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ABSTRACT

Prompt tuning, which involves training a small set of parameters, effectively
enhances the pre-trained Vision-Language Models (VLMs) to downstream tasks.
However, this approach often comes at the cost of flexibility and adaptability when
the tuned models are applied to different datasets or domains. In this paper, we
revisit the vanilla full fine-tuning for VLMs and show that full fine-tuning is more
efficient than prompt tuning under data-limited scenarios. To mitigate the overfitting
and catastrophic forgetting issues encountered when fine-tuning the entire VLMs
for specific tasks under limited supervision, we propose a framework named CLIP-
CITE via designing a discriminative visual-text task, further aligning the visual-
text semantics in a supervision manner, and integrating knowledge distillation
techniques to preserve the gained knowledge. Extensive experimental results under
few-shot learning, base-to-new generalization, domain generalization, and cross-
domain generalization settings, demonstrate that our method effectively enhances
the performance on specific tasks under limited supervision while preserving the
versatility of the VLMs on other datasets.

1 INTRODUCTION

Recently, the pre-trained Vision-Language Models (VLMs) such as CLIP Radford et al. (2021) and
ALIGN Jia et al. (2021) have demonstrated impressive generalization capabilities across various
downstream tasks Zhou et al. (2022b); Gu et al. (2021); Rao et al. (2022); Rasheed et al. (2023).
Though versatile, the performance of the VLMs on specific domains shows considerable potential for
improvement, especially under data-limited scenarios Zhou et al. (2022b); Khattak et al. (2023a).
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Figure 1: (a) Prompt tuning methods Zhou et al. (2022b); Khattak et al. (2023a). (b) Our full
fine-tuning methods Radford et al. (2021); Goyal et al. (2023). (c) Comparison results (%) under the
cross-domain generalization setting in the limited-data regime.
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Prompt tuning Zhou et al. (2022b); Khattak et al. (2023a); Jia et al. (2022) has been proposed to
refine pre-trained models using extra parameters while keeping the parameters of VLMs fixed. These
methods gain popularity due to efficient parameter utilization and the ability to quickly adapt VLMs
to domain-specific information in data-limited scenarios. While the prompt-based tuning strategies
enable VLMs to effectively capture domain-specific information with limited supervision, there
is a risk that these strategies may compromise the versatility of VLMs where the prompts trained
on domain-specific data may struggle to generalize to different domains. A piece of evidence is
provided in Fig. 1(c), which shows a transfer experiment under the cross-domain generalization
setting. We employ a few-shot setting to train the model using the EuroSAT base training set, followed
by evaluating its performance on both EuroSAT and ImageNet datasets. While the prompt-based
methods, i.e., CoOp Zhou et al. (2022b) and MaPLe Khattak et al. (2023a) significantly improve the
EuroSAT dataset results, they are at the cost of sacrificing their generalizability on the other datasets.
In particular, their performances on the ImageNet dataset severely lag behind those of the original
CLIP model.

Recent advances in natural language processing and text-to-image generation have demonstrated
that fully fine-tuning can capture domain-specific information, even with limited data Liu et al.
(2021); Ruiz et al. (2023). When customizing VLMs to specific domains, fine-tuning the entire
models would distribute task-specific knowledge across all parameters (as illustrated in Fig. 1. (b)).
To explore the effect of fully fine-tuning in adapting VLMs, we compare two existing methods:
FT-Probe Radford et al. (2021), which fine-tunes the model while adding a linear probe, and FLYP
Goyal et al. (2023), which fine-tunes using the contrastive loss from a pre-trained model. Our
findings indicate that FT-Probe underperforms on the EuroSAT dataset, whereas FLYP achieves
balanced performance across various datasets. From the results, we posit that the key to effective
fine-tuning lies in determining the appropriate fine-tuning parameters and optimization objectives
to transfer knowledge to specific domains while preserving the model’s generalization capabilities.
Therefore, in this paper, we revisit the fully fine-tuning paradigm for VLMs and propose that, with
suitable optimization objectives and techniques, fully fine-tuning the inherent parameters of VLMs
can outperform existing parameter-efficient methods in data-limited scenarios.

We propose a fine-tuning method called CLIP-CITE that enhances the CLIP’s professionalism on
specific domains while preserving its generalization by primarily enhanCing the capability of the
Image-Text alignmEnt task. CLIP-CITE fine-tunes all the parameters of both the text encoder and the
image encoder, optimizing them to better capture domain-specific features. Additionally, CLIP-CITE
incorporates three key aspects to optimize models. Firstly, to quickly equip the domain-specific
information for CLIP, our CLIP-CITE connects the alignment score with the classification probability
in a way that prioritizes higher alignment scores for image-text pairs belonging to the same class.
Secondly, our approach fine-tunes the entire model using an image-text alignment task, aligning with
the original training objective of the pre-trained CLIP model. This differs from the classification task
utilized in Radford et al. (2021), ensuring a consistent training objective throughout the adaptation
process. Note that training an image-text alignment task usually requires a large batch Radford
et al. (2021); Goyal et al. (2023) in implementation, posing a significant challenge when working
with limited data regimes. To overcome this issue, we propose utilizing a class-level image-text
alignment task as an alternative to the original instance-level alignment task. Finally, to alleviate
the catastrophic forgetting issue, we introduce a vision-language similarity distillation strategy. This
strategy regularizes the model by transferring the image-text alignment relationship learned by the
pre-trained CLIP model, further ensuring a minimal change in parameters. As shown in the last
row of Fig. 1 (c), our CLIP-CITE enhances EuroSAT dataset performance while simultaneously
upholding generalization capability on the ImageNet dataset.

In summary, our highlights are as follows:

• We revisit the fully fine-tuning in VLMs and propose a simple but efficient fine-tuning
method to enhance the VLMs’ professionalism while maintaining their versatility under
limited data supervision. CLIP-CITE comprehensively fine-tunes CLIP to enable it to
promptly incorporate task-specific information through enhanced image-text alignment and
safeguard the learned knowledge.

• To verify the effectiveness of our proposed CLIP-CITE method, we conduct an analysis
of the parameter changes across various layers of the fine-tuned model, employing diverse
optimization functions and fine-tuning parameters.
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• We evaluate CLIP-CITE through experiments in different settings, including base-to-new
generalization, domain generalization, and cross-domain scenarios. The experimental results
demonstrate that CLIP-CITE not only sets new benchmarks in these tasks on specific datasets
but also preserves the original versatility of CLIP on other datasets.

2 RELATED WORK

Vision-Language Models. In recent years, significant advancements have been made in large-scale
pre-trained vision-language models Radford et al. (2021); Jia et al. (2021); Wang et al. (2021);
Alayrac et al. (2022); Wang et al. (2022); Huang et al. (2023). Representatively, CLIP Radford
et al. (2021) and ALIGN Jia et al. (2021) jointly associate the images and their corresponding text
descriptions by optimizing a contrastive objective. Training on the millions of image-text pairs, CLIP
aligns the image and language space, showing the powerful generalization on downstream tasks.
Based on CLIP, many works seek to transfer the model to special tasks, e.g., zero-shot recognition Lu
et al. (2024), few-shot image recognition Zhou et al. (2022b;a); Khattak et al. (2023a), segmentation
Rao et al. (2022), and action recognition Rasheed et al. (2023); Liu et al. (2024). In this paper, we
leverage multi-modal alignment and the generalization ability of CLIP. We explore the potential of
fully fine-tuning CLIP in limited-data scenarios.

Few-Shot Transfer Learning Based on CLIP. Prompt tuning Zhou et al. (2022b;a); Jia et al. (2022);
Khattak et al. (2023a); Zhang et al. (2024); Wang et al. (2024) and fine-tuning Shu et al. (2023);
Wortsman et al. (2022); Goyal et al. (2023); Kumar et al. (2022) are two main methods to transfer
the CLIP to the downstream tasks. Prompt tuning is widely used in language models Houlsby et al.
(2019); Liu et al. (2023), which raises attention in vision and multi-modality areas Zhou et al. (2022b);
Jia et al. (2022); Kirillov et al. (2023). CoOp Zhou et al. (2022b) enhances downstream few-shot
image recognition by learning soft textual prompts. Building on this, VPT Jia et al. (2022) and
MaPLe Khattak et al. (2023a) explore visual and multi-modal prompts to further improve performance.
PromptSRC Khattak et al. (2023b) and CoPrompt Roy & Etemad (2024) introduce regularization
techniques for learnable prompts, promoting better generalization in novel scenarios. MetaPrompt
Park et al. (2024) leverages meta-learning to optimize multi-modal prompts, adapting effectively to
new tasks. Although these prompt tuning methods show efficient and excellent performance, they
may fail to overfit the task-specific distribution. As the alternative, fine-tuning methods directly
optimize the model under task-specific situations. WiSE-FT Wortsman et al. (2022), LP-FT Kumar
et al. (2022) achieves the robustness of fine-tuning via a weight-ensemble manner. CLIPood Shu
et al. (2023) further finetunes the model via the text semantic similarity and model ensemble under
an out-of-distribution situation. A similar work related to our method is FLYP Goyal et al. (2023),
which fine-tunes the CLIP model via the pre-trained contrastive objective to obtain the multi-modal
alignment ability. In comparison, our method distinguishes the supervised vision-language pairs
and incorporates the task-specific into the fine-tuning process. Leveraging this improved image-text
alignment task, our method aims to perform more robustly under limited supervision.

3 METHOD

In this work, we fine-tune the CLIP model Radford et al. (2021) for the scenarios with limited data
available. The architecture of CLIP includes two key components: a visual encoder denoted as θI and
a text encoder denoted as θT . By aligning language and visual modalities on 400 million text-image
web data, CLIP is endowed with zero-shot and open-vocabulary capabilities.

To perform zero-shot classification, CLIP utilizes handcrafted text prompts with class labels. These
prompts consist of a predefined set of class labels denoted as y ∈ {y1, y2, ..., yC}, where C represents
the total number of classes. Each prompt typically takes the form of “a photo of a [category]”, where
“[category]” corresponds to the class label name. Then, the label prediction ŷ of image x corresponding
to the class c is obtained by calculating the cosine similarity scores between the image embedding I
and the text embedding T, which is formulated as:

p(ŷ|x) = exp (s (I,Tc) /τ)∑C
i=1 exp (s (I,Ti) /τ)

, (1)
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Figure 2: The framework of our CLIP-CITE method. CLIP-CITE fine-tunes the whole CLIP model
with a ① discriminative visual-text alignment task and a ② supervised contrastive loss to enhance the
image-text alignment in downstream tasks. Moreover, a ③ vision-language similarity distillation loss
incorporates the generalization knowledge of the pre-trained CLIP model into the fine-tuned model.

where s(·) is the similarity metric, τ denotes the temperature parameter. By calculating the softmax
probabilities using the similarity scores, CLIP assigns a class label to the image, even if it has not
been explicitly trained on that specific class.

Although CLIP has demonstrated impressive zero-shot performance, its integration into specific
downstream tasks still requires further refinements through subtle adjustments. Extensive prompt-
based methods Zhou et al. (2022b;a); Khattak et al. (2023a) have been proposed to enhance CLIP’s
performance in specific contexts. In this study, we investigate the underestimated fine-tuning strategy
and propose to improve the fine-tuning method from the perspectives of task designing, multi-modal
alignment, and knowledge preservation. As illustrated in Fig. 2, our framework comprises three
components, i.e., discriminative visual-text alignment task, supervised contrastive learning, and
vision-language similarity distillation.

3.1 DISCRIMINATIVE VISUAL-TEXT ALIGNMENT TASK

Naive fine-tuning methods for downstream classification tasks typically involve adding a randomly
initialized linear classifier on top of the pre-trained visual encoder Radford et al. (2021); Kumar
et al. (2022). The whole model is then fine-tuned using the available domain-specific data for the
classification task at hand. However, this training strategy often leads to overfitting on the limited
available training data, resulting in poor generalization performance on unseen data.

To address this limitation, we propose to fine-tune the model with a discriminative visual-text
alignment task that combines visual-semantic alignment and image classification. Specifically, we
connect the similarity scores between the visual and the text embeddings with the probability that the
visual image belongs to the class associated with the text embedding, which is formulated:

p(ŷ|x) = exp (s (θI (x) , θT (ti)))∑C
c=1 exp (s (θI (x) , θT (tc)))

, (2)

where s(·) is the consine similarity, θI and θT denotes the visual encoder and text encoder, respectively,
ti is the text description of class i, which is obtained in the form of “a photo of a [category]”, where
“[category]” corresponds to one of the class labels.

Note that Eq. (2) is equivalent to initializing the parameters of the visual classifier
W = {wi}Ci=0, wi = θT (ti) with the embeddings of the text descriptions of all the available
classes and is consistent with the prediction of the test data. To this end, the objective function of the
discriminative visual-text alignment task is:

LDVA = −
∑
x∈B

log p(ŷ|x), (3)
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where B denotes a training batch during the fine-tuning process. To quickly adapt the model to
the target classification task, we take W and θI as the learnable parameter to fine-tune. Through
fine-tuning this task, the model acquires the ability to collaboratively associate visual and textual
representations, thereby enhancing its capacity to utilize semantic information effectively for the
discriminative task.

3.2 SUPERVISED CONTRASTIVE LEARNING

To preserve and enhance the representation capability of the pre-trained CLIP, we argue that aligning
image and text remains essential, as it corresponds to the task employed in the training of the original
CLIP models. However, it is worth noting that aligning images and texts can often require a large
batch size, which may not be suitable in situations where data availability is limited.

To mitigate this limitation, we customize an image-text alignment strategy to fine-tune the whole CLIP
models (including both θI and θT ) under limited data regimes. Specifically, we adopt a supervised
contrastive loss to align images and texts. Given a pair of data (x, t), where t is derived from the
category of x in the form of “a photo of a [category]”, the supervised contrastive loss is defined as:

LSCL =−
∑
xi∈B

log
exp (s (θI (xi) , θT (ti)))∑

tj∈B Itj ̸=xi · exp (s (θI (xi) , θT (tj)))
(4)

−
∑
ti∈B

log
exp (s (θT (ti)) , θI (xi))∑

xj∈B Ixj ̸=ti · exp (s (θT (ti)) , θI (xj))
,

where s(, ) denotes cosine similarity, B denotes a training batch, and I is the indicator function,
defined as 1 if the image and text belong to the same class, and 0 otherwise. Notably, the loss function
LSCL can be viewed as a special case of the FLYP framework Goyal et al. (2023) in situations where
no same-class instances are present within the batch, leveraging unsupervised contrastive loss to
optimize the image-text alignment.

The designed supervised contrastive loss encourages the model to learn representations that bring
similar images and their associated text embeddings closer together while pushing apart images and
their non-matching text embeddings. By enforcing this alignment, the model can better capture the
semantic relationship between images and their associated text while preserving and enhancing the
representation capability of the pre-trained CLIP in specific domains.

3.3 VISION-LANGUAGE SIMILARITY DISTILLATION

While fine-tuning can improve performance on downstream tasks, it would suffer from potential
challenges such as catastrophic forgetting and decreased generalization capabilities on the other
datasets. To remedy this issue, we introduce a novel vision-language similarity distillation loss to
distill the modal consistency from the pre-trained CLIP to the fine-tuned model. Specifically, the
vision-language similarity distillation loss is defined as:

LV LD =
∑
x∈B

DKL (p (ŷ|x) , p̂ (ŷ|x)) , (5)

where p(ŷ|x) from Eq. (1) is computed using the fine-tuned models θI and θT to obtain batch cosine
image-text similarity scores. Similarly, p̂(ŷ|x), also from Eq. (1), uses the original CLIP models.
DKL denotes the Kullback-Leibler divergence. The similarity scores are normalized using a softmax
function to form a probability distribution.

By minimizing the Kullback-Leibler divergence between the distributions of image-text similarity
calculated from the original CLIP encoders and those from the fine-tuned encoders, CLIP-CITE
encourages the fine-tuned model to acquire comparable modal alignments and image-text relationship
within batch as the pre-trained CLIP models. This strategy upholds modal consistency and facilitates
the transfer of knowledge from the pre-trained model to the fine-tuned model.

5
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3.4 FINAL OBJECTIVE FUNCTION

To fine-tune the whole CLIP models, we combine Eq. (3), Eq. (4), and Eq. (5), obtaining the final
objective loss:

L = LDVA + λ · LSCL + η · LV LD, (6)
where λ and η are the two hyperparameters to balance the items. After the fine-tuning process, we
obtain the updated visual encoder θI and text encoder θT .

During inference, we use a weighted ensemble proposed by Wortsman et al. (2022) to combine the
fine-tuned model and the pre-trained model:

θ̂I = α · θI + (1− α) · θzsI , θ̂T = α · θT + (1− α) · θzsT , (7)

where α is a hyperparameter. Different from Wortsman et al. (2022) that only considers ensemble in
the visual modality, the text encoder in our method is optimized during the fine-tuning process, so the
text modality is further considered in this work.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Benchmarks. Following previous works Zhou et al. (2022a), we access the efficacy of our method
within the few-shot learning paradigm via several popular benchmarks, i.e. Base-to-New Generation,
Domain generalization, and Cross-Domain Generalization.

Dataset Settings. For Base-to-New Generalization, and Cross-Domain Generalization settings, we
use 11 image classification datasets, i.e., ImageNet Deng et al. (2009) and Caltech-101 Fei-Fei et al.
(2004) for generic object classification; OxfordPets Parkhi et al. (2012), StanfordCars Krause et al.
(2013), Flowers Nilsback & Zisserman (2008), Food101 Bossard et al. (2014), and FGVCAircraft
Maji et al. (2013) for fine-grained visual categorization, EuroSAT Helber et al. (2019) for satellite
image classification, UCF101 Soomro et al. (2012) for action recognition, DTD Cimpoi et al. (2014)
for texture classification, and SUN397 Xiao et al. (2010) for scene recognition. For the DG, we treat
the ImageNet as the source domain, and the ImageNetV2 Recht et al. (2019), ImageNet-Sketch Wang
et al. (2019), ImageNet-A Hendrycks et al. (2021b) and ImageNet-R Hendrycks et al. (2021a) as the
target domains for evaluation.

Implement Details. We utilize the pre-trained ViT-B/16 of CLIP Radford et al. (2021); Dosovitskiy
et al. (2020) as backbone. The initial learning rate is set to 5e-6 with the cosine annealing strategy
and the batch size is set to 32 for most datasets. The hyperparameter λ is set to 0.7, η is set to 0.1,
and α is set to 0.5. And the epoch is set to 20 for a trade-off. More datasets and experimental details
are provided in Appendix A.1.

4.2 PERFORMANCE COMPARISON

Results of Base-to-New Generalization. Tab. 1 showcases the performance of our CLIP-CITE in
comparison to CLIP Radford et al. (2021), CoOp Zhou et al. (2022b), CoCoOp Zhou et al. (2022a),
ProDA Lu et al. (2022), MaPLe Khattak et al. (2023a), PromptSRC Khattak et al. (2023b), CoPrompt
Roy & Etemad (2024), and CLIPFit Li et al. (2024). The accuracy metrics are reported for both
the base classes (B), new classes (N), and their harmonic mean (HM). Our CLIP-CITE achieves
the best performance on both B and N metrics averaged over 11 datasets, resulting in a 0.58%
improvement in the HM metric over the second-best method. Compared to the original CLIP model
without downstream fine-tuning, CLIP-CITE improves base class accuracy by 16.14% and novel
class accuracy by 3.86%, demonstrating enhanced domain-specific performance and generalization
in open-vocabulary settings. This indicates that fine-tuning with base data significantly enhances
CLIP’s capabilities, as also observed in other methods. However, while CoOp and CoCoOp improve
base accuracy, they compromise generalization to novel classes. CLIP-CITE achieves the best HM
metric on 7 out of 11 datasets compared to competitors, excelling particularly on fine-grained datasets
like EuroSAT, Cars, and FGVCAircraf. This suggests that fine-tuning enables the model to capture
more specialized information. We conclude that our method effectively mitigates overfitting and
catastrophic forgetting, improving performance on both base and novel classes simultaneously.
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Table 1: Comparison with state-of-the-art methods on base-to-new generalization. All methods use
ViT-B/16 as the vision encoder. The results are reported for various datasets. HM stands for the
harmonic mean.

Method Average ImageNet Caltech101 OxfordPets
Base New HM Base New HM Base New HM Base New HM

CLIP 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47
CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
ProDA 81.56 72.30 76.65 75.40 70.23 72.72 98.27 93.23 95.68 95.43 97.83 96.62
MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
PromptSRC 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30
CoPrompt 84.00 77.23 80.48 77.67 71.27 74.33 98.27 94.90 96.55 95.67 98.10 96.87
CLIPFit 83.72 74.84 79.03 76.20 70.17 73.06 98.30 93.70 95.94 95.23 97.13 96.17

CLIP-CITE 85.48 77.08 81.06 78.44 71.07 74.58 98.82 94.28 96.50 96.01 97.95 96.97

Method StanfordCars Flowers102 Food101 FGVCAircraft
Base New HM Base New HM Base New HM Base New HM

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
ProDA 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46
MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
PromptSRC 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15
CoPrompt 76.97 74.40 75.66 97.27 76.60 85.71 90.73 92.07 91.40 40.20 39.33 39.76
CLIPFit 78.80 73.87 76.26 96.83 73.53 83.59 90.60 91.33 90.96 42.47 33.47 37.43

CLIP-CITE 82.83 74.51 78.45 95.98 76.45 85.11 90.81 91.55 91.18 47.26 38.37 42.35

Method SUN397 DTD EuroSAT UCF101
Base New HM Base New HM Base New HM Base New HM

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46
CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
ProDA 78.67 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04
MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
PromptSRC 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74
CoPrompt 82.63 80.03 81.31 83.13 64.73 72.79 94.60 78.57 85.84 86.90 79.57 83.07
CLIPFit 81.97 78.17 80.02 81.97 63.50 71.56 93.33 71.07 80.69 85.23 77.30 81.07

CLIP-CITE 82.30 79.40 80.82 84.26 64.54 73.09 95.61 80.59 87.46 87.56 79.01 83.07

Table 2: Performance on domain generalization.

Method Source Target
ImNet ImNetV2 ImNetS ImNetA ImNetR Ave.

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
Co-CoOp 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
CoPrompt 70.80 64.25 49.43 50.50 77.51 60.42

CLIP-CITE 72.90 65.80 49.60 50.00 77.50 60.70

Results of Domain Generaliza-
tion. The DG performances of
our method, along with six com-
petitors, are presented in Tab. 2.
In this evaluation, the model is
trained on the few-shot ImageNet
dataset and then tested on differ-
ent datasets, namely ImageNetv2,
ImageNet-Sketch, ImageNet-A,
and ImageNet-R, which have the
same class labels as ImageNet but
belong to different domains. Our
method demonstrates superior performance in terms of in-domain ImageNet accuracy, achieving
an accuracy of 72.9%. Additionally, our method achieves a high average accuracy of 60.7% across
the out-of-domain datasets, surpassing all existing methods except for ImageNet-A. These results
indicate that our method is effective in handling domain shifts.

Results of Cross-Domain Generalization. Unlike previous work Zhou et al. (2022a) that trains
on ImageNet and evaluates on other datasets, we evaluate the model in a more challenge scenario
where using training data from various datasets and evaluate it on the ImageNet test set. For ease of
comparison with the results presented in Tab. 3, we report HM performance metrics on the ImageNet
dataset. The results are shown in Tab. 3. CLIP-CITE maintains its performance on the ImageNet
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Table 3: Cross-domain generalization evaluation (%). All models are trained on the base training set
of 10 datasets and evaluated on the ImageNet dataset. Note that vanilla CLIP achieves 70.26% in
terms of HM metric on ImageNet.

Method Caltech101

OxfordPets

Cars Flowers1
02

Food101

Aircrafts

SUN397
DTD

EuroSAT

UCF101

CoOP 55.17 53.97 52.30 41.66 43.92 58.98 53.56 56.40 50.76 41.15
CoCoOp 68.83 63.98 57.70 53.25 64.46 56.28 68.42 63.92 59.58 53.00
MaPLe 71.01 55.37 67.39 53.00 69.82 64.97 68.91 64.78 42.95 63.29

CLIP-CITE 70.88 70.39 70.67 70.33 70.91 70.46 70.59 70.21 70.26 70.68

dataset regardless of the datasets used for training, indicating its robustness. In contrast, other
competitors exhibit significant performance drops on ImageNet. For example, the HM performance
on ImageNet falls from 70.22% to 42.95% when fine-tuning the model with MaPLe Khattak et al.
(2023a) on the EuroSAT dataset. We attribute this to parameter-efficient competitors capturing
domain- and class-specific information, rendering them less suitable for novel classes from different
domains. In contrast, our fully fine-tuning method distributes the changes in domain and category
equally across the parameters of the model, resulting in small changes in parameter magnitude, which
enables it to effectively handle different domains and categories simultaneously. Furthermore, our
distillation strategy also benefits in mitigating catastrophic forgetting.

4.3 FINE-TUNING ANALYSIS

Effects of Fine-tuning Parts. In this experiment, we conduct an ablation study to examine the effects
of different fine-tuning parts. The average results of 11 datasets and the results on ImageNet dataset
are shown in Fig. 3. FrozenTC indicates that the text embeddings are taken as the classifiers of the
visual feature representations and are frozen during optimizing Eq. (3). FrozenTE indicates that the
text encoder is frozen during optimizing Eq. (4). ALL indicates that all the parameters of the model
are fine-tuning during training. From the results in Fig. 3, we observe that HM performance of ALL
witnesses a considerable lift compared with those of FrozenTC and FrozenTE, which concludes
that comprehensive fine-tuning enhances model capabilities more effectively than partial fine-tuning.

Base New HM
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Base New HM
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70
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80
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FrozenTE FrozenTE

Figure 3: The effect of different fine-tuning parts
of the model. Fine-tuning all parts achieves the
best performance on ImageNet Datasets, and
shows a similar trend across 11 datasets.
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Figure 4: Visualization of parameter changes
in different layers. (a) refers to the parameter
changes of the text encoder. (b) indicates the
parameter changes of the image encoder in dif-
ferent layers.

Parameter Analysis. To investigate the impact of fine-tuning on CLIP-CITE, we compute the squared
differences of parameters at each layer and conducted experiments using the EuroSAT dataset, as
shown in Fig. 4. The results demonstrate that as the layer depth increases, the parameter changes in
both the image encoder and the text encoder gradually diminish. We attribute this phenomenon to
the larger gradient propagation in earlier layers, which leads to more significant parameter updates.
This trend was observed in both the image and text encoders. Furthermore, when we introduced
our designed loss functions, LSCL and LV LD, the parameter changes were somewhat mitigated,
suggesting that optimizing the loss functions can impose regularization constraints on the model
to a certain extent. This finding further corroborates the critical role of LSCL and LV LD losses in
fine-tuning downstream tasks. We discuss the effect of fine-tuning layers later.
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(a) Fine-tuning previous layers. (b) Fine-tuning late layers.

Figure 5: Illustration of the fine-tuned model within the distinct layers. (a) illustrates layers preceding
the image encoder, while (b) delineates layers succeeding the image encoder.
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Figure 6: The effect of fine-tuning layers. (a) indicates we fine-
tune the previous layers and freeze the ith late layers correspond-
ing to Fig. 5.(a), while (b) indicates we freeze the previous ith
layers and fine-tune the late layers corresponding to Fig. 5. (b).

Effects of Fine-tuning Layers.
Fig. 5 shows the different fine-
tuning manners of the image en-
coder, e.g. fine-tuning previous
layers and fine-tuning late lay-
ers. And we conduct the exper-
iments with LDVA for ablation.
Fig. 6. (a) shows results where
we fine-tune previous layers and
freeze late layers, while Fig. 6. (b)
shows results where we freeze
previous layers and fine-tune late
layers. From the experimental re-
sults, we observe that when there
are only a few frozen layers, the
performance is comparable to fully fine-tuning. However, as the number of frozen layers increases,
the effectiveness diminishes, i.e. the last 3 frozen layers led to a decline in the results shown in Fig. 6.
(a). Overall, fully fine-tuning is better than partial fine-tuning.

Fine-tuning Training Efficiency. Tab. 4 presents a comprehensive comparison of our CLIP-CITE and
four parameter-efficient competitors. The results indicate that parameter efficiency does not necessar-
ily translate to computational efficiency. Specifically, our model, despite fine-tuning more parameters
and utilizing more GPU resources, demonstrates superior performance with significantly fewer
training iterations and shorter overall training time compared to the parameter-efficient competitors.
Although prompt-based methods offer parameter efficiency, they still require the backpropagation of
the entire model, along with numerous training iterations, to achieve convergence.

More analysies are provided in the Appendix A.2.

Table 4: Comparison performances (%) and training efficiency of the existing prompt tuning methods
and ours. All the models are trained on a single NVIDIA GeForce RTX 3090 GPU.

Method Iterations ImageNet Training Resources

Base New HM Training-time GPU-usage

CLIP N/A 72.43 68.14 70.22 N/A N/A
CoOp 12.5 K 76.47 67.88 71.92 ≈ 1 h ≈ 10 G
CoCoOp 80K 75.98 70.43 73.10 > 7 h ≈ 10 G
MaPLe 10 K 76.66 70.54 73.47 ≈ 45 min ≈ 10 G

CLIP-CITE 1.2K 78.44 71.07 74.58 ≈ 20 min ≈ 19 G

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 ABLATION STUDIES

Effects of Different Objectives. Sec. 4.4 displays the ablation study of our CLIP-CITE with various
training objectives on the Base-to-New task of ImageNet. The first row represents the results obtained
with the basic CLIP model. When fine-tuning the model with only LDVA, it achieves a 2.78%
improvement in HM compared to the naive CLIP. Additionally, the introduction of supervised
contrastive learning objective LSCL leads to further improvement in both B and N metrics. By
combining both objectives (LDVA + LSCL), the performance of both B and H metrics continue to
improve. Furthermore, incorporating the vision-language similarity distillation loss LV LD into the
objective results in the best performance of 74.58% HM accuracy. Notably, we also compare FLYP
Goyal et al. (2023) with our proposed method. While FLYP demonstrates improved performance
over the original CLIP, it falls short of achieving the objectives of our design. We attribute this to
FLYP’s exclusive focus on image-text alignment, which overlooks downstream tasks and hinders its
effectiveness in data-limited scenarios. These experimental outcomes highlight the efficacy of each
objective function introduced in this work.

Table 5: Ablation results (%) of our CLIP-CITE with various training objectives on the Base-to-New
task of the ImageNet dataset. † denotes that we re-implement with the official code.

Method B N HM

CLIP 72.43 68.14 70.22
FLYP† 76.21 68.13 71.94

CLIP-CITE (+LDVA) 77.35 69.12 73.00
CLIP-CITE (+LSCL) 78.10 70.67 74.20
CLIP-CITE (+LDVA, LSCL) 78.49 70.76 74.43
CLIP-CITE (+LDVA, LV LD) 77.31 70.20 73.58
CLIP-CITE (+LDVA, LSCL, LV LD) 78.44 71.07 74.58
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Figure 7: Comparison results with the
different ensemble ratio α.

Effects of Weight Ensemble. We investigate the effect
of weight ensemble in Fig. 7. The results therein lead us
to the conclusion that even without the weight ensemble
inference (with α set to 1.0), our method still delivers note-
worthy performance with results of 85.79% (B), 73.52%
(N), and 79.19% (HM) on the Base-to-New task. Notably,
it outperforms CLIPood, which integrates model weight
inference ensemble, and MaPLe, by achieving a lift of
0.27% and 0.64% in the HM metric, respectively. More-
over, with the appropriate weight ensemble ratio (setting
α to 0.5), we have noticed a notable improvement in both
base and novel performance.

More results of ablation studies are provided in the Ap-
pendix A.3.

5 CONCLUSION

In this paper, we have presented CLIP-CITE, a fully fine-tuning approach designed to adapt CLIP for
downstream tasks in limited-data scenarios. By devising a discriminative visual-text alignment task,
implementing supervised contrastive loss, and employing visual-language similarity distillation, CLIP-
CITE effectively addresses the common issues of overfitting and catastrophic forgetting encountered
by existing fine-tuning methods. Our experimental results demonstrate that a carefully crafted fine-
tuning strategy can enable CLIP to acquire both domain-specific and class-specific knowledge, while
maintaining its versatility across other domains and classes. Notably, despite involving the tuning
of more parameters, our approach offers superior computational efficiency compared to parameter-
efficient prompt-based competitors. We hope this work can promote in-depth research on the full
fine-tuning paradigm of VLMs in data-limited scenarios and facilitate its future application to recent
Multimodal Large Language Models (MLLMs).
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A APPENDIX

This section contains supplementary material that provides additional details for the main paper and
further experimental analysis. The content of this section is as follows:

• Additional Experimental Details

• Additional Experimental Analysis

• Additional Ablation Study

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Dataset Details. In Tab. 6, we list the details of the datasets and the hand-crafted prompt we used
in the experiments. The prompts are from the Radford et al. (2021) and we have not adopted more
prompt templates to generate the optical text representations. In this work, we only focus on the
effect of fully fine-tuned CLIP and the text representations would be automatically learned during the
training.

Training Details. We maintain the temperature of the softmax function consistent with the pre-trained
model, using τ = 0.01, except for when LV LD is adjusted to 0.1. All images are randomly resized
and cropped to 224 × 224, only random resize and random crop data augments are applied. The
optical hyper-parameter λ is set to 0.7, η is set to 0.1, and α is set to 0.5 for all experiments. We use
the AdamW optimizer with the cosine learning rate strategy and the learning rate is set to 5e-6 and
trained for 20 epochs. The batch size is set to 32 for most datasets, with specific batch sizes of 16
for EuroSAT and 64 for ImageNet. For each result of CLIP-CITE, we report the average result with
three random seeds.

Table 6: Detailed statistics of the datasets.

Dataset Classes Train Val Test Hand-crafted Prompt

Caltech101 100 4,128 1,649 2,465 a photo of a [CLS].
OxfordPets 37 2,944 736 3,669 a photo of a [CLS], a type of pet.
StanfordCars 196 6,509 1,635 8,041 a photo of a [CLS].
Flowers102 102 4,093 1,633 2,463 a photo of a [CLS], a type of flower.
Food101 101 50,500 20,200 30,300 a photo of [CLS], a type of food.
FGVCAircraft 100 3,334 3,333 3,333 a photo of a [CLS], a type of aircraft.
SUN397 397 15,880 3,970 19,850 a photo of a [CLS].
DTD 47 2,820 1,128 1,692 [CLS] texture.
EuroSAT 10 13,500 5,400 8,100 a centered satellite photo of [CLS].
UCF101 101 7,639 1,898 3,783 a photo of a person doing [CLS].
ImageNet 1,000 1.28M N/A 50,000 a photo of a [CLS]

ImageNetV2 1,000 N/A N/A 10,000 a photo of a [CLS]
ImageNet-Sketch 1,000 N/A N/A 50,889 a photo of a [CLS]
ImageNet-A 200 N/A N/A 7,500 a photo of a [CLS]
ImageNet-R 200 N/A N/A 30,000 a photo of a [CLS]

A.2 ADDITIONAL EXPERIMENTAL ANALYSIS

Overfitting Analysis. We demonstrate the training process of FT-Probe and our CLIP-CITE
illustrated in Fig. 1 on EuroSAT dataset. The results of loss and accuracy of the training dataset are
shown in Fig. 8. We observe that, for the FT-Probe model, there is a decline in the training loss,
accompanied by a continual increase in accuracy on the training set. However, the final accuracy on
the test set is only 60.86%, which suggests the occurrence of overfitting. In contrast, in the case of
our CLIP-CITE model, there is also a reduction in the loss function and a consistent rise in training
set accuracy, culminating in a test set accuracy of 95.61%. This indicates that our approach does not
exhibit overfitting, demonstrating effectiveness. Moreover, it highlights that overcoming overfitting is
a crucial issue when fully fine-tuning models.
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Figure 8: Training loss and accuracy of FT-Probe and CLIP-CITE on EuroSAT dataset.

A.3 ADDITIONAL ABLATION STUDY

Prompt Tuning with Proposed Loss. To evaluate the effectiveness of full-fine-tuning, we also
explore the prompt tuning methods with our proposed loss. The results, detailed in Tab. 7, indicate that
prompt tuning methods experience a modest improvement with the implementation of our proposed
loss functions i.e. LSCL and LV LD. Notably, our CLIP-CITE still maintains a performance edge.
Besides, with the simple fine-tuning (FT-Probe), the tuned model seems to be overfitting, as shown in
Fig. 1. Therefore, we propose that both full fine-tuning and well-designed loss functions are crucial
in adapting VLMs to the downstream few-shot tasks.

Table 7: Ablation results (%) of our CLIP-CITE and prompt tuning, and fine-tuning methods with
various training objectives on the Base-to-New of the ImageNet dataset.

Method LSCL LV LD B N HM

CLIP 72.43 68.14 70.22
FLYP † 76.21 68.13 71.94

CoOp 76.47 67.88 71.92
CoOp ✓ 76.51 67.93 71.97
CoOp ✓ ✓ 78.23 70.89 72.11

MaPLe 76.66 70.54 73.47
MaPLe ✓ 76.70 70.67 73.56
MaPLe ✓ ✓ 76.71 70.89 73.69

CLIP-CITE ✓ ✓ 78.44 71.07 74.58

The Effect of the Hyper-Parameter λ and η. In Fig. 9, we ablate the different values on λ and η in
Eq. (6). From the results, we observe that the performances in terms of HM are better when applying
the LSCL, e.g., λ is greater than 0. It indicates that supervised vision-language alignment is necessary
when fine-tuning. Besides, the vision-language similarity distillation can regularize the model well
when η is less than 0.1. In the experiments, the optical λ and η are set to 0.7 and 0.1, respectively.

Results of Few-Shot Image Recognition. Fig. 10 presents the average results of four competitors
and our CLIP-CITE on the 11 datasets under 1, 2, 4, 8, and 16 shots. From the results, we observe
that our CLIP-CITE performs very competitively, especially under 1, 2, and 4 shots. When compared
with the second-best competitor MaPLe Khattak et al. (2023a) on the average results, our CLIP-CITE
demonstrates performance improvements by 3.42%, 3.00%, 2.48%, 1.73%, and 1.52% in scenarios
with 1, 2, 4, 8, and 16 shots, respectively. These gains underscore CLIP-CITE’s effectiveness in
generalizing to downstream tasks when provided with limited labeled examples. More comparisons
of each dataset are provided in the supplementary materials.
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Figure 9: The impacts of the hyper-parameter λ and η on the base-to-new generalization performances.
We report the Base (%), New (%), and HM (%) accuracy on the ImageNet dataset.
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Figure 10: Comparison results of few-shot learning benchmark on the 11 datasets. All of the methods
are trained on the ViT-B/16 backbone and implemented with the same experimental settings.

The Effect of Weights Ensemble Ratio α. Tab. 9 shows the results of different datasets with the
different ensemble ratios α. Without weights ensemble, CLIP-CITE achieves 85.79%, 73.52%, and
79.19% in Base, New, and HM accuracy, respectively. With the fine-tuning weights ensemble, the
performance increases from 71.70% to 78.90% in HM accuracy when α is 0.1. When α increases,
the Base accuracy increases, and the New accuracy fluctuates slightly. The optimal value α appears
to be 0.5. This indicates that our fine-tuning process maintains a subtle change of model parameters,
facilitating smooth compatibility with the zero-shot pre-trained CLIP model and resulting in an
overall enhancement of effectiveness.

More Experimental Results of Cross-Domain Generalization Setting. Tab. 8 and Tab. 3 shows
the experimental results of Cross-Domain setting. From the results of Tab. 8, all methods trained on
the ImageNet can consistently obtain the generalization performance on the other 10 datasets. From
the results of Tab. 3, the prompt tuning methods trained on other datasets are difficult to transfer to
ImageNet and impact the overall generalization, while our fine-tuning methods can maintain or even
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Methods CLIP CoOp CoCoOp MaPLe CLIP-CITE

Base New Base New Base New Base New Base New

Caltech101 96.84 94.00 94.15 93.92 96.58 95.16 96.30 94.98 96.71 93.82
OxfordPets 91.17 97.26 90.34 97.69 90.8 97.97 90.57 97.73 89.56 96.78

StanfordCars 63.37 74.89 61.99 73.37 63.62 74.48 62.44 73.98 60.74 72.41
Flowers102 72.08 77.80 66.86 75.23 72.30 77.64 73.25 76.86 71.48 76.9

Food101 90.10 91.22 88.62 90.68 89.39 91.0 89.29 90.86 88.47 90.53
FGVCAircraft 27.19 36.29 21.21 26.36 27.65 32.37 28.69 31.21 26.33 34.33

SUN397 69.36 75.35 68.36 72.78 72.08 75.96 71.46 76.1 71.78 76.16
DTD 53.24 59.90 49.00 51.73 55.32 57.01 51.04 54.51 50.39 57.53

EuroSAT 56.48 64.05 50.2 69.22 52.1 68.84 47.52 59.83 49.50 65.51
UCF101 70.53 77.50 68.89 71.88 70.89 75.77 69.22 74.97 70.99 76.55

Table 8: Cross-Domain evaluation. All the models are trained on the base training set of the ImageNet
dataset and evaluated on the 10 datasets .

α ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average on
Base 69.34 83.53 84.66 84.44 85.09 85.48 85.64 85.69 85.64 85.58 85.79
New 74.22 74.75 76.07 75.71 75.74 77.08 74.68 75.58 75.62 75.77 73.52
HM 71.70 78.90 80.13 79.83 80.15 81.06 79.79 80.32 80.32 80.38 79.19

ImageNet
Base 72.43 77.45 77.63 78.20 78.23 78.44 78.44 78.48 78.46 78.49 78.50
New 68.14 70.35 70.79 70.71 70.65 71.07 70.32 70.59 70.36 70.29 70.23
HM 70.22 73.73 74.05 74.27 74.25 74.58 74.16 74.33 74.19 74.17 74.14

Caltech101
Base 96.84 97.20 97.65 97.78 98.77 98.82 98.82 98.83 98.83 98.83 98.85
New 94.00 93.40 94.14 93.44 93.65 94.28 93.53 93.90 94.00 93.47 93.20
HM 95.40 95.26 95.86 95.56 96.14 96.50 96.10 96.30 96.36 96.08 95.94

OxfordPets
Base 91.17 95.23 95.84 95.66 95.82 96.01 96.18 96.42 96.60 96.93 97.01
New 97.26 96.12 96.47 96.69 96.71 97.95 96.66 96.72 96.90 97.28 95.23
HM 94.12 95.67 96.15 96.17 96.27 96.97 96.42 96.57 96.75 97.11 96.11

Table 9: Comparison with the different ensemble ratio α on base-to-new generalization.

enhance the performance of ImageNet. These demonstrate that ImageNet encompasses a broader
array of patterns and categories, and both prompt tuning methods and our approach effectively sustain
performance across various datasets. When transferring from other datasets to ImageNet, CLIP-CITE
can uphold ImageNet’s performance. It shows that our fine-tuning method has better generalization
capacity.
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Dataset Method 1-shot 2-shot 4-shot 8-shot 16-shot

Average

Linear probe CLIP 45.83 57.98 68.01 74.47 78.79
CoOp 67.56 70.65 74.02 76.98 79.89

CoCoOp 66.79 67.65 71.21 72.96 74.90
MaPLe 69.27 72.58 75.37 78.89 81.79

CLIP-CITE 72.69 75.58 77.85 80.62 83.31

ImageNet

Linear probe CLIP 32.13 44.88 54.85 62.23 67.31
CoOp 66.33 67.07 68.73 70.63 71.87

CoCoOp 69.43 69.78 70.39 70.63 70.83
MaPLe 62.67 65.10 67.70 70.30 72.33

CLIP-CITE 68.20 68.90 70.30 71.20 72.90

Caltech101

Linear probe CLIP 79.88 89.01 92.05 93.41 95.43
CoOp 92.60 93.07 94.4 94.37 95.57

CoCoOp 93.83 94.82 94.98 95.04 95.16
MaPLe 92.57 93.97 94.43 95.2 96.00

CLIP-CITE 94.16 94.81 95.53 96.39 96.50

OxfordPets

Linear probe CLIP 44.06 58.37 71.17 78.36 85.34
CoOp 90.37 89.8 92.57 91.27 91.87

CoCoOp 91.27 92.64 92.81 93.45 93.34
MaPLe 89.10 90.87 91.9 92.57 92.83

CLIP-CITE 91.47 93.02 93.54 93.87 94.70

StanfordCars

Linear probe CLIP 35.66 50.28 63.38 73.67 80.44
CoOp 67.43 70.5 74.47 79.3 83.07

CoCoOp 67.22 68.37 69.39 70.44 71.57
MaPLe 66.60 71.60 75.30 79.47 83.57

CLIP-CITE 70.63 74.22 76.53 79.94 83.70

Food101

Linear probe CLIP 43.96 61.51 73.19 79.79 82.90
CoOp 84.33 84.40 84.47 82.67 84.20

CoCoOp 85.65 86.22 86.88 86.97 87.25
MaPLe 80.50 81.47 81.77 83.60 85.33

CLIP-CITE 85.16 85.95 86.05 86.68 87.00

Flowers102

Linear probe CLIP 69.74 85.07 92.02 96.10 97.37
CoOp 77.53 87.33 92.17 94.97 97.07

CoCoOp 72.08 75.79 78.40 84.30 87.84
MaPLe 83.30 88.93 92.67 95.80 97.00

CLIP-CITE 84.25 86.76 92.08 95.86 97.6

FGVCAircraft

Linear probe CLIP 19.61 26.41 32.33 39.35 45.36
CoOp 21.37 26.20 30.83 39.00 43.40

CoCoOp 12.68 15.06 24.79 26.61 31.21
MaPLe 26.73 30.90 34.87 42.00 48.40

CLIP-CITE 29.34 32.40 36.60 46.00 57.00

SUN397

Linear probe CLIP 41.58 53.70 63.00 69.08 73.28
CoOp 66.77 66.53 69.97 71.53 74.67

CoCoOp 68.33 69.03 70.21 70.84 72.15
MaPLe 64.77 67.10 70.67 73.23 75.53

CLIP-CITE 69.54 70.99 72.36 74.45 76.30

DTD

Linear probe CLIP 34.59 40.76 55.71 63.46 69.96
CoOp 50.23 53.60 58.70 64.77 69.87

CoCoOp 48.54 52.17 55.04 58.89 63.04
MaPLe 52.13 55.50 61.00 66.50 71.33

CLIP-CITE 54.20 60.70 64.54 67.67 72.50

EuroSAT

Linear probe CLIP 49.23 61.98 77.09 84.43 87.21
CoOp 54.93 65.17 70.80 78.07 84.93

CoCoOp 55.33 46.74 65.56 68.21 73.32
MaPLe 71.80 78.30 84.50 87.73 92.33

CLIP-CITE 76.20 85.20 88.77 91.17 92.60

UCF101

Linear probe CLIP 53.66 65.78 73.28 79.34 82.11
CoOp 71.23 73.43 77.10 80.20 82.23

CoCoOp 70.30 73.51 74.82 77.14 78.14
MaPLe 71.83 74.60 78.47 81.37 85.03

CLIP-CITE 76.40 78.38 80.07 83.56 85.70

Table 10: Per-dataset performance comparison of our method with various methods in the few-shot
setting.
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