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Abstract

Quantization refers to a set of methods that001
compress a neural network by representing its002
parameters with fewer bits. However, applying003
quantization to a neural network after training004
often leads to severe performance regressions.005
Quantization Aware Training (QAT) addresses006
this problem by applying simulated training-007
time quantization for the model to learn ro-008
bustness to inference-time quantization. One009
key drawback of this approach is that quanti-010
zation functions induce biased gradient flow011
through the network during backpropagation,012
thus preventing the network from best-fitting013
to the learning task. Fan et al. addressed this014
issue by proposing Quant-Noise, in which sim-015
ulated quantization is applied to a fixed pro-016
portion, called the quantization noise rate, of017
parameters during training. Our study, Vari-018
able Quantization Noise (VQN)1, builds upon019
their technique by exploring a variable quanti-020
zation noise rate instead of a fixed one. We021
craft three candidate functions to vary noise022
rate during training and evaluate the variants023
with 3 datasets and 3 quantization schemes024
for each dataset. First, we report negative re-025
sults on our hand-crafted candidate functions.026
Second, we observe somewhat positive results027
on a method, originally intended as an ab-028
lation study, of randomly varying the noise029
rate during training. This method outperforms030
Quant-Noise on two out of three quantization031
schemes for all three tested datasets. More-032
over, on two of the datasets, this method at 4x033
compression matches or exceeds performance034
of even the uncompressed model. Future work035
should determine whether these unexpected036
results hold for more datasets and quantiza-037
tion schemes, as well as investigating other038
schemes for varying the noise rate during train-039
ing.040

1The code implementation is on GitHub

1 Introduction 041

Modern deep learning architectures are getting 042

larger, with recent models spanning many billions 043

of parameters [1]. By contrast, many NLP and 044

SLP use-cases involve deployment to embedded 045

devices (e.g. voice assistants, IoT devices), where 046

massive models are prohibitively memory intensive 047

and computationally expensive. 048

Model compression techniques aim to address 049

this limitation by creating compact representations 050

of models that can attain the same level of perfor- 051

mance as their larger counterparts. For instance, 052

pruning methods do so by removing extraneous 053

weights and activations to produce sparse architec- 054

tures with reduced parameter counts [2]. Our work 055

is an investigation into another such compression 056

technique: quantization. Rather than removing 057

entire units as pruning does, scalar quantization 058

(used in this work) shrinks networks by reducing 059

the bit-widths of their parameters [3]. In addition 060

to a reduced memory footprint, computations can, 061

likewise, be sped up with the appropriate hardware 062

accelerators [4]. Throughout this paper, we will 063

refer to scalar quantization to n-bit integers as intn 064

quantization, e.g. "int8 quantization." 065

We aim to improve upon Quant-Noise, a state- 066

of-the-art (SotA) quantization method developed 067

by Facebook AI Research (FAIR) [3]. Quant- 068

Noise falls under the umbrella of methods that 069

simulate quantization at train-time, so the model 070

learns "robustness" to quantization. A core chal- 071

lenge to training-time quantization is that quanti- 072

zation functions are non-differentiable. The func- 073

tions necessary to approximate gradients for these 074

non-differentiable operations, such as the straight 075

through estimator [5], inherently produce biased 076

gradients during backpropagation. Quant-Noise 077

[3] addresses this limitation by quantizing only a 078

random subset of the total network during each 079

training step, allowing some unbiased gradients to 080
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flow while still teaching the model to be resilient to081

the distortion. Note that Quant-Noise selects this082

subset using a Bernoulli trial for each parameter,083

where the probability input (labelled the noise rate)084

is constant across all examples and epochs.085

We suggest that using a varying noise rate can086

lead to further robustness to quantization. We087

term this "second-order noise," since we are adding088

noise to the noise rate itself.089

We propose several novel formulations where090

the quantization noise rate changes throughout091

training. We evaluate these methods on three tasks092

(RTE, MRPC, and HarperValleyBank), with three093

quantization schemes apiece (int8, int4, and094

int1). We use three random seeds for most of095

our studies; counting each (task, method, quantiza-096

tion scheme, seed) tuple as a single experiment, we097

perform a total of 129 experiments in this study.098

Our contributions can be summarized under two099

categories:100

Research101

• Second-order noise has the potential to out-102

perform Quant-Noise. We craft three can-103

didate functions within the VQN family104

that demonstrate promise in improving upon105

Quant-Noise. These candidates are high-106

variance and do not seem to significantly out-107

perform baselines. However, as part of an108

ablation study, we identify a method we call109

"random jitter" that surpasses Quant-Noise110

performance in two out of three quantization111

schemes for three tasks in the low data regime.112

We stress that further experiments are neces-113

sary to confirm that these results are not due114

to variance, and these findings can be used115

to inform and guide future investigations into116

improving quantization noise.117

• Quantization improves performance on a118

small speech dataset. For a small speech119

dataset, HarperValleyBank, int4 and int8120

quantization (using either post-training quanti-121

zation or training-time quantization noise) out-122

performs the uncompressed baseline. Based123

on follow-up analyses on our speech dataset124

and prior work, we suspect that quantization125

has a regularizing effect for this dataset.126

Engineering127

• New Quant-Noise-enabled modules. We en-128

abled Quant-Noise for layers in RoBERTa and129

CTC architectures; this involved custom adap- 130

tations of stacked LSTMs and objective func- 131

tions. 132

• New quantization schemes. We added sup- 133

port for int4 and int1 (previous lowest was 134

int8) quantization in FairSeq. 135

• VQN. We added functionality to vary the quan- 136

tization noise rate per example as a function of 137

previous loss, converged uncompressed loss, 138

or schedule; these involved modifications to 139

the base modules and the trainer that coordi- 140

nates them. 141

2 Related Work 142

Model compression methods reduce the memory 143

requirements for neural networks. Pruning and 144

knowledge distillation are forms of compression 145

that reduce the number of network weights. Prun- 146

ing is a method that removes weights based on 147

their network-level importance. For instance, mag- 148

nitude pruning introduced in [6] removes weights 149

with low magnitude. Knowledge distillation, as 150

first named in [7], begins with a large pre-trained 151

teacher model, and trains a compact student model 152

by exposing it to raw predictions generated by the 153

teacher model on an unlabeled dataset. 154

Quantization, by contrast, minimizes the number 155

of bits needed to represent each weight. Standard 156

neural networks use 32-bit floating point precision; 157

scalar quantization replaces these weights with an 158

N bit representation. Applying quantization meth- 159

ods like int1, int4, or int8 as a post-training 160

step causes errors to accumulate at each layer in the 161

model, leading to significantly worse performance. 162

Quantization Aware Training (QAT) is a method 163

proposed in [8] that applies simulated quantiza- 164

tion during training, so the network learns robust- 165

ness to the quantization transformations. However, 166

quantization operators tend to be stepwise func- 167

tions and thus have null gradient; therefore, during 168

back-propagation, gradients are approximated by a 169

straight through estimator (STE) [9]. The STE is a 170

simple idea: treat the stepwise function as if it were 171

the identity function [9]. As the original authors 172

acknowledge, this estimator is "clearly...biased" [9]. 173

In high compression regimes like int4, the error 174

due to biased gradient flow from STE is severe. 175

Quant-Noise seeks to reduce this error [3]. 176

Quant-Noise only applies simulated quantization 177

to a random subset of weights during training at 178
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a "noise rate", allowing some unbiased gradient179

flow in backpropagation, improving upon the QAT180

method. Note that the noise rate is fixed across all181

examples and all epochs, and is tuned empirically182

by the authors in [3]. However, it is reasonable to183

think that a model might benefit from using differ-184

ent noise rates for different examples or different185

epochs. For instance, a model might benefit from186

using harder, or earlier, examples to learn the task’s187

objective and using easier, or later, examples to188

learn robustness to quantization.189

3 Approach190

3.1 Quant-Noise and VQN191

The noise rate p is the proportion of weights that un-192

dergo simulated quantization during training. For-193

mally, we partition a weight matrix W ∈ Rm×n in194

r × s blocks bij(k, e) at location (i, j) for a given195

training example k for a given epoch e:196

W =

b11(k, e) · · · b1s(k, e)
...

. . .
...

br1(k, e) · · · brs(k, e)

 . (1)197

Let ϕ be a noise function which simulates quanti-198

zation during training and let p(k, e) be the noise199

rate for example k at epoch e. In the case of scalar200

quantization, each block is simply a single weight.201

A1 in the Appendix has additional information on202

scalar quantization.203

Then, for a forward pass, Quant-Noise applies204

the following function to each block bij(k, e) in205

the weight matrix:206

ψ(bij(k, e)) =

{
ϕ(bij(k, e)) with prob. p
bij(k, e) otherwise.

(2)207

Notice that all examples, at every epoch, share208

the same p value. We hypothesize that the gradi-209

ents induced by harder examples should propagate210

less-biased gradient flow. Thus, it would be bene-211

ficial to set a lower p(k, e) for these examples so212

fewer computational nodes require bias-inducing213

STE. Conversely, easier examples should have a214

higher value of p(k, e) to teach the network to be215

robust to quantization. In other words, our train-216

ing procedure will leverage hard examples–in the217

active learning sense–to teach the network how218

best reach its objective and leverage easy examples219

to maintain performance–in the QAT sense–after220

compression.221

We propose the following modification to Quant- 222

Noise, which we call VQN: 223

ψ(bij(k, e)) =

{
ϕ(bij(k, e)) with prob. π(k, e)
bij(k, e) otherwise

(3) 224

where π(k, e) is some function that takes in ex- 225

ample k and an epoch e. For Quant-Noise base- 226

lines, we set p(k, e) to be a constant value, which 227

we call p̂. For our adaptive methods, we experiment 228

with three variants of π(k, e). 229

Variant 1. πhard1(k, e) = p̂ − λh(k, e), where 230

h(k, e) quantifies the hardness of the example for 231

the quantized model and λ is a positive scaling fac- 232

tor. In these experiments, we use loss Lk,e−1 on 233

example k and previous epoch e− 1 as a proxy for 234

h(k, e). The loss is min-max scaled to the range 235

[−1, 1] using loss for all examples at epoch e− 1. 236

We add p̂ so the distribution of π(k, e) is centered 237

around the noise rate we use for Quant-Noise ex- 238

periments. 239

Variant 2. πhard2(k, e) = p̂ − γg(k), where 240

g(k) quantifies the hardness of the example for the 241

unquantized model and γ is a positive scaling factor. 242

This variant is analogous to the previous; however, 243

we measure hardness using the unquantized model. 244

That is, the hardness proxy g(k) is measured by the 245

loss of the uncompressed model L̃k which is only a 246

function of example k and thus constant across all 247

epochs. We normalize g(k) using the loss for all 248

examples of the unquantized model at convergence. 249

Variant 3. πsched(k, e) = p̂−αz(e), where z(e) 250

quantifies the current position in training and α is 251

a positive scaling factor. This approach is based on 252

scheduled learning rates where the optimal learning 253

rate early on in training is distinct from the optimal 254

learning rate in later stages [10]. We hypothesize 255

that quantization noise rate benefits from a similar 256

schedule. Low values of p in the beginning let the 257

network learn the task. Then, when the model has 258

had the chance to reasonably fit to the training data, 259

it can begin developing resilience to quantization. 260

In these experiments, we choose z(e) to be a linear 261

function such that πsched takes on a mean value of 262

p̂ over all epochs. More precisely, we set z(e) = 263

1− 2e
m , where m is set number of epochs the model 264

will train for. 265

Finally, in what was originally an ablation study, 266

we propose "random jitter," which adds a random 267

amount of noise to the noise rate, drawing from a 268

uniform distribution π ∼ U(p̂− β, p̂+ β), where 269

β is a tunable hyperparameter. 270
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3.2 Model Architectures271

For our NLP experiments, we fine-tune a RoBERTa272

base (available at [11]) with an added classification273

head. For each of RTE and MRPC, we establish274

baselines with uncompressed models, post-training275

quantization, and Quant-Noise. Each baseline is276

measured using int8, int4, and int1 schemes.277

For our SLP experiments, we train (from scratch)278

an RNN-based network tasked on a multi-task ob-279

jective. We adopt the training framework proposed280

in [12] and open-sourced at [13] that jointly opti-281

mizes CTC loss on the task of Automatic Speech282

Recognition (ASR) and Cross-Entropy (CE) loss283

on the auxiliary task of intent classification. Hence-284

forth, we refer to this architecture as the CTC285

model. Note that our reported downstream perfor-286

mance is measured with respect to the task of intent287

classification since its validation curve converged288

3x faster than the curve for ASR. The CTC model289

is composed of a recurrent layer, a stacked LSTM290

with depth = 2, and a softmax layer. Unlike many291

of the layers required for RoBERTa, LSTMs are292

not supported off-the-shelf by Quant-Noise. In ad-293

dition, PyTorch also does not release its LSTM294

implementation since much of it is in C for opti-295

mization purposes. Enabling quantization noise296

with LSTMs for our experiments required adapting297

and integrating a native PyTorch LSTM frame from298

the GitHub repository located at [14].299

4 Experiments300

4.1 Data301

For NLP branch of experiments, we focus on binary302

classification problems of (1) detecting textual en-303

tailment and (2) determining semantic equivalence.304

The former involves determining whether a given305

text fragment is entailed by another text fragment306

[15]; we use the RTE dataset (2.5k fragment pairs).307

The latter involves determining whether a pair of308

text fragments have semantic equivalence; we use309

the MRPC dataset (5.8k sentence pairs [16]). Both310

datasets are drawn from the GLUE benchmark [17].311

For our SLP branch of experiments, we focus on312

the task of intent classification. Our chosen dataset,313

HarperValleyBank (1.4k customer-agent conversa-314

tions) [12], frames this as an 8-class (e.g. order315

checks, transfer money) classification problem. We316

take as input Mel-frequency cepstral coefficients317

(MFCCs), which are encoded representations of318

raw audio signal. MFCC feature generation is the319

standard process of encoding audio in speech.320

4.2 Evaluation method 321

We consider both the task-specific evaluation met- 322

rics (accuracy for all three tasks considered) and 323

the compression ratio (original_model_size / quan- 324

tized_model_size). 325

4.3 Experimental details 326

NLP We slightly modify the hyperparameters 327

suggested in [18] under RoBERTa fine-tuning. 328

First, we remove settings related to fp16. Second, 329

due to memory constraints, we were only able to 330

train with a batch size of 4 instead of 16. We set 331

our parameter update frequency to 4 instead of the 332

default 1 so that gradient updates would still oc- 333

cur at an effective batch size of 4 ∗ 4 = 16. All 334

of our experiments use p̂ = 0.5, a reasonable de- 335

fault choice, as indicated by [18] and [3]. We also 336

set λ = 0.125 for πhard1, γ = 0.125 for πhard2, 337

α = 0.4 for πsched, and β = 0.125. We train for 10 338

epochs. These experiments were carried out on 6 339

Tesla K80s through the Azure Cloud Computing 340

Services, totaling approximately 500 GPU hours. 341

SLP We largely maintain the same hyperparame- 342

ter settings as HarperValleyBank’s baselines (found 343

at [13]). Data augmentation is also performed (rea- 344

soning explained in Results) with time and fre- 345

quency masks applied with a probability of 0.5 346

for each training example at every epoch. See Ap- 347

pendix Figure 1 for an example. Note that we used 348

SpecAugment to apply these augmentations [19]. 349

Another deviation from the original model config- 350

uration is that we train for 40 epochs instead of 351

200. As with our NLP experiments, we set p̂ = 0.5 352

when evaluating Quant-Noise. These experiments 353

were carried out on 6 Tesla K80s through the Azure 354

Cloud Computing Services, totaling approximately 355

100 GPU hours. 356

4.4 Results 357

First, a general note on figures: dashed lines in- 358

dicate performance of the uncompressed model; 359

error bars represent standard deviations based on 360

the three seeds for each trial. 361

4.5 NLP Results 362

We display our results in Appendix 1.2. We re- 363

port average performance across three training runs, 364

each with a different seed, with the exception of 365

the uncompressed model and post-training quanti- 366

zation, for which we only train one model. 367
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Figure 1: We compare performance of our three adaptive variants. The scheduler variant appears to perform best.

Figure 2: We compare the performance of our scheduler against Quant-Noise and the post-training quantization
baseline. The scheduler variant is roughly even with Quant-Noise and outperforms post-training quantization.

Figure 3: We compare the performance of "random jitter," our best method from the VQN family, against Quant-
Noise. Random jitter outperforms Quant-Noise.

As corroborated by Figure 1, we find that of the 3368

different adaptive variants, the scheduled adaptive369

Quant-Noise variant outperforms the other adap-370

tive variants for 2 of the 3 quantization schemes371

on RTE. Namely, the schedule adaptive variant at-372

tains an accuracy of 67.99, 48.49, and 60.46 for373

int8, int4, and int1, respectively. Likewise,374

on MRPC, the adaptive scheduler variant consis-375

tently outperforms other adaptive variants for all 376

quantization schemes. 377

Furthermore, as shown in Figure 2, we compare 378

the adaptive scheduler variant to our baselines of 379

Quant-Noise and post-training quantization. No- 380

tably, the adaptive scheduler variant outperforms 381

most post-training quantization and some Quant- 382

Noise baselines, attaining a higher average accu- 383
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racy than Quant-Noise on 3 of the 6 datapoints for384

RTE and MRPC.385

On RTE, we attain an average accuracy of 67.99386

for int8 with maximum accuracy of 79.42 on387

seed 1, which outperforms both baselines. Simi-388

larly, on int1, we obtain an average accuracy of389

60.46, with a maximum accuracy of 65.2 on seed390

3. On the other hand, we slightly underperform391

for int4 with an average accuracy of 48.49, be-392

low both the post-training quantization and Quant-393

Noise baselines with 52.71 and 51.14, respectively.394

On MRPC, the adaptive scheduler variant outper-395

forms the baselines with int4 quantization, attain-396

ing an average accuracy of 69.36.397

Most surprisingly, we found that fine-tuning398

RoBERTa base using Quant-Noise + random jitter399

performs better than expected; this outperforms the400

Quant-Noise baseline on 4 of 6 (task, quantization401

scheme) pairs, as shown in Figure 3. In particu-402

lar, as illustrated in Table 1, random jitter on RTE403

substantially outperforms Quant-Noise for RTE on404

int8 and MRPC on int4 (78.46% vs. 67.87%;405

69.53% vs. 62.50%, respectively).406

The introduction of second-order noise with407

random jitter leads to improvements upon Quant-408

Noise for int1, int4, and int8 quantization409

schemes. By jittering the noise rate, all exam-410

ples have the same expected noise rate, but the411

amount of noise varies randomly throughout train-412

ing. We have observed that under these conditions,413

randomly jittering the noise rate during training414

appears to slightly outperform Quant-Noise. While415

we observe positive results under these conditions,416

we note that these experiments were run on rela-417

tively small datasets, and we had no compelling418

reason a priori to believe that random jitter should419

improve performance. Thus, before making gen-420

eral claims about this method, it is important for421

future work to extend our work to larger datasets.422

4.6 SLP Results423

Our group’s custom implementation of the CTC424

model with quantization noise attains an accuracy425

score of 39.6% (see Appendix Figure 2), which is426

within reasonable range of the baseline reported427

in the original HVB study [12]. The subsequent428

baselines we establish for Post-training Quantiza-429

tion and Quant-Noise have unexpected results. One430

would expect the former to lead to heavy regres-431

sions in performance while the latter is shielded432

from much of it. The Appendix displays a con-433

tradictory trend: the two methods perform equally 434

as well for all compression levels and, even more 435

remarkably, improves on uncompressed accuracy 436

with 4x and 8x scalar quantization. This is a sur- 437

prising result and indicates that quantization can 438

actually have a helpful effect on performance for 439

this dataset; we explore this more in SLP Analysis. 440

Figure 4 illustrates the results of a follow-up ex- 441

periment with data augmentation added. Stronger 442

regularization removed the unexpected positive cor- 443

relation between accuracy and compression ratios. 444

int8 quantization (4x compression) produced a 445

slight drop in accuracy, similar to what is observed 446

in [3]. int4 quantization (8x compression) contin- 447

ues to perform just as well as the int8 model. The 448

lack of a performance gap between post-training 449

quantization and VQN is still evident- even with 450

int4 quantization where [3] observed significant 451

gains with using quantization noise. 452

We again observe that adding second-order noise 453

in the form of random jitter improves upon the 454

Quant-Noise baseline. It does so for both int8 455

(×4) and int1 (×32) quantization, as can be seen 456

in Table 1. 457

Figure 4: Repeat Post-training Quantization vs Quant-
Noise experiment with time and frequency mask aug-
mentations.

5 Analysis 458

5.1 NLP Analysis 459

One of the underlying assumptions for our adap- 460

tive variants was that unbiased gradient flow on 461

an example would help the model better learn that 462

example. Is this borne out by our results? In this 463

section, we conduct qualitative analyses to answer 464

this question. 465

In the Appendix, we display a scatterplot with 466

the loss of the uncompressed examples on RTE on 467
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Table 1: Quant-Noise versus Random Jitter with int1, int4, and int8 quantization schemes.

Quantization Scheme/compression rate on RTE Scheme/compression rate on MRPC Scheme/compression rate on HVB

int8/× 4 int4/× 8 int1/× 32 int8/× 4 int4/× 8 int1/× 32 int8/× 4 int4/× 8 int1/× 32

Random jitter 78.46 49.82 51.02 86.93 69.53 62.83 45.1 41.1 17.4

Quant-Noise 67.87 51.14 50.54 89.46 62.50 61.85 42.5 42.6 14.1

Figure 5: We compare loss on the hardest training ex-
amples in RTE (90th percentile of loss of the uncom-
pressed model) between a Quant-Noise model and an
adaptive model (variant 2).

the x-axis, and the loss of the adaptive (variant 2)468

model and the Quant-Noise model on the y-axis.469

Both y-axis models use int8 quantization, and we470

plot losses on training examples. Our scatterplot471

indicates the opposite of what we expected; loss472

does not appear lower for the "harder" (higher un-473

compressed loss) examples on our adaptive variant474

2 model as compared to Quant-Noise.475

We also create a boxplot comparing the loss of476

the Quant-Noise model against the loss of the adap-477

tive (variant 2) model on the "hardest" (highest478

uncompressed loss) training examples. Our scat-479

terplot indicates the opposite of what we expected;480

loss is higher for the hardest examples on our adap-481

tive variant 2 model as compared to Quant-Noise.482

5.2 SLP Analysis483

A significant portion of the speech evaluations are484

aimed at testing our group’s custom implementa-485

tion of the CTC model with quantization noise.486

Results displayed in Appendix under-perform rel-487

ative to the scores reported in the original HVB488

study (47.8% accuracy) [12]. Meeting with one of489

its authors confirmed that this was expected since490

there were additional steps not included in the re-491

leased code. Incorporating data augmentation as in492

Figure 4 closes this gap by attaining 45% accuracy. 493

We then move to understand the impact of estab- 494

lished quantization methods on model behavior for 495

our problem setting since Quant-Noise is untested 496

on both speech data and recurrent models. First, 497

we explain the counter-intuitive positive correla- 498

tion of compression level and accuracy in our base- 499

line. Diagnostics on the train and validation loss 500

curves reveal that models at all compression levels 501

are overfitting to the small dataset. This points an 502

explanation based on quantization’s regularizing 503

effect: perhaps gains with higher compression ra- 504

tios was due to lowering variance? Replicating the 505

baselines with stronger regularization in the form 506

of data augmentation confirmed this hypothesis 507

by removing the positive correlation. Notable ap- 508

proaches, such as one done by Wu and Flierl [20] 509

and another by Hirose et al. [21], explicitly use 510

quantization as regularization mechanisms. Our 511

results in this study indicate that such methods 512

are likely to help CTC-based models generalize as 513

well. 514

Attaining explainable results after data augmen- 515

tation allowed us to reliably test random jitter, the 516

best method second-order noise method that, sur- 517

prisingly, came out of the ablations from the NLP 518

trials. Random jitter outperforming Quant-Noise 519

on two compression schemes provides additional 520

evidence suggesting the former may produce gains. 521

This further motivates future investigations into 522

random jitter, particularly since speech is a differ- 523

ent domain that operates on waveforms that are 524

quite different from text-based sequences. In addi- 525

tion, HarperValleyBank is the smallest dataset we 526

test, continuing support for random jitter across 527

dataset sizes as well. 528

Likely reasons for the small performance gap be- 529

tween Post-training Quantization and the baselines 530

are that (1) intent classification is straight-forward 531

enough of a task such that even aggressively quan- 532

tized networks can effectively learn it and (2) quan- 533

tization noise is not much more effective than post- 534
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training quantization in low-resource regimes. The535

first reason is tested by mirroring the experiment536

from Figure 4 and evaluating ASR word error rate537

instead of intent classification. All performance538

trends persisted, thus disproving the first explana-539

tion. The second, on the other hand, is supported540

by the fact that quantization noise brings about sig-541

nificant gains with experiments involving Wikitext-542

103 (100 million tokens), ImageNet (1.2 million543

images), and RTE/MRPC (small datasets, but used544

with pretraining) while it does not on the smaller545

HarperValleyBank dataset. Insights from our NLP546

runs also supports this hypothesis: Quant-Noise is547

a high-variance method. One of the well-studied548

properties of high-variance methods is that they549

require more data to outperform less expressive al-550

ternatives [22]. Though this is a likely explanation551

with a theoretical base, future work can provide552

empirical proof by using our framework to evalu-553

ate ASR with a larger dataset such as LibriSpeech554

[23].555

6 Conclusion556

In this study, we explored methods for varying the557

quantization noise rate during training, and observe558

that, surprisingly, adding random jitter to Quant-559

Noise seems to benefit performance. Our work has560

limitations: first, for our NLP tasks, we perform561

both model selection (i.e., selecting the best model562

checkpoint from training) and evaluation on the de-563

velopment set. This is standard practice for GLUE564

tasks, but if we had more time, it would be better565

to evaluate our best models on the GLUE test set.566

Similarly, for HarperValleyBank, we perform both567

model selection and evaluation on the development568

set; again, however, this is consistent with what is569

done in the original paper [12].570

In the future, we will explore whether our sur-571

prising random jitter results generalize to other,572

larger datasets. Also, we will further investigate573

why our adaptive method led to increased loss on574

harder examples as compared to Quant-Noise. If575

we can find a reliable method for decreasing loss576

on harder examples, this may be a promising av-577

enue for further performance gains in quantization.578

Additionally, we hope to measure speedups in in-579

ference time rather than just compression ratios.580

Finally, rather than hand-crafting functions for the581

noise rate, we could search over a large space of582

functions or learn the noise rate as a parameterized583

policy network with model-free RL methods like584

deep Q-learning or policy gradient optimization. 585

However, the relative merits of model speedups at 586

inference time obtained by compression need to be 587

considered within the context of model compres- 588

sion training time. For instance, neural methods 589

like iterative Product Quantization (iPQ) or search- 590

ing for a quantization noise rate using RL might 591

incur larger environmental costs that outweigh the 592

improved latency of the compressed model. 593
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A Appendix670

A.1 Scalar Quantization671

Scalar quantization uses lower-bit representations672

of floating point weights. According to [3],673

for fixed-point intn quantization, we quantize674

weights by applying the following element-wise675

transform:676

Q = (round(W /s+ z)− z)× s (4)677

where the scale is s = maxW−minW
2n−1 and the678

bias is z = round(minW /s). Note, the activa-679

tions are also quantized at inference time. Follow-680

ing this compression scheme, the corresponding681

compression ratio is 32/n.682

A.2 Implementation 683

Apache License, Version 2.0 684

We built off of the original codebase for Quant- 685

Noise, available at [18]. FairSeq uses the MIT 686

license. We also rely on PyTorch more broadly 687

[24]. For our HarperValleyBank dataset, which 688

uses Creative Commons Public Licenses. Each 689

of the variants for π(k, e) were custom implemen- 690

tations. This involved functionality to vary the 691

quantization noise rate per example, per epoch, and 692

per schedule using modifications to PyTorch mod- 693

ules, the trainer that coordinates them, and other 694

functions called by the trainer. Two of our com- 695

pression regimes (int1 and int4) also involved 696

additions to FAIR’s quantization operators and cor- 697

responding low-level PyTorch code. A pull request 698

(found at https://github.com/pytorch/ 699

fairseq/pull/3370) has been opened to 700

merge a small subset of our additions to FairSeq 701

[18]. 702

A.3 ACL Ethical Considerations 703

For papers presenting new datasets AND papers 704

presenting experiments on existing datasets: 705

1. Does the paper describe the characteristics 706

of the dataset in enough detail for a reader to un- 707

derstand which speaker populations the technology 708

could be expected to work for? Yes. 709

2. Do the claims in the paper match the experi- 710

mental results, in terms of how far the results can 711

be expected to generalize? Yes. 712

3. Does the paper describe the steps taken to 713

evaluate the quality of the dataset? Yes. 714
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Table 2: Fine-tuning RoBERTa on RTE and MRPC using Quant-Noise versus Random Jitter with int1, int4,
and int8 quantization schemes.

Quantization Scheme/compression rate on RTE Scheme/compression rate on MRPC

int8/× 4 int4/× 8 int1/× 32 int8/× 4 int4/× 8 int1/× 32

Uncompressed 77.26 77.26 77.26 88.73 88.73 88.73

Post-training Quantization 27.80 52.71 52.71 86.03 68.14 39.71

Quant-Noise 67.87 51.14 50.54 89.46 62.50 61.85

Adaptive noise variant 1 60.40 52.22 51.26 87.99 68.79 54.33

Adaptive noise variant 2 60.40 52.22 51.26 87.99 68.79 54.33

Adaptive noise variant 3 67.99 48.49 60.46 88.65 69.36 60.46

Random jitter 78.46 49.82 51.02 86.93 69.53 62.83

Figure 6: A sample spectrogram with time and frequency masks applied.

Figure 7: Establish baselines with Post-training Quantization to Quant-Noise at four levels of compression.
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Figure 8: We plot loss on training examples for the uncompressed model against loss on these same examples for
the Quant-Noise model and adaptive model (variant 2).
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