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1 INTRODUCTION

The growth of the Internet has transformed medicine, enabling healthcare to be delivered more eiciently,
improving patient outcomes, and increasing access to medical information and services. As technology advances,
we can expect to see even more innovative uses of the Internet in medicine, with signiicant implications for
healthcare delivery and patient outcomes.

The data collected by smart medical devices and clinical databases can be used to improve their recommenda-
tions. The large amounts of data generated by these devices can be analyzed using Artiicial Intelligence (AI) and
Machine Learning (ML) algorithms to identify patterns and make more accurate predictions about a patient’s
health status and treatment outcomes. Multi-patient data analysis will enable healthcare organizations to identify
trends and patterns that might otherwise go undetected. It may help to identify new therapies, improve the
precision of diagnoses and optimize individual patient care plans. In addition to improving patient outcomes,
data from smart medical devices and clinical databases can improve the design of future medical devices and
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treatments. By identifying patterns and trends in patient data, manufacturers can design more efective devices
and treatments tailored to individual patient needs.
In addition, due to technological advances, patients’ data (treatment history and genetic data) and novel

drugs, researchers have focused their attention on the application of recommender system (RS) in life and health
sciences. Similar to other applications, RS could help doctors and researchers make a better-informed decision
from understanding users’ tastes and past experiences.

To make it clearer, let us begin by deining biomedical items as all entities that belong to the biomedical ields
and are characterized by attributes that can be modeled, and an entity of research, where biomedical ield is
deined as an area that explores the efects of drugs and medical techniques on biological systems. The purpose
of this survey is to collect information on the state of RS for biomedical items over the last decade, in order to
answer the following research questions (RQs):

RQ1: What are the real experiences with RS for biomedical items? Which kind of users or items are used?

RQ2: Which recommender techniques are being used across diferent biomedical items?

RQ3: What role does the knowledge graph-based play as side information in RS?

RQ4: What is the best way to evaluate the RS?
In order to address these questions comprehensively, we take a multidisciplinary approach to the existing

RS solutions for biomedical items and compare them according to some criteria. While other survey papers
focus on the existing solutions for healthcare providers, our survey tries to understand which RS approach is
most frequent, and if a knowledge graph (KG) is explored, the type of evaluation, the source of datasets, the
availability of the datasets, and whether they are public or not. Faced to the speciicity of these items (biomedical),
researchers do not have available datasets to assess RS because there are no datasets to guide their choices [6].
We hope to highlight the importance of RS in this topic with this survey. Together, we will demonstrate existing
solutions and give researchers a glimpse into the research of RS.
The remainder of this manuscript is structured as follows. In section 2 we give an overview of RS in general:

methods, algorithms, KG-based RS, evaluation methods and data. Section 3 describes the methodology used to
select the most relevant papers on the RS ield in biomedical items. Finally, in section 4 we present the results,
discuss some of the limitations associated and draw conclusions in section 5. The conclusions section also
indicates our perspective about the near future and challenges addressed to be with KG-based recommendation.

2 BACKGROUND

2.1 Recommender systems: concepts

RSs are information iltering systems that suggest items to users based on their prior knowledge and mathematical-
statistical methods. Based on some information about each user’s preferences, the system lists recommendation
rankings and proposes items related to each user. Items could be anything, for instance: books, movies, or
even biomedical items like genes, diseases, drug response, and health information. Table 1 briely overviews
the description, strengths, and limitations of the primary RS approaches: (1) collaborative iltering (CF),
(2) content-based (CB), and (3) hybrid iltering [1, 78].

In short, the CB is primarily based on utilizing the side/content information of users and items to predict
ratings and make recommendation; by contrast, the CF recommendation does not use the content information
about users and items, and it considers only ratings/preferences information across users and items. Accordingly
to a commonly accepted taxonomy, both CF and CB can be grouped into two classes: (a) memory-based and
(b) model-based [1, 11].

A memory-based method can make recommendations over an entire rating matrix (�) or content matrix (�),
if necessary. Using these matrices, on the other hand, model-based approaches estimate user preferences and
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Table 1. Main approaches of recommender system techniques

Technique Description Strengths Limitations

Collaborative
iltering
(CF)

CF analyzes the behavior of multi-
ple users to make recommendations
to an individual user. Depending on
the model, it can be either memory-
based, based on similar user prefer-
ences, or model-based, based on ML
algorithms.

CF is able to recommend
popular items among sim-
ilar users even if the user
hasn’t expressed a speciic
interest in those items. CF
works well with ample user
data, clear user behavior pat-
terns and preferences.

CF sufer from “cold startž
problem (new user/item).
Data sparsity can also limit
CF. In addition, CF may suf-
fer from “popularity biasž,
whereby popular items are
recommended more often,
and others are ignored.

Content-
based
iltering
(CB)

Recommendations are based on the
characteristics of the items and the
user’s preferences. The algorithm
determines the items’ major charac-
teristics, and suggests comparable
items to users based on their prior
choices.

Ability to make personalized
recommendations based on
users’ explicit preferences
and interests. CB can be ef-
fective when there are many
items and clear patterns in
their characteristics.

Overspecialization, limited
content analysis, lack of
serendipity and diversity are
some of the limitations of the
CB.

Hybrid
approaches

Combine CF and CB methods, in
an attempt of minimizing their chal-
lenges, and improve the recommen-
dations. Implementing thesemodels
can be done in various ways, includ-
ing merging the results of two dif-
ferent models or adding character-
istics to another model. Seven types
of hybrid recommendation were in-
troduced in Burke’ study [15]

Hybrid models can be efec-
tive when both user and item
are available, and when com-
plex patterns of user behav-
ior and preferences cannot
be easily identiied.

Hybrid models can be com-
plex to implement and re-
quire signiicant data to
train. In addition, hybrid
models can sufer from CF
and CB limitations, such as
data sparsity, the “cold startž
and the overspecialization
problem.

then make recommendations accordingly on them. Memory-based CF methods use historical ratings to compute
the similarity between users or items. Methods can be classiied as (i) used-based Ð predicts items a user might
like by looking at ratings given to that item by users with similar tastes to the target user (e.g., “users who are
similar to you also liked . . . ž); and (ii) item-based Ð looks for similar items depending on the items users have
already liked or positively interacted with (e.g., “users who liked this item also liked . . . ž). Memory-based typically
uses similarity metrics to calculate the distance between two users or two items based on their ratios. Using ML
algorithms, a model generates predictions about how users might rate items that have not been rated. The diferent
approaches are based on (i) using dimensionality reduction techniques (e.g., singular value decomposition Ð SVD,
principal component analyses Ð PCA, matrix factorization); (ii) clustering (e.g., K-means, K-nearest neighbor Ð
KNN, density-based spatial clustering of applications with noise, etc.); (iii) neural networks (e.g., long short-term
memory Ð LSTM, generative adversarial networks Ð GAN, convolutional neural network Ð CNN); (iv) graphs
(e.g., graph convolutional network Ð GCN, graph neural networks Ð GNN) ; and (v) probabilistic methods (e.g.,
naive-bayes Ð NB).

Finally, hybrid iltering uses a combination of CF with CB to make use of the beneits of both techniques [3, 78].
When creating the hybrid RS, we may use (a) monolithic, (b) ensemble, or (c) mixed designs. The monolithic
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does not clearly distinguish between CB and CF modules. For example, monolithic can use feature augmentation,
where the features from various sources are aggregated, and meta-level, where one RS uses as input the model
created by another RS. The ensemble design consists of combining the results of two diferent recommendation
algorithms. Weighted methods combine the scores of diferent recommender algorithms into a inal score by
weighing the scores.

Several survey papers on RS have been published in the last few years. For example, some medical recommen-
dation engines are described by Stark et al. [86] in their survey, and future research directions are presented.
Pincay et al. [75] examined 249 papers published between 2006 and 2018, which provides insights about trends
and methods regarding the design and development of health recommender system (HRS). Recently, De Croon
et al. [23] discuss the various subdomains of HRS that are used, also the diferent RS algorithms, the diferent
manners they are evaluated, and how they present recommendations to the user. To the best of our knowledge,
our survey is the irst to address but also on HRS issues to something more speciic, such as recommending
biomedical items in Life and Health Sciences.

2.2 Knowledge Graphs-based Recommender Systems

Over the past years, there has been considerable research conducted on KGs, especially in the Semantic Web
community as can be read in the preface of the 13th International Semantic Web Conference Proceedings (2014):
łLinked Data is pervasive: from enabling government transparency to helping integrate data in life sciences and
enterprises, to publishing data about museums and integrating bibliographic data. Signiicantly, major companies,
such as Google, Yahoo, Microsoft, and Facebook, have created their own łknowledge graphsž that power semantic
searches and enable smarter processing and delivery of data: The use of these knowledge graphs is now the norm
rather than the exception.ž [63].
A KG is a structure that identiies and disambiguates entities in text, enriches search results with semantic

summaries, and provides links to related entities in exploratory search, all to improve the search engine’s
functionality and improve user experience [34]. The information is gathered and displayed from multiple sources.
Using KG in various areas has led researchers to develop KG-based recommendation methods.
The KG describes the objective world’s concepts, entities and their relationships in the form of graphs. Item

attributes can be mapped into the KG to determine the relationships between them [4]. Further, the KG can be
used to store user information, including information about users and items, and even user preferences, which
makes relations between members of the KG possible. Recently, KGs have been proposed for recommendation in
addressing two of the classic problems of RS: (a) the limited content analysis problem, which is caused by the
lack of content-based features that describe the items, and (b) the overspecialization problem, which is caused
by the triviality of the recommendations, which are frequently too similar to the items the user already likes
[34]. In addition, KG can also help address some limitations of traditional recommender approaches, such as the
“cold startž problem, with insuicient data to recommend new users or items accurately. KG help recommender
engines leverage knowledge about items and users and make more informed recommendations without historical
data.

In the life and health sciences, the biomedical knowledge graph (BMKG) connects biomedical entities (e.g., genes,
proteins, drugs, diseases, biological pathways, etc) through deined relationships. BMKGs are important tools to
solve computational problems associated with biomedical knowledge. There have been numerous applications
of BMKGs in multiple tasks, including identifying disease mechanisms [43], extracting disease biomarkers [89],
and predicting the eicacy of a drug over a placebo [42], or a drug discovery [81], all of which could lead to
further reinement in precision medicine and clinical decision support. For instance, Cong et al. [19] propose
a method for generating a BMKG based on Semantic MEDLINE Database and Linked Open Data. In addition,
Gong et al. [31] propose a novel framework, called safe medicine recommendation (SMR), that aims to provide
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safe medicines for patients with multiple diseases. It combines the capabilities of electronic medical records and
medical KGs to build a high-quality graph and then embedded the related relationships between patients and
medicines.

There are several publicly available BMKG, such as the Uniied Medical Language System (UMLS), the Medical
Subject Headings (MeSH) ontology, the Human Phenotype Ontology (HPO), and the DrugBank. Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [48] can also be considered a BMKG database since it represents the
relationships between these entities as nodes and edges in a graph. These BMKGs typically combine manual
curation with automated techniques like natural language processing (NLP) and ML to extract information from
biomedical literature and databases.

The relationships between diferent types in a KG can be used to enhance recommender accuracy and diversify
recommended things. Using KGs improves the accountability of RS. The current methods for developing KG-
based RS may be divided into three categories: (1) embedding-based, (2) connection-based techniques, and
(3) uniied methods.

Embedding-based approaches employ KG methods to pre-process the KG embedding, which may be either an
item graph or a user-item graph, to produce the embedding of entities and relations, which is then used in the
RS. However, this technique ignores the graph’s informative connection patterns, and only a few studies can
give reasons for the recommended outcomes. Accordingly to Wang et al. [93], the KG embedding algorithms can
be divided into two classes: (a) the translation distance models such as TransE [13], TransH [95], TransR [57]
and TransD [46], etc; and, (b) the semantic matching models such as RESCAL [68], DistMult [98] and HolE [67].
On the one hand, the translation distance models are used to calculate the probability of a fact as the distance
between the two entities from distance-based scoring functions. On the other hand, the semantic matching
models measure the likelihood of a point by matching the latent semantics of entities and relations in their vector
space representations with the similarity-based scoring functions.

Connection-based approaches use the graph’s connection patterns to guide the suggestion. The user-item KG
is used in most studies to explore the relationships between entities in the graph. KG connection-based can be
approached in two ways [34]: (a) the meta-structure based method, such as user-user, item-item or user-item
similarities; and, (b) the path-embedding based method. The meta-structure-based method can restrict user and
item representations or forecast user preferences based on similar users or items in the interaction history. In the
path-embedding approach, the connection pattern between a user and an item is combined into latent vectors,
allowing the mutual inluence of the target user and the candidate item to be considered. Most models can also
identify and mine connection patterns without specifying meta-structures because they count and select the
most meaningful pathways. Therefore, expressive link patterns are likely to be captured.

Uniied techniques combine the semantic representation of entities and relations and connectivity information to
fully use the KG information for improved recommendations. The embedding propagation concept underpins the
suitable technique. With the help of the KG connective structure, these methods enhance the entity representation.
To fully leverage information from both sides, a new research trend is to combine the embedding-based technique
with the path-based method [34].

2.3 ualitative evaluations metrics of recommendation systems

For a RS to be efective, it must be evaluated according to certain criteria. The evaluation of RS algorithm has
been based on information retrieval [84]. Depending on the available resources and the goal of the RS, there
are various ways of evaluating its performance. Two methods co-exist: (1) ofline and (2) online evaluation.
Oline systems are evaluated using a pre-collected dataset and are used to measure the accuracy of RSs [33]. The
datasets allow us to simulate users’ behavior, predicting preferences based on historical data, either implicitly or
explicitly, and evaluating RS algorithm performance. During the oline evaluation, the dataset is divided into
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training and test sets. There are several advantages to modeling and testing algorithms, including their speed and
simplicity. However, some bias is inevitable since the results are not directly correlated to newer users.

Oline evaluation is divided into three groups: (a) the accuracy of predicted ratings, i.e. diference between the
prediction and the real rating, for instance by measuring the mean absolute error Ð MAE, mean squared error Ð
MSE and root mean square error Ð RMSE; (b) the accuracy of recommended items based on classiication metrics
are hit-ratio Ð HR, precision Ð PPV, recall/sensitivity (summarized as recall in the following) Ð RE, receiver
operating characteristic Ð ROC, area under the receiver operating characteristic curve Ð AUROC, F-measure Ð F1;
and, (c) the accuracy based on ranking metrics, i.e. correlation between the prediction and the real classiication,
such as by looking at mean reciprocal rank Ð MRR, half-life utility Ð HLU, Pearson correlation coeicient Ð
PCC, Spearman correlation, Matthews correlation coeicient Ð MCC, and normalized discounted cumulative
gain Ð nDCG.

An online evaluation, the A/B-testing1 (or multivariate testing), is diferent from an oline evaluation in that it
measures the observed satisfaction of the user [33]. The assumptions about what a user will interact with may
difer slightly from the actual interactions within a diferent context (when experimenting with discovering new
interests or with a limited number of items). The primary issue is deining the user’s satisfaction since the results
depend on clicking on an item (the click-through rate or CTR). Even though oline evaluation is easy to conduct,
repeatable, fast, and allows for arbitrary models to be incorporated, it has been suggested that it is impossible to
mirror well the true utility of RS as seen in online experiments. Alternatively, A/B testing on live systems is quite
time-consuming since the time required scales linearly with the number of approaches evaluated since users see
harmful recommendations.

Another way to include the method evaluation is to have the user’s feedback. Feedback is information that a
recommender can collect from its users. One of the most common ways a recommender can collect this type
of feedback is through explicit feedback, users’ input regarding their interest in an item. An example would
be for users to enter their ratings on a numeric scale based on how much they liked or disliked the content. A
feature like this can be challenging to implement due to the cognitive load in generating accurate ratings. Implicit
feedback, on the other hand, can avoid the restrictions associated with rating systems since the information can
be gathered after observing the users’ behavior. Hybrid feedback combines both types of feedback to generate a
recommendation. The ratings could allow RS to provide better and more accurate recommendations.

2.4 Biomedical database

One of the main advantages of using RS is its ability to provide accurate and interpretable recommendations. This
feature can be easily incorporated into various applications. Next, we provide an overview of the most common
datasets used in life and biomedical science. DrugBank [96] database consists of information about drugs, their
molecular target, and their pharmacological efects. The database contains information on thousands of drugs,
including prescription, over-the-counter, and experimental drugs. KEGG [48] is a large database that provides a
wide variety of biological data, including genes, proteins, biological processes, and human diseases. KEGG is
widely used in bioinformatics, drug discovery [64, 91], and systems biology [47, 49]. ChEMBL [30] was initially
not created as a “drug-targetž database, but instead as a collection of bioactive chemicals. PubChem [52] is a
public database of chemical compounds and their biological activities. The database contains over 100 million
chemical compounds, including structures, properties, and biological activities. The Genomics of Drug Sensitivity
in Cancer (GDSC) is the largest public repository for information on molecular markers of drug response and
drug sensitivity in cancer cells [101]. There are more than 75,000 experiments on drug sensitivity in GDSC, which
describe the response to 518 anticancer drugs across almost 1000 cancer cell lines. In addition to identifying new

1Also known as split testing, control/treatment testing, bucket testing, randomized experiments, and online ield experiments.
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marker-driven cancer dependencies, the Cancer Cell Line Encyclopedia (CCLE) provides an unbiased framework
for studying genetic variants, target candidates, small molecules, and biologic therapeutics [5].

In the context of a RS, for instance, PubChem can be a valuable resource for predicting chemical compounds’
biological activity and identifying potential drug candidates. By using information from PubChem in conjunction
with other data sources, such as clinical databases or electronic health records, RSs can make more accurate
predictions about drug efectiveness for speciic diseases or conditions. They can suggest personalized treatment
plans for individual patients. Additionally, PubChem can identify novel chemical entities not yet tested in clinical
trials, leading to new drugs and treatments for various diseases. DrugBank is useful for RS because it provides
detailed information on molecular drug targets and pharmacological properties. This information can be used to
develop more accurate drug recommendations based on a user’s medical history, health status, and other factors.
Based on a drug’s molecular targets and known pharmacology, a prescription drug recommendation system
can identify drugs with a high likelihood. GDSC has been used in some RS to predict drug sensitivity for new
cell lines based on genomic features. These models can expect how sensitive cell lines will be to diferent drugs.
The GDSC database can be handy in RSs because it contains many drug sensitivity data for various cancer cell
lines and accompanying genomic data. This allows the development of more accurate models for predicting drug
sensitivity. These are brief examples of applications in RSs that we will develop later.

3 METHODOLOGY

This systematic review was built upon the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [73] and is limited to the papers identiied using the RS in biomedical items. First, we
deine a set of search terms (ST) that we consider relevant and generic in these studies. Once the ST has been
described, the search algorithm is constructed using the logical operators AND and OR to combine them:

• The [title/abstract] ield MUST contains RS approach
ś (recommender OR recommendation) AND (system OR engine)
ś collaborative AND (iltering OR approach)
ś content-based AND (iltering OR approach)

• The [title/abstract] ields MUST contains biomedical items, for instance
ś drugs OR medication,
ś chemical compounds,
ś disease,
ś genes/proteins (summarized as gene in the following),
ś health OR patients,
ś health information

Although we ilter by “Titlež and “Abstractž, some systems (i.e., journal databases) also include the “Keywordsž
of the manuscripts. Likewise, with some other recommendation domains, we should initially get the recommended
item. By the information from users and items, the division is made into ields: (1) Biology, (2) Chemistry

(3) Genetic, and (4) Health, as shown in Fig. 1. Later, we split each domain by the pair < item, user >type. For
instance, biology includes cell lines and drugs. Otherwise, the items or users for chemistry should be proteins,
chemical compounds, reagents, drug response, and drug targets. Genetic includes diseases, genes, and microRNA.
Finally, health is related to health information, professionals, patients, treatments, or advice activities.
Afterward, an electronic journal database search is conducted to provide a comprehensive list of scientiic

papers on RS: ACM Digital Library, IEEEXplore, PubMed, ScienceDirect, and Springer Link.
The search was conducted initially on June 2021 and updated on November 2021. Only peer-reviewed journal

papers and conference proceedings with complete text are included in the search from early 2015 to 2021. We have
also included well-documented and well-written English studies that clearly stated their indings and arguments
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Fig. 1. Biology, Chemistry, Genetic and Health are the user-defined fields from the items and users found in the surveyed
papers.

with a minimum of 10 sources. Technical reports, surveys, and master’s and Ph.D. dissertations are excluded.
Upon completing the database search, duplicate papers are removed. During the analysis, we focus on obtaining
information about the purpose and methodology of each study by noting the most critical aspects in the research
papers’ “Methodž and “Discussionž sections.
The search structure in the above databases is listed in Table 2 and presents the numbers of papers from the

initial phase (� = 1883 in total). The ST “drugs OR medicationž, “diseasež and “health informationž yielded an
average of 27, 34 and 34 papers, respectively, out of the 4 databases for potential review when combined with
RS, following the CF. The ST “genes/proteinsž (summarized as gene in the following) yielded an average of 8
papers out of the 5 databases for potential review when combined with CF following the RS. The highest value is
found with the ST of “health OR patientsž, which was 85 papers combined with RS following the CF. According to
our analysis of algorithmic approaches, and as shown in Table 2, CB approaches are used in a small number of
reviewed papers. At this stage, there was no concern for the search for a hybrid approach, leaving this analysis
for later.

4 RESULTS AND DISCUSSION

A total of 1878 papers are initially included as shown in Table 2, leaving only 60 research papers remaining
from 58 journals after the PRISMA guidelines. These guidelines include: (i) identiication of records, removal of
duplicates; (ii) screening by title and abstract, not complete proceedings; and (iii) continuing with the eligibility,
for instance, reports with no full text available, technical reports, surveys that are well-documented, and many
others. A summary of the studies included in this review is provided in the appendix (Table 6) as a ready-reference
summary of the existing research.

First, we identify a broader range of research studies that provide insights into the current state-of-the-art. We
also aim to discover recent experiences with RS for biomedical items (RQ1) through a comprehensive analysis,
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Table 2. Total number of papers found for each search term in the five databases: ACM Digital, IEEEXplore, PubMed,
ScienceDirect, and Springer.

Search terms ACM Digital IEEEXplore PubMed ScienceDirect Springer

ST#I: { Recommender OR Recommendation } AND { Systems OR Engine }

ST#1: Combined ST#I AND drugs OR medication OR chemical com-
pounds

7 17 5 83 26

ST#2: Combined ST#I AND disease 26 55 13 36 38
ST#3: Combined ST#I AND genes 21 2 3 - 15
ST#4: Combined ST#I AND health OR patients 111 92 28 90 100
ST#5: Combined ST#I AND health information 3 53 2 22 89

ST#II: Collaborative AND { Filtering OR Approach }

ST#1: Combined ST#II AND drugs ORmedication OR chemical com-
pounds

1 3 18 9 15

ST#2: Combined ST#II AND disease 3 5 58 9 19
ST#3: Combined ST#II AND genes 7 5 6 20 19
ST#4: Combined ST#II AND health OR patients 2 20 168 22 38
ST#5: Combined ST#II AND health information 243 8 2 14 32

ST#III: Content-based AND { Filtering OR Approach }

ST#1: Combined ST#II AND drugs ORmedication OR chemical com-
pounds

- - - 1 15

ST#2: Combined ST#II AND disease - - - 3 42
ST#3: Combined ST#II AND genes - - - - 15
ST#4: Combined ST#II AND health OR patients - - 1 3 71
ST#5: Combined ST#III AND health information - - - - 49

Total: 424 260 304 312 583

Legend: ST means search term

Fig. 2. Temporal distribution for the referenced papers related to each field: biology (� = 7), chemistry (� = 16), genetic
(� = 8) and health (� = 29).

identify which RSs can be used successfully in the domain (RQ2), how KG-based RS is an eicient way to leverage
and connect a user’s and an item’s knowledge (RQ3) and assess how RS are being evaluated (RQ4). Finally,
we have assembled and coded a unique dataset of 60 papers Ð Sur-RS4BioT, free available for download in
DOI:10.34740/kaggle/ds/2346894. Details are described below.

4.1 (RQ1) Real experiences with RS

After collecting all the research papers, we split them by ields as shown in Fig. 1 based on users and items. Fig. 2
shows the annual distribution of such papers between 2015 to 2021 and by each ield. The data shows two peaks,
the irst in 2018 (16) and the second in 2021 (13) with similar curves across all areas. Furthermore, health is the
one that collects the most data, followed by chemistry.

Biology. Personalized therapies, or “precision medicinež, as described by Sulphavilai et al. [87] provide the
most appropriate regimen for each patient, while their responses may difer. For example, several authors
[14, 24, 54, 59, 87, 92, 105] use a drug response prediction algorithm to the anti-cancer efects of diferent drugs
based on the cell line similarity and the drug’s chemical structure. Zhang et al. [105] estimate the baseline similarity
score for the various cell line and drug pairs based on the available responses. They use the known correlation
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coeicient to ind the most similar neighbors. Sulphavilai et al. [87] have proposed a matrix factorization based RS
(CaDRReS), which considers essential genes for drug-response prediction. Liu et al. [59] adopt a neighbor-based
CF with global efect removal (NCFGER), removing the global efect and shrinking the similarity score for each
cell line and each drug pair. They use the K-similarity score to predict the unknown ones after removing the global
impact. In contrast, Wang et al. [92] introduce a new model using dual-layer strengthened collaborative topic
regression (DS-CTR) that combines the knowledge of pharmacogenomics data and cell line similarity network.
Emdadi and Eslahchi [24] present a novel method for cancer drug sensitivity named drug sensitivity prediction
using logistic matrix factorization (DSPLMF) based RS. The motivation of DSPLMF is to ind the features of cell
lines that are sensitive to drugs since similar cell lines can also improve the prediction of drug response and gene
expression proile. Like Sulphavilai et al. [87], the PCC of predicted drug responses and pathway activity scores
infer drug-pathway associations. Koras et al. [54] propose a deep neural network RS-based approach (DEERS) to
the problem of kinase inhibitor sensitivity. Using autoencoders and neural network-based prediction, DEERS
combines dimensionality reduction and hidden representations of the cell line and drug features. An utterly
alternative solution is proposed by Brandão et al. [14], in which experiments show that wavelet-transformed
DNA microarray images produce better results, not only in terms of evaluation metrics but also in terms of
execution time, by improving the search for cancer-cell lines with similar proiles to the new cell line. Lastly, to
obtain the cancer cell lines proiles, and a drug-response matrix are acquired from the GDSC database [14, 54],
and using the drug structure information from PubChem database in case of Wang et al. [92], or even the CCLE
[5] datasets.

Chemistry. Scientists in the pharmaceutical industry have been focusing on developing novel drugs (or,
therapeutics) by utilizing expertise on existing drugs [39, 107]. Drug discovery begins with the identiication of
drug-target interactions (e.g. genes), which can be reliably done by in vitro experiments, and one of the biggest risks
is the possibility of unexpected or unintended interactions between drugs and of-target proteins [25, 102, 106].
In silico techniques are becoming more popular as a means of reducing temporal and monetary costs [74]. For in
silico prediction of drugśtarget interactions (DTIs, also called compoundśprotein interactions), ML approaches
are a solution. Knowledge about drugs, targets (i.e. protein), and already conirmed DTIs makes up features of
ML methods (for instance, feature-based, matrix factorization, deep learning and network-based approaches)
[26, 55, 83, 106, 107], which then form the basis for training a predictive model, which can determine interactions
between new drugs and/or targets. Recent methods that use matrix factorization algorithms outperform other
ML methods in terms of eiciency [29, 39, 74, 80]. DTI prediction is best done using a combination of chemical
and genomics information using RS approaches [1]. To predict DTI, the most popular methods include drugśdrug
and targetśtarget similarity measurements through similarity or distance functions. Nearest neighbor algorithms
deine “nearnessž in various ways based on distance functions [25, 39, 80]. There are a wide variety of feature-
based methods that perform DTI prediction. These include SVM, tree-based and other kernel-based methods [83].
Also, deep learning methods show good performance [102]. Barros et al. [6] designed a method called LIBRETTI
to create implicit feedback datasets of scientiic entities such as clusters of stars and chemical compounds. Later,
the authors propose a framework to recommend chemical compounds based on ontologies, a new method for
calculating similarities between large numbers of entities (over 16000 chemicals) [8]. The items/entities are from
4 distinct ontologies: chemical compounds from Chemical Entities of Biological Interest Ontology (CHEBI) [41];
functions of genes from Gene Ontology (GO) [20]; phenotype abnormalities from Human Phenotype Ontology
(HPO) [53]; and, diseases from Disease Ontology (DO) [82]. Many drug-related databases have been set up to
support the aforementioned methods. These databases provide forms of drug-related data and are important
resources for in silico DTI predictions, for example, DrugBank (6) [96], KEGG (1) [48], ChEMBL (2) [30] and
PubChem (2)[52] (see Table 3).
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Genetic. Protein subcellular localization (SCL) has a role in identifying potential drug targets (i.e., protein) and
genome annotating because proteins have distinct functions in individual cells. In this ield, we have identiied
several novel methods that we will describe in detail below. Mehrabad et al. [62] use a personal RS protein multiple
location prediction based on RS (PMLPR) to predict a list of locations for each protein, and it successfully solves
the signiicant location prediction issue. To overcome the cold start problem, PMLPR uses protein interaction
scores. This approach creates a bipartite network of users and items; in this example, the network is built using
data from SWISS-PROT and the cellular component in GO. Kim et al. [51] propose gene selection using the
expression heterogeneity (GSEH) method, which combines the concept of gene expression heterogeneity with
the analysis of biological processes related to diseases. Gene expression heterogeneity refers to samples from
the same class that might have diferent amounts of gene expression. This concept could be used to identify
disease-associated genes. GSEH is divided into two steps: (1) creates a new matrix with a CF pattern, then selects
the target genes based on their expected scores; and, (2) compares the data obtained in the irst step with the
original data to compute each gene’s prioritization score; it then picks genes based on their scores. Zeng et al.
[104] introduce a deep collaborative iltering model that combines Bayesian stacked denoising autoencoders
(SDAE) and matrix completion. This technique provides a scalable platform for incorporating numerous gene
and disease characteristics. The presented quantitative indings outperform existing state-of-the-art baselines by
utilizing deep architectures. Weighted imputed neighborhood-regularized tri-factorization (WINTF) is a tool for
predicting transcription factor-gene associations that apply one-class CF techniques [56]. The tool allows users
to specify diferent low ranks for items and users separately. With a collection of known associations, it can also
be applied to more tissue-speciic tasks to predict new TF-gene associations. To study protein-domain interaction
networks (PDIs), a further collaborative iltering model-based method (CFMM) has been proposed recently by
Zhu et al. [109]. The authors propose a calculative method for inferring potential essential proteins to achieve
this goal. This method is based on an improved PageRank algorithm, which integrated the original PDI network’s
topological features with the proteins’ biological characteristics. RNAcommender tool [21] assists researchers in
identifying potential interacting candidates for most RNA-binding proteins (RBPs) with uncharacterized binding
preferences. In recent follow-up work of RNAcommender, the ProbeRating method [100] is designed to predict
binding proiles for unknown or poorly characterized RBPs based on the binding proiles of their homologous
RBPs that are currently known.

Health. Increasingly, health information systems are playing an important role in healthcare services [4,
28, 44, 45, 69, 69, 71, 79]. Physical activities are frequently customized based on individual preferences [28]. In
addition to physical activities, Rohani et al. [79] develop a smartphone-based system for “behavioral activationž
(MUBS); a personalized patient model is created by storing activity features along with the patients’ ratings
after an activity has been completed. In another example, Chen et al. [16] motivate users to stop smoking by
providing them with tailored messages called computer-tailored health communication (CTHC), such as “In 5 to
15 years of living smoke-free, your risk of stroke goes down to a nonsmokers risk. Congratulations on a job well
done!ž. Additionally, other studies focus on Personalized trustworthy health care information per se [12, 71], or
personalized access to general health information [18, 60]. Many others focused on speciic health conditions
[2, 4, 44, 45, 65, 66, 76, 88, 94, 103]. For example, Torrent-Fontbona and López [88] build a knowledge-based (KB)
RS to assist diabetes patients in numerous cases, Mustaqeem et al. [66] propose an improvised algorithm for
recommending medical advice to cardiac patients, Ormel et al. [71] and Iatraki et al. [44] apply personal health
record system constructed for cancer patients. Personalized cancer care involves relating genomics markers to
treatment outcomes based on genomics information; Zhang et al. [105] build a clinical patient drug RS, and the
authors suggest having only one drug model for each training sample instead of having multiple models for
diferent drugs.
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Table 3. Top@10 of the datasets by each user-defined field.

Biology Chemistry Genetic Health

CCLE 4
ChEMBL 2
CheRM-20 2
Clinical Data 1 11

dbDEMC 2
DrugBank 6 1
GDSC 7

Personal Data 7

PubChem 1 2 1
SIDER 2 1

Legend: Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug Sensitivity in Cancer (GDSC), Side efect resource (SIDER)

Summary. Personalized therapies have emerged to tailor medical treatments based on a patient’s unique
characteristics, including genetics, medical history, and lifestyle. Some examples illustrated above, include
CaDRReS [107], DSPLMF [24] and DEERS [54]. Based on a patient’s genomic data, a CB may recommend
customized medicine. In contrast, a CF might recommend a therapy based on the treatment history of similar
patients. A hybrid RS could use a patient’s genomic data andmedical history to recommend personalized treatment.
In drug discovery, recommendation engines can recommend new molecules or targets for drug development.
DrugBank and PubChem are two examples of databases. In particular, an CB may suggest new compounds with
similar biological properties to known drugs by using compositional descriptors as a prior knowledge [83]. Based
on preclinical and clinical trial data, RSs can predict drug eicacy and safety. For instance, a CF could use clinical
trial data to predict which patient groups may be more likely to beneit from a new drug. Clinical data can beneit
RSs by providing necessary information about a patient’s medical history, current health status, and previous
treatments (e.g., [28, 50]). As illustrated in Table 3, this is the one with the highest number of papers analyzed
(11). For example, a recommendation system incorporating clinical data might use this information to identify the
most efective treatments for a particular disease or condition based on a patient’s medical history and current
symptoms. The system could also consider a patient’s age, gender, and other relevant demographic information
when making treatment recommendations. However, some challenges are associated with using clinical data
in RSs, which we describe later. Every available tool referenced in this section is also included in Table 4. Out
of the 60 articles analyzed, only 14 of them provide direct access to the source code on GitHub. The lack of
comprehensive and reliable documentation undermines the reproducibility of recommender studies and hinders
validation and extension. A vital aspect of this challenge is the inadequate documentation of RS tools, which
includes algorithms, frameworks and software used in system development. Researchers struggle to understand
these tools’ functionality, parameters and implementation details, making replication and comparison diicult.
The insuiciency of clear documentation also makes it challenging to reproduce experiments and assess the
impact of tools on system performance, for example, using them in a shared and fair evaluation using the same
objective and dataset. Poor documentation has consequences beyond replication challenges, such as real-world
adoption.
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Table 4. Overview of all available sotware. The first column shows the paper’s author(s) and publication year. The second
column lists the field/area we defined above, and the next two list the name of the tool and URL link

Author(s) and Year Field Tool’ name url

Kim et al. (2016) [51] Genetic GSEH http://embio.yonsei.ac.kr/files/hjkim/gseh.zip

Peska et al. (2017) [74] Chemistry BRDTI http://www.ksi.mff.cuni.cz/~peska/BRDTI

Yang et al. (2017) [99] Health Yum-Me https://github.com/ylongqi/fooddist

Zhang et al. (2018) [105] Biology HIWCF https://github.com/laureniezhang/HIWCF

Yasuo et al. (2018) [102] Chemistry CoDe-DTI https://github.com/sekijima-lab/CoDe-DTI

Zeng et al. (2019) [104] Genetic DCF https://github.com/xzenglab/DCF

Embadi and Eslahchi
(2020) [24]

Biology DSPLMF https://github.com/emdadi/DSPLMF

Barros et al. (2020) [7] Chemistry CheRM https://github.com/lasigeBioTM/CheRM

Lim and Xie (2020) [56] Genetic WINTF https://github.com/XieResearchGroup/WINTF

Barros et al. (2021) [8] Chemistry ChemRecSys https://github.com/lasigeBioTM/ChemRecSys

Koras et al. (2021) [54] Biology DEERS
https://github.com/kkoras/rec-system-for-drug-

response

Sadeghi et al. (2021) [80] Chemistry NMF-DR https://github.com/sshaghayeghs/NMF-DR

Barros et al. (2021) [9] Health https://github.com/lasigeBioTM/blah7

Zhu et al (2021) [109] Genetic http://dip.doe-mbi.ucla.edu

After deining the biomedical items, another relevant question is who are the users for the domain?. In this
scenario, we split into two categories: health and others. Regarding health, a RS should be designed to be used
by an end-user who can be either a patient or a healthy personal as shown in Fig. 3. Aside from doctors, other
health professionals, such as nurses and pharmacists, could also beneit from the system. For others, there is a
greater dissipation between drugs, genes, cell lines, or diseases.

The availability of datasets is another topic of the domain that is usually neglected. Despite the advantages of
having public data, such as DrugBank or PubChem, this resource is rare for developing health recommendations
in particular (more than 30%) as shown in Fig. 4. Some of the issues originate from health data being inherently
privacy sensitive. One challenge is the need for patient privacy and data security protection [27]. Clinical
data contains sensitive information about patients. It must be handled carefully to avoid data breaches or
unauthorized access. Another challenge is the quality and completeness of the data. Health data can be complex
and challenging to interpret, as well as they are stored in multiple formats and systems, making integration and
analysis diicult. Additionally, this data may be incomplete or inaccurate, leading to incorrect or inefective
treatment recommendations. In the case of chemistry, the most signiicant data sources are DrugBank, PubChem,
and SIDER, as shown in Table 3. All of them are public, but these are real recommendation datasets. In contrast,
the dataset proposed by Barros et al. [7ś9] follows the standard format < user, item, rating >, where the items are
scientiic entities, the users are authors from research papers, where these items are mentioned, and the ratings
are the number of articles an author wrote about an entity. All datasets are available.
Recommender systems help reduce information overload by extracting user preferences or interests from

relevant datasets. The most commonly used datasets2 for RS are Netlix [10], Pinterest [58], MoviLens [40],
Amazon Product Data, MIND by Microsoft, Yelp Dataset and many others [11], all of them available in the
Kaggle platform3 and follows the standard format. Scientiic databases have emerged as one of the milestones in
the modern scientiic enterprise. Three databases can be mentioned in the biomedical area, all of them being

2Andreas Chandra, “Common Datasets Benchmark for Recommendation Systemž in Medium (April 2021)
3https://www.kaggle.com/datasets?search=recommender+system
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Fig. 3. Pair < users, items >interactions in the recommender system techniques used in this survey.

open-source and providing bioinformatics and cheminformatics resource: (1) DrugBank online [97] database
containing information on drugs and drug targets (protein); (2) GDSC database [101] with data on the sensitivity
of genomically characterized cancer cell lines to selected compounds; and (3) CCLE with about 1000 cancer cell
lines. Although, much research in the health ield is based on proprietary and non-public datasets.

4.2 (RQ2) Recommender system techniques

The recommender techniques are usually classiied into three main categories and briely described in the previous
section. As shown in Fig. 5, the CF is the most popular approach in the studies of this survey, 41 in total, followed
by CB with 10, 7 for hybrid iltering and 2 for others.

Collaborative iltering. CF models produce recommendations using a collaborative process that utilizes
multiple users’ ratings. A common matrix factorization is found in the vast majority of research indings
[14, 24, 32, 51, 87, 103]. If, on the one hand, Han et al. [37] and Zhang et al. [105] use the weighted matrix
factorization, on the other hand, Ha et al. [35] consider the probabilistic matrix factorization, and later, the same
authors added the miRNA functional similarity scores to avoid cold start problem from MF (IMIPMF) [36], inally
Embadi and Eslahchi [24] apply the logistic matrix factorization. Yue et al. [103] propose a modiied CF based on
user-based and the item-based. On the other hand, Hao et al. [39] and Liu et al. [59] design approaches derived
from neighbor-based to infer potential drug candidates for targets of interest. Ezzat et al. [25] present an ensemble
model-based with weighted KNN and graph regularized matrix factorization (GRMF). Otherwise, Galeano and
Paccanaro [29] suggest that latent factor models can be useful for detecting unknown adverse drug events early
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Fig. 4. Availability of datasets: a global view above and a distribution by fields below. Available and public data in health are
rare (less than 15%), chemistry is the field that provides more available datasets even though they do not follow the standard
format.

Fig. 5. Overview of the diferent recommender techniques by fields (above) and total below.

and accurately. Based on structured electronic health record data from a tertiary academic hospital, Chen et al.
[17] train an order recommendation system (item-based) analogous to Netlix or Amazon’s. Barros et al. [9],
with LIBRETTI methodology, found the relations between entities and recommended entities of interest for a
particular researcher. They selected the alternating least squared (ALS) as RS method.
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A total of 19 studies reported using a model-based CF like clustering, SVM, NB, elastic net, random forest, and
others [18, 21, 26, 38, 45, 55, 61, 62, 65, 66, 72, 74, 80, 92, 105ś109]. Ren et al. [77] use two methods: HCFMH and
cpHCFMH. HCFMH recommends search terms based on the most recent search terms and encounters, while
cpHCFMH suggests words based on a patient’s past encounters. One-class collaborative iltering (OCCF) problem
is present too [56, 90].

Deep learning is a growing ield with applications spanning several use cases. This survey identiies 6 papers.
Collaborative deep learning uses a combination of CF and the probabilistic matrix factorization (PMF) with
denoising autoencoder (DAE) [102], or stacked denoising autoencoders [104], or deep feed-forward neural
network, DeepSurv [50], and DEERS [54], to replace the dot product for modeling the user-item interactions in
the latent space, and capture the complex user-item interactions in the hidden space, word embeddings of NLP.
Yang et al. [100] develop a two-stage framework: the irst stage involved encoding the protein and nucleic acid
sequences into distributed feature vectors, and the second stage involved recommending binding preferences
for new proteins; a multilayer neural net [70]. Oszoy et al. [72] use the Pareto dominance and CF approaches to
predict future venue preferences (i.e., check-in locations) of target users.

Content-based iltering. CB is most commonly used when a lot of attribute information is available. Like in
CF, it works with data that the user provides, either explicitly (rating) or implicitly (clicking on a link). As a result,
CB is especially well adapted to making suggestions in text-heavy and unstructured domains. As expected, it is
in the health ield since (i) information about a patient’s health is collected in the form of an electronic medical
record (EMR) [60, 76, 88], or (ii) electronic health record (EHR) [12, 28, 44, 71, 79, 99] in medical centers, hospitals,
and pharmacies authorized to do so. Seko et al. [83] tailor a descriptor-based RS to estimate the relevance of
chemical compositions where crystals can be formed based on existing inorganic crystal structure database. The
model-based algorithms were logistic regression, gradient boosting, and random forest.

Hybrid. Several RS combine CF and CB methods, which helps to avoid certain limitations among these. Nouh
et al. [69] propose a smart RS of hybrid learning (SRHL) for personal well-being services regarding health
food service. SRHL includes: resolving the cold start problem for new users by transitioning between CB and
CF; detecting user context inside dynamic iltering; and integrating proile learner approaches to relect user
input. Sosnina et al. [85] apply RS approaches in the antiviral drug discovery context with the CF algorithm
implemented in Surprise package and sparse-group inductive matrix completion (SGIMC) implementation of CB.
Surprise Python package operates only the interaction matrix elements: KNN, clustering algorithms, and matrix
factorization. The RS proposed by Chen et al. [16] use a hybrid ML algorithm, which combines CF and CB ranking
to select messages that are most suitable for individual smokers. Ammar et al. [4] describe a personal health
library, namely mHealth app, that provides hybrid RS by incorporating KG and linked data. For recommending
chemical compounds, Barros et al. [8] developed a hybrid semantic recommendation model suitable for implicit
feedback datasets and focused on retrieving ranked lists based on the relevance of the items. In this model, the
authors incorporate CF for implicit feedback (ALS and Bayesian personalized ranking) and a new CB based on
semantic similarities among chemical compounds in ChEBI ontology.

Others. In this survey, we found two more studies that used other RS techniques, such as the KB. Wang et
al. [94] propose the KB RS for helping people with chronic diseases manage their health by recommending
educational materials. Through an ontology, it could link patient characteristics to the content of the materials.
Another one is proposed by Agapito et al. [2] for adaptive nutrition content delivery to patients with diet-related
chronic diseases and healthy subjects (DIETOS).

Summary. Generally, the RS techniques choice depends on the biomedical application and the available data.
Diferent techniques can be combined to improve the accuracy and efectiveness of recommendations. Among
the papers reviewed, recommendation based on CF (more precisely, model-based) prevailed, regardless of the
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ield and the data type (health data or data from public databases, e.g., GDSC and CCLE). Because of its speciicity,
it was expected that the CB model would be used to recommend therapeutics in more signiicant numbers. For
example, a CB system can recommend a treatment based on its mechanism of action or reported side efects. This
approach is advantageous when patient data is limited, or there are well-deined criteria for treatment. Another
application could be drug discovery to predict drug eicacy and safety based on a candidate’s chemical and
biological properties. In addition, the use of KB to model therapy-patient-disease relationships will be increasingly
used. KB can help identify patterns and relationships that may not be obvious from patient data alone, leading to
more accurate and efective recommendations.

4.3 (RQ3) Knowledge-graph based recommendation algorithms

Knowledge-graph recommendation leverages the connections among the entities of the user, the items, and their
interaction to determine the best recommendations. The algorithms use explicit or implicit connections to ind
items that may be interesting or valuable to the users. The relationships give extra essential information to the KG-
based recommender, allowing it to use inference between nodes to uncover novel connections. Three approaches
were described above: (1) embedding-based, (2) connection-based, and (3) uniied method. As presented in Fig. 6,
13 out of 60 studies use KG to improve the results in the RS. A curiosity is that the ield of genetics resorts to
using this methodology, a value we do not ind in other areas. It is also worth noting that the hybrid technique
has a higher propensity to the KG regardless of ield.

Fig. 6. Knowledge-graph in numbers: overview of papers distribution by field and recommendation system methods.

Embedding-based approaches can be divided in three phases: (i) representing entities and relations, (ii) con-
structing a scoring mechanism, and (iii) learning entity and relation representations. Wang et al. [93] categorize
such embedding techniques into two groups: translational distance, and semantic matching [4, 108] models.
For instance, Zheng et al. [108] irst designed a pretraining method based on neural CF to get the initial

embeddings for patients and drugs. The drug interaction graph will be initialized using the medical records and
domain knowledge. The proposed drug package recommendation aims to build a Personalized scoring function
for each patient. Ammar et al. [4] created a Resource Description Framework (RDF) representation of a personal
KG that maintains a digital health state of each patient from a historical perspective.
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Connection-based approaches use the user-item graph to ind path-level similarities between items by
pre-deining meta-paths or automatically mining connective patterns. Users can also get an explanation for the
outcome using the path-based method. As mentioned above, two methods are described: the meta-structured
based [25, 36, 90, 104, 108], and the path-embedding based [21, 35, 94].
For instance, Ezzat et al. [25] propose a method for tackling the drug-target interaction with the GRMF to

prevent overitting. The authors derived a p-nearest neighbor graph from each drug and target similarity matrices.
Wang et al. [90] integrate heterogeneous datasets from genomics (ZINC, ChEMBL, and DrugBank databases) into
a multi-layered network model. In this model, each node is either a chemical entity (drugs and other chemicals), a
biological entity (genes or proteins that it encodes), or a phenotype entity (disease and side efects). Nodes in the
same entity class are linked by similarity (e.g., chemical-chemical similarity) or interactions (e.g., protein-protein
interactions). Nodes that belong to diferent entity classes reside in diferent network layers and are linked by
known associations (e.g., drug-target interactions, disease-gene associations). Chemical-chemical, gene-gene, and
disease-disease similarity scores are inputs of the proposed tREMAP CF algorithm. Zeng et el. [104] adopt the
Katz measure, a graph-based method to measure how similar two nodes are by computing based on how many
paths of diferent lengths exist between them. Ha et al. [36] use the miRNA network as supplementary data to
improve prediction accuracy. The miRNA network can be deined as a graph in which a node represents each
miRNA, and an edge means each similarity weight. Corrado et al. [21] propose a CF that can also be interpreted
as a feed-forward neural network with a Kroneker layer (second-order units). Briely, the matrix factorization
would map users and items to a latent feature space where a signiicant correlation (dot product) between latent
vectors predicts an interacting user-item pair. Wang et al. [94] use the KB RS with a combination of ontology and
several NLP techniques to recommend Chinese educational materials to chronic disease patients.

Summary. The papers discuss embedding-based approaches for representing entities and relations, constructing
scoring mechanisms, and learning entity/relation representations. The techniques are categorized into trans-
lational distance and semantic matching models. On the one hand, based on pre-training methods and a drug
interaction graph, these techniques can be used in personalized drug package recommendations for patients.
On the other hand, they use a RDF representation to create personal KG, historically maintaining the digital
health status of each patient. Embedding-based approaches have shown promise in personalized drug RS based
on patient-speciic information. A connection-based explores the user-item graph to ind similarities between
items by either mining connection patterns or predeining meta-paths. Two methods are used: meta-structured
based and path-embedding based. For instance, drug-target interactions are addressed using meta-structured
methods based on p-nearest neighbor graphs. Multilayer network models are used with path-embedding based
methods for integrating heterogeneous genomic data.

4.4 (RQ4) ualitative evaluation methods of recommendation systems

A RS’s purpose is to predict how likely users would appreciate unknown items based on what the system already
knows about them. The most common evaluation method is, as illustrated in the Fig. 7, the oline evaluation
using existing datasets to estimate the accuracy measures of a RS.

Predictive accuracy represents the degree of similarity between the recommender’s estimated and actual
user ratings. This sort of measure is frequently used to evaluate non-binary ratings. For instance, Katzman et al.
[50] consider the DeepSurv model with the concordance-index (C-index) and the MSE to quantify the diference
between the model’s predicted log-risk function and the true log-risk values. Otherwise, the experimental results
of the SRHL model [69] are evaluated by using three absolute error measures: MSE, MAPE, and MAE.

Classiication metrics aim to determine a recommendation algorithm’s decision-making success. The perfor-
mance of a RS may also be represented graphically using ROC, and the AUC indicates how well the model can
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Fig. 7. Evaluation measures distribution in all surveyed papers, in case they have been disclosed.

Legend: Accuracy (ACC), Area Under Curve (AUC), PrecisionśRecall Curve (AUPRC), Area Under the Receiver
Operating Characteristic curve (AUROC), Averaged Root Mean Square Error (RMSE), F-measure (F1), Half-Life Utility
(HLU), Half-maximal inhibitory concentration (IC50), Hit Ratio (HR), limited Area Under the Curve (lAUC), Mean
Absolute Error (MAE), Mean Average Precision (MAP), Mean Absolute Percentage Error (MAPE), Matthews Correlation
Coeicient (MCC), Mean Percentile Ranking (MPR), Mean Reciprocal Rank (MRR), Mean Square Error (MSE), normalized
Discounted Cumulative Gain (nDCG), Pearson Correlation Coeicient (PCC), Precision (PPV), Recall (RE), Speciicity
(SP)

distinguish between classes. As seen in Fig. 7, more than 25% use the above metrics. For instance, Sadeghi et al.
[80] propose a RS-based method for drug repurposing to predict novel drug indications by integrating drug and
diseases related data sources. The AUC performance is evaluated and compared with other methods using 5-
and 10-fold cross-validation. The following performances are added to the previous works like (i) ROC curves to
compare an ensemble extended neighborhood-based recommendation model [26], the CoDe-DTI method [102],
the DS-CTR model [92], the IMIPMF method [35], and the eiciency of antiviral activity class prediction with
Hybrid techniques [85] with other advanced models; and, (ii) ROC curves and AUPRC for highly imbalanced
datasets such as for predicting side efects of marketed drugs [29], the improved prediction of miRNA-disease
associations (IMDN) framework [36], the CFMM method [109]. Ezzat et al. [25] adopt the GRMF model using
10-fold cross validation in simulated “new drugž and “new targetž cases. Hao and Blair [38] study a user-based
CF on medical data with a categorical outcome in four publicly available datasets. Same evaluation metrics: recall
and speciicity, are applied for the DIETOS framework [2], a food RS for healthy people and individuals afected
by diet-related chronic diseases. Pustozerov et al. [76] develop a RS infrastructures that incorporate personalized
blood glucose prediction algorithms for diabetes patients. The model performance is estimated using standardized
metrics (RMSE, MAE, and MAPE).
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Recall and precision are the traditional evaluation metrics and the most widely used recommendation quality
measures [11], as shown in Fig. 7, with approximately 33% for both. Precision is a measure of recommended
items that are relevant. Otherwise, recall measures relevant items found in the recommendations items. Both help
construct an “unbiasedž test dataset and then score the resulting test dataset using a model [22]. With the above
metrics, Macedo et al. [60] propose a software framework in the biomedical domain and recommend related
scientiic information to alert health professionals to promote preventive healthcare. However, qualitative analysis
is carried out in addition to quantitative indicators. Zeng et al. [104] evaluate the performance of the deep CF
model with ive real-world datasets (see Appendix Table 6) in biology and compared with the others algorithms
such as graph-based method, bagging SVM classiier, and many others. The following performances are added to
the previously listed, like (i) F1-measure [55, 61, 62, 107, 108]; (ii) AUROC [17, 18, 21]; and, (iii) the aforementioned
and AUPRC [72, 106], were used to weight the evaluation recommendation results. For instance, the performance
of the RNAcommender [21] is computed in a leave-one-protein-out experiments. The model-based CF technique
is something all mentioned papers have in common. Regarding to the DSPLMF model [24] on two datasets (GDSC
and CCLE) the metrics are ACC, RE, PPV, SP, F1, MCC and AUC.

Ranking accuracy, also known as rank correlation measurement, measures the ability of a recommender to
estimate the correct order of items based on the user’s preferences. The PCC is one of the most popular means to
evaluate how much two users are related in a CF approach. An example of this is the HyperRecSysPA model
[28]. The HCFMH and cpHCFMH models [77] are evaluated with the HR@k to compare other recommendation
methods. Performance and robustness of CaDRReS [87] using Spearman correlation, nDCG across 10 runs of
5-fold cross-validation and HR (number of sensitive drugs identiied).
Besides classiication metrics, error metrics were also employed to measure the error made by a RS when

predicting an item rating [66, 70]. For instance, Mustaqeem et al. [66] present a hybrid model that gives cardiac
patients illness predictions and treatment advice with a clinical dataset collected and labeled in consultation with
medical experts. The prediction results are evaluated using three metrics, i.e., ACC, Kappa statistics, and RMSE.
Ochoa et al. [70] implement RS that analyses the frequency of medical events in the EHR and delivers and the
quality of the model was found with PPV, RE, ACC and RMSE.
On the other hand, both classiication and ranking metrics are used to evaluate the relevance of the rec-

ommended item [7, 8, 12, 37, 39, 56, 74]. Regarding Barros et al. [7, 8], the recommending ranked of chemical
compounds are evaluated with six metrics, i.e., PPV, RE, F1, MRR, nDCG and lAUC. Lim and Xie [56] identify
target genes of transcription factors and the performances of the two methods: WINTF and REMAP, with four
diferent metrics, for instance, AUROC, MAP, HLU and MPR.

The system for data-driven therapy decision support developed by Gräßer et al. [32] considers three diferent
evaluation metrics: irst, the individual RS produces a prediction of how the patient will respond to speciic
therapies with RMSE; second, the top-ranked therapies based on the ainity predictions are usually presented
to the user after selection from the consultation with the precision; and, third, for the similarity computation,
the Gower coeicient, cosine, Pearson and Spearman correlations are applied. The Gower’s coeicient has the
advantage of allowing for missing values and permits the introduction of a user-deined weighting scheme.
To overcome the probability distribution with zero mean and constant variance assumptions, [32] applied the
Spearman correlation. The online framework Yum-me [99] is evaluated both oline and online. Regarding oline,
classiication and error metrics are applied.

Online. RS emerged to model user preferences in various online applications to tackle the information overload
problem. In general, RS have been developed to solve the problem of information increase and enhance the user
experience on various online applications. Examples in health ields are PepperRec [44], PHIR [44], MUBS [79],
HERS [71], CTHC [16] and personal health libraryśenabled mHealth [4] with personal and clinical data
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Table 5. Top@10 of the evaluation metrics by each user-defined field.

Biology Chemistry Genetic Health

ACC 1 2 1 1
AUPRC 5 2 1
AUROC 2 7 5 3
F1 1 6 1 2
MAE 6

PCC 3 1 5

PPV 1 5 3 12

Qualitative feedback 6

RE 1 6 2 12

ARMSE 3 6

Legend: Accuracy (ACC), Area Under the PrecisionśRecall Curve (AUPRC), Area Under the Receiver
Operating Characteristic curve (AUROC), Averaged Root Mean Square Error (ARMSE), F-measure (F1), Mean
Absolute Error (MAE), Pearson Correlation Coeicient (PCC), Precision (PPV), Recall (RE)

Summary. There are several papers discussing attempts to improve the accuracy of RS results, for example
RMSE, MAE, etc. Additionally, it is common to try to improve recommendations with PPV, RE, AUROC for
instance. Recall and PPV (35%) and AUROC (28%) were the most commonly used oline evaluation metrics as
shown in Fig. 7. Other popular oline evaluation metrics are accuracy-related measurements, such as F1, 16%,
PCC, 16%, RMSE, 14%, MAE, 12%, and SP 12%. Measurements of the other metrics are inconsistent. Table 5 shows
the top@10 common metrics by ields. Classiication metrics are predominant in all ields, and as we expected
online feedback is exclusive for Health.

5 CONCLUSIONS

In this survey paper, we examine RS for biomedical items and summarize the previous eforts on this topic.
For this purpose, several papers published between 2015 and November 2021 from ive scientiic databases are
retrieved for this purpose. After examining and selecting publications, 60 papers are categorized using a RS
technique. The results show that in the last decade, the digital information (e.g., laboratory results, treatment
plans, and medical reports) available for patient-oriented decision-making has increased dramatically. Because
this information is scattered everywhere and in text form, one solution was to centralize it into personal health
record systems, which can be managed like a classical information retrieval (IR) problem. A RS provides its users
with medical information intended to be highly relevant for healthcare development. Most health data sets are
not publicly available (≠ 30%) because they are sensitive and derived from private clinical data. In contrast, 60% of
the datasets are available, but most lack key characteristics to enable good reproducibility and extensibility. These
values result from some studies in chemistry with open databases such as CCLE and GDSC. The most signiicant
data source is presented, with a prevalence of the GDSC, CCLE, and DrugBank databases. In general, the RS has
made remarkable progress in recent years, developing various RS tools and datasets. However, amid this progress,
the poor availability and quality of documentation for RS tools and datasets pose a signiicant challenge to the
reproducibility of RS research. Replicability is essential for corroborating and expand the impact of research
indings, but the lack of comprehensive and reliable documentation hinders this process. Poor documentation of
RS tools makes it diicult for researchers to understand their functionality and replicate experiments. Similarly,
poor documentation of datasets makes it diicult to assess their quality and reproduce experiments using the same
data. Enforcing documentation standards, encouraging detailed information in research papers, and collaborating
on best practices can improve the reproducibility and impact of RS research. As mentioned above, of the 60
articles analyzed, only 14 provide access to the source code on GitHub. An international shared-evaluation
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would also be a boost to the mitigate this problem, like the Message Understanding Conferences (MUC) and Text
REtrieval Conference (TREC) challenges were to IR. Following good examples such as BioCreative and BioASQ
for biomedical text mining. An outstanding feature in this study is that most didn’t follow the standard format
<user, item, rating>, commonly used in RS. Another relevant point that deserves mention is that the model-based
CF is the most used regardless of the ield. This fact is primarily due to applying the ML algorithms (totaling
19 papers). Regarding the performance measurement of the recommendation techniques, the metrics remain
oline, and the accuracy of recommended items is based on classiication metrics (precision, recall, and AUROC).
The research examines diferent approaches to utilizing KG as supplementary data to improve recommendation
results and provide interpretable information in the recommendation process based on real-life experiences. New
methods are emerging, proving that KG-based recommendation is a viable solution. Despite the numerous studies
conducted in recent years, this is still an emerging ield of research. More comprehensive studies are needed. We
hope this survey paper can help readers better understand work in this area. Hopefully, new work can emerge in
this area, minimizing the “cold-startž problem that is currently highly prevalent.

5.1 Future directions and challenges of the Knowledge-graph based recommendation

The future and potential of BMKG are vast and exciting. KGs provide a powerful way to organize, integrate, and
analyze biomedical data meaningfully, given the rapid growth of biomedical data and the increasing need for
personalized medicine and precision healthcare. They are a powerful tool for understanding complex relation-
ships between entities in biomedicine. Some applications are identifying new drug targets, predict drug-drug
interactions, and develop personalized patient treatment plans by representing these relationships as nodes
and edges in a graph. In addition to their research and clinical applications, BMKG also have the potential to
transform healthcare delivery by improving the interoperability of disparate electronic health record systems
and enabling more accurate and eicient diagnosis and treatment. One of the challenges is the need for accurate
and comprehensive data. While a wealth of biomedical data is available, much of it is still siloed in diferent
databases and formats, and there are signiicant challenges in integrating and harmonizing this data. However,
with the increasing adoption of standard data formats and the development of new data integration and analysis
technologies, the potential for BMKG is enormous. Several challenges are associated with using BMKG. Some
of the major challenges include: (1) data integration, (2) KG quality, (3) scalability, (4) domain expertise,
(5) interpretability, and (6) evaluation. In summary, BMKG contain heterogeneous data from multiple sources.
Integrating this data into a single KG can be challenging due to data formats, quality, and completeness diferences.
Incomplete or inaccurate information can lead to poor recommendations, and a growing KG can lead to slower
recommendation times and reduced usability. Building and maintaining a KG requires signiicant biomedical
and data science expertise, which can be a barrier for organizations with limited resources or expertise. As with
traditional RS, the interpretability of the recommendation results is critical, and healthcare professionals need
to understand how the recommendations are generated. Evaluating the performance of KG-based RS can be
challenging. Developing appropriate evaluation metrics and benchmark datasets is critical to ensuring the quality
and reliability of recommendations.
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Table 6. Overview of all surveyed papers which apply recommender systems and their approaches for biomedical items. The
first column shows the paper’s author(s) and publication year. The second column lists the field/area we defined above, and
the following two list each paper’s users and items. Column five shows the data sources in case they have been disclosed.
The sixth column lists the paradigm(s) (i.e., recommendation system strategy) employed by the algorithm(s) in the paper.
Column seven lists the presence/use of knowledge-graph for each paper. The eighth column shows the evaluation metrics
used in the paper. The last two columns show whether the datasets are available for replication and public. The abbreviations
used in the table can be found at the end of this.

Author(s) and
Year

Field User Item Data source Str. KG
Evaluation
metric

Avail. Public

Zhang et al.
(2015) [107]

Chemistry
health

consumers
drugs Online drug store Walgreens CF No PPV, RE, F1 n.a. public

Zhang et al.
(2016) [106]

Chemistry drugs drug response SIDER, PubChem, DrugBank CF No
PPV, RE, F1, SP,
ACC, AUPRC,

AUROC
avail. public

Macedo et al.
(2016) [60]

Health
healthcare

professionals
health

information
PubMed CB No PPV, RE avail. private

Hao and Blair
(2016) [38]

Health patients
health

information
NHANES, SUPPORT, Chronic

Kidney, Dermatology
CF No RE, SP avail. public

Corrado et al.
(2016) [21]

Genetic genes RNA AURA 2 CF Yes PPV, AUROC n.a. public

Chen at al.
(2016)[18]

Health
healthcare

professionals
health

information
Clinical Data CF No PPV, RE, AUROC n.a. private

Kim at al. (2016)
[51]

Genetic genes disease Singh, GSE15484, TCGA_PRAD CF No AUC, PCC avail. public

Ezzat et al. (2016)
[25]

Chemistry drugs protein
Enzyme, Ion channel, GPCR, Nuclear

receptor
CF Yes AUPRC avail. public

Mustaqeem et al.
(2017) [65]

Health patients
health

information
Clinical Data CF No RE, SP, ARMSE avail. private

Bocanegra et al.
(2017) [12]

Health
health

consumers
health

educational
Medical videos CB No PPV, nDCG n.a. public

Gräßer et al.
(2017) [32]

Health patients
health

information
Clinical Data CF No

PPV, ARMSE,
PCC, Cosine
similarity, SC

n.a. private

Chen et al. (2017)
[17]

Health
healthcare

professionals
health

information
Clinical Data CF No PPV, RE, AUROC n.a. private

Fan et al. (2017)
[26]

Chemistry drugs CNS side efects
PubChem, DrugBank, Clinical Data,

KEGG
CF No AUROC, AUPRC avail. public

Medina-Moreira
et al. (2017) [61]

Health patients
health

information
Clinical Data CF No PPV, RE, F1 n.a. private

Peska et al. (2017)
[74]

Chemistry drugs drug-targets
Enzyme, Ion channel, GPCR, Nuclear

receptor
CF No AUROC, nDCG avail. public

Continued on next page
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Table 6 ś Continued from previous page

Author(s) and
Year

Field User Item Data source Str. KG
Evaluation
metric

Avail. Public

Yang et al. (2017)
[99]

Health
health

consumers
meals Personal Data CB No

PCC, ARMSE,
MAE

avail. public

Ozsoy et al.
(2018) [72]

Health drugs disease
DrugBank, PubChem, UniProt,

SIDER
CF No

PPV, RE, F1,
AUPRC, AUROC

avail. public

Zhang et al.
(2018) [105]

Biology cell-lines drug response GDSC, CCLE CF No PCC, ARMSE avail. public

Wang et al. (2018)
[90]

Chemistry drugs disease ZINC, ChEMBL, DrugBank CF Yes RE avail. public

Seko et al. (2018)
[83]

Chemistry
chemical

compounds
chemical ICSD CB No ACC avail. public

Suphavilai et al.
(2018) [87]

Biology cell-lines drug response GDSC, CCLE CF No
nDCG, Spearman,

HR
avail. public

Pustozerov et al.
(2018) [76]

Health patients disease Personal Data CB No
AUC, ARMSE,
MAE, MAPE

n.a. private

Iatraki et al.
(2018) [44]

Health patients
health

documents
Patient Preferences CB No

Qualitative
feedback

n.a. private

Agapito et al.
(2018) [2]

Health patients
nutritional
advices

Personal Data Other No RE, SP avail. private

Liu et al. (2018)
[59]

Biology cell-lines drug response GDSC, CCLE CF No PCC, ARMSE avail. public

Katzman et al.
(2018) [50]

Health patients treatments WHAS, SUPPORT, METABRIC CF No MSE avail. public

Yasuo et al. (2018)
[102]

Chemistry drugs drug-targets DrugBank CF No AUROC avail. public

Hao et al. (2018)
[39]

Chemistry drugs drug-targets
KEGG BRITE, BRENDA,
SuperTarget, DrugBank

CF No
AUROC, AUPRC,

MPR
avail. public

Galeano and
Paccanaro (2018)

[29]
Chemistry drugs drug response SIDER CF No AUROC, AUPRC avail. public

Han et al. (2018)
[37]

Health patients
health

professional
Clinical Data CF No PPV, HR n.a. private

Mehrabad et al.
(2018) [62]

Genetic genes protein
RAT, FLY, HUMAN, Du et al.,

DBMLoc and Höglund
CF No PPV, RE, F1, ACC avail. public

Wang et al. (2018)
[92]

Biology drugs drug response GDSC, PubChem CF No AUROC, ROC public

Torrent-
Fontbona and

López (2019) [88]
Health

health
consumers

drugs Clinical Data CB No
Qualitative
feedback

avail. public

Nouh et al. (2019)
[69]

Health
health

consumers
health

information
Personal Services H No

MSE, MAPE,
MAE

n.a. private

Jabeen et al.
(2019) [45]

Health
health

consumers
disease Clinical Data CF No PCC, RE, MAE n.a. private

Lan et al. (2019)
[55]

Chemistry drugs
enzyme
proteins

LMMD CF No F1 n.a.

Zeng et al. (2019)
[104]

Genetic genes disease
Microarray, HumanNet,

Gene-phenotype associations,
STRING

CF Yes PPV, RE avail. public

Sosnina et al.
(2020) [85]

Chemistry drugs drug response CHEMBL H No AUROC avail. public

Ferretto et al.
(2020) [28]

Health patients treatments Personal Services CB No PCC n.a. private

Mustaqeem et al.
(2020) [66]

Health patients disease Clinical Data CF No PPV, RE, MAE n.a. private

Embadi and
Eslahchi (2020)

[24]
Biology cell-lines drug response GDSC, CCLE CF No

PPV, RE, F1, SP,
ACC, MCC

avail. public

Continued on next page
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Table 6 ś Continued from previous page

Author(s) and
Year

Field User Item Data source Str. KG
Evaluation
metric

Avail. Public

Wang et al. (2020)
[94]

Health patients
health

information
Clinical Data Other Yes PPV, MAP n.a. private

Rohani et al.
(2020) [79]

Health patients
activities
advices

Personal Data CB No
Qualitative
feedback

n.a. private

Ha et al. (2020)
[35]

Genetic disease RNA dbDEMC, HMDD, miR2Disease CF Yes AUROC avail. public

Ha et al. (2020)
[36]

Genetic disease RNA dbDEMC, HMDD, miR2Disease CF Yes AUROC, AUPRC avail. public

Barros et al.
(2020) [7]

Chemistry
authors’
articles

chemical
compounds

CheRM-20 H Yes
PPV, RE, F1,
MRR, nDCG,

lAUC
avail. public

Lim and Xie
(2020) [56]

Genetic genes genes ChEA CF No
AUROC, MAP,
HLU, MPR

n.a. public

Ren et al. (2020)
[77]

Health
healthcare

professionals
search terms Clinical Data CF No HR n.a. private

Barros et al.
(2021) [8]

Chemistry
authors’
articles

chemical
compounds

CheRM-20 H Yes
PPV, RE, F1,
MRR, nDCG,

lAUC
avail. public

Koras et al. (2021)
[54]

Biology cell-lines drugs GDSC CF No
PCC, AUROC,
IC50, ARMSE

avail. public

Brandão et al.
(2021) [14]

Biology cell-lines drugs GDSC CF No HR avail. public

Zheng et al.
(2021)[108]

Chemistry
healthcare

professionals
drugs EMR, DrugBank, YaoZhi CF Yes PPV, RE, F1 n.a. private

Yue et al. (2021)
[103]

Health patients
health

information
SARA CF No

PCC, ARMSE,
MAE

avail. public

Ormel et al.
(2021) [71]

Health patients
health

information
Personal Data CB No

Qualitative
feedback

n.a. private

Sadeghi et al.
(2021) [80]

Chemistry drugs drug response
PREDICT, DrugNet, CDataSet,

TL-HBGI
CF No AUC avail. public

Barros et al.
(2021) [9]

Health articles ontologies PubMed H Yes PPV, RE, MRR avail. public

Ochoa et al.
(2021) [70]

Health
healthcare

professionals
health

information
Pakistan CF No

PPV, RE, ACC,
ARMSE

avail. public

Chen et al. (2021)
[16]

Health users
health

information
Personal Data H No

Qualitative
feedback

n.a. private

Ammar et al.
(2021) [4]

Health
health

consumers
health

information
Personal Data H Yes

Qualitative
feedback

n.a. private

Zhu et al. (2021)
[109]

Genetic genes protein DIP, Krogan, Gavin, Pfam CF No
AUROC, AUPRC,

AUC
avail. public

Recommendation system strategy (Str.), content-based (CB), collaborative iltering (CF), Hybrid (H), Available (avail.), Non-available (n.a.)

Metrics: Accuracy (ACC), Area Under Curve (AUC), PrecisionśRecall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve (AUROC),
Root Mean Square Error (RMSE), F-measure (F1), Half-Life Utility (HLU), Half-maximal inhibitory concentration (IC50), Hit Ratio (HR), limited Area
Under the Curve (lAUC), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Average Precision (MAP), Matthews Correlation
Coeicient (MCC), Mean Percentile Ranking (MPR), Mean Reciprocal Rank (MRR), Mean Square Error (MSE), normalized Discounted Cumulative Gain
(nDCG), Pearson Correlation Coeicient (PCC), Precision (PPV), Recall (RE), Speciicity (SP).

Database: Database of Interacting Proteins (DIP), Atlas of UTR Regulatory Activity (AURA 2), Cancer Cell Line Encyclopedia (CCLE), ChIP Enrichment
Analysis (ChEA), Electronic Medical Records (EMR), G protein-coupled receptors (GPCR), Gene Expression Dataset from prostate cancer patients (GSE15484),
Genomics of Drug Sensitivity in Cancer (GDSC), Inorganic Crystal Structure Database (ICSD), Laboratory of Molecular Modeling and Design repository
(LMMD), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Health and Nutrition Examination Survey (NHANES), RNA Recognition Motif
(RRM), Side efect resource (SIDER), Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT), The Cancer Genome Atlas:
Prostate Adenocarcinoma (TCGA_PRAD) and Worcester Heart Attack Study (WHAS).

ACM Comput. Surv.



26 • Matilde Pato et al.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the

state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering 17, 6 (2005), 734ś749. https://doi.org/10.1
109/TKDE.2005.99

[2] Giuseppe Agapito, Mariadelina Simeoni, Barbara Calabrese, Ilaria Caré, Theodora Lamprinoudi, Pietro H Guzzi, Arturo Pujia, Giorgio
Fuiano, and Mario Cannataro. 2018. DIETOS: A dietary recommender system for chronic diseases monitoring and management.
Computer methods and programs in biomedicine 153 (2018), 93ś104. https://doi.org/10.1016/j.cmpb.2017.10.014

[3] Charu C Aggarwal. 2016. Ensemble-Based and Hybrid Recommender Systems. In Recommender systems. Springer, 199ś224. https:
//doi.org/10.1007/978-3-319-29659-3_6

[4] Nariman Ammar, James E Bailey, Robert L Davis, and Arash Shaban-Nejad. 2021. Using a Personal Health LibraryśEnabled mHealth
Recommender System for Self-Management of Diabetes Among Underserved Populations: Use Case for Knowledge Graphs and Linked
Data. JMIR Formative Research 5, 3 (2021), e24738. https://doi.org/10.2196/24738

[5] Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam A Margolin, Sungjoon Kim, Christopher J Wilson,
Joseph Lehár, Gregory V Kryukov, Dmitriy Sonkin, et al. 2012. The Cancer Cell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature 483, 7391 (2012), 603ś607. https://doi.org/10.1038/nature11003

[6] Márcia Barros, André Moitinho, and Francisco M Couto. 2019. Using research literature to generate datasets of implicit feedback for
recommending scientiic items. IEEE Access 7 (2019), 176668ś176680. https://doi.org/10.1109/ACCESS.2019.2958002

[7] Márcia Barros, André Moitinho, and Francisco M Couto. 2020. Hybrid semantic recommender system for chemical compounds.
Advances in Information Retrieval 12036 (2020), 94. https://doi.org/10.1007/978-3-030-45442-5_12

[8] Márcia Barros, André Moitinho, and Francisco M Couto. 2021. Hybrid semantic recommender system for chemical compounds in
large-scale datasets. Journal of cheminformatics 13, 1 (2021), 1ś18.

[9] Márcia Barros, Pedro Ruas, Diana Sousa, Ali Haider Bangash, and Francisco M Couto. 2021. COVID-19 recommender system based on
an annotated multilingual corpus. Genomics & Informatics 19, 3 (2021). https://doi.org/10.5808%2Fgi.21008

[10] J. Bennett and S. Lanning. 2007. The Netlix Prize. In Proceedings of the KDD Cup Workshop 2007. ACM, New York, 3ś6.
[11] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. 2013. Recommender systems survey. Knowledge-based

systems 46 (2013), 109ś132. https://doi.org/10.1016/j.knosys.2013.03.012
[12] Carlos Luis Sanchez Bocanegra, Jose Luis Sevillano Ramos, Carlos Rizo, Anton Civit, and Luis Fernandez-Luque. 2017. HealthRecSys: A

semantic content-based recommender system to complement health videos. BMC medical informatics and decision making 17, 1 (2017),
1ś10. https://doi.org/10.1186/s12911-017-0431-7

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for
Modeling Multi-relational Data. Advances in neural information processing systems 26 (2013).

[14] Liliana Brandão, Fernando Paulo Belfo, and Alexandre Silva. 2021. Wavelet-based cancer drug recommender system. Procedia Computer

Science 181 (2021), 487ś494. https://doi.org/10.1016/j.procs.2021.01.194
[15] Robin Burke. 2002. Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction 12, 4 (2002),

331ś370. https://doi.org/10.1023/A:1021240730564
[16] Jinying Chen, Thomas K Houston, Jamie M Faro, Catherine S Nagawa, Elizabeth A Orvek, Amanda C Blok, Jeroan J Allison, Sharina D

Person, Bridget M Smith, and Rajani S Sadasivam. 2021. Evaluating the use of a recommender system for selecting optimal messages for
smoking cessation: patterns and efects of user-system engagement. BMC public health 21, 1 (2021), 1ś13. https://doi.org/10.1186/s12889-
021-11803-8

[17] Jonathan H Chen, Muthuraman Alagappan, Mary K Goldstein, Steven M Asch, and Russ B Altman. 2017. Decaying relevance of clinical
data towards future decisions in data-driven inpatient clinical order sets. International journal of medical informatics 102 (2017), 71ś79.
https://doi.org/10.1016/j.ijmedinf.2017.03.006

[18] Jonathan H Chen, Tanya Podchiyska, and Russ B Altman. 2016. OrderRex: clinical order decision support and outcome predictions
by data-mining electronic medical records. Journal of the American Medical Informatics Association 23, 2 (2016), 339ś348. https:
//doi.org/10.1093/jamia/ocv091

[19] Qing Cong, Zhiyong Feng, Fang Li, Li Zhang, Guozheng Rao, and Cui Tao. 2018. Constructing Biomedical Knowledge Graph Based on
SemMedDB and Linked Open Data. In 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, 1628ś1631.
https://doi.org/10.1109/BIBM.2018.8621568

[20] Gene Ontology Consortium. 2019. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic acids research 47, D1 (2019),
D330śD338. https://doi.org/10.1093/nar/gky1055

[21] Gianluca Corrado, Toma Tebaldi, Fabrizio Costa, Paolo Frasconi, and Andrea Passerini. 2016. RNAcommender: genome-wide recom-
mendation of RNAśprotein interactions. Bioinformatics 32, 23 (2016), 3627ś3634. https://doi.org/10.1093/bioinformatics/btw517

[22] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n recommendation tasks.
In Proceedings of the fourth ACM conference on Recommender systems. 39ś46. https://doi.org/10.1145/1864708.1864721

ACM Comput. Surv.

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1016/j.cmpb.2017.10.014
https://doi.org/10.1007/978-3-319-29659-3_6
https://doi.org/10.1007/978-3-319-29659-3_6
https://doi.org/10.2196/24738
https://doi.org/10.1038/nature11003
https://doi.org/10.1109/ACCESS.2019.2958002
https://doi.org/10.1007/978-3-030-45442-5_12
https://doi.org/10.5808%2Fgi.21008
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1186/s12911-017-0431-7
https://doi.org/10.1016/j.procs.2021.01.194
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1186/s12889-021-11803-8
https://doi.org/10.1186/s12889-021-11803-8
https://doi.org/10.1016/j.ijmedinf.2017.03.006
https://doi.org/10.1093/jamia/ocv091
https://doi.org/10.1093/jamia/ocv091
https://doi.org/10.1109/BIBM.2018.8621568
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/bioinformatics/btw517
https://doi.org/10.1145/1864708.1864721


Survey on Recommender Systems for Biomedical Items in Life and Health Sciences • 27

[23] Robin De Croon, Leen Van Houdt, Nyi Nyi Htun, Gregor Štiglic, Vero Vanden Abeele, Katrien Verbert, et al. 2021. Health Recommender
Systems: Systematic Review. Journal of Medical Internet Research 23, 6 (2021), e18035. https://doi.org/10.2196/18035

[24] Akram Emdadi and Changiz Eslahchi. 2020. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization
Approach in Logistic Matrix Factorization. Frontiers in genetics 11 (2020), 75. https://doi.org/10.3389/fgene.2020.00075

[25] Ali Ezzat, Peilin Zhao, Min Wu, Xiao-Li Li, and Chee-Keong Kwoh. 2016. Drug-Target Interaction Prediction with Graph Regularized
Matrix Factorization. IEEE/ACM transactions on computational biology and bioinformatics 14, 3 (2016), 646ś656. https://doi.org/10.1109/
TCBB.2016.2530062

[26] Jun Fan, Jing Yang, and Zhenran Jiang. 2018. Prediction of Central Nervous System Side Efects Through Drug Permeability to
BloodśBrain Barrier and Recommendation Algorithm. Journal of Computational Biology 25, 4 (2018), 435ś443. https://doi.org/10.1089/
cmb.2017.0149

[27] Maria Fernandes, Jérémie Decouchant, and Francisco M. Couto. 2023. Chapter Two - Security, privacy, and trust management in DNA
computing. In Perspective of DNA Computing in Computer Science, Suyel Namasudra (Ed.). Advances in Computers, Vol. 129. Elsevier,
39ś81. https://doi.org/10.1016/bs.adcom.2022.08.009

[28] Luciano Rodrigo Ferretto, Ericles Andrei Bellei, Daiana Biduski, Luiz Carlos Pereira Bin, Mirella Moura Moro, Cristiano Roberto Cervi,
and Ana Carolina Bertoletti De Marchi. 2020. A Physical Activity Recommender System for Patients With Arterial Hypertension. IEEE
Access 8 (2020), 61656ś61664. https://doi.org/10.1109/ACCESS.2020.2983564

[29] Diego Galeano and Alberto Paccanaro. 2018. A Recommender System Approach for Predicting Drug Side Efects. In 2018 International

Joint Conference on Neural Networks (IJCNN). IEEE, 1ś8. https://doi.org/10.1109/IJCNN.2018.8489025
[30] Anna Gaulton, Anne Hersey, Michał Nowotka, A Patricia Bento, Jon Chambers, David Mendez, Prudence Mutowo, Francis Atkinson,

Louisa J Bellis, Elena Cibrián-Uhalte, et al. 2017. The ChEMBL database in 2017. Nucleic acids research 45, D1 (2017), D945śD954.
https://doi.org/10.1093/nar/gkw1074

[31] Fan Gong, Meng Wang, Haofen Wang, Sen Wang, and Mengyue Liu. 2021. SMR: Medical Knowledge Graph Embedding for Safe
Medicine Recommendation. Big Data Research 23 (2021), 100174. https://doi.org/10.1016/j.bdr.2020.100174

[32] Felix Gräßer, Stefanie Beckert, Denise Küster, Jochen Schmitt, Susanne Abraham, Hagen Malberg, and Sebastian Zaunseder. 2017.
Therapy Decision Support Based on Recommender System Methods. Journal of healthcare engineering 2017 (2017). https://doi.org/10.1
155/2017/8659460

[33] Asela Gunawardana and Guy Shani. 2015. Evaluating Recommender Systems. In Recommender systems handbook. Springer, 265ś308.
https://doi.org/10.1007/978-1-0716-2197-4_15

[34] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A Survey on Knowledge Graph-Based
Recommender Systems. IEEE Transactions on Knowledge and Data Engineering (2020). https://doi.org/10.1109/TKDE.2020.3028705

[35] JihwanHa, Chihyun Park, Chanyoung Park, and Sanghyun Park. 2020. IMIPMF: InferringmiRNA-disease interactions using probabilistic
matrix factorization. Journal of Biomedical Informatics 102 (2020), 103358. https://doi.org/10.1016/j.jbi.2019.103358

[36] Jihwan Ha, Chihyun Park, Chanyoung Park, and Sanghyun Park. 2020. Improved Prediction of miRNA-Disease Associations Based on
Matrix Completion with Network Regularization. Cells 9, 4 (2020), 881. https://doi.org/10.3390/cells9040881

[37] Qiwei Han, Inigo Martinez de Rituerto de Troya, Mengxin Ji, Manas Gaur, and Leid Zejnilovic. 2018. A Collaborative Filtering
Recommender System in Primary Care: Towards a Trusting Patient-Doctor Relationship. In 2018 IEEE International Conference on

Healthcare Informatics (ICHI). IEEE, 377ś379. https://doi.org/10.1109/ICHI.2018.00062
[38] Fang Hao and Rachael Hageman Blair. 2016. A comparative study: classiication vs. user-based collaborative iltering for clinical

prediction. BMC medical research methodology 16, 1 (2016), 1ś14. https://doi.org/10.1186/s12874-016-0261-9
[39] Ming Hao, Stephen H Bryant, and Yanli Wang. 2018. A new chemoinformatics approach with improved strategies for efective

predictions of potential drugs. Journal of cheminformatics 10, 1 (2018), 1ś9. https://doi.org/10.1186/s13321-018-0303-x
[40] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and context. ACM transactions on interactive intelligent

systems (TIIS) 5, 4 (2015), 1ś19. https://doi.org/10.1145/2827872
[41] Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale, Venkatesh Muthukrishnan, Steve Turner, Neil Swainston,

Pedro Mendes, and Christoph Steinbeck. 2016. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic
acids research 44, D1 (2016), D1214śD1219. https://doi.org/10.1093/nar/gkv1031

[42] Rachel A Hodos, Brian A Kidd, Shameer Khader, Ben P Readhead, and Joel T Dudley. 2016. Computational Approaches to Drug
Repurposing and Pharmacology. Wiley interdisciplinary reviews. Systems biology and medicine 8, 3 (2016), 186. https://doi.org/10.1002%
2Fwsbm.1337

[43] Martin Hofmann-Apitius, Gordon Ball, Stephan Gebel, Shweta Bagewadi, Bernard De Bono, Reinhard Schneider, Matt Page, Alpha Tom
Kodamullil, Erfan Younesi, Christian Ebeling, et al. 2015. Bioinformatics Mining and Modeling Methods for the Identiication
of Disease Mechanisms in Neurodegenerative Disorders. International journal of molecular sciences 16, 12 (2015), 29179ś29206.
https://doi.org/10.3390/ijms161226148

[44] Galatia Iatraki, Haridimos Kondylakis, Lefteris Koumakis, Maria Chatzimina, Eleni Kazantzaki, Kostas Marias, and Manolis Tsiknakis.
2018. Personal Health Information Recommender: implementing a tool for the empowerment of cancer patients. ecancermedicalscience

ACM Comput. Surv.

https://doi.org/10.2196/18035
https://doi.org/10.3389/fgene.2020.00075
https://doi.org/10.1109/TCBB.2016.2530062
https://doi.org/10.1109/TCBB.2016.2530062
https://doi.org/10.1089/cmb.2017.0149
https://doi.org/10.1089/cmb.2017.0149
https://doi.org/10.1016/bs.adcom.2022.08.009
https://doi.org/10.1109/ACCESS.2020.2983564
https://doi.org/10.1109/IJCNN.2018.8489025
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1016/j.bdr.2020.100174
https://doi.org/10.1155/2017/8659460
https://doi.org/10.1155/2017/8659460
https://doi.org/10.1007/978-1-0716-2197-4_15
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1016/j.jbi.2019.103358
https://doi.org/10.3390/cells9040881
https://doi.org/10.1109/ICHI.2018.00062
https://doi.org/10.1186/s12874-016-0261-9
https://doi.org/10.1186/s13321-018-0303-x
https://doi.org/10.1145/2827872
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1002%2Fwsbm.1337
https://doi.org/10.1002%2Fwsbm.1337
https://doi.org/10.3390/ijms161226148


28 • Matilde Pato et al.

12 (2018). https://doi.org/10.3332%2Fecancer.2018.851
[45] Fouzia Jabeen, Muazzam Maqsood, Mustansar Ali Ghazanfar, Farhan Aadil, Salabat Khan, Muhammad Fahad Khan, and Irfan Mehmood.

2019. An IoT based eicient hybrid recommender system for cardiovascular disease. Peer-to-Peer Networking and Applications 12, 5
(2019), 1263ś1276. https://doi.org/10.1007/s12083-019-00733-3

[46] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge Graph Embedding via Dynamic Mapping Matrix. In
Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural

language processing (volume 1: Long papers). 687ś696.
[47] Minoru Kanehisa, Miho Furumichi, Yoko Sato, Masayuki Kawashima, and Mari Ishiguro-Watanabe. 2023. KEGG for taxonomy-based

analysis of pathways and genomes. Nucleic Acids Research 51, D1 (2023), D587śD592. https://doi.org/10.1093/nar/gkac963
[48] Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Morishima. 2017. KEGG: new perspectives on genomes,

pathways, diseases and drugs. Nucleic acids research 45, D1 (2017), D353śD361. https://doi.org/10.1093/nar/gkw1092
[49] Minoru Kanehisa, Yoko Sato, and Masayuki Kawashima. 2022. KEGG mapping tools for uncovering hidden features in biological data.

Protein Science 31, 1 (2022), 47ś53. https://doi.org/10.1002/pro.4172
[50] Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval Kluger. 2018. DeepSurv: personalized

treatment recommender system using a Cox proportional hazards deep neural network. BMC medical research methodology 18, 1 (2018),
1ś12. https://doi.org/10.1186/s12874-018-0482-1

[51] Hyunjin Kim, Sang-Min Choi, and Sanghyun Park. 2016. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes
Using Gene Expression Heterogeneity. IEEE/ACM transactions on computational biology and bioinformatics 15, 1 (2016), 129ś146.
https://doi.org/10.1109/TCBB.2016.2618927

[52] Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte, Lianyi Han, Jane He, Siqian He, Benjamin A
Shoemaker, et al. 2016. PubChem Substance and Compound databases. Nucleic acids research 44, D1 (2016), D1202śD1213. https:
//doi.org/10.1093/nar/gkv951

[53] Sebastian Köhler, Michael Gargano, Nicolas Matentzoglu, Leigh C Carmody, David Lewis-Smith, Nicole A Vasilevsky, Daniel Danis,
Ganna Balagura, Gareth Baynam, Amy M Brower, et al. 2021. The Human Phenotype Ontology in 2021. Nucleic acids research 49, D1
(2021), D1207śD1217. https://doi.org/10.1093/nar/gkaa1043

[54] Krzysztof Koras, Ewa Kizling, Dilafruz Juraeva, Eike Staub, and Ewa Szczurek. 2021. Interpretable deep recommender system model for
prediction of kinase inhibitor eicacy across cancer cell lines. bioRxiv (2021). https://doi.org/10.1038/s41598-021-94564-z

[55] Chao Lan, Sai Nivedita Chandrasekaran, and Jun Huan. 2019. On the Unreported-Proile-is-Negative Assumption for Predictive
Cheminformatics. IEEE/ACM transactions on computational biology and bioinformatics 17, 4 (2019), 1352ś1363. https://doi.org/10.1109/
TCBB.2019.2913855

[56] Hansaim Lim and Lei Xie. 2020. A New Weighted Imputed Neighborhood-Regularized Tri-Factorization One-Class Collaborative
Filtering Algorithm: Application to Target Gene Prediction of Transcription Factors. IEEE/ACM transactions on computational biology

and bioinformatics 18, 1 (2020), 126ś137. https://doi.org/10.1109/TCBB.2020.2968442
[57] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning Entity and Relation Embeddings for Knowledge

Graph Completion. In Twenty-ninth AAAI conference on artiicial intelligence. https://doi.org/10.1609/aaai.v29i1.9491
[58] David Liu, Catherine Lu, and Karanveer Mohan. 2014. Pinterest analysis and recommendations. Course report. Stanford University

(2014).
[59] Hui Liu, Yan Zhao, Lin Zhang, and Xing Chen. 2018. Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative

Filtering with Global Efect Removal. Molecular Therapy-Nucleic Acids 13 (2018), 303ś311. https://doi.org/10.1016/j.omtn.2018.09.011
[60] Alessandra Alaniz Macedo, Juliana Tarossi Pollettini, José Augusto Baranauskas, and Julia Carmona Almeida Chaves. 2016. A Health

Surveillance Software Framework to deliver information on preventive healthcare strategies. Journal of biomedical informatics 62
(2016), 159ś170. https://doi.org/10.1016/j.jbi.2016.06.002

[61] José Medina-Moreira, Oscar Apolinario, Harry Luna-Aveiga, Katty Lagos-Ortiz, Mario Andrés Paredes-Valverde, and Rafael Valencia-
García. 2017. A Collaborative Filtering Based Recommender System for Disease Self-management. In International Conference on

Technologies and Innovation. Springer, 60ś71. https://doi.org/10.1007/978-3-319-67283-0_5
[62] Elnaz Mirzaei Mehrabad, Reza Hassanzadeh, and Changiz Eslahchi. 2018. PMLPR: A novel method for predicting subcellular localization

based on recommender systems. Scientiic reports 8, 1 (2018), 1ś10. https://doi.org/10.1038/s41598-018-30394-w
[63] Peter Mika, Abraham Bernstein, Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha Noy, Krzysztof Janowicz, and

Carole Goble. 2014. The Semantic WebśISWC 2014: 13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.

Proceedings, Part I. Vol. 8796. Springer.
[64] Sameh K Mohamed, Aayah Nounu, and Vít Nováček. 2019. Drug target discovery using knowledge graph embeddings. In Proceedings

of the 34th ACM/SIGAPP Symposium on Applied Computing. 11ś18. https://doi.org/10.1145/3297280.3297282
[65] AnamMustaqeem, Syed Muhammad Anwar, Abdul Rashid Khan, and MuhammadMajid. 2017. A statistical analysis based recommender

model for heart disease patients. International journal of medical informatics 108 (2017), 134ś145. https://doi.org/10.1016/j.ijmedinf.201
7.10.008

ACM Comput. Surv.

https://doi.org/10.3332%2Fecancer.2018.851
https://doi.org/10.1007/s12083-019-00733-3
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1002/pro.4172
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1109/TCBB.2016.2618927
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1038/s41598-021-94564-z
https://doi.org/10.1109/TCBB.2019.2913855
https://doi.org/10.1109/TCBB.2019.2913855
https://doi.org/10.1109/TCBB.2020.2968442
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1016/j.omtn.2018.09.011
https://doi.org/10.1016/j.jbi.2016.06.002
https://doi.org/10.1007/978-3-319-67283-0_5
https://doi.org/10.1038/s41598-018-30394-w
https://doi.org/10.1145/3297280.3297282
https://doi.org/10.1016/j.ijmedinf.2017.10.008
https://doi.org/10.1016/j.ijmedinf.2017.10.008


Survey on Recommender Systems for Biomedical Items in Life and Health Sciences • 29

[66] Anam Mustaqeem, Syed Muhammad Anwar, and Muhammad Majid. 2020. A modular cluster based collaborative recommender system
for cardiac patients. Artiicial intelligence in medicine 102 (2020), 101761. https://doi.org/10.1016/j.artmed.2019.101761

[67] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic embeddings of knowledge graphs. In Proceedings of the

AAAI Conference on Artiicial Intelligence, Vol. 30. https://doi.org/10.1609/aaai.v30i1.10314
[68] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way model for collective learning on multi-relational data. In

Icml.
[69] Rayan M Nouh, Hyun-Ho Lee, Won-Jin Lee, and Jae-Dong Lee. 2019. A smart recommender based on hybrid learning methods for

personal well-being services. Sensors 19, 2 (2019), 431. https://doi.org/10.3390/s19020431
[70] Juan G Diaz Ochoa, Orsolya Csiszár, and Thomas Schimper. 2021. Medical recommender systems based on continuous-valued logic

and multi-criteria decision operators, using interpretable neural networks. BMC Medical Informatics and Decision Making 21, 1 (2021),
1ś15. https://doi.org/10.1186/s12911-021-01553-3

[71] Ilja Ormel, Charles C Onu, Mona Magalhaes, Terence Tang, John B Hughes, Susan Law, et al. 2021. Using a Mobile AppśBased Video
Recommender System of Patient Narratives to Prepare Women for Breast Cancer Surgery: Development and Usability Study Informed
by Qualitative Data. JMIR Formative Research 5, 6 (2021), e22970. https://doi.org/10.2196/22970

[72] Makbule Guclin Ozsoy, Tansel Özyer, Faruk Polat, and Reda Alhajj. 2018. Realizing drug repositioning by adapting a recommendation
system to handle the process. BMC bioinformatics 19, 1 (2018), 1ś14. https://doi.org/10.1186/s12859-018-2142-1

[73] Matthew J Page and et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 (2021).
https://doi.org/10.1016/j.ijsu.2021.105906

[74] Ladislav Peska, Krisztian Buza, and Júlia Koller. 2017. Drug-target interaction prediction: a Bayesian ranking approach. Computer

methods and programs in biomedicine 152 (2017), 15ś21. https://doi.org/10.1016/j.cmpb.2017.09.003
[75] Jhonny Pincay, Luis Terán, and Edy Portmann. 2019. Health recommender systems: a state-of-the-art review. In 2019 Sixth International

Conference on eDemocracy & eGovernment (ICEDEG). IEEE, 47ś55. https://doi.org/10.1109/ICEDEG.2019.8734362
[76] Evgenii Pustozerov, Polina Popova, Aleksandra Tkachuk, Yana Bolotko, Zafar Yuldashev, and Elena Grineva. 2018. Development and

Evaluation of a Mobile Personalized Blood Glucose Prediction System for Patients With Gestational Diabetes Mellitus. JMIR mHealth

and uHealth 6, 1 (2018), e6. https://doi.org/10.2196/mhealth.9236
[77] Zhiyun Ren, Bo Peng, Titus K Schleyer, and Xia Ning. 2021. Hybrid collaborative iltering methods for recommending search terms to

clinicians. Journal of Biomedical Informatics 113 (2021), 103635. https://doi.org/10.1186/s13321-021-00495-2
[78] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2015. Recommender Systems: Introduction and Challenges. In Recommender systems

handbook. Springer, 1ś34. https://doi.org/10.1007/978-1-4899-7637-6_1
[79] Darius A Rohani, Andrea Quemada Lopategui, Nanna Tuxen, Maria Faurholt-Jepsen, Lars V Kessing, and Jakob E Bardram. 2020.

MUBS: A Personalized Recommender System for Behavioral Activation in Mental Health. In Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems. 1ś13. https://doi.org/10.1145/3313831.3376879
[80] Shagahyegh Sadeghi, Jianguo Lu, and Alioune Ngom. 2021. A network-based drug repurposing method via non-negative matrix

factorization. Bioinformatics (Oxford, England) (2021), btab826. https://doi.org/10.1093/bioinformatics/btab826
[81] Shengtian Sang, Zhihao Yang, Lei Wang, Xiaoxia Liu, Hongfei Lin, and Jian Wang. 2018. SemaTyP: a knowledge graph based literature

mining method for drug discovery. BMC bioinformatics 19, 1 (2018), 1ś11. https://doi.org/10.1186/s12859-018-2167-5
[82] Lynn M Schriml, James B Munro, Mike Schor, Dustin Olley, Carrie McCracken, Victor Felix, J Allen Baron, Rebecca Jackson, Susan M

Bello, Cynthia Bearer, et al. 2022. The Human Disease Ontology 2022 update. Nucleic acids research 50, D1 (2022), D1255śD1261.
https://doi.org/10.1093/nar/gkab1063

[83] Atsuto Seko, Hiroyuki Hayashi, and Isao Tanaka. 2018. Compositional descriptor-based recommender system for the materials
discovery. The Journal of chemical physics 148, 24 (2018), 241719. https://doi.org/10.1063/1.5016210

[84] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender systems handbook. Springer, 257ś297.
https://doi.org/10.1007/978-0-387-85820-3_8

[85] Ekaterina A Sosnina, Sergey Sosnin, Anastasia A Nikitina, Ivan Nazarov, Dmitry I Osolodkin, andMaxim V Fedorov. 2020. Recommender
Systems in Antiviral Drug Discovery. ACS Omega 5, 25 (2020), 15039ś15051. https://doi.org/10.1021/acsomega.0c00857

[86] Benjamin Stark, Constanze Knahl, Mert Aydin, and Karim Elish. 2019. A literature review on medicine recommender systems.
International Journal of Advanced Computer Science and Applications (IJACSA) 10, 8 (2019), 6ś13.

[87] Chayaporn Suphavilai, Denis Bertrand, and Niranjan Nagarajan. 2018. Predicting Cancer Drug Response using a Recommender System.
Bioinformatics 34, 22 (2018), 3907ś3914. https://doi.org/10.1093/bioinformatics/bty452

[88] Ferran Torrent-Fontbona and Beatriz López. 2019. Personalized Adaptive CBR Bolus Recommender System for Type 1 Diabetes. IEEE
Journal of Biomedical and Health Informatics 23 (2019), 387ś394. https://doi.org/10.1109/JBHI.2018.2813424

[89] Wytze J Vlietstra, Ronald Zielman, Robin M van Dongen, Erik A Schultes, Floris Wiesman, Rein Vos, Erik M Van Mulligen, and Jan A
Kors. 2017. Automated extraction of potential migraine biomarkers using a semantic graph. Journal of biomedical informatics 71 (2017),
178ś189. https://doi.org/10.1016/j.jbi.2017.05.018

ACM Comput. Surv.

https://doi.org/10.1016/j.artmed.2019.101761
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.3390/s19020431
https://doi.org/10.1186/s12911-021-01553-3
https://doi.org/10.2196/22970
https://doi.org/10.1186/s12859-018-2142-1
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1016/j.cmpb.2017.09.003
https://doi.org/10.1109/ICEDEG.2019.8734362
https://doi.org/10.2196/mhealth.9236
https://doi.org/10.1186/s13321-021-00495-2
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1145/3313831.3376879
https://doi.org/10.1093/bioinformatics/btab826
https://doi.org/10.1186/s12859-018-2167-5
https://doi.org/10.1093/nar/gkab1063
https://doi.org/10.1063/1.5016210
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1021/acsomega.0c00857
https://doi.org/10.1093/bioinformatics/bty452
https://doi.org/10.1109/JBHI.2018.2813424
https://doi.org/10.1016/j.jbi.2017.05.018


30 • Matilde Pato et al.

[90] Annie Wang, Hansaim Lim, Shu-Yuan Cheng, and Lei Xie. 2018. ANTENNA, a Multi-Rank, Multi-Layered Recommender System for
Inferring Reliable Drug-Gene-Disease Associations: Repurposing Diazoxide as a Targeted Anti-Cancer Therapy. IEEE/ACM transactions

on computational biology and bioinformatics 15, 6 (2018), 1960ś1967. https://doi.org/10.1109/TCBB.2018.2812189
[91] Bin Wang, Yan Ding, Penghui Zhao, Wei Li, Ming Li, Jingbo Zhu, and Shuhong Ye. 2022. Systems pharmacology-based drug discovery

and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using lavonoids. Computers in Biology

and Medicine 143 (2022), 105241. https://doi.org/10.1016/j.compbiomed.2022.105241
[92] Hang Wang, Jianing Xi, Minghui Wang, and Ao Li. 2018. Dual-Layer Strengthened Collaborative Topic Regression Modeling for

Predicting Drug Sensitivity. IEEE/ACM transactions on computational biology and bioinformatics 17, 2 (2018), 587ś598. https:
//doi.org/10.1109/TCBB.2018.2864739

[93] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph embedding: A survey of approaches and applications.
IEEE Transactions on Knowledge and Data Engineering 29, 12 (2017), 2724ś2743. https://doi.org/10.1109/TKDE.2017.2754499

[94] Zheyu Wang, Haoce Huang, Liping Cui, Juan Chen, Jiye An, Huilong Duan, Huiqing Ge, Ning Deng, et al. 2020. Using Natural
Language Processing Techniques to Provide Personalized Educational Materials for Chronic Disease Patients in China: Development
and Assessment of a Knowledge-Based Health Recommender System. JMIR medical informatics 8, 4 (2020), e17642. https://doi.org/10.2
196/17642

[95] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge Graph Embedding by Translating on Hyperplanes. In
Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 28. https://doi.org/10.1609/aaai.v28i1.8870

[96] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat
Sayeeda, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 46, D1 (2018), D1074śD1082.
https://doi.org/10.1093/nar/gkx1037

[97] David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali.
2008. DrugBank: a knowledge base for drugs, drug actions and drug targets. Nucleic acids research 36, suppl_1 (2008), D901śD906.
https://doi.org/10.1093/nar/gkm958

[98] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Embedding entities and relations for learning and inference
in knowledge bases. arXiv preprint arXiv:1412.6575 (2014). https://doi.org/10.48550/arXiv.1412.6575

[99] Longqi Yang, Cheng-Kang Hsieh, Hongjian Yang, John P Pollak, Nicola Dell, Serge Belongie, Curtis Cole, and Deborah Estrin. 2017.
Yum-Me: A Personalized Nutrient-Based Meal Recommender System. ACM Transactions on Information Systems (TOIS) 36, 1 (2017),
1ś31. https://doi.org/10.1145/3072614

[100] Shu Yang, Xiaoxi Liu, and Raymond T Ng. 2020. ProbeRating: a recommender system to infer binding proiles for nucleic acid-binding
proteins. Bioinformatics 36, 18 (2020), 4797ś4804. https://doi.org/10.1093/bioinformatics/btaa580

[101] Wanjuan Yang, Jorge Soares, Patricia Greninger, Elena J Edelman, Howard Lightfoot, Simon Forbes, Nidhi Bindal, Dave Beare, James A
Smith, I Richard Thompson, et al. 2012. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery
in cancer cells. Nucleic acids research 41, D1 (2012), D955śD961. https://doi.org/10.1093/nar/gks1111

[102] Nobuaki Yasuo, Yusuke Nakashima, and Masakazu Sekijima. 2018. CoDe-DTI: Collaborative Deep Learning-based Drug-Target
Interaction Prediction. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 792ś797. https:
//doi.org/10.1109/BIBM.2018.8621368

[103] Wenbin Yue, Zidong Wang, Weibo Liu, Bo Tian, Stanislao Lauria, and Xiaohui Liu. 2021. An optimally weighted user-and item-based
collaborative iltering approach to predicting baseline data for Friedreich’s Ataxia patients. Neurocomputing 419 (2021), 287ś294.
https://doi.org/10.1016/j.neucom.2020.08.031

[104] Xiangxiang Zeng, Yinglai Lin, Yuying He, Linyuan Lü, Xiaoping Min, and Alfonso Rodríguez-Patón. 2019. Deep Collaborative
Filtering for Prediction of Disease Genes. IEEE/ACM transactions on computational biology and bioinformatics 17, 5 (2019), 1639ś1647.
https://doi.org/10.1109/TCBB.2019.2907536

[105] Lin Zhang, Xing Chen, Na-Na Guan, Hui Liu, and Jian-Qiang Li. 2018. A Hybrid Interpolation Weighted Collaborative Filtering Method
for Anti-cancer Drug Response Prediction. Frontiers in pharmacology 9 (2018), 1017. https://doi.org/10.3389/fphar.2018.01017

[106] Wen Zhang, Hua Zou, Longqiang Luo, Qianchao Liu, Weijian Wu, and Wenyi Xiao. 2016. Predicting potential side efects of drugs by
recommender methods and ensemble learning. Neurocomputing 173 (2016), 979ś987. https://doi.org/10.1016/j.neucom.2015.08.054

[107] Yin Zhang, Daqiang Zhang, Mohammad Mehedi Hassan, Atif Alamri, and Limei Peng. 2015. CADRE: Cloud-assisted drug recommenda-
tion service for online pharmacies. Mobile Networks and Applications 20, 3 (2015), 348ś355. https://doi.org/10.1007/s11036-014-0537-4

[108] Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Baoxing Huai, Tongzhu Liu, and Enhong Chen. 2021. Drug
Package Recommendation via Interaction-aware Graph Induction. In Proceedings of the Web Conference 2021. 1284ś1295. https:
//doi.org/10.1145/3442381.3449962

[109] Xianyou Zhu, Xin He, Linai Kuang, Zhiping Chen, and Camara Lancine. 2021. A Novel Collaborative Filtering Model-Based Method
for Identifying Essential Proteins. Frontiers in Genetics (2021), 1868. https://doi.org/10.3389/fgene.2021.763153

ACM Comput. Surv.

https://doi.org/10.1109/TCBB.2018.2812189
https://doi.org/10.1016/j.compbiomed.2022.105241
https://doi.org/10.1109/TCBB.2018.2864739
https://doi.org/10.1109/TCBB.2018.2864739
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.2196/17642
https://doi.org/10.2196/17642
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkm958
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.1145/3072614
https://doi.org/10.1093/bioinformatics/btaa580
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1109/BIBM.2018.8621368
https://doi.org/10.1109/BIBM.2018.8621368
https://doi.org/10.1016/j.neucom.2020.08.031
https://doi.org/10.1109/TCBB.2019.2907536
https://doi.org/10.3389/fphar.2018.01017
https://doi.org/10.1016/j.neucom.2015.08.054
https://doi.org/10.1007/s11036-014-0537-4
https://doi.org/10.1145/3442381.3449962
https://doi.org/10.1145/3442381.3449962
https://doi.org/10.3389/fgene.2021.763153

	Abstract
	1 Introduction
	2 Background
	2.1 Recommender systems: concepts
	2.2 Knowledge Graphs-based Recommender Systems
	2.3 Qualitative evaluations metrics of recommendation systems
	2.4 Biomedical database

	3 Methodology
	4 Results and Discussion
	4.1 (RQ1) Real experiences with rs
	4.2 (RQ2) Recommender system techniques
	4.3 (RQ3) Knowledge-graph based recommendation algorithms
	4.4 (RQ4) Qualitative evaluation methods of recommendation systems

	5 Conclusions
	5.1 Future directions and challenges of the Knowledge-graph based recommendation

	6 Author contributions statement
	7 Acknowledgments
	8 Data availability
	9 Competing interests
	References

