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Abstract

Quantization refers to a set of methods that
compress a neural network by representing its
parameters with fewer bits. However, applying
quantization to a neural network after training
often leads to severe performance regressions.
Quantization Aware Training (QAT) addresses
this problem by applying simulated training-
time quantization for the model to learn ro-
bustness to inference-time quantization. One
key drawback of this approach is that quanti-
zation functions induce biased gradient flow
through the network during backpropagation,
thus preventing the network from best-fitting
to the learning task. Fan et al. addressed this
issue by proposing Quant-Noise, in which sim-
ulated quantization is applied to a fixed pro-
portion, called the quantization noise rate, of
parameters during training. Our study, Vari-
able Quantization Noise (VQN)', builds upon
their technique by exploring a variable quanti-
zation noise rate instead of a fixed one. We
craft three candidate functions to vary noise
rate during training and evaluate the variants
with 3 datasets and 3 quantization schemes
for each dataset. First, we report negative re-
sults on our hand-crafted candidate functions.
Second, we observe somewhat positive results
on a method, originally intended as an ab-
lation study, of randomly varying the noise
rate during training. This method outperforms
Quant-Noise on two out of three quantization
schemes for all three tested datasets. More-
over, on two of the datasets, this method at 4x
compression matches or exceeds performance
of even the uncompressed model. Future work
should determine whether these unexpected
results hold for more datasets and quantiza-
tion schemes, as well as investigating other
schemes for varying the noise rate during train-
ing.

!The code implementation is on GitHub

1 Introduction

Modern deep learning architectures are getting
larger, with recent models spanning many billions
of parameters [1]. By contrast, many NLP and
SLP use-cases involve deployment to embedded
devices (e.g. voice assistants, IoT devices), where
massive models are prohibitively memory intensive
and computationally expensive.

Model compression techniques aim to address
this limitation by creating compact representations
of models that can attain the same level of perfor-
mance as their larger counterparts. For instance,
pruning methods do so by removing extraneous
weights and activations to produce sparse architec-
tures with reduced parameter counts [2]. Our work
is an investigation into another such compression
technique: quantization. Rather than removing
entire units as pruning does, scalar quantization
(used in this work) shrinks networks by reducing
the bit-widths of their parameters [3]. In addition
to a reduced memory footprint, computations can,
likewise, be sped up with the appropriate hardware
accelerators [4]. Throughout this paper, we will
refer to scalar quantization to n-bit integers as intn
quantization, e.g. "int 8 quantization."

We aim to improve upon Quant-Noise, a state-
of-the-art (SotA) quantization method developed
by Facebook AI Research (FAIR) [3]. Quant-
Noise falls under the umbrella of methods that
simulate quantization at train-time, so the model
learns "robustness” to quantization. A core chal-
lenge to training-time quantization is that quanti-
zation functions are non-differentiable. The func-
tions necessary to approximate gradients for these
non-differentiable operations, such as the straight
through estimator [5], inherently produce biased
gradients during backpropagation. Quant-Noise
[3] addresses this limitation by quantizing only a
random subset of the total network during each
training step, allowing some unbiased gradients to



flow while still teaching the model to be resilient to
the distortion. Note that Quant-Noise selects this
subset using a Bernoulli trial for each parameter,
where the probability input (labelled the noise rate)
is constant across all examples and epochs.

We suggest that using a varying noise rate can
lead to further robustness to quantization. We
term this "second-order noise," since we are adding
noise to the noise rate itself.

We propose several novel formulations where
the quantization noise rate changes throughout
training. We evaluate these methods on three tasks
(RTE, MRPC, and HarperValleyBank), with three
quantization schemes apiece (int8, int4, and
int1l). We use three random seeds for most of
our studies; counting each (task, method, quantiza-
tion scheme, seed) tuple as a single experiment, we
perform a total of 129 experiments in this study.

Our contributions can be summarized under two
categories:

Research

* Second-order noise has the potential to out-
perform Quant-Noise. We craft three can-
didate functions within the VQN family
that demonstrate promise in improving upon
Quant-Noise. These candidates are high-
variance and do not seem to significantly out-
perform baselines. However, as part of an
ablation study, we identify a method we call
"random jitter" that surpasses Quant-Noise
performance in two out of three quantization
schemes for three tasks in the low data regime.
We stress that further experiments are neces-
sary to confirm that these results are not due
to variance, and these findings can be used
to inform and guide future investigations into
improving quantization noise.

Quantization improves performance on a
small speech dataset. For a small speech
dataset, HarperValleyBank, int 4 and int8
quantization (using either post-training quanti-
zation or training-time quantization noise) out-
performs the uncompressed baseline. Based
on follow-up analyses on our speech dataset
and prior work, we suspect that quantization
has a regularizing effect for this dataset.

Engineering

¢ New Quant-Noise-enabled modules. We en-
abled Quant-Noise for layers in RoOBERTa and

CTC architectures; this involved custom adap-
tations of stacked LSTMs and objective func-
tions.

* New quantization schemes. We added sup-
portfor int 4 and int1 (previous lowest was
int 8) quantization in FairSeq.

* VON. We added functionality to vary the quan-
tization noise rate per example as a function of
previous loss, converged uncompressed loss,
or schedule; these involved modifications to
the base modules and the trainer that coordi-
nates them.

2 Related Work

Model compression methods reduce the memory
requirements for neural networks. Pruning and
knowledge distillation are forms of compression
that reduce the number of network weights. Prun-
ing is a method that removes weights based on
their network-level importance. For instance, mag-
nitude pruning introduced in [6] removes weights
with low magnitude. Knowledge distillation, as
first named in [7], begins with a large pre-trained
teacher model, and trains a compact student model
by exposing it to raw predictions generated by the
teacher model on an unlabeled dataset.
Quantization, by contrast, minimizes the number
of bits needed to represent each weight. Standard
neural networks use 32-bit floating point precision;
scalar quantization replaces these weights with an
N bit representation. Applying quantization meth-
ods like int1, int4, or int§ as a post-training
step causes errors to accumulate at each layer in the
model, leading to significantly worse performance.
Quantization Aware Training (QAT) is a method
proposed in [8] that applies simulated quantiza-
tion during training, so the network learns robust-
ness to the quantization transformations. However,
quantization operators tend to be stepwise func-
tions and thus have null gradient; therefore, during
back-propagation, gradients are approximated by a
straight through estimator (STE) [9]. The STE is a
simple idea: treat the stepwise function as if it were
the identity function [9]. As the original authors
acknowledge, this estimator is "clearly...biased" [9].
In high compression regimes like int 4, the error
due to biased gradient flow from STE is severe.
Quant-Noise seeks to reduce this error [3].
Quant-Noise only applies simulated quantization
to a random subset of weights during training at



a "noise rate", allowing some unbiased gradient
flow in backpropagation, improving upon the QAT
method. Note that the noise rate is fixed across all
examples and all epochs, and is tuned empirically
by the authors in [3]. However, it is reasonable to
think that a model might benefit from using differ-
ent noise rates for different examples or different
epochs. For instance, a model might benefit from
using harder, or earlier, examples to learn the task’s
objective and using easier, or later, examples to
learn robustness to quantization.

3 Approach
3.1 Quant-Noise and VQN

The noise rate p is the proportion of weights that un-
dergo simulated quantization during training. For-
mally, we partition a weight matrix W € R™*™ in
r % s blocks b;;(k, ) at location (4, j) for a given
training example & for a given epoch e:

bn(k‘,e) bls(k:,e)
w=1| : . O
br1(k,e) brs(k,€)

Let ¢ be a noise function which simulates quanti-
zation during training and let p(k, e) be the noise
rate for example k at epoch e. In the case of scalar
quantization, each block is simply a single weight.
Al in the Appendix has additional information on
scalar quantization.

Then, for a forward pass, Quant-Noise applies
the following function to each block b;;(k, e) in
the weight matrix:

o(bij(k,e))
bij(k,e)

with prob. p

Y(bij(k,e)) = {

otherwise.
2
Notice that all examples, at every epoch, share
the same p value. We hypothesize that the gradi-
ents induced by harder examples should propagate
less-biased gradient flow. Thus, it would be bene-
ficial to set a lower p(k, ) for these examples so
fewer computational nodes require bias-inducing
STE. Conversely, easier examples should have a
higher value of p(k, e) to teach the network to be
robust to quantization. In other words, our train-
ing procedure will leverage hard examples—in the
active learning sense—to teach the network how
best reach its objective and leverage easy examples
to maintain performance—in the QAT sense—after
compression.

We propose the following modification to Quant-
Noise, which we call VQN:

©(bij(k, €))
bij (k‘, 6)

by (ks €)) = { with pr.ob. 7(k,e)
otherwise

3)

where 7(k, ) is some function that takes in ex-

ample k and an epoch e. For Quant-Noise base-

lines, we set p(k, e) to be a constant value, which

we call p. For our adaptive methods, we experiment
with three variants of w(k, e).

Variant 1. 7o (k,e) = p — Ah(k, e), where
h(k, e) quantifies the hardness of the example for
the quantized model and A is a positive scaling fac-
tor. In these experiments, we use loss £y .1 on
example k and previous epoch e — 1 as a proxy for
h(k,e). The loss is min-max scaled to the range
[—1, 1] using loss for all examples at epoch e — 1.
We add p so the distribution of 7(k, e) is centered
around the noise rate we use for Quant-Noise ex-
periments.

Variant 2. 7haa2(k,e) = p — vg(k), where
g(k) quantifies the hardness of the example for the
unquantized model and y is a positive scaling factor.
This variant is analogous to the previous; however,
we measure hardness using the unquantized model.
That is, the hardness proxy g(k) is measured by the
loss of the uncompressed model L}, which is only a
function of example % and thus constant across all
epochs. We normalize g(k) using the loss for all
examples of the unquantized model at convergence.

Variant 3. mhed(k, €) = p—az(e), where z(e)
quantifies the current position in training and « is
a positive scaling factor. This approach is based on
scheduled learning rates where the optimal learning
rate early on in training is distinct from the optimal
learning rate in later stages [10]. We hypothesize
that quantization noise rate benefits from a similar
schedule. Low values of p in the beginning let the
network learn the task. Then, when the model has
had the chance to reasonably fit to the training data,
it can begin developing resilience to quantization.
In these experiments, we choose z(e) to be a linear
function such that mspeq takes on a mean value of
p over all epochs. More precisely, we set z(e) =
1— %, where m is set number of epochs the model
will train for.

Finally, in what was originally an ablation study,
we propose "random jitter,” which adds a random
amount of noise to the noise rate, drawing from a
uniform distribution 7 ~ U(p — B, p + (), where
[ is a tunable hyperparameter.



3.2 Model Architectures

For our NLP experiments, we fine-tune a ROBERTa
base (available at [11]) with an added classification
head. For each of RTE and MRPC, we establish
baselines with uncompressed models, post-training
quantization, and Quant-Noise. Each baseline is
measured using int 8, int4, and int1 schemes.

For our SLP experiments, we train (from scratch)
an RNN-based network tasked on a multi-task ob-
jective. We adopt the training framework proposed
in [12] and open-sourced at [13] that jointly opti-
mizes CTC loss on the task of Automatic Speech
Recognition (ASR) and Cross-Entropy (CE) loss
on the auxiliary task of intent classification. Hence-
forth, we refer to this architecture as the CTC
model. Note that our reported downstream perfor-
mance is measured with respect to the task of intent
classification since its validation curve converged
3x faster than the curve for ASR. The CTC model
is composed of a recurrent layer, a stacked LSTM
with depth = 2, and a softmax layer. Unlike many
of the layers required for ROBERTa, LSTMs are
not supported off-the-shelf by Quant-Noise. In ad-
dition, PyTorch also does not release its LSTM
implementation since much of it is in C for opti-
mization purposes. Enabling quantization noise
with LSTMs for our experiments required adapting
and integrating a native PyTorch LSTM frame from
the GitHub repository located at [14].

4 Experiments

4.1 Data

For NLP branch of experiments, we focus on binary
classification problems of (1) detecting textual en-
tailment and (2) determining semantic equivalence.
The former involves determining whether a given
text fragment is entailed by another text fragment
[15]; we use the RTE dataset (2.5k fragment pairs).
The latter involves determining whether a pair of
text fragments have semantic equivalence; we use
the MRPC dataset (5.8k sentence pairs [16]). Both
datasets are drawn from the GLUE benchmark [17].
For our SLP branch of experiments, we focus on
the task of intent classification. Our chosen dataset,
HarperValleyBank (1.4k customer-agent conversa-
tions) [12], frames this as an 8-class (e.g. order
checks, transfer money) classification problem. We
take as input Mel-frequency cepstral coefficients
(MFCCs), which are encoded representations of
raw audio signal. MFCC feature generation is the
standard process of encoding audio in speech.

4.2 Evaluation method

We consider both the task-specific evaluation met-
rics (accuracy for all three tasks considered) and
the compression ratio (original_model_size / quan-
tized_model_size).

4.3 Experimental details

NLP We slightly modify the hyperparameters
suggested in [18] under RoBERTa fine-tuning.
First, we remove settings related to fp16. Second,
due to memory constraints, we were only able to
train with a batch size of 4 instead of 16. We set
our parameter update frequency to 4 instead of the
default 1 so that gradient updates would still oc-
cur at an effective batch size of 4 x4 = 16. All
of our experiments use p = 0.5, a reasonable de-
fault choice, as indicated by [18] and [3]. We also
set A = 0.125 for mharq1, ¥ = 0.125 for mhaqo,
a = 0.4 for Tgcheq, and S = 0.125. We train for 10
epochs. These experiments were carried out on 6
Tesla K80s through the Azure Cloud Computing
Services, totaling approximately 500 GPU hours.

SLP We largely maintain the same hyperparame-
ter settings as HarperValleyBank’s baselines (found
at [13]). Data augmentation is also performed (rea-
soning explained in Results) with time and fre-
quency masks applied with a probability of 0.5
for each training example at every epoch. See Ap-
pendix Figure 1 for an example. Note that we used
SpecAugment to apply these augmentations [19].
Another deviation from the original model config-
uration is that we train for 40 epochs instead of
200. As with our NLP experiments, we set p = 0.5
when evaluating Quant-Noise. These experiments
were carried out on 6 Tesla K80s through the Azure
Cloud Computing Services, totaling approximately
100 GPU hours.

4.4 Results

First, a general note on figures: dashed lines in-
dicate performance of the uncompressed model;
error bars represent standard deviations based on
the three seeds for each trial.

4.5 NLP Results

We display our results in Appendix 1.2. We re-
port average performance across three training runs,
each with a different seed, with the exception of
the uncompressed model and post-training quanti-
zation, for which we only train one model.
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Figure 1: We compare performance of our three adaptive variants. The scheduler variant appears to perform best.
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Figure 2: We compare the performance of our scheduler against Quant-Noise and the post-training quantization
baseline. The scheduler variant is roughly even with Quant-Noise and outperforms post-training quantization.
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Figure 3: We compare the performance of "random jitter," our best method from the VQN family, against Quant-

Noise. Random jitter outperforms Quant-Noise.

As corroborated by Figure 1, we find that of the 3
different adaptive variants, the scheduled adaptive
Quant-Noise variant outperforms the other adap-
tive variants for 2 of the 3 quantization schemes
on RTE. Namely, the schedule adaptive variant at-
tains an accuracy of 67.99, 48.49, and 60.46 for
int8, int4, and int1, respectively. Likewise,
on MRPC, the adaptive scheduler variant consis-

tently outperforms other adaptive variants for all
quantization schemes.

Furthermore, as shown in Figure 2, we compare
the adaptive scheduler variant to our baselines of
Quant-Noise and post-training quantization. No-
tably, the adaptive scheduler variant outperforms
most post-training quantization and some Quant-
Noise baselines, attaining a higher average accu-



racy than Quant-Noise on 3 of the 6 datapoints for
RTE and MRPC.

On RTE, we attain an average accuracy of 67.99
for int8 with maximum accuracy of 79.42 on
seed 1, which outperforms both baselines. Simi-
larly, on int 1, we obtain an average accuracy of
60.46, with a maximum accuracy of 65.2 on seed
3. On the other hand, we slightly underperform
for int4 with an average accuracy of 48.49, be-
low both the post-training quantization and Quant-
Noise baselines with 52.71 and 51.14, respectively.
On MRPC, the adaptive scheduler variant outper-
forms the baselines with int 4 quantization, attain-
ing an average accuracy of 69.36.

Most surprisingly, we found that fine-tuning
RoBERTza base using Quant-Noise + random jitter
performs better than expected; this outperforms the
Quant-Noise baseline on 4 of 6 (task, quantization
scheme) pairs, as shown in Figure 3. In particu-
lar, as illustrated in Table 1, random jitter on RTE
substantially outperforms Quant-Noise for RTE on
int 8 and MRPC on int4 (78.46% vs. 67.87%:;
69.53% vs. 62.50%, respectively).

The introduction of second-order noise with
random jitter leads to improvements upon Quant-

tradictory trend: the two methods perform equally
as well for all compression levels and, even more
remarkably, improves on uncompressed accuracy
with 4x and 8x scalar quantization. This is a sur-
prising result and indicates that quantization can
actually have a helpful effect on performance for
this dataset; we explore this more in SLP Analysis.

Figure 4 illustrates the results of a follow-up ex-
periment with data augmentation added. Stronger
regularization removed the unexpected positive cor-
relation between accuracy and compression ratios.
int8 quantization (4x compression) produced a
slight drop in accuracy, similar to what is observed
in [3]. int4 quantization (8x compression) contin-
ues to perform just as well as the int 8 model. The
lack of a performance gap between post-training
quantization and VQN is still evident- even with
int4 quantization where [3] observed significant
gains with using quantization noise.

We again observe that adding second-order noise
in the form of random jitter improves upon the
Quant-Noise baseline. It does so for both int8
(x4) and int1 (x32) quantization, as can be seen
in Table 1.

HWE Intent Classification (With Aug)

mm  Post-train Quant
B Quant-Moise
mmm Random Jitter

Noise for int1, int4, and int8 quantization
schemes. By jittering the noise rate, all exam- a0

ples have the same expected noise rate, but the
amount of noise varies randomly throughout train-
ing. We have observed that under these conditions,
randomly jittering the noise rate during training
appears to slightly outperform Quant-Noise. While
we observe positive results under these conditions,
we note that these experiments were run on rela-
tively small datasets, and we had no compelling
reason a priori to believe that random jitter should
improve performance. Thus, before making gen-
eral claims about this method, it is important for
future work to extend our work to larger datasets.

4.6 SLP Results

Our group’s custom implementation of the CTC
model with quantization noise attains an accuracy
score of 39.6% (see Appendix Figure 2), which is
within reasonable range of the baseline reported
in the original HVB study [12]. The subsequent
baselines we establish for Post-training Quantiza-
tion and Quant-Noise have unexpected results. One
would expect the former to lead to heavy regres-
sions in performance while the latter is shielded
from much of it. The Appendix displays a con-

Accuracy
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Figure 4: Repeat Post-training Quantization vs Quant-
Noise experiment with time and frequency mask aug-
mentations.

S5 Analysis
5.1 NLP Analysis

One of the underlying assumptions for our adap-
tive variants was that unbiased gradient flow on
an example would help the model better learn that
example. Is this borne out by our results? In this
section, we conduct qualitative analyses to answer
this question.

In the Appendix, we display a scatterplot with
the loss of the uncompressed examples on RTE on



Table 1: Quant-Noise versus Random Jitter with int1, int4, and int 8 quantization schemes.

Quantization  Scheme/compression rate on RTE

Scheme/compression rate on MRPC

Scheme/compression rate on HVB

int8/x 4 intd4/x 8 intl/x32 int8/x4 int4/x8 intl/x32 int8/x4 int4/x8 intl/x 32
Random jitter ~ 78.46 49.82 51.02 86.93 69.53 62.83 45.1 41.1 17.4
Quant-Noise ~ 67.87 51.14 50.54 89.46 62.50 61.85 425 42.6 14.1
5 Compressed Loss for Hard Examples Figure 4 closes this gap by attaining 45% accuracy.
! We then move to understand the impact of estab-
p 0 —_— lished quantization methods on model behavior for
(=]
2 our problem setting since Quant-Noise is untested
g~ on both speech data and recurrent models. First,
a . . ., . . .
§ . we explain the counter-intuitive positive correla-
g | tion of compression level and accuracy in our base-

Adaptive

Cuant-Maise

Technigue

Figure 5: We compare loss on the hardest training ex-
amples in RTE (90th percentile of loss of the uncom-
pressed model) between a Quant-Noise model and an
adaptive model (variant 2).

the x-axis, and the loss of the adaptive (variant 2)
model and the Quant-Noise model on the y-axis.
Both y-axis models use int 8 quantization, and we
plot losses on training examples. Our scatterplot
indicates the opposite of what we expected; loss
does not appear lower for the "harder" (higher un-
compressed loss) examples on our adaptive variant
2 model as compared to Quant-Noise.

We also create a boxplot comparing the loss of
the Quant-Noise model against the loss of the adap-
tive (variant 2) model on the "hardest" (highest
uncompressed loss) training examples. Our scat-
terplot indicates the opposite of what we expected;
loss is higher for the hardest examples on our adap-
tive variant 2 model as compared to Quant-Noise.

5.2 SLP Analysis

A significant portion of the speech evaluations are
aimed at testing our group’s custom implementa-
tion of the CTC model with quantization noise.
Results displayed in Appendix under-perform rel-
ative to the scores reported in the original HVB
study (47.8% accuracy) [12]. Meeting with one of
its authors confirmed that this was expected since
there were additional steps not included in the re-
leased code. Incorporating data augmentation as in

line. Diagnostics on the train and validation loss
curves reveal that models at all compression levels
are overfitting to the small dataset. This points an
explanation based on quantization’s regularizing
effect: perhaps gains with higher compression ra-
tios was due to lowering variance? Replicating the
baselines with stronger regularization in the form
of data augmentation confirmed this hypothesis
by removing the positive correlation. Notable ap-
proaches, such as one done by Wu and Flierl [20]
and another by Hirose et al. [21], explicitly use
quantization as regularization mechanisms. Our
results in this study indicate that such methods
are likely to help CTC-based models generalize as
well.

Attaining explainable results after data augmen-
tation allowed us to reliably test random jitter, the
best method second-order noise method that, sur-
prisingly, came out of the ablations from the NLP
trials. Random jitter outperforming Quant-Noise
on two compression schemes provides additional
evidence suggesting the former may produce gains.
This further motivates future investigations into
random jitter, particularly since speech is a differ-
ent domain that operates on waveforms that are
quite different from text-based sequences. In addi-
tion, HarperValleyBank is the smallest dataset we
test, continuing support for random jitter across
dataset sizes as well.

Likely reasons for the small performance gap be-
tween Post-training Quantization and the baselines
are that (1) intent classification is straight-forward
enough of a task such that even aggressively quan-
tized networks can effectively learn it and (2) quan-
tization noise is not much more effective than post-



training quantization in low-resource regimes. The
first reason is tested by mirroring the experiment
from Figure 4 and evaluating ASR word error rate
instead of intent classification. All performance
trends persisted, thus disproving the first explana-
tion. The second, on the other hand, is supported
by the fact that quantization noise brings about sig-
nificant gains with experiments involving Wikitext-
103 (100 million tokens), ImageNet (1.2 million
images), and RTE/MRPC (small datasets, but used
with pretraining) while it does not on the smaller
HarperValleyBank dataset. Insights from our NLP
runs also supports this hypothesis: Quant-Noise is
a high-variance method. One of the well-studied
properties of high-variance methods is that they
require more data to outperform less expressive al-
ternatives [22]. Though this is a likely explanation
with a theoretical base, future work can provide
empirical proof by using our framework to evalu-
ate ASR with a larger dataset such as LibriSpeech
[23].

6 Conclusion

In this study, we explored methods for varying the
quantization noise rate during training, and observe
that, surprisingly, adding random jitter to Quant-
Noise seems to benefit performance. Our work has
limitations: first, for our NLP tasks, we perform
both model selection (i.e., selecting the best model
checkpoint from training) and evaluation on the de-
velopment set. This is standard practice for GLUE
tasks, but if we had more time, it would be better
to evaluate our best models on the GLUE test set.
Similarly, for HarperValleyBank, we perform both
model selection and evaluation on the development
set; again, however, this is consistent with what is
done in the original paper [12].

In the future, we will explore whether our sur-
prising random jitter results generalize to other,
larger datasets. Also, we will further investigate
why our adaptive method led to increased loss on
harder examples as compared to Quant-Noise. If
we can find a reliable method for decreasing loss
on harder examples, this may be a promising av-
enue for further performance gains in quantization.
Additionally, we hope to measure speedups in in-
ference time rather than just compression ratios.
Finally, rather than hand-crafting functions for the
noise rate, we could search over a large space of
functions or learn the noise rate as a parameterized
policy network with model-free RL methods like

deep Q-learning or policy gradient optimization.
However, the relative merits of model speedups at
inference time obtained by compression need to be
considered within the context of model compres-
sion training time. For instance, neural methods
like iterative Product Quantization (iPQ) or search-
ing for a quantization noise rate using RL might
incur larger environmental costs that outweigh the
improved latency of the compressed model.
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A Appendix

A.1 Scalar Quantization

Scalar quantization uses lower-bit representations
of floating point weights. According to [3],
for fixed-point intn quantization, we quantize
weights by applying the following element-wise
transform:

Q= (round(W/s+z) —z) x s 4

where the scale is s = w and the

bias is z = round(min W/s). Note, the activa-
tions are also quantized at inference time. Follow-
ing this compression scheme, the corresponding
compression ratio is 32/n.
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A.2 TImplementation

Apache License, Version 2.0

We built off of the original codebase for Quant-
Noise, available at [18]. FairSeq uses the MIT
license. We also rely on PyTorch more broadly
[24]. For our HarperValleyBank dataset, which
uses Creative Commons Public Licenses. Each
of the variants for 7(k, e) were custom implemen-
tations. This involved functionality to vary the
quantization noise rate per example, per epoch, and
per schedule using modifications to PyTorch mod-
ules, the trainer that coordinates them, and other
functions called by the trainer. Two of our com-
pression regimes (int1 and int4) also involved
additions to FAIR’s quantization operators and cor-
responding low-level PyTorch code. A pull request
(found at https://github.com/pytorch/
fairseq/pull/3370) has been opened to
merge a small subset of our additions to FairSeq
[18].

A.3 ACL Ethical Considerations

For papers presenting new datasets AND papers
presenting experiments on existing datasets:

1. Does the paper describe the characteristics
of the dataset in enough detail for a reader to un-
derstand which speaker populations the technology
could be expected to work for? Yes.

2. Do the claims in the paper match the experi-
mental results, in terms of how far the results can
be expected to generalize? Yes.

3. Does the paper describe the steps taken to
evaluate the quality of the dataset? Yes.


https://github.com/pytorch/fairseq/pull/3370
https://github.com/pytorch/fairseq/pull/3370
https://github.com/pytorch/fairseq/pull/3370

Table 2: Fine-tuning ROBERTa on RTE and MRPC using Quant-Noise versus Random Jitter with int1, int4,
and int 8 quantization schemes.

Quantization Scheme/compression rate on RTE  Scheme/compression rate on MRPC

int8/x4 int4/x 8 1intl/x32 int8/x4 int4/x8 intl/x 32

Uncompressed 77.26 77.26 77.26 88.73 88.73 88.73
Post-training Quantization 27.80 52.71 52.71 86.03 68.14 39.71
Quant-Noise 67.87 51.14 50.54 89.46 62.50 61.85
Adaptive noise variant 1 60.40 52.22 51.26 87.99 68.79 54.33
Adaptive noise variant 2 60.40 52.22 51.26 87.99 68.79 54.33
Adaptive noise variant 3 67.99 48.49 60.46 88.65 69.36 60.46
Random jitter 78.46 49.82 51.02 86.93 69.53 62.83
Original
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Figure 6: A sample spectrogram with time and frequency masks applied.
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Figure 7: Establish baselines with Post-training Quantization to Quant-Noise at four levels of compression.
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Figure 8: We plot loss on training examples for the uncompressed model against loss on these same examples for
the Quant-Noise model and adaptive model (variant 2).
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