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Abstract While most ML models expect independent and identically distributed data, this assumption

is often violated in real-world scenarios due to distribution shifts, resulting in the degra-

dation of machine learning model performance. Until now, no method has significantly

outperformed classical supervised learning, which ignores these shifts, with even smaller

gains for tabular data.

To address this, we present Drift-Resilient TabPFN, a fresh approach based on In-Context

Learning with a Prior-Data Fitted Network that learns the learning algorithm itself: it accepts

the entire training dataset as input and makes predictions on the test set in a single forward

pass. Specifically, it learns to approximate Bayesian inference on synthetic datasets drawn

from a prior that specifies the model’s inductive bias. This prior is based on structural causal

models (SCM), which gradually shift over time. To model shifts of these causal models, we

use a secondary SCM, that specifies changes in the primary model parameters.

The resulting Drift-Resilient TabPFN can be applied to unseen datasets, runs in seconds, and

needs no hyperparameter tuning. Comprehensive evaluations across 18 synthetic and real-

world datasets demonstrate large performance improvements over a wide range of baselines,

such as XGB, CatBoost, and TabPFN. Compared to the strongest baselines, it improves

accuracy from 0.688 to 0.744 and ROC AUC from 0.786 to 0.832 while maintaining stronger

calibration. This approach could serve as significant groundwork for further research on

out-of-distribution prediction.

1 Introduction

In traditional machine learning the train and test data are assumed to be sampled from the same

distribution [47]. However, this assumption of independent and identically distributed (i.i.d.) data

is commonly violated in real-world scenarios due to distribution shifts, resulting in performance

degradation of standard ML models over time [47, 59]. Research in the area of temporal domain

generalization (Temporal DG) tries to address these shifts by developing methods that perform

consistently across temporal domains and generalize beyond the training regimen, i.e. into the

future. In fields such as healthcare, climate science, or finance, data is most often organized in a

tabular format [10, 58]. Here shifts are driven by hidden variables such as policy or climate changes,

equipment updates, seasonal changes, or activity cycles, limiting model deployment [59].

Young and Steele [63] describe declining mortality quantification in a hospital system while

Pasterkamp et al. [45] show deterioration of cardiovascular risk models over time, leading to

increased mortality; Ganesan et al. [21] show the COVID-19 pandemic exacerbated this issue, as

ICU mortality prediction models failed to adapt to the unique characteristics of COVID-19 patients;

environmental models need to continually adapt to climate changes [8]; fraud detection models

need to continuously adapt as the strategies of fraudsters adapt to the models themselves [37]; these

feedback loops often arise in practice, where model deployment inherently causes a system change
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High-level overview

(a)We generate synthetic datasets by sampling Structural Causal Models (SCMs) whose edges shift

over time.

An SCM with sparse edge shifts indicated in

red.

A secondary SCM, called "Hypernet" gener-

ates the strength of edge shifts depending on

a time domain.
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(b) TabPFN accepts entire datasets as inputs.

Given millions of datasets from (a), it learns

to make predictions on held-out test samples,

learning the prediction algorithm itself with an

inductive bias for addressing distribution shifts.

(c)Trained once, TabPFN can be applied to novel

real-world data and makes predictions in a sin-

gle forward pass, automatically detecting and

extrapolating distribution shifts.

Xtrain ctrain ytrain

Xtest ctest ?

ytest

TabPFN
Transformer based model

accepts datasets as in and output
ŷtest

CrossEntropy(ytest, ŷtest)

Figure 1: High-level overview of our method. We train a transformer that accepts entire datasets as

input to learn the learning algorithm itself by training on millions of synthetic datasets once

as part of algorithm development. The trained model can be applied to arbitrary real-world

datasets. In (b), X, c, and y refer to features, time domain, and label respectively. In (c), we

show predictions on test domains 4 (left) and 5 (right), where we see a distribution shift.

Drift-Resilient TabPFN accurately updates decision boundaries in this example.

[2]. Robustness to such distribution shifts stands as a prominent challenge in current machine

learning (ML) research [61]. So far multiple approaches have been proposed to address temporal

distribution shifts using neural networks (NNs) [61, 5, 43]. However, modeling distribution shifts

in tabular data presents a two-fold challenge: (i) NNs have struggled to model and extrapolate

distribution shifts to date [61, 23] (ii) approaches for modeling distribution shifts have mostly

employed NNs, while tree-based methods have consistently outperformed NNs in handling tabular

data [10, 24, 53, 25] - leaving a wide methodological gap in addressing this common real-world

scenario.

We provide a fresh perspective on predicting given distribution shifts by leveraging in-context-

learning (ICL) to learn the prediction algorithm itself - bypassing many challenges encountered in

this setting. Building on the foundation of Prior-Data Fitted Networks (PFNs; 42) and specifically

TabPFN (27; see Section 3) . PFNs leverage large-scale machine learning and ICL techniques

to approximate Bayesian inference accurately for any prior that can be sampled from. They are

trained on millions of synthetic datasets sampled from this prior. For each such dataset, a supervised

learning task is constructed, and the model is asked to predict on held out test samples. Then, the

PFN is able to apply the principles learned on this synthetic data to real-world datasets, effectively

having learned a prediction algorithm.

This paper introduces Drift-Resilient TabPFN, an adaptation of the TabPFN framework tailored

for tabular datasets exhibiting temporal distribution shifts. Our idea is as follows: Data distribution
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shifts can be modeled as gradual changes to the structural causal model (SCM; 46, 48) underlying the

data. By including the assumption that underlying models change over time into the approximated

prior, our models learn to estimate, adapt to, and extrapolate these model changes.

2 Background

2.1 Distribution Shift Settings

Consider X , Y , and C as the sample spaces for features, labels, and domain indices, respectively,

with specific instances represented by 𝒙 , 𝑦, and 𝒄 . The corresponding random variables are 𝑋 , 𝑌 ,

and 𝐶 .

A dataset is a collection of 𝑛 tuples, D := {(𝒙𝑖 , 𝑦𝑖 , 𝒄𝑘 )}𝑛𝑖=1, each drawn from a conditional

distribution P(𝑋,𝑌 | 𝐶 = 𝒄𝑘 ) over X × Y . Here, 𝒄𝑘 ∈ C serves as a domain index conditioning

the sample distribution. Since the true temporal domain is often unknown in real-world data, it

is approximated as 𝒄𝑘 in the dataset. To isolate samples from a specific domain 𝒄𝑘 , we define the
sub-dataset D�̂�𝑘 := {(𝒙, 𝑦, 𝒄) ∈ D | 𝒄 = 𝒄𝑘 }. This allows for a more nuanced analysis of datasets

with domain shifts.

Domain Generalization (DG) aims to train a model that generalizes from source domains Ctrain

to target domains Ctest
without accessing target domain samples. The objective is to learn a mapping

function 𝑓 : X ×C → Y that minimizes expected loss on unseen target domains. Temporal Domain

Generalization (Temporal DG), a special case of DG, has a one-dimensional domain index set C
that follows a total ordering, 𝑐1 ≤ 𝑐2 ≤ . . .. The training set is limited to source domains that

precede target domains, Ctrain = {𝑐1, 𝑐2, . . . , 𝑐𝑡 }, and the objective is to learn a predictive model 𝑓

that generalizes to future, unseen domains Ctest = {𝑐𝑡+1, 𝑐𝑡+2, . . . , 𝑐𝑛}.

3 Methodology

Our approach is built on PFNs, which use ICL to learn the learning algorithm itself. This approach

also has a theoretical foundation as described byMüller et al. [42]: It can be viewed as approximating

Bayesian prediction for a prior defined by the synthetic datasets. The trained PFN will approximate

the posterior predictive distribution (PPD) and thus return a Bayesian prediction for the specified

distribution over artificial datasets used during PFN training.

Hollmann et al. [27] introduce a prior based on Structural Causal Models (SCMs; 46; 48) to

model complex feature dependencies and potential causal mechanisms underlying tabular data.

To sample one dataset, this prior samples an SCM, which is then used to sample the examples in

the dataset. In this approach, each causal representation of a sampled SCM is converted into a

functional representation to enable forward computation and dataset sampling.

We extend TabPFN’s prior to model distribution shifts, allowing the model to expand its

posterior predictive distribution (PPD) calculations to incorporate temporal domain information.

We propose modeling distribution shifts via shifting edges of the SCM over our temporal domain.

Furthermore, we introduce a hypernetwork to model these shifts. This hypernetwork is itself an SCM

with feature nodes specifying the magnitude of edge shifts in the base SCM's functional graph.

To do this, we sample the temporal domains C = {𝑐1, 𝑐2, . . . , 𝑐𝑛} and for each domain 𝑐𝑘 ,

we sample the number of samples 𝑛𝑐𝑘 it contains. An illustration showing exemplary domain

distributions across four datasets can be found in Figure 5 in Appendix A.6.

We then select a sparse subset of relationships in the causal representation of the SCM to

undergo temporal shifts based on the evidence that sparse shifts allow for causal reasoning [47].

For these selected edges, the hypernetwork is used to sample shift parameters that govern the

corresponding edges in the functional representation. It takes temporal domains C as input and,

through a single forward pass on the corresponding functional representation, produces dynamic

edge shifts for each edge weight𝑤𝑖, 𝑗 in the original SCM that corresponds to a causal relationship

that should be shifted. This design allows for Bayesian reasoning over the edge shifts and enables
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the hypernetwork to generate complex, often correlated shifts over time. For better illustration, we

have visualized this approach in Figure 2 and a selection of the functions generated by a hypernet

in Figure 6. A high-level outline of the sampling procedure is detailed in Algorithm 1.
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Figure 2: Diagram illustrating the integration of a hypernet for adaptive edge shifting across evolving

temporal domains. On the right, the primary network
˜G generates data samples over multiple

time domains, with red arrows indicating shifted edges. On the left, the hypernet - an auxiliary

network
˜H - takes an input domain 𝑐𝑘 ∈ C and outputs parameters to adaptively shift each

edge weight𝑤𝑖 in the base network.

When encoded as inputs to our model, temporal domains and features are normalized, and to

effectively encode temporal information , we use Time2Vec [33]. It converts each temporal domain

index into an𝑚-dimensional vector, using linear and sinusoidal functions characterized by learned

parameters 𝜔𝑖 and 𝜑𝑖 . Specifically, the Time2Vec transformation for a temporal index 𝑐𝑘 ∈ C is

formulated as:

t2v(𝑐𝑘 ) [𝑖] =
{
𝜔𝑖𝑐𝑘 + 𝜑𝑖 , if 𝑖 = 0.

sin(𝜔𝑖𝑐𝑘 + 𝜑𝑖), if 1 ≤ 𝑖 < 𝑚.
(1)

4 Experiments
We evaluate the performance using in-distribution (ID) and out-of-distribution (OOD) splits across

multiple datasets, employing state-of-the-art tabular prediction methods, including TabPFN variants.

Detailed information about the evaluation strategy, metrics, datasets, baselines, and TabPFN setup

is provided in Appendix A.1.

Quantitative Evaluation Our method demonstrates superior predictive performance in all

metrics for OOD data across 18 test datasets, as detailed in Table 3. Compared to the strongest

baseline, it improves accuracy from 0.688 to 0.744, F1 from 0.62 to 0.689, and ROC from 0.786 to 0.832.

Furthermore, Drift-Resilient TabPFN shows much stronger calibration on OOD samples, improving

ECE from 0.119 to 0.091. While baselines are often overconfident on OOD data, Drift-Resilient

TabPFN is able to predict uncertainty accurately. Since our method focuses on enhancing OOD

robustness rather than optimizing ID tasks, we find lower predictive performance on ID tasks.

While performance gains are observed on both, real-world and synthetic data, we observe stronger

improvements on synthetic datasets. This can be partly attributed to the, on average, stronger

distribution shifts between ID and OOD data in our synthetic benchmark. Furthermore, real-world

datasets often show multifaceted and complex shifts that are much more difficult to extrapolate

into the future.

Qualitative Analysis. Next, we take an in-depth look at the predictions made by our

method. Figure 3 illustrates the decision boundaries of our method and TabPFNbase on the synthetic

Intersecting Blobs dataset. In this evaluation, we restrict the training domains to Ctrain = {0, 1, 2, 3}
and aim to predict samples in test domains Ctest = {4, 5, 6} without adding additional data to

the training set. This setup requires the model to extrapolate the temporal shifts into the future

based solely on existing training data. In this setting, our model accurately extrapolates decision

boundaries to future domains, while TabPFNbase tends to retain its initial boundary. Our analysis
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reveals two key attributes of our model: (i) The model decreases prediction certainty over time,

improving calibration. (ii) Our model adjusts the decision boundary dynamically, boosting accuracy.

Figure 3: This figure displays the predictive behavior of TabPFNdist in the top row and TabPFNbase in

the bottom row on the Intersecting Blobs dataset. It illustrates how each model adapts to

unseen test domains when trained on domains Ctrain = {0, 1, 2, 3}. The baseline is given the

domain indices as a feature in train and test. The coloring indicates the probability of the

most likely class at each point. Incorrectly classified samples are highlighted in red.

5 Conclusions
In this work, we presented a Bayesian approach to address the issue of temporal domain general-

ization in tabular data. Specifically, we focused on enhancing TabPFN to improve its robustness to

temporal distribution shifts. Within this framework, we introduced a novel approach that changes

the causal relationships in the SCM prior over time, thereby enabling TabPFN to inherently adapt

to these shifts. Our method outperforms all baselines on the evaluated datasets and demonstrates

notable improvements both qualitatively and quantitatively, particularly on synthetic OOD datasets.

Furthermore, it requires no hyperparameter tuning, is not limited to particular types of distribution

shifts and takes only 10.9s for training and prediction combined.

5.1 Limitations

Despite these advancements, our methodology inherits certain limitations from the underlying

TabPFN model. (1) Due to the quadratic scaling of the attention mechanism with respect to the

number of samples, our method does not scale to large datasets. Here, our research will benefit

from the continued improvements of TabPFN, ICL, and sequence-based models in general. (2)

The TabPFN, like many transformer-based models, acts as a "black box", making it challenging

to interpret the model’s predictions and understand the recognized distribution shifts. (3) The

underlying prior for structural causal models with sparse mechanism shifts may not accurately

describe all real-world datasets.

5.2 Broader Impact

As a general method for handling distribution shifts in tabular data, Drift-Resilient TabPFN doesn’t

have immediate societal implications like AI systems designed to automate tasks or replace jobs.

However, it offers potential benefits such as extended model longevity and enhanced decision-

making. By adapting to distribution shifts, our approach prolongs the usability of ML models,

reducing retraining needs, saving costs and CO2 and ensuring stable performance.
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A Appendix

A.1 Experimental Setup

Evaluation Strategy. We evaluate analogous to the Eval-Fix setting outlined in Wild-Time

[61], measuring both, in-distribution (ID) and out-of-distribution (OOD) performance. Here, each

dataset D is split into three subsets: Dtrain
, DID

, and DOOD
. Splits are based on a randomly sampled

temporal domain 𝑐𝑘 that serves as the boundary between the train and test (OOD) portion. We only

use such splits, where Dtrain
comprises between 30% and 80% of the total domains and samples.

To assess ID performance, we subsample 10% of the instances in each domain of Dtrain
as the ID

test set and the remainder as the train set. An illustration of the Eval-Fix strategy is provided in

Figure 8.

Each class in the training set is required to be represented in both DID
and DOOD

, and vice

versa. For all datasets, we generate three random splits and average metrics across these splits.

We had to limit the number of splits to three due to the constrained number of available domains

and the requirement for classes to be present in both the train and test splits. Each method is

trained three times, and we report the average and 95%-confidence intervals calculated across

model initializations.

Metrics. We evaluate Accuracy, F1-Score (Harmonic mean of precision and recall, useful in

imbalanced datasets), ROC AUC (Area under the receiver operating characteristic curve), and ECE

(Expected Calibration Error; reflects the reliability of the model’s probability outputs)

Datasets. Our benchmark comprises 18 test datasets, 8 synthetic and 10 real-world. In

addition, 12 validation datasets, 4 synthetic and the remaining 8 real-world, were used to optimize

the hyperparameters of our approach via random search. The ground truth domain indices 𝑐𝑘 ∈ C
were known for synthetic datasets. For real-world datasets, we approximated domain indices 𝑐𝑘
based on features that encode temporal information, which we transformed into discrete intervals.

Also, some real-world datasets required subsampling due to their large size, which was beyond the

current architecture of TabPFN.

Baseline Setup. Our baselines include state-of-the-art methods for tabular prediction. These

include advanced Gradient Boosted Decision Trees like CatBoost [49], XGBoost [14], and LightGBM

[34], which have demonstrated superior performance to standard neural network approaches in

handling tabular data [25]. We also include TabPFN in its unmodified form (TabPFNbase; 27).

Methods from the Wild-Time benchmark are examined separately and detailed in Section A.10.6

of the Appendix. All baseline methods besides TabPFN are subject to a time budget of 1,200

seconds on 8 CPUs and 1 GPU. For each method except TabPFN, which does not require tuning, a

random hyperparameter search with 3-fold time series cross-validation was used. We chose the

best-performing hyperparameters based on OOD ROC AUC within the allocated time.

Among our baselines, we considered three strategies:

1. Providing the full dataset Dtrain
along with the corresponding domain indices Ctrain

as a feature,

aiming to allow for better reasoning of the shifts in the dataset (all dom. w. ind.).

2. Using the dataset without domain indices Dtrain = {(𝒙 train

𝑖 , 𝑦train𝑖 )}𝑛𝑖=1 (all dom. wo. ind.).

3. Limiting the training set to samples from the last training domain 𝑐𝑡 . In this setting, we also

omit the corresponding domain indices, resulting in the set Dtrain

𝑐𝑡
= {(𝒙 train

𝑖 , 𝑦train𝑖 )}𝑛𝑐𝑡
𝑖=1

(last dom.

wo. ind.). The rationale behind the last scenario is to provide only training data closest to the

subsequent test distribution. This strategy is not used for distribution shift baselines.

TabPFN Setup. For the TabPFN variants, both the original and our modified method

(TabPFNdist) were pre-trained for 30 epochs across 8 GPUs. This results in a total of 30,720,000

synthetically generated datasets processed during pre-training. While this pre-training step is

moderately expensive, it is done offline, in advance, and only once as part of our algorithm de-
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velopment. Furthermore, the preprocessing parameters of both methods were optimized once on

the validation datasets by random search over 300 configurations. We chose the configurations

that yielded the best OOD ROC AUC performance. The resulting model and hyperparameters are

used for all datasets, resulting in, on average, 110 times faster training and prediction time on our

benchmark.

A.2 Related Work

While DG has drawn considerable attention in the research community [41, 6, 40, 4, 52, 65, 62], its

temporal variant remains underexplored. The following sections provide a more in-depth review

of existing works, considering their approach and limitations concerning temporal DG.

Wild-Time Benchmark. Wild-Time [61] is a benchmark dedicated to studying the real-world

implications of temporal distribution shifts. The benchmark employs a set of techniques such

as classical supervised learning, continual learning, temporal invariant learning, self-supervised

learning, and Bayesian learning, which are evaluated on five datasets.

Despite the many techniques evaluated, Wild-Time reveals a significant performance gap

between in-distribution and out-of-distribution data, with none of the 13 testedmethods consistently

outperforming the standard Empirical Risk Minimization (ERM) approach. In our study, we employ

their evaluation strategy Eval-Fix and benchmark our approach against 11 Wild-Time methods. A

comprehensive overview of the methods in Wild-Time can be found in Appendix A.11.

Temporal DG with Drift-Aware Dynamic Neural Networks (DRAIN). DRAIN [5] employs a

Bayesian framework alongside a recurrent neural network (RNN) for predicting the dynamics of

model parameters across temporal domains. DRAIN’s primary focus is on adaptively capturing

concept shifts for the immediate next domain and , by design, cannot directly predict an arbitrary

future domain without first processing the intervening domains. DRAIN implicitly assumes uniform

temporal intervals, as it does not incorporate gaps between successive temporal domains to adjust

the scale of the expected shifts.

Gradient Interpolation (GI). GI [43] focuses on improving temporal DG by incorporating the

temporal domain as an explicit feature, utilizing a specialized Gradient Interpolation loss function,

employing a time-sensitive activation called Leaky Temporal ReLU (TReLU), and enhancing domain

reasoning through Time2Vec preprocessing [33]. Compared to our method, GI primarily focuses

on generalization to the near future. Their loss term faces challenges in handling non-linear shifts

in combination with large time gaps.

We exclude both DRAIN and Gradient Interpolation (GI) from our primary evaluation since

these methods, while innovative, are not designed for extrapolation to future domains beyond

the near future. Even on the Rotated Two Moons Dataset, which has been used to demonstrate

the capabilities of DRAIN and GI, we show that Drift-Resilient TabPFN clearly outperforms. See

Appendix A.10.3 for details.
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A.3 Computational Resources

In the course of our research on Drift-Resilient TabPFN, we employed substantial computational

resources across various stages of model development, training, and evaluation. The computation

specifics are as follows:

1. Infrastructure: The experiments were conducted on an internal SLURM cluster equipped with

RTX 2080 TI GPUs and CPUs of type AMD EPYC 7502, 32C/64T, @ 2.50-3.35GHz.

2. Baseline Experiments: Each baseline experiment utilized 8 CPUs, 1 GPU, and 62.5 GB RAM, with

a hyperparameter optimization (HPO) runtime of 1200 seconds per dataset per split, repeated

three times to ensure reliability.

3. Pre-training for TabPFN-base and Drift-Resilient TabPFN: These models were pre-trained three

times each, requiring 64 CPUs, 8 GPUs, and 500 GB RAM, requiring approximately 7 and 8 days

respectively.

4. Hyperparameter Optimization for Drift-Resilient TabPFN and TabPFN-base: We used 32 CPUs,

4 GPUs, and 250 GB RAM, running approximately 40 configurations and taking about one day

per pre-training session for optimizing the hyperparameters of the novel prior-data generating

mechanism of Drift-Resilient TabPFN. Both TabPFN-base and Drift-Resilient TabPFN underwent

preprocessing optimization that utilized 8 CPUs, 1 GPU, and 62.5 GB RAM across 300 runs, each

lasting between 0.5 to 1 hour.

Additional computational resources were allocated for method development tests and other

experimental setups not detailed in the final publication. Thus the full scope of the research required

more computational resources than those detailed above due to these preliminary and unreported

experiments.

A.4 Ablations

Is our model’s performance mostly based on Time2Vec preprocessing? To address this question, we

conducted an ablation study where we trained a model with temporal domain indices normalized

but not subjected to Time2Vec preprocessing (No T2V).

Table 1 presents the performance metrics of Drift-Resilient TabPFN, TabPFN-base, and our

ablation model. The results indicate that while Time2Vec preprocessing slightly improves model

performance, it is not the main reason for it. Rather, the substantial improvements in performance

are largely due to our prior construction, used during the pre-training phase of the model.

Table 1: Comparison of Drift-Resilient TabPFN with respect to the stated ablations. Metrics include

ROC AUC and accuracy for both in-distribution (ID) and out-of-distribution (OOD) data.

Model Variant Acc. ↑ F1 ↑ ROC ↑ ECE ↓
OOD ID OOD ID OOD ID OOD ID

TabPFNdist all dom. w. ind. 0.744 .018 0.879 .012 0.689 .028 0.837 .022 0.832 .018 0.932 .002 0.091 .006 0.074 .014

No T2V all dom. w. ind. 0.741 0.874 0.684 0.828 0.831 0.929 0.093 0.072

TabPFNbase

all dom. w. ind. 0.688 .01 0.885 .01 0.62 .012 0.847 .017 0.786 .007 0.935 .01 0.119 .006 0.067 .005

all dom. wo. ind. 0.645 .011 0.852 .016 0.579 .014 0.801 .02 0.736 .001 0.914 .007 0.202 .011 0.076 .007

last dom. wo. ind. 0.67 .005 0.867 .004 0.609 .004 0.823 .011 0.76 .003 0.915 .019 0.181 .003 0.128 .007
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A.5 Plots Illustrating Types of Distribution Shifts

x2

x1

x2

x1

x2

x1

x2

x1

Dtrain Dtest

Covariate Shift Prior Probability Shift Concept Shift

Figure 4: Illustration of initial and shifted data distributions alongside their optimal decision boundaries.

The left panel depicts the initial classification dataset with two features and its true-data-

optimal decision boundary. The right panel presents the dataset subjected to the three

primary types of distribution shifts observed during test time.

A.6 Plots Illustrating Sampled Parameters of the Adjusted Prior

Figure 5: Share of temporal domains in exemplary datasets prior seen up to any instance 𝑖 . The

figure illustrates the range and structure of the sampled temporal domains 𝑐𝑘 ∈ C across

four representative datasets. It highlights variations in domain size and demonstrates the

presence of arbitrary gaps, simulating irregularities in data sampling.

Figure 6: This figure presents three exemplary functions sampled from nodes within the network of a

hypernet
˜H. In the plot, the 𝑥-axis represents the input temporal domain 𝑐𝑘 ∈ C, while the

𝑦-axis displays the corresponding node activation.
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A.7 Transformation of the Causal Representation to a Functional Representation
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Figure 7: Illustrative transformation of an SCM to one exemplary functional representation. Shaded

nodes indicate that their activations cannot be sampled. Feature nodes are blue, the target

node is green, input/noise nodes are purple, and all others are gray. The figure also shows

the mapping of shifted edges between a causal relationship and its functional form in red,

ensuring that shifts specifically target the intended causal relationships without affecting

others.

A.8 Algorithmic Overview of Our Approach

Algorithm 1 This algorithm provides a high-level overview for generating a synthetic dataset in

our prior. Although steps are depicted sequentially for clarity, many can be parallelized in actual

implementation.

1: procedure SampleDataset
2: G ← SampleSCM() ⊲ Sample data-generating SCM

3:
˜G ← G .Expand() ⊲ Expand to functional representation

4: H← SampleSCM() ⊲ Sample hypernet SCM

5:
˜H← H.Expand() ⊲ Expand to functional representation

6: C ← {𝑐1, 𝑐2, . . . , 𝑐𝑡 } ⊲ Sample temporal domains

7: D← ∅ ⊲ Initialize dataset

8: for all 𝑐𝑘 ∈ C do
9: 𝝎𝒄𝒌 ← ˜H.Forward(𝑐𝑘 ) ⊲ Sample edge shifts

10:
˜G𝑐𝑘 ← ˜G .Update(𝝎𝑐𝑘 ) ⊲ Update edge weights

11: D𝑐𝑘 ← ∅ ⊲ Initialize sub-dataset

12: for all 𝑖 ∈ {1, ..., 𝑛𝑐𝑘 } do ⊲ Sample sub-dataset

13: (𝒙𝑖 , 𝑦𝑖 , 𝑐𝑘 ) ← ˜G𝑐𝑘 .Forward(𝜖𝑖)
14: D𝑐𝑘 ← D𝑐𝑘 ∪ {(𝒙𝑖 , 𝑦𝑖 , 𝑐𝑘 )}
15: end for

16: D← D ∪D𝑐𝑘 ⊲ Extend dataset

17: end for

18: return D ⊲ Return dataset

19: end procedure
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A.9 Illustration of Adopted Evaluation Strategy

In Figure 8, we provide an illustration of the Eval-Fix evaluation strategy, originally proposed by

Yao et al. [61] in the context of the Wild-Time benchmark. It should be noted that the formalism

has been adapted to align with the notation used in this paper.

c1 c2 ct ct+1 ct+j
. . . . . .

ID Domains OOD Domains

90% 10%

Dc1
90% 10%

Dc2
90% 10%

Dct
100%

Dct+1

100%

Dct+j

Dtrain DID DOOD

Figure 8: Adapted from the Wild-Time benchmark [61], this illustration portrays the Eval-Fix evalua-

tion strategy employed in our study. The domain boundary is indicated by 𝑐𝑡 , beyond which

datasets are considered part of the out-of-distribution (OOD) test set DOOD
. To evaluate

in-distribution (ID) performance, we subsample 10% of the samples from each dataset prior

to this boundary, forming the datasets Dtrain
and DID

.

A.10 Additional Experiments

A.10.1 Qualitative Analysis: Overview of the Shifts in the Datasets Analyzed. This section offers plots

of the Intersecting Blobs and Rotated Two Moons datasets across specific temporal domains. The

Intersecting Blobs dataset is visualized in Figure 9a for domains C = {0, 4, 8, 13}. The Rotated Two

Moons dataset is presented in Figure 9b for domains C = {0, 3, 6, 9}.

(a) Intersecting Blobs (b) Rotated Two Moons

Figure 9: This figure shows the temporal shifts of two synthetic datasets across selected domains.
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A.10.2 Qualitative Analysis: Decision Boundaries on Rotated Two Moons Dataset. In addition to the

qualitative analysis conducted for the Intersecting Blobs dataset in the main text of this work, this

subsection provides additional illustrations of the Rotated Two Moons dataset. The corresponding

visualizations for our approach as well as the TabPFN baseline are provided in Figure 10.

Figure 10: This figure contrasts the predictive behavior of TabPFNdist and TabPFNbase on the Rotated

Two Moons dataset. It illustrates how each model adapts to different testing domains when

trained on domains Ctrain = {0, 1, 2, 3, 4, 5}. The color shading indicates the maximum class

probability at each point, with decision boundaries shown when this probability exceeds

50%. Incorrectly classified samples are highlighted in red.

A.10.3 Qualitative Analysis: Comparison Against DRAIN and GI. To show our improved performance

compared to the state-of-the-art methods DRAIN [5] and GI [43], we compare our method with the

qualitative analysis performed by the authors of DRAIN on the Rotated Two Moons dataset. In this

setting, all domains except the last are used for training, with the final domain reserved for testing.

We illustrate our method’s decision boundary compared to those provided by DRAIN in Figure 11.

The accuracy results are listed in Table 2. As the contour levels are unknown, we display only

the pure decision boundary for clearer comparison. Our analysis shows that our model forecasts

the rotation of the two moons more accurately compared to the baselines and adapts its decision

boundary more precisely.

Train Domains: 0-8 | Test Domain 9

(a) TabPFNdist

2 1 0 1

class A
class B

(b) DRAIN

2 1 0 1

class A
class B

(c) GI

Figure 11: Comparison of our method against DRAIN [5] and GI [43] on the Rotated Two Moons

dataset. The models were trained on domains C = {0, 1, . . . , 8} and tested on domain 9.

While the authors of DRAIN present different, unknown levels of the decision boundary,

we present the decision boundary with 50% probability. The plots for DRAIN and GI were

taken from Bai et al. [5].
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Table 2: Comparison of Drift-Resilient TabPFN against DRAIN and GI on the Rotated Two Moons

dataset. The metric reported is the mean out-of-distribution (OOD) accuracy along with the

standard deviation. Results for DRAIN and GI are taken from Bai et al. [5].

Model OOD Acc. ↑

TabPFNdist 0.98 .002

DRAIN 0.968 .012

GI 0.965 .014

A.10.4 Quantitative Analysis. In the following, the quantitative results are first presented across all

datasets and then separately for synthetic and real-world data.

Table 3: Comparison of Drift-Resilient TabPFN with various baselines and settings across the combined

real-world and synthetic datasets. Metrics include accuracy, F1, ROC, and ECE for both

in-distribution (ID) and out-of-distribution (OOD) data, averaged over three initializations

and reported with 95% confidence intervals. The best mean of each metric is marked in bold.

Metric arrows indicate optimization direction.

Model Variant Acc. ↑ F1 ↑ ROC ↑ ECE ↓
OOD ID OOD ID OOD ID OOD ID

TabPFNdist all dom. w. ind. 0.744 .018 0.879 .012 0.689 .028 0.837 .022 0.832 .018 0.932 .002 0.091 .006 0.074 .014

TabPFNbase

all dom. w. ind. 0.688 .01 0.885 .01 0.62 .012 0.847 .017 0.786 .007 0.935 .01 0.119 .006 0.067 .005

all dom. wo. ind. 0.645 .011 0.852 .016 0.579 .014 0.801 .02 0.736 .001 0.914 .007 0.202 .011 0.076 .007

last dom. wo. ind. 0.67 .005 0.867 .004 0.609 .004 0.823 .011 0.76 .003 0.915 .019 0.181 .003 0.128 .007

CatBoost
all dom. w. ind. 0.677 .006 0.874 .007 0.62 .005 0.836 .01 0.766 .003 0.919 .011 0.222 .007 0.084 .009

all dom. wo. ind. 0.632 .003 0.836 .013 0.568 .005 0.781 .009 0.714 .012 0.894 .014 0.24 .02 0.097 .015

last dom. wo. ind. 0.657 .002 0.852 .014 0.599 .004 0.811 .024 0.722 .005 0.907 .01 0.256 .006 0.133 .012

XGBoost
all dom. w. ind. 0.664 .005 0.859 .004 0.61 .013 0.828 .003 0.754 .006 0.9 .019 0.194 .018 0.111 .02

all dom. wo. ind. 0.633 .035 0.831 .024 0.568 .033 0.778 .031 0.718 .033 0.881 .028 0.194 .054 0.12 .042

last dom. wo. ind. 0.664 .01 0.824 .023 0.599 .016 0.758 .054 0.733 .009 0.887 .016 0.199 .024 0.167 .011

LightGBM
all dom. w. ind. 0.65 .009 0.842 .024 0.594 .008 0.8 .024 0.738 .008 0.908 .008 0.198 .009 0.093 .016

all dom. wo. ind. 0.625 .02 0.832 .019 0.561 .018 0.773 .018 0.706 .009 0.888 .01 0.199 .009 0.097 .005

last dom. wo. ind. 0.629 .02 0.797 .009 0.542 .031 0.72 .028 0.686 .006 0.852 .018 0.224 .011 0.149 .016

Wild-Time
ERM

all dom. w. ind. 0.627 .036 0.821 .032 0.525 .052 0.771 .044 0.688 .028 0.877 .025 0.263 .054 0.108 .017

all dom. wo. ind. 0.582 .028 0.803 .01 0.519 .028 0.746 .018 0.673 .02 0.862 .008 0.255 .019 0.104 .015

last dom. wo. ind. 0.587 .026 0.784 .03 0.528 .034 0.74 .011 0.666 .018 0.843 .02 0.323 .038 0.19 .025

Wild-Time
SWA

all dom. w. ind. 0.627 .047 0.824 .003 0.534 .069 0.777 .014 0.685 .036 0.873 .015 0.274 .053 0.11 .007

all dom. wo. ind. 0.588 .025 0.802 .007 0.53 .029 0.748 .008 0.681 .03 0.863 .008 0.262 .036 0.109 .01
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Table 4: Comparison of Drift-Resilient TabPFN with various baselines and settings across the subset of

synthetic datasets. Metrics include accuracy, F1, ROC, and ECE for both in-distribution (ID)

and out-of-distribution (OOD) data, averaged over three initializations and reported with 95%

confidence intervals. The best mean of each metric is marked in bold. Metric arrows indicate

optimization direction.

Model Variant Acc. ↑ F1 ↑ ROC ↑ ECE ↓
OOD ID OOD ID OOD ID OOD ID

TabPFNdist all dom. w. ind. 0.754 .032 0.959 .011 0.697 .048 0.935 .033 0.844 .03 0.987 .002 0.126 .018 0.038 .003

TabPFNbase

all dom. w. ind. 0.658 .018 0.963 .006 0.567 .015 0.935 .02 0.749 .017 0.986 .007 0.164 .014 0.029 .003

all dom. wo. ind. 0.571 .014 0.901 .006 0.467 .016 0.848 .009 0.631 .01 0.955 .003 0.322 .016 0.053 .005

last dom. wo. ind. 0.651 .002 0.939 .015 0.574 .002 0.918 .031 0.727 .006 0.975 .001 0.27 .011 0.066 .001

CatBoost
all dom. w. ind. 0.665 .008 0.958 .003 0.588 .008 0.94 .009 0.73 .01 0.989 .002 0.297 .006 0.037 .006

all dom. wo. ind. 0.575 .006 0.885 .003 0.476 .008 0.831 .002 0.613 .013 0.942 .007 0.325 .006 0.063 .014

last dom. wo. ind. 0.639 .004 0.932 .017 0.564 .005 0.916 .021 0.684 .005 0.962 .012 0.301 .019 0.065 .006

XGBoost
all dom. w. ind. 0.645 .018 0.936 .012 0.57 .019 0.931 .005 0.705 .011 0.968 .02 0.253 .032 0.075 .013

all dom. wo. ind. 0.582 .07 0.872 .031 0.48 .074 0.818 .039 0.621 .06 0.926 .035 0.245 .088 0.097 .034

last dom. wo. ind. 0.645 .008 0.916 .009 0.565 .009 0.88 .019 0.688 .017 0.956 .012 0.256 .018 0.111 .003

LightGBM
all dom. w. ind. 0.646 .016 0.943 .007 0.57 .015 0.927 .015 0.687 .013 0.982 .002 0.281 .008 0.056 .011

all dom. wo. ind. 0.581 .01 0.884 .005 0.482 .007 0.829 .005 0.617 .016 0.935 .001 0.273 .01 0.069 .017

last dom. wo. ind. 0.629 .004 0.917 .003 0.553 .006 0.892 .018 0.662 .005 0.958 .007 0.288 .012 0.077 .007

Wild-Time
ERM

all dom. w. ind. 0.648 .046 0.945 .017 0.489 .092 0.906 .026 0.65 .042 0.973 .021 0.304 .038 0.041 .006

all dom. wo. ind. 0.576 .021 0.885 .04 0.487 .035 0.837 .049 0.621 .03 0.943 .015 0.282 .012 0.058 .024

last dom. wo. ind. 0.632 .006 0.921 .017 0.566 .007 0.9 .035 0.688 .01 0.962 .005 0.282 .018 0.094 .016

Wild-Time
SWA

all dom. w. ind. 0.636 .05 0.923 .034 0.489 .088 0.877 .06 0.651 .035 0.958 .03 0.313 .046 0.054 .015

all dom. wo. ind. 0.573 .032 0.887 .019 0.48 .042 0.837 .017 0.631 .043 0.943 .012 0.3 .055 0.059 .002

Table 5: Comparison of Drift-Resilient TabPFN with various baselines and settings across the subset of

real-world datasets. Metrics include accuracy, F1, ROC, and ECE for both in-distribution (ID)

and out-of-distribution (OOD) data, averaged over three initializations and reported with 95%

confidence intervals. The best mean of each metric is marked in bold. Metric arrows indicate

optimization direction.

Model Variant Acc. ↑ F1 ↑ ROC ↑ ECE ↓
OOD ID OOD ID OOD ID OOD ID

TabPFNdist all dom. w. ind. 0.736 .007 0.814 .014 0.682 .012 0.759 .015 0.822 .01 0.887 .006 0.062 .004 0.103 .026

TabPFNbase

all dom. w. ind. 0.712 .012 0.822 .013 0.661 .022 0.777 .018 0.816 .006 0.894 .013 0.083 .001 0.097 .007

all dom. wo. ind. 0.704 .01 0.813 .023 0.668 .014 0.764 .03 0.82 .006 0.882 .011 0.106 .019 0.095 .011

last dom. wo. ind. 0.685 .008 0.809 .016 0.637 .005 0.746 .036 0.787 .008 0.867 .036 0.109 .005 0.177 .012

CatBoost
all dom. w. ind. 0.687 .005 0.807 .012 0.646 .003 0.753 .017 0.796 .004 0.862 .019 0.161 .016 0.122 .019

all dom. wo. ind. 0.677 .008 0.797 .025 0.642 .005 0.741 .015 0.794 .011 0.856 .022 0.172 .032 0.125 .037

last dom. wo. ind. 0.671 .002 0.788 .023 0.627 .004 0.728 .05 0.752 .007 0.863 .022 0.221 .017 0.188 .023

XGBoost
all dom. w. ind. 0.68 .008 0.797 .011 0.642 .01 0.745 .004 0.793 .01 0.845 .02 0.147 .027 0.141 .027

all dom. wo. ind. 0.674 .025 0.798 .019 0.639 .004 0.746 .026 0.795 .011 0.845 .024 0.153 .028 0.138 .049

last dom. wo. ind. 0.679 .014 0.75 .041 0.626 .034 0.66 .109 0.769 .008 0.833 .022 0.154 .028 0.212 .021

LightGBM
all dom. w. ind. 0.654 .015 0.761 .042 0.614 .01 0.698 .031 0.778 .008 0.848 .013 0.133 .017 0.123 .02

all dom. wo. ind. 0.66 .029 0.79 .031 0.624 .028 0.728 .029 0.778 .003 0.849 .018 0.14 .009 0.12 .018

last dom. wo. ind. 0.629 .036 0.701 .019 0.533 .055 0.582 .046 0.706 .008 0.768 .03 0.172 .014 0.206 .025

Wild-Time
ERM

all dom. w. ind. 0.61 .037 0.721 .056 0.553 .046 0.664 .059 0.719 .017 0.8 .042 0.23 .07 0.161 .035

all dom. wo. ind. 0.587 .033 0.737 .014 0.545 .028 0.673 .013 0.714 .012 0.798 .024 0.233 .043 0.14 .008

last dom. wo. ind. 0.551 .041 0.674 .045 0.498 .067 0.612 .03 0.648 .039 0.749 .037 0.355 .061 0.267 .034

Wild-Time
SWA

all dom. w. ind. 0.62 .049 0.745 .028 0.57 .055 0.697 .046 0.712 .039 0.805 .007 0.242 .059 0.155 .021

all dom. wo. ind. 0.6 .019 0.733 .017 0.57 .019 0.677 .004 0.721 .029 0.798 .008 0.232 .021 0.15 .017
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A.10.5 Quantitative Analysis: Critical Difference Diagrams. In addition to our quantitative results, we

present a critical difference diagram for each of our evaluated metrics using the Wilcoxon-Holm

method [60, 28, 22, 30].

Figure 12: This figure presents critical difference diagrams of our evaluated metrics on OOD data,

analyzed using the Wilcoxon-Holm method [60, 28, 22, 30] across the best performing

OOD models evaluated in this work. The diagrams indicate significant differences of Drift-

Resilient TabPFN against the tree-based methods. For the F1 metric our method shows

significant differences against all top performing baselines. Arrows indicate optimization

direction.

A.10.6 Quantitative Analysis: ComparisonAgainstWild-TimeMethods. This section offers a quantitative
evaluation of our model against methods found in the Wild-Time benchmark [61]. We focus

exclusively onmethods applicable to tabular data, omitting SimCLR and SwAVwhich are specifically

designed for image datasets. Detailed explanations of these methods are available in Section A.11.

As a base model, we used a Multilayer Perceptron (MLP) optimized through Hyperparameter

Optimization (HPO).

The findings of this quantitative comparison are presented in Table 6. Notably, none of the

evaluated Wild-Time methods demonstrated performance equal to our approach or the other

baseline methods on OOD data. This discrepancy is likely due to the small number of instances

in the datasets used in our evaluations, which affects the generalization of these deep-learning

techniques. Among the Wild-Time methods, SWA emerged as the most effective in handling OOD

data.
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Table 6: Comparison of Drift-Resilient TabPFN with the applicable baselines of the Wild-Time bench-

mark [61] across the combined real-world and synthetic datasets. Metrics include accuracy,

F1, ROC, and ECE for both in-distribution (ID) and out-of-distribution (OOD) data, averaged

over three initializations and reported with 95% confidence intervals. The best mean of each

metric is marked in bold. Metric arrows indicate optimization direction.

Model Variant Acc. ↑ F1 ↑ ROC ↑ ECE ↓
OOD ID OOD ID OOD ID OOD ID

TabPFNdist all dom. w. ind. 0.744 .018 0.879 .012 0.689 .028 0.837 .022 0.832 .018 0.932 .002 0.091 .006 0.074 .014

ERM all dom. w. ind. 0.627 .036 0.821 .032 0.525 .052 0.771 .044 0.688 .028 0.877 .025 0.263 .054 0.108 .017

all dom. wo. ind. 0.582 .028 0.803 .01 0.519 .028 0.746 .018 0.673 .02 0.862 .008 0.255 .019 0.104 .015

last dom. wo. ind. 0.587 .026 0.784 .03 0.528 .034 0.74 .011 0.666 .018 0.843 .02 0.323 .038 0.19 .025

FT all dom. w. ind. 0.51 .031 0.645 .014 0.422 .046 0.559 .033 0.594 .027 0.693 .039 0.357 .013 0.256 .007

all dom. wo. ind. 0.544 .038 0.677 .034 0.481 .046 0.604 .03 0.65 .025 0.756 .031 0.33 .03 0.231 .061

EWC all dom. w. ind. 0.498 .026 0.621 .034 0.405 .038 0.522 .042 0.569 .027 0.668 .006 0.342 .006 0.239 .034

all dom. wo. ind. 0.518 .023 0.686 .045 0.456 .032 0.617 .051 0.603 .012 0.74 .026 0.309 .048 0.195 .005

SI all dom. w. ind. 0.478 .057 0.63 .006 0.383 .089 0.526 .015 0.566 .061 0.673 .023 0.37 .046 0.238 .012

all dom. wo. ind. 0.495 .019 0.674 .035 0.425 .036 0.588 .035 0.597 .022 0.744 .03 0.346 .002 0.214 .049

A-GEM all dom. w. ind. 0.513 .031 0.677 .038 0.405 .04 0.576 .045 0.594 .061 0.741 .038 0.367 .024 0.223 .021

all dom. wo. ind. 0.486 .035 0.684 .023 0.403 .061 0.583 .05 0.58 .035 0.747 .019 0.364 .073 0.221 .054

CORAL-T all dom. w. ind. 0.579 .051 0.777 .02 0.481 .085 0.714 .041 0.637 .036 0.837 .016 0.252 .058 0.143 .025

all dom. wo. ind. 0.569 .032 0.771 .035 0.495 .029 0.702 .039 0.643 .016 0.837 .021 0.232 .027 0.15 .003

GroupDRO-T all dom. w. ind. 0.58 .025 0.779 .014 0.503 .038 0.723 .009 0.642 .036 0.84 .007 0.285 .019 0.125 .01

all dom. wo. ind. 0.576 .025 0.775 .023 0.514 .023 0.725 .036 0.658 .008 0.843 .006 0.264 .076 0.135 .04

IRM-T all dom. w. ind. 0.577 .021 0.746 .014 0.49 .051 0.689 .013 0.633 .021 0.819 .016 0.259 .03 0.12 .013

all dom. wo. ind. 0.559 .018 0.742 .023 0.498 .031 0.678 .047 0.644 .005 0.822 .013 0.252 .031 0.134 .011

Mixup all dom. w. ind. 0.617 .028 0.8 .023 0.521 .016 0.702 .008 0.681 .029 0.859 .021 0.239 .014 0.14 .007

all dom. wo. ind. 0.574 .034 0.782 .027 0.492 .025 0.688 .013 0.68 .025 0.85 .022 0.212 .021 0.142 .017

LISA all dom. w. ind. 0.621 .041 0.822 .033 0.517 .079 0.76 .063 0.679 .005 0.881 .012 0.272 .046 0.116 .02

all dom. wo. ind. 0.583 .013 0.804 .015 0.512 .009 0.739 .024 0.672 .025 0.859 .024 0.258 .025 0.108 .023

SWA all dom. w. ind. 0.627 .047 0.824 .003 0.534 .069 0.777 .014 0.685 .036 0.873 .015 0.274 .053 0.11 .007

all dom. wo. ind. 0.588 .025 0.802 .007 0.53 .029 0.748 .008 0.681 .03 0.863 .008 0.262 .036 0.109 .01

A.11 Detailed Overview of Wild-Time Methods

A.11.1 Classical Supervised Learning.
Empirical Risk Minimization (ERM). ERM - a fundamental approach in supervised learning -

focuses on minimizing the average loss over the training dataset. In Wild-Time ERM is defined as

typical supervised learning without making use of any temporal information.

A.11.2 Continual Learning.
Fine-Tuning (FT). FT extends the ERM approach by training on the data of each succes-

sive temporal domain separately, allowing the model to adapt to new distributions but risking

catastrophic forgetting of past tasks.

Elastic Weight Consolidation (EWC). EWC [35] counters catastrophic forgetting by adding

a regularization term that constrains the changes to important model parameters, thus preserving

knowledge from previous tasks.

Synaptic Intelligence (SI). SI [64] captures a synaptic strength metric over time for each

model parameter. This metric is used as a regularizer to limit changes to important parameters

during learning.

Averaged Gradient Episodic Memory (A-GEM). A-GEM [13] maintains a small episodic

memory and computes gradients not just for the current task but also the average of the gradients

over several past tasks stored in the episodic memory.

A.11.3 Temporally Invariant Learning.
Deep Correlation Alignment (Deep CORAL). Initially developed for domain adaptation,

Deep CORAL [57] aims to align the second-order statistics of features between the source and
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target domains to minimize distribution shift. In the Wild-Time benchmark, this original purpose is

modified to align features across different temporal domains within the training set, thus converting

it into a DG method. For handling temporal shifts, it is extended into CORAL-T, which employs

sliding windows to segment the data stream into temporal substreams, treating each as a separate

domain for alignment. [61]

Group Distributionally Robust Optimization (GroupDRO). Originally designed at optimizing

on the worst-performing group within the training data, GroupDRO [52] aims to learn a model that

is robust across varying group distributions. In the Wild-Time benchmark, this method is adapted

to the temporal context as GroupDRO-T. It utilizes sliding window-based segmentation to create

temporal substreams, treating each as a separate group for distributionally robust optimization.

[61]

Invariant Risk Minimization (IRM). IRM [4] aims to identify a data representation that is

consistently predictive across different domains. In the context of Wild-Time, the method is adapted

to temporal shifts and named IRM-T. It employs sliding window-based segmentation to create

temporal substreams, which are then treated as individual domains for invariant risk minimization.

[61]

Mixup. Mixup [65] is an interpolation-based data augmentation technique that creates new

training examples by blending the features and labels of existing samples. This technique aims

to enhance the model’s ability to generalize across domains by diversifying the training data. It

replaces the original training samples with these newly generated interpolations for more robust

training.

Learning with Selective Augmentation (LISA). LISA [62], motivated by Mixup, employs

selective interpolation to neutralize domain-specific information in the training data. It comes in

two variants: intra-label LISA, which interpolates examples from different domains but having

the same label, and intra-domain LISA, which interpolates examples within the same domain but

having different labels. In Wild-Time, only intra-label LISA is used [61].

A.11.4 Self-Supervised Learning.
Simple Framework for Contrastive Learning of Visual Representations (SimCLR). SimCLR

[15] employs contrastive learning to maximize the agreement between different augmentations of

the same image, thereby enhancing the quality of learned visual representations. The approach

benefits from learnable nonlinear transformations and optimized contrastive loss parameters.

Swapping Assignments between multiple Views of the same image (SwAV). SwAV [12]

employs a clustering approach within the contrastive learning framework. It enforces consistency

between cluster assignments across different augmentations of the same image. This obviates the

need for pairwise feature comparisons, offering computational efficiency.

A.11.5 Bayesian Learning.
Stochastic Weight Averaging (SWA). SWA [31] averages multiple parameter values along the

stochastic gradient descent (SGD) trajectory to improve in-distribution generalization. It operates

with minimal computational overhead and aims to approximate the posterior distribution over

model parameters, reflected in the flatness of the learned optima. [61]
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A.12 Datasets

A.12.1 Validation Datasets.

Synthetic Datasets.

Dataset 1 (Shifting Sin Classification). The Shifting Sin Classification dataset is a synthetic, binary

classification dataset of 1,500 instances evenly distributed across 10 domains. Each domain is

differentiated by a unique shift in the offset of the sinusoid wave function, creating distinct decision

boundaries for classification. The dataset contains two features corresponding to the 𝑥 and 𝑦

coordinates of each instance. Instances are labeled as 1 if they lie above the sine curve and 0

otherwise in their respective domains.

Dataset 2 (Rotated Five Blobs). The Rotated Five Blobs dataset is a synthetically generated dataset

consisting of five blobs rotated sequentially counterclockwise −20° around a central point in each

domain. It comprises two numerical features representing the 𝑥 and 𝑦 coordinates of each data

point. Each blob consists of 40 samples, resulting in 200 samples per domain, for a total of 2,000

samples across the 10 domains represented.

Dataset 3 (Moving Square). The Moving Square is a synthetically generated dataset designed for a

multi-class classification task. It encompasses two features and is divided into six domains, each

containing 200 instances, thereby leading to a total of 1,200 samples. In the construction of this

dataset, each of the four clusters—representing distinct classes—is initially located on one corner of

a square. As we transition through the six domains, each cluster progressively moves along the

edge of the square to the next corner.

Dataset 4 (Moving Diagonal Line). The Moving Diagonal Line dataset is a synthetic dataset,

generated using the sklearn blobs function. It comprises 1,200 instances, divided across 6 domains,

with each domain holding 200 instances. There are two features, corresponding to the 𝑥 and

𝑦 coordinate of each instance. In this dataset, there are two clusters, each representing a class,

following a diagonal line that moves with each domain. Thereby, both clusters move in opposite

directions along parallel diagonal next to each other. Each domain in this context represents

different stages of the diagonal movement.

Real World Datasets.

Dataset 5 (Indian Liver Patient Dataset). The Indian Liver Patient Dataset (ILPD), referenced

from Ramana and Venkateswarlu [50], is tailored for the binary classification task of identifying

liver disease. It contains 583 records featuring 10 attributes, including age, gender, and diverse

biochemical measurements. Originating from Andhra Pradesh, India, it comprises 416 liver patient

records and 167 non-liver patient records. In our settings, every 5-year age interval is considered as

an individual domain. The dataset, sourced from the UCI Machine Learning Repository, is geared

towards supporting the diagnosis of liver disease.

Dataset 6 (Istanbul Stock Exchange Returns). The Istanbul Stock Exchange Returns dataset

sourced from the UCI Machine Learning Repository provided by Akbilgic [3] includes 536 instances

of returns from the Istanbul Stock Exchange and seven international indices from June 2009 to

February 2011. The eight attributes represent various market return indices. The dataset is thereby

used to predict the changes in the Istanbul stock exchange given all the other indices. The target

was thereby discretized into 9 categories. The data was processed by dropping the USD column of

the ISE and converting dates into a monthly domain feature, introducing a time-based distribution

shift.
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Dataset 7 (Diabetes 130-US Hospitals). The Diabetes 130-US Hospitals dataset provided by Strack

et al. [56] encapsulates a decade (1999-2008) of diabetes care across 130 US hospitals, detailing

50 features related to patient demographics and hospitalization details. Criteria for inclusion are

inpatient and diabetic encounters, with stays ranging from 1 to 14 days, where both lab tests and

medications were administered. Features include patient identifiers, race, gender, age, admission

type, duration of stay, attending physician’s specialty, lab test counts, HbA1c results, diagnoses,

medication details, and counts of healthcare visits prior to admission. The target of the prediction

is to determine whether and in what time frame a patient will be readmitted. It is categorized into

<30 days, >30 days, or No for no readmission. The original dataset, with 101,766 instances and 50

features, has been subsampled to 964 instances.

Dataset 8 (Airlines Delay). The Airlines Delay dataset, sourced from OpenML and provided

by Bifet and Ikonomovska [9], contains 539,383 instances, each with 7 features. The task is to

predict flight delays based on the scheduled departure information. Features include Airline, Flight,

AirportFrom, AirportTo, DayOfWeek, and Time of departure. Notably, departure time, discretized

to an interval of full hours, will be our distribution shift domain. The dataset was subsampled,

thereby we sampled at most 60 samples per discrete time step. This resulted in 1,380 instances.

Dataset 9 (Pima Indians Diabetes). The Pima Indians Diabetes dataset from the National Institute of

Diabetes and Digestive and Kidney Diseases, referenced by Smith et al. [54], contains 768 instances

and 8 medical diagnostic features. These data represent female Pima Indian patients aged 21 or

older. The task involves binary classification for predicting diabetes onset. We categorize each

successive 2-year age interval as a separate domain, highlighting shifts in the dataset across age

groups.

Dataset 10 (Diabetes Prediction through Questionaire). This dataset, collected from Sylhet Dia-

betes Hospital in Bangladesh and provided by Islam et al. [29], aims to predict early-stage diabetes.

It comprises 520 instances and 16 features, representing symptoms and demographic information

of patients. The task is binary classification, predicting whether a patient has diabetes or not.

Age groups of every successive 5-year interval are considered as different domains, providing 14

age-based domains.

Dataset 11 (Room Occupancy Detection). The dataset is sourced from the UCI Machine Learning

Repository and provided by Candanedo [11]. The preprocessed dataset, reduced to 1800 instances

from the original 20,560, is used for binary classification of room occupancy based on Temperature,

Humidity, Light, and CO2 levels. After removing ’date’ and ’Id’ features, ’day’ and ’hour’ were

added. Thereby the ’day’ was used as the temporal domain.

Dataset 12 (Sao Paulo Urban Traffic Behavior). The Sao Paulo Urban Traffic Behavior dataset,

sourced from the UCI Machine Learning Repository provided by Ferreira et al. [19], captures records

of urban traffic behavior in Sao Paulo, Brazil, from December 14 to 18, 2009, and tries to predict the

slowness in traffic. The dataset contains 135 instances each with 18 attributes.

Attributes are various traffic indicators such as Hour, Immobilized bus, Broken Truck, Vehicle

excess, Accident victim, and more. We have discretized the target "Slowness in traffic (%)" into

intervals of 7.5 percent. Each day represents a different domain, thus introducing a time-based shift

in the dataset.

A.12.2 Test Datasets.

Synthetic Datasets.

Dataset 13 (Rotated Two Moons). The Rotated Two Moons dataset as stated by Nasery et al. [43]

and Bai et al. [5], is a derivative of the 2-entangled moons dataset and includes 220 instances in each
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of the 10 domains. Each domain is differentiated by counter-clockwise rotations of 18°, resulting

in a rotation of 18 · 𝑖° in domain 𝑖 . Also, the distribution of a subset of the instances varies across

domains.

Dataset 14 (Intersecting Blobs). The Intersecting Blobs Dataset is a synthetically created set

tailored for complex, binary classification tasks. The dataset contains two features per sample

and 120 samples per domain in a total of 14 domains. Each domain comprises three classes, each

represented by 40 samples appearing as blobs. These blobs move and vary, getting quite close

to one another, almost intersecting. This dynamic creates sudden shifts in decision boundaries,

increasing the difficulty and complexity of the classification tasks. The continuous shifts in blobs’

positions across domains are implemented by adjusting their centers and standard deviations.

Dataset 15 (Binary Label Shift). The Binary Label Shift Dataset is a synthetic dataset tailored for

binary classification in an environment with prior probability shifts. The dataset consists of 10

unique domains, with each containing 200 samples and each sample consisting of two features.

The key feature of this dataset is the systematic manipulation of class probabilities across domains.

This is realized by starting with a high probability of 0.95 for one class in the first domain, which

progressively diminishes to 0.05 in the final domain. Simultaneously, the probability for the other

class increases from 0.05 to 0.95, following the opposite direction. This dynamic essentially portrays

a "fade out and fade in" pattern of the classes across the domains, representing the prior probability

shift.

Dataset 16 (Rotating Hyperplane). The Rotating Hyperplane binary classification dataset is

artificially generated based on the package scikit-multiflow provided by Montiel et al. [39]. It

consists of five features, of which three shift over time. The dataset is divided into 15 domains

of 100 instances each, providing a total of 1500 samples. As the name implies, the key aspect of

this dataset is about a rotating hyperplane. In other words, the decision boundary - or hyperplane

- shifts as we navigate from one domain to the next, making the classification task increasingly

difficult.

Dataset 17 (RandomRBF Drift). The RandomRBF Drift binary classification dataset is synthetically

generated based on the package scikit-multiflow provided by Montiel et al. [39]. This dataset has

been constructed by introducing drifts in the data using Radial Basis Functions. It is characterized

by the motion of cluster centroids, which are responsible for creating data drift. This movement

can be visualized as clusters that change their positions, altering the distribution of data over time.

The dataset consists of 8 features, 15 domains with 100 samples in each domain, for a total of 1,500

samples.

Dataset 18 (Rotating Segments). The Rotating Segments dataset is a synthetically generated

dataset tailored for a binary classification task. The dataset visualizes a circle partitioned into four

segments, similar to the slices of a cake. The data points are thereby labeled alternately. As we

traverse through the ten domains, these segments undergo a rotation. Each domain contains 150

samples, accumulating to 1500 samples in total.

Dataset 19 (Sliding Circle). The Sliding Circle dataset is a synthetically generated dataset and

represents a binary classification task. It comprises two features, the dataset is partitioned into

ten domains, each possessing 200 samples, summing up to a total of 2,000 samples. The unique

aspect of this dataset is its visual representation: a smaller circle slides around the inner perimeter

of a larger circle. Within the larger circle, points are classified based on whether they lie inside the

smaller sliding circle or outside of it. As we traverse through the ten domains, the position of the

smaller circle changes, causing a shift in the classification of the points.
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Dataset 20 (Shifting Two Spirals). The Shifting Two Spirals dataset is designed for binary classifi-

cation tasks. The dataset visually represents two intertwined spirals. As we move from one domain

to the next, the classification boundary in the spirals evolves. Specifically, one spiral gradually

transitions its labels from the center towards the outer end, while the other spiral does the exact

opposite, transitioning its labels from the outer end towards the center. This dynamic showcases a

fascinating interplay of domain adaptation across the ten domains. Each domain has 200 samples,

with 100 samples from each spiral, summing up to a total of 2,000 samples.

Real World Datasets.

Dataset 21 (Free Light Chain Mortality). The free light chain dataset comprises data from a study

investigating the link between serum free light chain (FLC) and mortality. It includes 1125 stratified

samples per domain and target from an original pool of 7,874, featuring residents of Olmsted

County, Minnesota aged 50 or more.

The task involves predicting mortality based on 9 features, which include age, sex, year of

blood sample, FLC portions (kappa and lambda), the FLC group, serum creatinine, MGUS diagnosis,

and days from enrollment to death or last follow-up. The feature ’chapter’ was omitted because it

is direct information on whether someone died or not. We treat "sample.yr", the year in which the

sample was taken, as a domain, resulting in a total number of 9 domains. We suspect that both the

measurements themselves and the selection of participants have changed over time. The dataset is

sourced from studies by Dispenzieri et al. [18] and Kyle et al. [36].

Dataset 22 (Electricity). This dataset as used byHarries [26] and Gama et al. [20] contains electricity

demand in the Australian New South Wales Electricity Market. Since the prices are not fixed,

they fluctuate depending on supply and demand. It has 45,312 instances and 5 features. For

reproducibility, the dataset includes additional features such as the New South Wales electricity

price, which was used to form the target class according to the original paper, and the Victoria

electricity price, which was not used in the original paper. The dataset features the demand of

electricity in to provinces as well as the transfer between those for periods of 30 minutes. The

task is a binary classification, which requires predicting whether the price in the current period is

higher or lower than the average of the last 24 hours. The dataset contains seasonal data due to

varying demand for electricity. The effects of long-term price trends on the class label are removed

by the 24-hour moving average. We consider one-week periods as a single domain. To comply with

TabPFN sequence length limits, we keep only two hourly intervals for each day and subsample 15

weeks of the whole time period.

Dataset 23 (Absenteeism at Work). The Absenteeism at Work dataset, sourced from the UCI

Machine Learning Repository provided by Martiniano and Ferreira [38], comprises 740 instances

across 21 features. It captures various attributes of employees and their working conditions, such

as the reason for absence, day of the week, seasons, distance to work, and more, with the target

feature being the absenteeism time in hours which was discredited into 4-quantiles.

The primary shift in this dataset is supposed to be seasonal. Thereby each consecutive season

is treated as a different domain. Furthermore, no significant preprocessing or subsampling was

required due to the manageable size of the dataset.

Dataset 24 (Heart Disease Dataset). The Heart Disease dataset, sourced from the UCI Machine

Learning Repository and provided by Janosi et al. [32], targets the classification task of identifying

the presence (values 1,2,3,4) or absence (value 0) of heart disease in patients. We treat the task as a

binary classification, predicting only whether a patient has heart disease or not. It includes 303

instances, each with 13 health-related features such as age, sex, resting blood pressure, cholesterol

levels, etc. In this context, each consecutive 4-year age interval is viewed as a single domain. Rows

with missing values have been omitted.
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Dataset 25 (Parking Birmingham). The Parking Birmingham dataset, provided by Stolfi [55] via

the UCI Machine Learning Repository, initially comprises the capacity and occupancy rates(target)

of multiple car parks. We have processed it to only include the car park labeled ’Others-CCCPS133’,

thereby reducing the number of instances to 1,294 from 35,717. The original ’LastUpdated’ attribute

has been transformed into ’day’, ’week’, and ’month’ features, with the ’week’ serving as the

temporal domain. The ’Occupancy’ target, originally an absolute figure, is now presented as a

percentage of the parking space utilization, discretized into 25% intervals.

Dataset 26 (Ames Housing Prices). The Ames Housing Dataset, curated by De Cock [16], consists

of 1460 instances each with 79 features detailing various aspects of residential homes in Ames,

Iowa. We use only the training portion of this dataset due to the absence of ground truth targets

in the test data. We have discretized the house price, which was originally a continuous variable,

into a categorical variable. This transformation was achieved by partitioning the price data into

intervals. Specifically, the intervals are defined as: [0, 125𝑘], (125𝑘, 300𝑘], (300𝑘,∞). The task is to

predict the price range of a home based on its features. We treat the ’YearBuilt’ attribute, divided

into 15-year periods, as our domain to capture changes in housing trends over time. It is to be

expected that the data set shows temporal shifts, as the price distribution between older and more

modern houses differs.

Dataset 27 (Folktables US Census). The folktables datasets, derived from the US Census Public

Use Microdata Sample (PUMS) data and published by Ding et al. [17] consists of demographic

and socioeconomic data between 2015 and 2021. Each year within this timeframe represents a

distinct domain for a series of tasks: ACSIncome, ACSPublicCoverage, and ACSEmployment. We

purposefully limited our focus to the state Maryland, to limit the shifts to the temporal domain.

The size of the datasets necessitated a stratified subsample for the target per year to reach a total

of approximately 1300 instances per dataset and meet the TabPFN model requirements. This

subsampling ensured a representative yet computationally manageable sample.

The tasks are as follows:

• ACSIncome: The task predicts whether an individual’s income surpasses $50,000, narrowing the

ACS PUMS data to individuals over 16 who reported at least one working hour per week in the

past year and a minimum income of $100. The task consists of 10 features accross the 7 domains.

• ACSPublicCoverage: The objective is to predict if an individual is covered by public health

insurance. The dataset is filtered to include only individuals under 65 with an income below

$30,000, focusing the prediction on low-income individuals ineligible for Medicare. The task

consists of 19 features accross the 7 domains.

• ACSEmployment: The task is to predict whether an individual is employed. The dataset is filtered

to include only individuals between 16 and 90 years of age. The task consists of 16 features

accross the 7 domains.

Dataset 28 (Chess). The Chess dataset published by Žliobaitė [66] is derived from recorded chess

games, aiming to predict game outcomes (draw, lost, won) through amulti-class classification task. It

consists of nine features which provide insights into the game details and player attributes, including

move sequences, player side (white or black), current rating, opponent’s rating, type of game, speed,

and the date of the game (broken down into year, month, and day). The dataset is segmented into

27 domains, where each domain represents 20 consecutive games. This segmentation helps capture

the evolution of a player’s progress over time. The dataset, in its entirety, holds 533 instances. It

has been constructed based on games played between 7 December 2007 and 26 March 2010.
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A.13 Hyperparameter Search Spaces

Table 7: Hyperparameter search spaces we used for Wild-time baselines.

Underlying MLP (+ ERM, A-GEM, FT)

Parameter Values

train_update_iter 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000

lr 𝑒U (−14,−4)

use_scheduler True, False

ft_scheduler_gamma U (0.9, 1.0)
weight_decay 0.0, 1𝑒 − 5, 1𝑒 − 2

early_stopping True, False

early_stop_holdout 0.1, 0.15, 0.2

early_stop_patience U {10, 11, . . . , 30}

LISA

Parameter Values

mix_alpha 𝑒U (0.5,4.0)

cut_mix True, False

Mixup

Parameter Values

mix_alpha 𝑒U (−5,0)

EWC

Parameter Values

gamma 𝑒U (1.0,2.0)

ewc_lambda 𝑒U (0.5,2.0)

GroupDRO-T

Parameter Values

group_size U {1, 2, . . . , 6}
non_overlapping True, False

group_loss_adjustments None, 0.1, 0.5, 1.0

group_loss_btl True, False

SWA

Parameter Values

swa_portion U (0.5, 0.9)
swa_lr_factor U {1, 2, . . . , 6}

IRM-T

Parameter Values

group_size U {1, 2, . . . , 6}
non_overlapping True, False

irm_lambda U {1, 2, . . . , 100}
irm_penalty_anneal_iters 0, 250, 500, 750, 100

SI

Parameter Values

si_c U (0.05, 0.2)
epsilon U (0.0005, 0.002)

CORAL-T

Parameter Values

group_size U {1, 2, . . . , 6}
non_overlapping True, False

coral_lambda U (0.1, 1.0)
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Table 8: Hyperparameter search spaces we used for our baselines.

XGBoost

Parameter Values

learning_rate 𝑒U (−7,0)

max_depth U {1, 2, . . . , 10}
subsample U (0.2, 1)
colsample_bytree U (0.2, 1)
colsample_bylevel U (0.2, 1)
min_child_weight 𝑒U (−16,5)

alpha 𝑒U (−16,2)

lambda 𝑒U (−16,2)

gamma 𝑒U (−16,2)

n_estimators U {100, 101, . . . , 4000}

LightGBM

Parameter Values

num_leaves U {5, 6, . . . , 50}
max_depth U {3, 4, . . . , 20}
learning_rate 𝑒U (−3,0)

n_estimators U {50, 51, . . . , 2000}
min_child_weight 1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4

subsample U (0.2, 0.8)
colsample_bytree U (0.2, 0.8)
reg_alpha 0, 1e-1, 1, 2, 5, 7, 10, 50, 100

reg_lambda 0, 1e-1, 1, 5, 10, 20, 50, 100

CatBoost

Parameter Values

learning_rate 𝑒U (−5,0)

random_strength U {1, 2, . . . , 20}
l2_leaf_reg 𝑒U (0,𝑙𝑜𝑔 (10) )

bagging_temperature U (0.0, 1.0)
leaf_estimation_iterations U {1, 2, . . . , 20}
iterations U {100, 101, . . . , 4000}

Table 9: Preprocessing search spaces for Drift-Resilient TabPFN and TabPFN-base.

Parameter Search Space

model_type single

N_ensemble_configurations 16, None

preprocess_transforms See Table 10

softmax_temperature log(0.75), log(0.8), log(0.9), log(0.95)

use_poly_features True, False

max_poly_features 50

remove_outliers -1, 7.0, 9.0, 12.0

add_fingerprint_features True, False

subsample_samples 0.9, 0.99, -1
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Table 10: Parameters and values for enumerate_preprocess_transforms function.

Parameter Values

names ["safepower"], ["quantile_uni_coarse"], ["quantile_norm_coarse"], ["adaptive"], ["norm_and_kdi"],

["quantile_uni"], ["none"], ["robust"], ["kdi_uni"], ["kdi_alpha_0.3"], ["kdi_alpha_3.0"], ["safe-

power", "quantile_uni"], ["kdi", "quantile_uni"], ["none", "power"]

categorical_name ["numeric", "ordinal_very_common_categories_shuffled", "onehot", "none"]

append_original [True, False]

subsample_features [-1, 0.99, 0.95, 0.9]

global_transformer [None, "svd"]
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