Permutations as a testbed for studying the effect of input representations on
learning
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Abstract

Quality data is crucial for deep learning. However, relative to progress in model training and data curation, there
is a lesser focus on understanding the effects of how data is encoded and passed to the neural network— the “data
representation.” This is especially true for non-textual domains, where there are often challenges in distinguishing
between the difficulty of the learning task versus difficulties arising merely from the format of the input data. We
propose using permutations, which have multiple natural mathematical representations, as a systematic way to
study how task difficulty and learning outcomes are influenced by the choice of input data representation. In this
setting, we find that the model performance on a data representation can change significantly with the number
of examples and architecture type; however, with enough examples most tasks are learned regardless of data
representation.

1. Introduction

It is well-known that the choice of data representation, how an input is encoded and passed to the model, can greatly
influence a model’s learning outcomes. In natural language processing, the transition from bag of words encoding to context-
aware embeddings demonstrates how representation choice can dramatically influence downstream model performance.
Similarly, in a variety of other domains — from molecular property prediction (Shen & Nicolaou, 2019), to audio signal
processing (Purwins et al., 2019), to intrusion detection in cybersecurity (Arnaldo et al., 2017) — the choice of representation
can significantly affect model behavior. Despite these observations, we lack systematic methods for understanding how
representation choice affects task difficulty, model performance, and the algorithms that models discover.

We propose using permutations and permutation statistics to study how input representation affects learning. Permutations
provide a setting in which there are many ways to naturally represent the data, which each emphasize different structural
properties. Additionally, there are a wide range of statistics of interest that can be computed from permutations, with the
FindStat database (Rubey et al.) having over 400 statistics that can be computed from a permutation, providing many
avenues for potential classification problems. Studying the pairwise combinations of representations and tasks on the same
underlying mathematical objects allows one to isolate the effect of representation choice on learning. This controlled setting
enables the study of fundamental questions:

* Learned algorithms: How does the input encoding affect the algorithm the model learns?

* Interpretability: Do certain representations consistently yield more interpretable models?

» Task complexity: Which tasks are challenging regardless of input representation or model architecture?
* Model selection: Under which task-data pairings do simpler models outperform complex ones?

* Learning speed: How does representation choice affect the number of examples needed to learn?

In this work, we begin to study these questions, training small MLPs and transformers on a variety of representation-task
combinations. Our key contributions include:
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* Providing a framework combining five permutation representations with twelve classification tasks, where each task
has a known algorithm in at least one representation.

* Finding that when there are fewer examples (permutations on smaller values of V) certain representations provide larger
advantages for learning, but once NN is sufficiently large, nine of the twelve tasks are learned using all representations.

 Enabling future mechanistic interpretablility research into how representation choice influences the internal algorithms
models discover.

2. Related work

2.1. Sparse-parity learning

Work on sparse-parity learning (Edelman et al., 2023; Morwani et al., 2024) modulates model width, dataset size, and
training time, finding that models rarely learn a XOR bit unless extreme width supplies a “lottery-ticket” neuron or training
gradually builds a Fourier/group basis to expose it. Our experiments examine a related domain: permutation parity is difficult
to learn across one-line, matrix, reduced-word—and even inversion-vector or Lehmer cocode—encodings, indicating that
merely surfacing the linear bit is not enough. Whereas (Edelman et al., 2023; Morwani et al., 2024) fix the Boolean
input and vary model capacity or training dynamics, we hold those factors constant and instead vary natural permutation
representations.

2.2. Learning with permutation data and mechanistic interpretability

The task of permutation composition has been used in research on grokking (Power et al., 2022) and in interpretability work
(Zhang et al., 2022; Liu et al., 2023; Chughtai et al., 2023; Stander et al., 2023; Wu et al., 2024). Much of this research falls
within mechanistic interpretability, which aims to understand ML models by reverse engineering the algorithms they learn.

While modular arithmetic has become a classic testbed for mechanistic interpretability (Nanda et al., 2023; Zhong et al.,
2024; Yip et al., 2024), it is just one example of group composition on a finite group — specifically, the cyclic group. Given
this foundation, studying permutation composition (equivalently, group composition in permutation groups) is a logical
next step. For example, (Chughtai et al., 2023) trained MLP and transformer models to perform group composition on
seven finite groups, including the permutation groups S5 and Sg, and aimed to reverse engineer how the networks learned
these operations. They observed that the learned features correspond to the group’s irreducible representations. However,
competing explanations have emerged: Stander et al. found that in the same experimental setup with S5 and Sg, the model
used the coset structure of the group to perform composition (Stander et al., 2023). Gross et al. offered a third mechanistic
explanation based on group-theoretic structure that both previous studies had overlooked (Wu et al., 2024).

Our work provides a testbed where mechanistic interpretability studies can include the effect of different input encodings
on learned algorithms, the difficulty of the tasks and the relationship between representations, task difficulty, and ease of
interpretability.

3. Experimental design

Our experimental design enables systematic study of how representation choice affects task difficulty and learning outcomes.
We hold underlying mathematical objects, tasks, and model architecture constant while varying only the input representation.
We selected twelve classification tasks that capture different aspects of permutation structure, including both local properties
like peaks and descents, and global properties like order. We chose five different permutation representations that emphasize
different permutation characteristics. Most tasks have at least one simple algorithm for at least one representation, allowing
one to check whether the models learn these solutions.

In this section, we first briefly introduce permutations and definitions used throughout this paper. A thorough introduction to
permutations and permutation statistics can be found in (Stanley, 2011). We next describe the tasks and representations that
we trained small MLPs and transformers on. Details of model training are left to the Appendix.

3.1. Permutations: key concepts

A permutation o € S,, is a bijective function from the set {1, 2, ..., n} to itself. The one-line representation of a permutations
(often referred to as one-line notation) is the vector (o(1),0(2),...,0(n)). For example, the permutation that maps 1 — 2,
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2+ 5,3+ 3,and 4 — 4 and 5 — 1 has one-line representation 25341. Other fundamental concepts we need include:

* Inversions: Pairs (i, j) where ¢ < j but o(i) > o(j). In the permutation 25341, (2, 3) is one of six inversions.

* Descents: Positions ¢ where (i) > (i + 1). The descents in the permutation 25341 are 2 and 4.

* Cycles: Each permutation can be written as a product of disjoint cycles. In this representation, every integer in the
cycle is mapped to the next integer in the cycle. The permutation 25341 is written using its cycle representation as
(125)(3)(4).

* Reduced words: Permutations can be written (non-uniquely) as sequences of transpositions of adjacent elements. For
example, the permutation 25341 can be written in cycles as (1,2)(2, 3)(3,4)(4,5)(3,4)(2, 3), where the cycles are
read from right to left. Abbreviating the adjacent transposition (i, + 1) as s;, we say that 515283545382 is a reduced
decomposition of the permutation 25341, and the 123432 is a reduced word of 25341.

3.2. Tasks

We study twelve classical permutation statistics, selected to have natural algorithms in different representations. More
information about these statistics and examples can be found in the FindStat database (Rubey et al.) and the Sage
documentation (The Sage Developers, 2024).

¢ Length: the number of inversions in the permutation or, equivalently, the length of a reduced word for the permutation
(also called Coxeter length).

 Parity: Whether the permutation has even or odd (Coxeter) length.

* Major index: The sum of all of the descents.

* Number of descents: Count of positions ¢ where o (i) > o (i + 1).

* Number of fixed points: Count of values ¢ where o (i) = 1.

* Number of peaks: Count of positions ¢ where o(i — 1) < o(i) and o (i) > o (i + 1).

* Longest increasing subsequence length: Maximum length of 41 < iy < -+ <} with o(41) < o(i2) < - -+ < o(ig).

* Number of nestings Count of pairs (4, j) that form nestings in the permutation’s arc diagram: either j < i < o(i) <
o(j)oro(j) < o(i) <i< j(Corteel, 2007).

¢ Order: The smallest positive integer m so that ¢”* = id. This is the least common multiple of the lengths of its cycles.

* Number of cycles: The count of cycles in the disjoint cycle decomposition of the permutation (including cycles of
length 1).

* Support cardinality: The number of distinct indices that appear in a reduced word of the permutation. Note that this
is independent of the choice of reduced word.

* Number of stack sorts: The minimum number of stack sorts needed to sort a permutation. Details on stack sorting can
be found in the Appendix.

3.3. Representations

The difficulty of the tasks in the previous section depends on their representation. We compare five representations that
encode different structural aspects of permutations:

¢ Permutation matrix: The n x n matrix where entry (i,j) = 1if o(i) = j, and O otherwise. This is the one-hot
encoding of the one-line representation.

¢ Inversion vector: The vector where the entry ¢ counts how many j > ¢ appear before 7 in the permutation. For the
permutation 25341, the inversion vector is (4,0, 1,1,0).

* Lehmer cocode: The vector where entry ¢ counts how many j < i have o(j) > o(¢). The Lehmer cocode of the
permutation 25341 is (0,0, 1, 1,4). Note that applying o to the Lehmer cocode gives the inversion vector.

* Major code: The vector (my — mg, ma — ma, ..., my), where m; is the sum of all of the descents of the permutation
obtained by erasing letters smaller than ¢ from the permutation. For the permutation 25341, m; = 6, mg = 2, m3 = 2
and m4 = ms = 0, so the major code is (4,1,0,1,0).

* Lexicographically minimal reduced word: The reduced word for the permutation that is smallest in lexicographic
order. Since different permutations may have reduced words of different length, we pad the reduced words with zeros
so that they are all the same length.
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3.4. Representation-task interactions

Certain statistics can be easily computed from certain representations:

* Length and parity: The length can be obtained by taking the sum of the inversion vector or Lehmer cocode, and the
number of nonzero entries of the lexicographically minimal reduced word. The parity is the parity of the length.

* Fixed points: The number of fixed points is the trace of the permutation matrix.

* Descents: The number of descents is exactly the number of ascents in the Lehmer cocode.

e Major index: The major index is the sum of the major code.

* Support cardinality: The support cardinality is the number of distinct integers that appear in the reduced word.

This is summarized in Table 1.
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Table 1. Task-representation pairs: e = directly encoded (e.g., taking the sum or computing the length of a list), o = simple algorithm (e.g.,
comparing adjacent elements).
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Figure 1. Accuracy averaged over five training runs of classifiers (MLPs in the top plot and transformers in the bottom plot), for each pair
of permutation representation and task. Standard deviation is shown by error bar. Permutations from S’s.

4. Results

Once sufficient data was available (N = 8), all models achieved either very high or perfect accuracy on nine out of the
twelve tasks regardless of representation, as shown in Figure 2. The three exceptions were the parity, order, and cycle
counting tasks. MLPs acheived perfect test accuracy with at least one of the representations with sufficient data, while the
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Figure 2. Accuracy averaged over five training runs of classifiers (MLPs in the top plot and transformers in the bottom plot), for each pair
of permutation representation and task. Standard deviation is shown by error bar. Permutations from Ss.

transformers achieved high accuracy on every task with at least one of the representations, but notably failed to reach perfect
accuracy on the order or counting cycles tasks.

The amount of data needed to achieve strong performance varied with the representation choice. For example, learning to
compute the major index or the number of fixed points from the reduced word required much larger [V than with the other
representations. MLPs demonstrated superior data efficiency on specific representation-task pairs, requiring smaller N to
achieve high performance on fixed points (with inversion vector or Lehmer cocode representations), major index (with the
reduced word representation), and length and cycle counting (with the permutation matrix representation).

We also observed unexpected task-specific phenomena that challenged our intuition about task difficulty. Most surprisingly,
computing the parity was much harder than computing length. The transformer models achieved 100% accuracy on the
length task with every representation at N = 8, but performed similar to chance level on parity. Figure 1 shows performance
results that vary in alignment with the expected relative difficulty of different tasks (see Table 1).

5. Discussion and conclusion

Our study into permutation representations underscores the impact that data representation choice can have on learning
outcomes. This research provides insights into how permutations, with their diverse representation options, serve as
an ideal framework for examining the influence of representation on model performance. Our findings suggest that
permutations, with their inherent flexibility in representation and the rich variety of associated statistics, allow for systematic
analysis of task complexity relative to the choice of input representation. We highlight the ability to isolate the effects of
representation choice on learning through controlled experiments, thus enabling exploration into fundamental questions
regarding learned algorithms, interpretability, task complexity, model selection, and learning speed. Our results indicate that
certain representations have advantages when dealing with limited data (e.g. smaller permutations), while for larger datasets,
more tasks are reliably learned across all representations.

This study sets the stage for further research on how representation choice affects the internal algorithms that models discover.
Specifically, to further understand the relationship between data representation and learning outcomes, in future work we
plan to compare models’ internal representations across the different data representations, for different data representations,
tasks, and values of V. Additionally, error analysis experiments would provide a more fine-grained understanding, beyond
accuracy, of how learning is affected by data representation. Future work should also include extending this approach to
different data modalities beyond permutations.
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6. Appendix
6.1. Other permutation concepts

Stack-sorting A permutation is stack sortable if it can be sorted by the following algorithm:

(1) Initialize an empty stack and empty final output

(2) For each element x in the input permutation: (a) while the stack is nonempty and x is larger than the last item added to
the stack, pop this item from the stack to the output (b) put 2 onto the stack

(3) If the stack is nonempty, add remaining stack to the output.

When we apply this algorithm to the permutation 25341, we get the permutation 23145. After two more stack sorts we get
the identity permutation, so the number of stack sorts needed to sort the permutation is 3.

6.2. Model architecture details

MLP models Small MLPs were trained on different combinations of input representation and statistic for a classification
task. The MLP architecture has 3 hidden layers with 128, 128, and 64 neurons respectively, each employing ReLU activation
and dropout for regularization. A hyperparameter sweep was performed over learning rate (le — 5, le —4,3e — 4, or le —3),
dropout (0.1, 0.3, or 0.5), and weight-decay values (0.0001,0.001, or 0.01) and then five training iterations run using the
best hyperparameters for each. Before training, all of the representations were transformed using a one-hot encoding of each
element, and then the matrix flattened into a single vector for consistency (with the exception of the permutation matrix
which is already the one-hot-encoded one line representation, and just needs to be flattened).

Transformers We trained encoder-only transformers, performing a hyperparameter sweep over the encoder dimension
(40 or 80), depth (4, 6, or 8), and number of attention heads (4 or 8). The transformer models were also trained five times
with the best hyperparameters, for each combination of input permutation representation and classification task.

6.3. Additional model performance results

Figures 3 and 4 show the accuracy of MLP models across multiple permutation sizes (values of V), separated by classification
tasks. Similarly for the transformer models, Figures 5 and 6 show the accuracy across values of NV, for each classification
task. Figures 7 and 8 give MLP and transformer classification results organized by representation-task pairs for N = 6.
Figures 9 and 10 give MLP and transformer classification results organized by representation-task pairs for N = 7.

6.4. Class distributions of statistics

Tables 2, 3, 4, and 5 give distributions of the various statistics by class for N = 7. The statistics are separated according to
commonality in their number of classes.
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tasks. Color bands indicate the standard deviation of the mean accuracy.
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Figure 6. Accuracy of transformer classifiers on the number of stack sorts, length of longest increasing subsequence, number of nestings,
order, number of cycles, and support cardinality tasks. Color bands indicate the standard deviation of the mean accuracy.
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Effect of input representations on learning
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Figure 7. Average accuracy (top) and F1 scores (bottom) for the MLP models of each representation, statistic pair. Results are averaged
over five training runs of each classifier and the standard deviation is indicated by error bars. Permutations from Ss.
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Figure 8. Average accuracy (top) and F1 scores (bottom) for the transformer models of each representation, statistic pair. Results are
averaged over five training runs of each classifier and the standard deviation is indicated by error bars. Permutations from Sg.
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Effect of input representations on learning

1.0 = inversion_vector_7
= lehmer_cocode_7
= major_code_7
= permutation_matrix_7
0.8 = reduced_word_lexmin_7
T
s
206
>
9
E
Soa
So.
<
0.2
0.0+
parity length  longest increasing major index # cycles # descents  # fixed points ~ # nestings # peaks # stack sorts order  support cardinality
subsequence length
Tasks
1.0 m inversion_vector_7
= lehmer_cocode_7
== major_code_7
= permutation_matrix_7
mm reduced_word_lexmin_7
0.8 _word_| R
T
s
206
o
o
&
— 0.4
i
0.2

0.0+
length  longest increasing major index # cycles # descents  # fixed points ~ # nestings # peaks # stack sorts order  support cardinality

subsequence length

Tasks

Figure 9. Average accuracy (top) and F1 scores (bottom) for the MLP models of each representation, statistic pair. Results are averaged
over five training runs of each classifier and the standard deviation is indicated by error bars. Permutations from S7.
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Figure 10. Average accuracy (top) and F1 scores (bottom) for the transformer models. Results are averaged over five training runs of
each classifier and the standard deviation is indicated by error bars. Permutations from .S~.
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Effect of input representations on learning

task #classes | 0 1 2 3 4 5 6 7
# fixed points train 7| 1306 1291 653 214 50 13 0 1
test 7] 548 564 271 101 20 8 0 0
# descents train 7 1 85 840 1701 815 85 1 0
test 7 0 35 351 715 376 35 0 o0
# stack sorts train 7 1 313 1051 1094 665 313 91 0
test 7 0 115 458 462 317 131 29 0
longest inc subseq length  train 7 0 1 294 1595 1317 295 25 1
test 7 0 0 134 737 504 126 11 0
# cycles train 7 0 507 1243 1142 508 114 13 1
test 7 0 213 521 482 227 o6l 8§ 0
support cardinality train 7 1 4 17 57 237 820 2392 0
test 7 0 2 8 35 90 322 1055 O

Table 2. Distribution of statistics (number of fixed points, number of descents, number of stack sorts, longest increasing subsequence
length, number of cycles, and support cardinality) by class for N = 7

Task # classes 0 1 2 3 4 5 6 7 8 9 10 12
# nestings  train 10 | 303 733 880 765 465 247 97 29 8 1 — —
test 10 | 126 268 394 327 235 105 43 13 1 0 — —
order train 9 — 1 150 249 581 368 1017 507 O O 367 288
test 9 — 0 81 101 259 136 453 213 0 O 137 132
Table 3. Distribution of statistics (number of nestings and order) for N = 7
task # classes 0 1 2 3
parity train 211764 1764 — —
test 2 756 756 — —
number peaks train 4 45 1281 2012 190
test 4 19 543 868 82
Table 4. Distribution of statistics (parity and number of peaks) for N = 7
task classes | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1
length | train 22|11 4 15 29 64 114 192 270 336 380 412 379 367 323 234 172 110 75 28 17 5 1
test 2210 2 5 20 34 55 67 89 119 151 161 194 164 132 125 87 59 23 21 3 1 0
major | train 22|11 4 15 37 76 109 190 252 310 376 396 403 374 318 240 185 118 77 29 11 6 1
index | test 2210 2 5 12 22 60 69 107 145 155 177 170 157 137 119 74 51 21 20 9 0 0

Table 5. Distribution of length and major index for N =7
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