZCE fo wz) yz MZ}Q@(%)CEU@(CB;‘)’%)’ 4)
=
where CE(,) is the cross-entropy function. To train the classifier fo(-) by minimizing
Lirain (0, ©, Dyyg ) while training the sample re-weighting network gg by minimizing VIB(6, ©, Dy ),
we formulate a bi-level optimization objective for IDS as

0" = arg Hgl'l Lirain (0", 0, Dy ), s.t. 67 = arg rrbin VIB(C(6,0%),0", Dyn), 5)

where ©* and 6* are the optimal parameters for the classifier fo(:) and the sample re-weighting
network go(-).

Optimization of IDS. To train the classifier fo(-) and the sample re-weighting network gy(-) with
the optimization objective in Equation (5), we adopt an alternating stochastic gradient descent up-
date strategy commonly used for solving bi-level optimization problems (Shu et al., 2019; Algan
& Ulusoy, 2021; Jain et al., 2024). This process alternates between updating weights and classifier
parameters, leveraging gradient-based methods to efficiently manage the interdependencies between
the two tasks. In the bi-level optimization framework used here, the lower level optimizes a sam-
ple re-weighting network to assign importance weights to training samples, enhancing classifier
training. The upper level then trains the classifier with these weighted samples for improved gen-
eralization. At the ¢-th epoch, the parameters of the sample re-weighting network are first updated
by

0 = 9U=1) — nyVeVIB(C(0, 001,011 Dy,), (6)

where 7y is the learning rate of #. #() and ©") are the parameters of the sample re-weighting
network and the classifier network at the ¢-th epoch. Next, the parameters of the classifier are
updated by

@(t) = @(til) - n@v@ﬁtrain(e(til)a 67 Daug)» (7)

where 7)g is the learning rate of ©. Since both VIB and L, are separable and amenable to mini-
batch stochastic gradient descent (SGD), the entire optimization process of IDS can be efficiently
conducted using mini-batch SGD. Algorithm 3 in Section C of the appendix describes the training
process of IDS.

We remark that IDS can be easily extended to multi-label classification tasks. Let L be the
number of labels. The sample re-weighting network gg(-) learns importance weight vectors
{g0(z;) € [0, 1]L}j,vi1 for training samples in the synthetic training set Dy, where the [-th ele-
ment of gg(Z;) corresponds to the importance of the j-th synthetic training sample for the /-th label.
The training loss in Equation (4) and the VIB in Equation (2) can be separately computed for each of
the L labels. Let Liyin(6, ©, Dayg, 1) and VIB(C(, ©), ©, Dy, 1) be the training loss and VIB cor-
responds to the [-th label. The parameters of the classification network and the sample re-weighting
network can be optimized by replacing the training loss and VIB in the bi-level optimization objec-

tive in Equation (5) with + Z Liain (0,0, Dy, 1) and + Z VIB(C(f,©), O, Dy, 1), respectively.
bia
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4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our proposed Informative Data Selection
(IDS) method across several medical imaging datasets. First, in Section 4.1, the implementation
details of our experiments are presented. We perform the comparison between IDS and other data
selection and sample re-weighting techniques on CheXpert, COVIDx, and NIH-ChestXray-14 in
Section 4.2. In Section 4.3, we perform an ablation study to analyze the correlation between disease
localization performance and importance weights for IDS and the baseline methods. In addition,
the details for generating synthetic images with diffusion models are deferred to Section B.2 of
the appendix. Additional experiment results are deferred to Section D of the appendix. Additional
implementation details and experimental setups are presented in Section D.1 of the appendix. Addi-
tional ablation study results are presented in Section D.2. Finally, comparisons with more baseline
methods for thorax disease classification across the three benchmarks are presented in Section D.7
of the appendix, and Grad-CAM visualization results on the NIH ChestXray-14 dataset are shown
in Section D.8.

4.1 IMPLEMENTATION DETAILS

We evaluate the effectiveness of the proposed IDS method for thorax disease classification with
base classification networks, ViT-S and ViT-B (Dosovitskiy et al., 2020), pre-trained on 266, 340
and 489, 090 chest X-rays with Masked Autoencoders (MAE) respectively, following the settings
in (Xiao et al., 2023). After pre-training, the networks using the IDS are fine-tuned for three thorax
disease classification datasets, CheXpert (Irvin et al., 2019), COVIDx (Pavlova et al., 2022), and
NIH ChestX-rayl4 (Wang et al., 2017). In addition to applying IDS for data re-weighting on the
synthetic data, we also assess the performance of IDS for re-weighting both the real data and the
synthetic data. More implementation details and experimental setups are deferred to Section D.1
of the appendix. The mean Area Under the Curve (mAUC) is adopted as the evaluation metric
for the multi-label disease classification datasets CheXpert and NIH ChestX-ray14. The mAUC
is computed by averaging the individual Area Under the Curve (AUC) values calculated for each
disease label. Classification accuracy is used as the metric for the single-label dataset COVIDx.

4.2 EXPERIMENTAL RESULTS

CheXpert. Table | compares the performance of competing data selection and data re-weighting
methods with our IDS for GDA on CheXpert. The base model ViT-B achieves a mAUC of 89.3%
when fine-tuned on the CheXpert dataset. By incorporating IDS for GDA, the IDS-ViT-B model
attains a state-of-the-art mAUC of 90.1%, reflecting a 0.8% improvement over the ViT-B and a
1.1% improvement over the ViT-B trained with synthetic data. Notably, IDS models significantly
outperform other data selection and data re-weighting methods for GDA. For instance, IDS-ViT-B
outperforms REVAR by 0.8% in mAUC. Moreover, applying IDS to re-weight both the real data
and the synthetic data further boosts the performance of IDS. For example, IDS-ViT-B re-weighting
both the synthetic data and the real data outperforms IDS-ViT-B re-weighting only the synthetic data
by 0.6% in mAUC, demonstrating the merits of IDS in selecting informative samples in both real
data and synthetic data. Comparisons with additional baseline methods are provided in Table 8 in
Section D.7 of the appendix.

Table 1: The performance of various state-of-the-art (SOTA) baseline methods on CheXpert. The
best results are in bold, and the second-best results are underlined, for each architecture. Compar-
isons with more baselines are deferred to Table 8 in Section D.7 of the appendix.

Method Architecture | Atelectasis | Cardiomegaly | Edema | mAUC (%)
MAE (Xiao et al., 2023) 83.5 81.8 94.0 89.2
MAE with Synthetic Data 83.0 81.5 94.0 88.6
MW-Net (Shu et al., 2019) 81.7 82.7 94.1 88.9
OTR (Guo et al., 2022) VIT-S/16 84.6 81.2 94.2 89.0
IE (Chhabra et al., 2024) 81.7 82.0 94.2 88.9
CBF (He et al., 2023a) 81.4 82.7 94.2 88.8
REVAR (Jain et al., 2024) 83.0 82.7 94.0 89.0
IDS (Ours) 87.5 83.0 94.4 89.6
IDS (Ours, Re-weighting Real Data) 87.9 83.4 94.9 90.1
MAE (Xiao et al., 2023) 82.7 83.5 93.8 89.3
MAE with Synthetic Data 83.5 82.7 94.0 89.0
MW-Net (Shu et al., 2019) 83.9 82.7 93.8 89.3
OTR (Guo et al., 2022) VIT-B/16 85.5 81.6 93.2 89.3
IE (Chhabra et al., 2024) 83.5 82.7 93.8 89.1
CBF (He et al., 2023a) 84.6 81.8 93.8 89.2
REVAR (Jain et al., 2024) 84.0 82.7 93.8 89.3
IDS (Ours) 86.3 84.1 94.7 90.1
IDS (Ours, Re-weighting Real Data) 86.8 84.8 95.5 90.7
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Table 2: Performance comparisons between  Table 3: Performance comparison be-
IDS models and SOTA baselines on COVIDx  tween IDS models and SOTA baselines
(in accuracy). Comparisons with more baselines ~ on NIH ChestX-ray14. Comparisons with

are deferred to Table 9 in Section D.7 of the ap-  more baselines are deferred to Table 10 in
pendix. Section D.7 of the appendix.
. Covid-19 Method Architecture | mAUC
Method Architecture Sensitivity Accuracy MAE (Xiao et al., 2023) 33
MAE (Xiao et al., 2023) 94.5 952 MAE with Synthetic Data 81.8
MAE with Synthetic Data 98.0 95.4 MW-Net (Shu et al., 2019) 82.0
MW-Net (Shu et al., 2019) 98.1 96.0 ’

OTR (Guo et al., 2022) 98.0 96.2 Ig{ghﬁ;f;;“ii' 2205222) ViT-S/16 gg'?

IE (Chhabra et al., 2024) VIT-S/16 98.0 96.0 A :
CBF (He et al., 2023a) 98.4 96.1 CBF (He et al., 2023a) 82.1
REVAR (Jain et al., 2024) 982 9.2 REVAR (Jain et al., 2024) 82.1
IDS (Ours) 98.8 97.1 IDS (Ours) 82.7
IDS (Ours, Re-weighting Real Data) 99.1 97.5 IDS (Ours, Re-weighting Real Data) 83.2
MAE (Xiao et al., 2023) 955 953 MAE (Xiao et al., 2023) 83.0
MAE with Synthetic Data 98.0 95.5 MAE with Synthetic Data 82.1
MW-Net (Shu et al., 2019) 98.5 96.1 MW-Net (Shu et al., 2019) 82.3
OTR (Guo et al., 2022) 98.0 96.1 OTR (Guo et al., 2022) . 823
IE (Chhabra et al., 2024) ViT-B/16 98.0 96.0 IE (Chhabra et al., 2024) ViT-B/16 825
CBF (He et al., 2023a) 98.1 96.2 CBF (He et al., 2023a) 825
REVAR (Jain et al., 2024) 98.2 96.3 REVAR (Jain et al., 2024) 825
IDS (Ours) 2.0 73 IDS (Ours) 83.4
IDS (Ours, Re-weighting Real Data) 99.3 97.7 IDS (Ours, Re-weighting Real Data) 839

COVIDx. Table 2 compares the competing data selection and data re-weighting methods with
our IDS for GDA on COVIDx. The base models, ViT-S and ViT-B, fine-tuned on the COVIDx
dataset with synthetic data, achieve an accuracy of 95.4% and 95.5%, respectively. Both IDS-
ViT-S and IDS-ViT-B outperform their respective base models trained with synthetic data, with
accuracy improvements of 1.7% and 1.8%, respectively. IDS-ViT-B achieves a new state-of-the-
art top-1 accuracy of 97.3%, with a 1.0% improvement over the best competing baseline, REVAR,
highlighting the efficacy of employing IDS for GDA on the COVIDx dataset. Moreover, applying
IDS to re-weight both the real data and the synthetic data further boosts the performance of IDS.
For example, IDS-ViT-B re-weighting both the synthetic data and the real data outperforms IDS-
ViT-B re-weighting only the synthetic data by 0.4% in mAUC, demonstrating the merits of IDS in
selecting informative samples in both real data and synthetic data. Comparisons with additional
baseline methods are provided in Table 9 in Section D.7 of the appendix.

NIH ChestX-ray14. Table 3 compares the competing data selection and data re-weighting methods
with our IDS for GDA on the NIH ChestX-ray14 dataset. NIH ChestX-ray14 is an especially chal-
lenging dataset for GDA as it is a multi-label thorax disease classification dataset with 14 labels. All
competing data selection methods and data re-weighting methods lead to even worse results than the
baseline models trained without synthetic data. In contrast, IDS leads to improved performance over
the baseline models and significantly outperforms competing data selection and data re-weighting
methods. For instance, the base ViT-B network achieves a mean AUC (mAUC) of 83.0%, but the
performance of ViT-B trained with synthetic data decreases to 82.1%. Although both data selec-
tion and data re-weighting methods bring improvements over the baseline trained with synthetic
data, their performance remains worse than the baseline trained without synthetic data. In contrast,
IDS-ViT-B outperforms the base model ViT-B trained without synthetic data by 0.4%, achieving
an mAUC of 83.4%. IDS-ViT-B outperforms the best competing data re-weighting method, RE-
VAR, by 0.9% in mAUC. Moreover, applying IDS to re-weight both the real data and the synthetic
data further boosts the performance. For example, IDS-ViT-B re-weighting both the synthetic data
and the real data outperforms IDS-ViT-B re-weighting only the synthetic data by 0.5% in mAUC.
Comparisons with more baseline methods are available in Table 10 in Section D.7 of the appendix.

Improvement Significance Analysis To verify whether the improvements by our proposed IDS
over existing methods are statistically significant and out of the range of error, we train both IDS
and the leading baseline methods on different datasets from Table 1, Table 2, and Table 3 for 10 times
with different seeds for random initialization of the networks and train/val/test splits. Subsequently,
we perform the t-test between the results of IDS and the results of the best baseline methods on
different datasets to assess if the improvement of IDS is statistically significant. The mean and
standard deviation of the results and the p-values of the t-test are shown in Table 4 in Section D.3 of
the appendix. The t-test results suggest that the improvements of IDS over the baseline methods is
statistically significant with p < 0.05, and it is not caused by random error.

4.3 ABLATION STUDY

Study on the Correlation between Disease Localization and Importance Weights. In this sec-
tion, we predict the disease localization areas using Grad-CAM heatmap (Selvaraju et al., 2017) and
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assess the quality of synthetic images by computing IoU scores between the disease localization ar-
eas and the ground-truth bounding box of the disease. Following (Xiao et al., 2023), the predicated
disease localization area is generated with the thresholded Grad-CAM heatmap. The threshold is set
to 0.3 throughout all the experiments. A synthetic image with a higher IoU score between the disease
localization area and the ground-truth bounding box is considered a more informative sample for the
corresponding disease because a higher IoU means a larger overlap between the predicted disease
localization area and the ground-truth bounding box of the disease. As illustrated in the examples
in Figure 2, disease localization areas by IDS usually overlap more with the ground-truth bounding
boxes than the competing baselines with higher IoU scores. To study whether more informative
synthetic images receive higher importance weights by our IDS and the competing baselines, we
analyze the correlation between the IoU scores and the importance weights predicted by IDS and
baseline data re-weighting methods. Since the ground-truth disease bounding boxes for synthetic
images are not available, we conduct the study on Cardiomegaly, which is a disease usually detected
in a fixed region around the heart in the chest X-ray (Amin & Siddiqui, 2019). We use the ground-
truth bounding box of Cardiomegaly from the test set of the NIH ChestX-rays14 (Wang et al., 2017)
dataset as the ground-truth bounding box in our study.

The correlation between the individual IoU scores and importance weights is illustrated in the sec-
ond row of Figure 1. Results on NIH-ChesX-ray14 are deferred to Figure 4 in Section D.2 of the
appendix. Linear regression is performed between the individual IoU scores and importance weights
to visualize the correlation. It is observed from the results that synthetic images with higher impor-
tance weights learned by IDS tend to have higher IoU scores, which suggests that our IDS renders
higher importance weights for truly more informative synthetic images. In contrast, there is either
no positive correlation, OTR (Guo et al., 2022), or only a tiny positive correlation, REVAR (Jain
et al., 2024), between the importance weights of the IoU scores. We also apply the SCC to quan-
titatively measure the correlation between the individual VIB values and the importance weights of
synthetic data. The SCC for IDS is 0.184, which is much higher than the SCC of 0.006 for the
baseline method, REVAR. The SCC results demonstrate that the importance weights learned by IDS
show much stronger positive correlations with the IoU scores compared to the baseline methods.

IoU=0.06 IoU=0.18 IoU=0.16 ToU=0.12

IoU=0.46  IoU=10.29 IoU=0.19 IoU = 0.09

bl el b

IoU=0.62 IoU=0.48 IoU=0.33 ToU=0.38

(a) OTR

-0

d

Bounding
Box

IoU =0.49

(b) REVAR
(b) REVAR

IoU=0.01 ToU=0.31 IoU=0.11 IoU = 0.20

(c) IDS
(c) IDS

IoU =0.91

IoU =0.70 IoU =0.83

CheXpert NIH-ChestX-ray 14

IoU =0.77

Figure 2: Grad-CAM visualization results on synthetic images for the disease Cardiomegaly from
the CheXpert (left) and NIH ChestX-ray14 (right) datasets. The Grad-CAM visualizations are
shown for (a) OTR, (b) REVAR, and (c) IDS in the first, second, and third rows, respectively. The
green boxes represent the ground-truth bounding boxes. These visualizations illustrate that IDS con-
sistently exhibits better disease localization ability compared to OTR (Guo et al., 2022) and REVAR
(Jain et al., 2024), as reflected by the higher IoU scores.

5 CONCLUSION

In this paper, we propose Informative Data Selection (IDS), a novel method designed to re-weight
synthetic images in Generative Data Augmentation (GDA) based on an information theoretic mea-
sure, the Information Bottleneck (IB). IDS trains a sample re-weighting network to minimize the
IB loss on the synthetic data, such that the IB principle, learning features more correlated with the
outputs and less correlated with the inputs, is better adhered. Extensive experiments and ablation
studies demonstrate that IDS successfully assigns higher weights to more informative synthetic im-
ages for thorax disease classification and significantly outperforms existing data selection and data
re-weighting methods for GDA.

10
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A PROOF OF THEOREM 3.1

Lemma A.1.
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Proof. Let Q(Z|Y') be a variational distribution. We have
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B INFORMATION ON DIFFUSION MODELS

B.1 FORMULATIONS OF DIFFUSION MODELS

Diffusion models (DMs) are latent variable models that conceptualize data z° as a Markov
chain progressing from z7 to x°, with all intermediate variables maintaining consistent dimen-
sions. These models involve two primary Markovian processes: a forward diffusion process de-

fined as ¢(z("T) | 29) = T[_, q(z® | (*=1) and a reverse denoising process described by
pw(zo.r) = plar) HtT:1 po (2D | 21). The forward process methodically incorporates Gaus-
sian noise into data x(*):

q(z (t) | 2= 1) (t) (/1 — gD 5(01 (12)

where the hyperparameter series ﬂ(lzT) dictates the noise level added at each step t. The chosen
BT) ensures that samples 27 approximate standard Gaussian distributions, i.e., g(z7) ~ N (0,I).
Typically, this forward process g is not adjustable post-definition.

The generation method for DMs involves learning a parameter-driven reverse denoising process to
systematically purify the noisy variables x7.; back to the pristine data 2:°:

P (@1 | 20) = N (@D; (2, 1), (p)°1), (13)
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with the initial distribution p(z7) set as N'(0, I). The model utilizes neural networks like U-Nets or
Transformers for calculating means /,,, with variances p(*) usually predefined.

In terms of optimization, the forward process q(x(l’T>|z0) is treated as a fixed posterior, against
which the reverse process p,,(xo.r) is trained to enhance the variational lower bound of the data
likelihood. Direct likelihood optimization can lead to significant training instability. An alternative
simple surrogate objective suggested is:

2

; (14)
2

Lpm = ]ExO,ENN(O,I),tH€ - Ew(x(t)v t)’

where the model e, predicts the noise vector ¢ to clarify diffused samples z(*) at every stage ¢ back
to 2(*=1)_ Post-training, samples are generated through iterative ancestral sampling:

) ®
$(t_1) _ 7(]}(0 _ /Biew(x(t),t)) + p(t)é‘, (15)

V1= W 1— (a(t))2

starting from a Gaussian prior z7 ~ p(xr) = N (z7;0,1).

Latent Diffusion Models (LDMs) enhance standard Diffusion Models by introducing a latent space
that reduces the dimensionality of the data involved in the diffusion process. Initially, data 2" is
encoded to a lower-dimensional latent form h°. The forward process in LDMs involves:

q(h(t) | h(tfl)) _ ./\/(h(t); 1— ﬂ(t)h(tfl)’ﬁ(t)[)’ (16)

and the reverse process reconstructs the original clean latent state h° from hq by:
po(hD | RO) = N(REY; (9, 1), (09)21), (17

followed by transforming the reconstructed latent data h° back to the original data space. The
training loss for LDM is

2
) (18)
2

€— ew(h(t)at7y)’

Lipm = En, (2),e~N(0,1),t

Classifier-Free Guidance (CFG) merges a conditional and an unconditional noise predictor in the
sampling process to elevate sample quality and provide class guidance. This technique can be seam-
lessly integrated into LDMs, formulated as:

pt-1) — 1 (h(t) _ B(f) é(f)) + p(f’)E, (19)
1-8® 1— (a®)?

where €0 = (1 + w)ey, (M, y,t) — ve, (b, ), and ~ is the guidance factor, optimizing the
sampling process for specific outcomes.

Algorithm 1 describes the training algorithm of the LDM. Algorithm 2 describes the generation
process of the synthetic training set.

Algorithm 1 Training Algorithm of LDM Algorithm 2 Generation of Synthetic Training Set

Input: The oﬁgir?al lra‘ining set Dreal = {zi, yi}ﬁvzl', Fhe Input: The labels of the synthetic training set {7; }j}yil, the param-
encoder v, of the fixed pre-trained VAE, and the training eters of the LDM w, and the decoder vy of the fixed pre-trained
epochs of the LDM t1pwm. VAE.

Output: The parameters of the LDM w. Output: The synthetic training set Dyyn = {Z;, ﬂl}ii 1

1: Initialize the parameter w of the LDM. 1: fori = 1.2 M d ’

2: Encode input features {x;}7 | to the latent features SRy =g 00

: N P . ’ tli=1 c2: Sample a Gaussian noise € ~ N'(0, I)
{hi}iz; using the encoder ve such that hry = ve(w:). 3: Generate synthetic latent feature h; from e with the LDM using
E i 17)1 ion B of th ix.
3 fort=1.2, ... tipydo " quation (17) in Sectl(l"n of the append'lx' R
4: Update w by mini-batch SGD on {hi}gxle using the : lzecode latfnt feature h; to the synthetic input feature Z; by
loss Lipwm in Equation (18). Zj; = va(hj).
5: end for 5: end for
6: return The parameters of the LDM w. 6: return The synthetic training set Dyyn = {Z;, Js } j‘il
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(i) Consolidation, Edema and Pleural Effusion (ii) Cardiomegaly and Atelectasis (iii) Cardiomegaly, Edema and Pleural Effusion

(a) CheXpert
(i) COVID-19 (ii) Pneumonia (iii) Normal
(b) COVIDx

Figure 3: Examples of synthetic images generated using a diffusion model trained on the (a) CheX-
pert and (b) COVIDx datasets, displayed in the first and second rows, respectively. In the first row
(CheXpert), the images depict the following medical conditions: (i) Consolidation, Edema, and
Pleural Effusion; (ii) Cardiomegaly and Atelectasis; (iii) Cardiomegaly and Pleural Effusion. In the
second row (COVIDx), the images correspond to: (i) COVID-19; (ii) Pneumonia; and (iii) Normal
(no disease).

B.2 DATA GENERATION WITH THE DIFFUSION MODELS

We train the Diffusion Transformer (DiT) on 256 x 256 images, following the protocol outlined in
(Peebles & Xie, 2023). The training process spans 2,800 epochs with a global batch size of 512,
distributed across four NVIDIA A100 GPUs. A constant learning rate of 1 x 10~* is maintained
throughout the training. After training, we generate synthetic images using a classifier-free guidance
(CFGQG) scale of 4.0 with 128 sampling steps. The synthetic dataset is constructed to mirror the label
distribution of the real data, ensuring that disease co-occurrence patterns are preserved. Figure 3
presents examples of synthetic images generated by the diffusion model for various thorax diseases.
We then integrate these synthetic images into the training sets for COVIDx, CheXpert and NIH-
ChestX-rayl4. Specifically, we augment the CheXpert, COVIDx and NIH-ChestX-ray14 training
sets with 1.0n synthetic images, where ‘n’ denotes the number of images in the official training split
of each respective dataset. To ensure fair comparison, all the other baselines are augmented with a
similar number of synthetic images.

B.3 COMPUTATION OF Q) (X|Y)

The variational distribution Q*)(X|Y") can be computed by

QW(Z caly =y)=Pr [2 €aly = y]

-

(;5(23', a)]l{yi:y}
==l ) (20)

; ]I{yi:y}

C ALGORITHM OF IDS

The algorithm for the training process of IDS is described in Algorithm 3.
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Algorithm 3 Algorithm of IDS

Input: The augmented training set Dayg, the synthetic training set Dsyy, the original training set Dyea, epoch
number tmax-.
1: Initialize the classifier network parameters 0 and the sample re-weighting network parameters 0©.
2: fort =1,2,..., tmax do
3:  Compute the class centroids of the input features and image representations C(6, et-b ).
4 Update oW by applying mini-batch gradient descent on Dyy, following Equation (6).
5 Update ew byapplying mini-batch gradient descent on D,,, following Equation (7).
6:  Compute Q) (2 € a|17 = y) by Eq. (20) in the supplementary.
7
8

: end for
: return The trained weights © of the classifier network fo(:) and the trained weights 6 of the sample
re-weighting network go (-).

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUPS

The fine-tuning process is performed for 75 epochs with the ADAM optimizer and a batch size of
1024. A cosine decay schedule is used. The initial learning rate p is determined through cross-
validation for each model and dataset. The weight decay is set to 0.05, and the momentum param-
eters 51 and B; are set to 0.9 and 0.999 for all the experiments. We compare our IDS models with
several data selection and sample reweighting methods, including Influence Estimation (Chhabra
et al., 2024), Classifier-based Filtering (CBF) (He et al., 2023a), MW-Net (Shu et al., 2019), OTR
(Guo et al., 2022), and REVAR (Jain et al., 2024). To ensure a fair comparison, all baseline models
undergo an additional 75 epochs of fine-tuning. The mean Area Under the Curve (mAUC) is used
as the metric for the multi-label disease classification datasets CheXpert and NIH ChestX-ray14.
Accuracy is used as the metric for the single-label disease classification dataset COVIDx.

CheXpert. The CheXpert dataset (Irvin et al., 2019) consists of 224, 316 chest X-ray images from
65, 240 patients, with 191, 028 images used for training. Each X-ray is labeled with radiology
reports indicating the presence of 14 thoracic diseases. To measure the effectiveness of our approach,
we compute the mean Area Under the Curve (AUC) across five selected disease categories and
compare our results against state-of-the-art baseline models.

COVIDx. The COVIDx dataset (Version 9A) (Pavlova et al., 2022) comprises 30,386 chest X-ray
images from 17,026 unique patients. Following the partitioning strategy used in previous studies
(Pavlova et al., 2022; Xiao et al., 2023), the dataset is divided into 29, 986 images for training across
four classes, and 400 images for testing, categorized into three classes. For objective evaluation and
consistency with prior methodologies, we report the Top-1 accuracy on the test set, which contains
three classes.

NIH ChestX-rayl4. NIH ChestX-rayl4 (Wang et al., 2017) is a large-scale dataset comprising
112, 120 chest X-ray images collected from 30, 805 unique patients. Each image may have multiple
labels from 14 disease categories, allowing for multi-label classification tasks. Following the official
data split provided by Wang et al. (2017), we use 75, 312 images for training and 25, 596 images for
testing. The raw images have a resolution of 1024 x 1024 pixels. In our experiments, we resize the
images to 224 x 224 pixels to match the input requirements of our models. We report the mean Area
Under the Curve (AUC) across all 14 disease classes and conduct a comprehensive comparison with
18 widely recognized and influential baseline methods.

D.2 ADDITIONAL STUDY ON THE CORRELATION BETWEEN DISEASE LOCALIZATION AND
IMPORTANCE WEIGHTS

Figure 4 illustrates the correlation analysis between IoU scores for disease localization and impor-
tance weights on Cardiomegaly for OTR (Guo et al., 2022), REVAR (Jain et al., 2024) and IDS in
the NIH-ChestX-ray14 dataset.

As illustrated in Figure 2, the disease localization areas predicted by IDS tend to overlap more with
the ground-truth bounding boxes than those predicted by competing baselines, yielding higher IoU
scores. To investigate whether IDS assigns higher importance weights to more informative synthetic
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Figure 4: Figures in the first row are examples of thresholded Grad-CAM visualization for OTR,
REVAR, and IDS. For each of the examples, we also present the ground-truth bounding box for
the disease Cardiomegaly. The thresholded heatmap areas are considered as the disease localization
areas. IoU score between the disease localization area and the ground-truth bounding box is shown
below each example. A synthetic image with a higher IoU score is considered a more informative
sample for this disease as a larger portion of the predicted disease localization area overlaps with the
ground-truth bounding box of the disease. Figures in the second row illustrate the correlation be-
tween loU scores for disease localization and importance weights on Cardiomegaly for OTR (Guo
et al., 2022), REVAR (Jain et al., 2024) and IDS in the NIH-ChestX-ray14 dataset. The disease
name and Spearman Correlation Coefficients (SCC) (Spearman, 1961) are attached in the parenthe-
sis. A larger absolute value of a positive SCC between two variables indicates a stronger positive
correlation, which refers to a correlation between two variables where as one variable increases, the
other variable tends to increase as well. The range of IoU and the range of the importance weight,
which is [0, 1] x [0, 1], is divided into 30 x 30 cells evenly, and the color of each cell is proportional
to the number of synthetic images whose IoU sores and importance weights fall in that cell. As a
result, a cell with more blue indicates more synthetic images falling in that cell. The red lines in the
figures are the linear regression results between the IoU scores and the importance weights, which
visualizes the correlation. It can be observed that the linear regressors in red suggest a stronger
positive correlation between the IoU scores and the importance weights by our IDS than that for
competing baselines, which is further quantitatively evidenced by the higher SCC for IDS than the
competing baselines.

images, we analyze the correlation between IoU scores and importance weights predicted by IDS
and other baseline data re-weighting methods. The second row of Figure 4 illustrates the correlation
between individual IoU scores and importance weights. Linear regression is performed to visualize
this relationship. The results show that synthetic images assigned higher importance weights by
IDS generally have higher IoU scores, indicating that IDS effectively identifies and prioritizes more
informative synthetic images. In contrast, there is only a weak positive correlation between impor-
tance weights and IoU scores for OTR (Guo et al., 2022) and REVAR (Jain et al., 2024). To further
quantify this correlation, we apply the Spearman Correlation Coefficient (SCC) (Spearman, 1961).
The SCC for IDS is 0.065, significantly higher than the SCC of 0.004 for REVAR, demonstrating
that IDS assigns importance weights that are more strongly correlated with IoU scores compared to
baseline methods.
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D.3 IMPROVEMENT SIGNIFICANCE ANALYSIS

To verify that the improvement of our proposed IDS on existing methods is statistically significant
and out of the range of error, we train both IDS and the best baseline methods on different datasets
from Table 1, Table 2, and Table 3 for 10 times with different seeds for random initialization of
the networks and train/val/test splits. Next, we perform the t-test between the results of IDS and
the results of the best baseline methods on different datasets to assess if the improvement of IDS
is statistically significant. The mean and standard deviation of the results and the p-values of the
t-test are shown in Table 4. It is observed that the largest p-value is 1.44 x 10710, which is less than
0.05. The t-test results suggest that the improvement of IDS over the baseline methods is statistically
significant with p < 0.05, and it is not caused by random error.

Table 4: P-values of t-test between IDS the baseline methods with the best performance on CheX-
pert, COVIDx, and NIH ChestX-ray14.

Dataset Architecture | CheXpert (mAUC) COVIDx (Accuracy) NIH ChestX-ray14 (mAUC)
Best Baseline VIT-S/16 89.2 + 0.067 96.2 +0.122 82.3 +0.045
DS 89.6 £0.112 97.1 £0.125 82.7 +0.052
p-value 1.44 x 10710 3.20 x 10~ 12 407 x 1075
Best Baseline VIT-B/16 89.3 £ 0.045 96.3 £ 0.158 83.0 £ 0.051
DS 90.1 £ 0.096 97.3 £0.136 83.4 + 0.065
p-value 1.44 x 10~ 1.44 x 10711 1.44 x 1072

D.4 ABLATION STUDY AND TRAINING TIME ANALYSIS OF THE IDS

To evaluate the effectiveness and efficiency of different components in the IDS. We compare the
disease classification performance and the training time of the baseline model ViT-B, the IDS model
IDS-ViT-B, and two ablation models, which are IDS-ViT-B without VIB and IDS-ViT-B without
the re-weighting network. The comparison is performed on the COVIDx dataset. The training
time is evaluated on four NVIDIA A100 GPUs. The results are shown in Table 5. With only
a 30% increase in the training time, IDS-ViT-B improves the classification accuracy on COVIDx
by 2.0%, demonstrating the effectiveness of integrating these components into the baseline model.
The ablation studies further confirm the individual contributions of the VIB and the re-weighting
network, underlining the importance of both components in enhancing model performance while
maintaining a manageable increase in computational demand.

Table 5: Ablation study of IDS with training time analysis. The training time is evaluated on four
NVIDIA A100 GPUs.

Methods COVIDx (Accuracy) Training Time (minutes/epoch)
ViT-B 95.3 2.6
IDS-ViT-B w/o VIB 96.4 32
IDS-ViT-B w/o Re-weighting Network 96.7 2.8
IDS-ViT-B 97.3 34

D.5 STUDY ON THE DIFFUSION MODELS FOR THE DATA GENERATION IN THE IDS

To evaluate the impact of the diffusion model used for the data generation in the IDS, we compare
the performance of IDS-ViT-B using three different diffusion models for data generation, which are
DiT-B, DiT-L, and DiT-XL Peebles & Xie (2023). The data generation time and the classification
accuracy on the COVIDx dataset are shown in Table 6. It is observed that the performance of the
IDS model is not sensitive to the selection of the diffusion models used for data generation. The
IDS-ViT-B based on the largest DiT model DiT-XL only outperforms the IDS-ViT-B based on the
smallest DiT model DiT-B by 0.2% in classification accuracy on COVIDx, demonstrating the merit
of IDS in mitigating the noise in the synthetic data generated by diffusion models. In addition, the
results in Table 6 show that the synthetic data generation process with the diffusion models in IDS
is efficient, with less than 0.01 seconds/image.

Table 6: Performance comparison of IDS-ViT-B utilizing different diffusion models for data gener-
ation. The data generation time is evaluated on four NVIDIA A100 GPUs.

Methods COVIDx (Accuracy) Generation Time (seconds/image)
ViT-B 95.3 -
IDS-ViT-B (DiT-B) 97.1 0.095
IDS-ViT-B (DiT-L) 97.3 0.151
IDS-ViT-B (DiT-XL) 97.3 0.176
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D.6 COMPARISON BETWEEN IDS AND ACTIVE LEARNING METHODS

Active learning (AL) methods aim to minimize the effort required for labeling training data by strate-
gically choosing the most informative instances for annotation (Sinha et al., 2019; Yoo & Kweon,
2019; Gao et al., 2020; Kushnir & Venturi, 2023; Yang et al., 2023; Chhabra et al., 2024). The selec-
tion of the data for annotation by active learning methods is usually achieved by identifying the most
informative data points. Such a process works similarly to the data r-weighting process in IDS for
identifying the most informative synthetic data. To show the advantage of IDS over active learning
methods in selecting the most informative synthetic data, we compare IDS with two state-of-the-art
active learning methods, which are CAMPAL (Yang et al., 2023) and SAAL (Chhabra et al., 2024).
Both CAMPAL and SAAL are adopted to select data from the synthetic dataset generated by the
diffusion models. The results are shown in Table 7. It is observed that IDS outperforms the com-
peting active learning methods on all the datasets, demonstrating the superiority of IDS in selecting
informative training samples compared to active learning methods.

Table 7: Comparison between IDS and active learning methods.

Methods COVIDx (mAUC) Covid-19 (Accuracy) NIH ChestX-ray14 (mAUC)
ViT-B 89.3 95.3 83.0
CAMPAL-ViT-B 89.4 96.2 83.0
SAAL-ViT-B 89.3 95.9 83.1
IDS-ViT-B 89.6 97.3 834

D.7 COMPARISON WITH MORE EXISTING WORKS ON THORAX DISEASE CLASSIFICATION

We compare our IDS models with more baselines for thorax disease classification on CheXpert,
COVIDx, and NIH-ChestXray-14 in Table 8, Table 9, and Table 10, respectively.

CheXpert. Table 8 presents a performance comparison between additional baseline models and
those enhanced by our Informative Data Selection (IDS) technique. For instance, IDS-ViT-B
achieves significant improvements, with gains of up to 7.3% in mAUC over the baseline models.
In addition to the overall mAUC, Table 8 also provides AUC scores for key thoracic diseases, in-
cluding Atelectasis, Cardiomegaly, and Edema. These individual disease-specific results further
emphasize the effectiveness of IDS, as it consistently boosts performance across various conditions.
These findings highlight the superior capabilities of IDS-enhanced models compared to standard
baselines on the CheXpert dataset.

COVIDx. Table 9 presents performance comparisons between additional baseline models and our
IDS-enhanced models on the COVIDx dataset. For instance, IDS-ViT-B significantly outperforms
the baseline models, with accuracy gains of up to 4.7%. Moreover, IDS-ViT-S and IDS-ViT-B
achieve a state-of-the-art COVID-19 sensitivity of 99.0%, surpassing previous baselines by up to
11.9%. These results demonstrate the effectiveness of integrating IDS into transformer-based mod-
els for medical image analysis on the COVIDx dataset.

NIH-ChestX-ray14. Table 10 compares the performance of various state-of-the-art (SOTA) CNN-
based and transformer-based models, including those enhanced by our Informative Data Selection
(IDS) technique, on the NIH ChestX-ray14 dataset. The table includes models pre-trained on both
ImageNet and X-rays. IDS-ViT-B shows significant improvements, achieving gains of up to 8.9% in
mAUC and 8.2% for IDS-ViT-S over baseline models. These gains highlight the effectiveness of IDS
in improving performance for thoracic disease classification. Furthermore, Table 10 presents mAUC
scores for all methods, demonstrating that IDS-enhanced models consistently outperform other base-
line methods, including both CNN and transformer-based architectures, on the NIH ChestX-ray14
dataset. These findings underscore the superior capabilities of IDS-enhanced models in addressing
the challenges of thoracic disease classification.

D.8 GRAD-CAM VISUALIZATION RESULTS ON NIH-CHESTX-RAY14

In this section, we present Grad-CAM visualization results on the NIH ChestX-ray 14 dataset, which
includes various disease labels such as Pneumothorax, Atelectasis, Mass, Cardiomegaly, Pneumo-
nia, and Effusion. The dataset provides bounding box annotations for certain disease labels, which
we use in our evaluations to assess the accuracy of localization. We visualize the regions in the input
images that are responsible for the model’s predictions on the ground-truth disease labels, compar-
ing the performance of IDS against several baseline models, including MAE (Xiao et al., 2023),
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Table 8: The performance of various state-of-the-art (SOTA) baseline methods on CheXpert. DN
represents DenseNet, where the second best performance is underlined.

Method Architecture | Atelectasis | Cardiomegaly | Edema | mAUC (%)
Allaouzi et al.(Allaouzi & Ahmed, 2019) 72.0 88.0 87.0 82.8
Irvin et al.(Irvin et al., 2019) 81.8 82.8 93.4 88.9
Chexclusion (Seyyed-Kalantari et al., 2020) 81.2 83.0 88.3 87.3
Pham et al.(Pham et al., 2021) 82.5 85.5 93.0 89.4
BMTL (Hosseinzadeh Taher et al., 2021) DN121 - - - 87.1
DiRA (Haghighi et al., 2022) - - - 87.6
Label-assemble (Kang et al., 2021) 82.1 85.9 89.2 89.0
MoCo v2 (Xiao et al., 2023) 78.5 77.9 92.8 88.7
MAE (Xiao et al., 2023) 81.5 77.6 92.3 88.7
MAE (Xiao et al., 2023) 83.5 81.8 94.0 89.2
MAE with Synthetic Data 83.0 81.5 94.0 88.6
MW-Net (Shu et al., 2019) 81.7 82.7 94.1 88.9
OTR (Guo et al., 2022) VIT-S/16 84.6 81.2 94.2 89.0
IE (Chhabra et al., 2024) 81.7 82.0 94.2 88.9
CBF (He et al., 2023a) 81.4 82.7 94.2 88.8
REVAR (Jain et al., 2024) 83.0 82.7 94.0 89.0
IDS (Ours) 87.5 83.0 944 89.6
MAE (Xiao et al., 2023) 82.7 83.5 93.8 89.3
MAE with Synthetic Data 83.5 82.7 94.0 89.0
MW-Net (Shu et al., 2019) 83.9 82.7 93.8 89.3
OTR (Guo et al., 2022) VIT.B/16 85.5 81.6 93.2 89.3
IE (Chhabra et al., 2024) 83.5 82.7 93.8 89.1
CBF (He et al., 2023a) 84.6 81.8 93.8 89.2
REVAR (Jain et al., 2024) 84.0 82.7 93.8 89.3
IDS (Ours) 86.3 84.1 94.7 90.1

Table 9: Performance comparisons between IDS models and SOTA baselines on COVIDX (in accu-
racy). DN represents DenseNet.

Method Architecture | Covid-19 Sensitivity | Accuracy
COVIDNet-CXR Small (Wang et al., 2020) - 87.1 92.6
COVIDNet-CXR Large (Wang et al., 2020) - 96.8 94.4

MoCo v2 (Xiao et al., 2023) DN121 94.5 94.0
MAE (Xiao et al., 2023) DN121 97.0 93.5
MAE (Xiao et al., 2023) 94.5 95.2

MAE with Synthetic Data 98.0 954
MW-Net (Shu et al., 2019) 98.1 96.0
OTR (Guo et al., 2022) . 98.0 96.2
IE (Chhabra et al., 2024) VIT-5/16 98.0 96.0
CBF (He et al., 2023a) 98.4 96.1
REVAR (Jain et al., 2024) 98.2 96.2
IDS (Ours) 98.8 97.1

MAE (Xiao et al., 2023) 95.5 95.3
MAE with Synthetic Data 98.0 95.5
MW-Net (Shu et al., 2019) 98.5 96.1
OTR (Guo et al., 2022) . 98.0 96.1
IE (Chhabra et al., 2024) VIT-B/16 98.0 96.0
CBF (He et al., 2023a) 98.1 96.2
REVAR (Jain et al., 2024) 98.2 96.3
IDS (Ours) 99.0 97.3
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Table 10: Performance comparison of various state-of-the-art (SOTA) CNN-based and Transformer-
based methods on NIH ChestX-rayl4. RN, DN, and SwinT represent ResNet, DenseNet, and Swin
Transformer.

Method Architecture Pre-training mAUC
Wang et al.(Wang et al., 2017) RNS50 74.5
Li et al.(Li et al., 2018) RN50 75.5
LSE-LBA(Yao et al., 2018) RN&DN 76.1
Thorax-Net(Wang et al., 2019) R152 78.8
MA(Ma et al., 2019) R101 79.4
AGCL(Tang et al., 2018) RN50 80.3
Baltruschat et al.(Baltruschat et al., 2019) RNS50 80.6
DNetLoc (Guendel et al., 2018) DNI121 80.7
CRAL(Guan & Huang, 2018) DNI121 81.6
Seyyed et al.(Seyyed-Kalantari et al., 2020) DNI121 ImageNet-1K 81.2
CAN(Ma et al., 2020) DN121(x2) 81.7
Hermoza et al.(Hermoza et al., 2020) DNI121 82.1
XProtoNet(Kim et al., 2021) DNI121 82.2
DiRA(Haghighi et al., 2022) DNI121 81.7
ACPL (Liu et al., 2022) DN121 81.8
SwinCheX (Taslimi et al., 2022) SwinT 81.0
Categorization (Xiao et al., 2023) RNS50 81.8
Categorization (Xiao et al., 2023) DN121 82.0
MoCo v2 (Xiao et al., 2023) DNI21 80.6
MAE (Xiao et al., 2023) DNI21 Xerays (03M) | g1
MAE (Xiao et al., 2023) 82.3
MAE with Synthetic Data 81.8
MW-Net (Shu et al., 2019) 82.0
OTR (Guo et al., 2022) . ) 82.0
IE (Chhabra et al, 2024) VIT-S/16 | Xerays (03M) | g5y
CBF (He et al., 2023a) 82.1
REVAR (Jain et al., 2024) 82.1
IDS (Ours) 82.7
MAE (Xiao et al., 2023) 83.0
MAE with Synthetic Data 82.1
MW-Net (Shu et al., 2019) 82.3
OTR (Guo et al., 2022) . o 82.3
IE (Chhabra et al., 2024) VIT-B/16 | Xerays (0.5M) | g5’
CBF (He et al., 2023a) 82.5
REVAR (Jain et al., 2024) 82.5
IDS (Ours) 83.4

OTR (Guo et al., 2022), and REVAR (Jain et al., 2024). The visualizations in Figure 5 demonstrate
that IDS tends to focus more accurately on areas inside the bounding boxes provided by the NIH
ChestX-ray14 dataset, which correspond to the labeled disease regions. In contrast, the baseline
models often activate regions outside the bounding boxes or irrelevant background areas, indicating
less precise localization.
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Figure 5: Grad-CAM visualization results on NIH-ChestX-ray14 dataset for various disease labels
including Pneumothorax, Atelectasis, Mass, Cardiomegaly, Pneumonia, and Effusion. The visual-
izations from MAE (Xiao et al., 2023), OTR (Guo et al., 2022), REVAR (Jain et al., 2024), and
IDS are shown in the first, second, third, and fourth columns, respectively. The green bounding
boxes represent the ground truth regions of interest for each label, and the corresponding IoU score
is shown below each image, which quantifies the overlap between the Grad-CAM heatmap and the
ground truth bounding box. For each Grad-CAM visualization, higher IoU scores indicate a better
localization of the activated regions in relation to the ground truth.
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