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ABSTRACT

We propose a novel representation learning method called the Context-Aware
Variational Autoencoder (CxVAE). Our model can perform style-content disen-
tanglement on datasets with conditional shift. Conditional shift occurs when the
distribution of a target variable y conditional on the input observation x — p(y|x)
— changes across data environments (i.e. pi(y|x) ̸= pj(y|x), where i, j are two
different environments). We introduce two novel style-content disentanglement
datasets to show empirically that existing methods fail to disentangle under con-
ditional shift. We propose CxVAE, a model that overcomes this limitation by
enforcing independence across the content variables inferred from each environ-
ment. Our model presents two innovations: a context-aware encoder and a content
adversarial loss. We use a specially designed experiment to show empirically that
these design choices directly cause an improvement of our model’s performance
on datasets with conditional shift.

1 INTRODUCTION

Style-content disentanglement is the machine learning task of decomposing observations into group-
level and instance-level variation. Consider a dataset of D-dimensional observations organised into
N groups {xn,k ; xn,k ∈ RD}Kn

k=1 of size Kn where n ∈ {1 : N}. For simplicity, we use the
notation xn,1:Kn

to denote the group. These observations could refer to many kinds of data: paintings
grouped by artist, medical records grouped by patient, or economic data grouped by country. The
“content” of an observation is defined as the set of attributes that vary within groups, while the “style”
is defined as the attributes of the observation that vary across groups. To disentangle style and content,
a representation network r : RD×∗ → RS+C×∗ is trained to encode one group of observations
xn,1:Kn

into one style latent code cn ∈ RS and a group of content latent codes sn,1:Kn
∈ RC×∗, one

for each observation. The goal is for the style codes s to capture only the variation across groups and
the content codes c to capture only the variation within groups.

Style-content disentanglement is crucial for real-world situations that involve groups of high-
dimensional data. The low-dimensional representation of the content c can replace the underlying
observation x as a more easily “digestible” input for a wide variety of ML tasks, such as classification,
regression, clustering, and visualisation. Example applications benefitting from style-content disen-
tanglement include computer vision (Tenenbaum & Freeman, 2000), data anonymisation (Louizos
et al., 2016), and clinical risk modelling (Pavlou et al., 2015), among others.

Content representations are particularly useful when the data suffers conditional shift between groups.
Conditional shift, also known as Y |X-shift, is a phenomenon that occurs when the distribution
of some target variable y conditioned on the observation x changes from one group to another:
p(yn|xn) ̸= p(ym|xm), where n ̸= m (Zhang et al., 2013b). In this situation, the parameter
resulting from regressing the variable y on the observation x will generalise poorly from group n to
group m. For example, a resting heart rate of 140 beats-per-minute is normal for a 2 year-old but
dangerous for a 30 year-old. In this example, the heart rate is the observation x, the medical severity
is the variable y, and the patient’s age-bracket constitutes the group. Using a content representation

∗Website: https://dan-andrei-iliescu.github.io/

1

https://dan-andrei-iliescu.github.io/


Published as a workshop paper at ICLR 2024 - Data-Centric Machine Learning Workshop

c as the input to the classifier can potentially overcome this challenge since the content will be
independent of the age-bracket by construction.

Even though conditional shift is widespread in real-world datasets, it is virtually absent from the
datasets commonly used in the literature to evaluate style-content disentanglement (Liu et al., 2023).
All the attributes of interest in the most popular datasets such as Shapes3D (Kim & Mnih, 2018),
SmallNORB (LeCun et al., 2004), dSprites (Higgins et al., 2017), Cars3D (Reed et al., 2015), MPI3D
(Gondal et al., 2019) can be identified easily through standard regression without the need to transform
the raw observation to a style-neutral content representation. For example, the joint distribution over
shapes, colours, and positions in dSprites (Higgins et al., 2017) stays constant regardless of which
feature we choose to group by. The absence of conditional shift from these datasets hides the true
generalisation performance of the state-of-the-art style-content disentanglement methods.

In our work, we show that state-of-the-art models fail to learn disentangled representations of
style and content under conditional shift. We choose a representative selection of models: GVAE
(Bouchacourt et al., 2018; Hosoya, 2019), AdaGVAE (Locatello et al., 2020), and COCO-FUNIT
(Saito et al., 2020). We propose two new datasets as initial benchmarks for studying conditional shift
in generative models: 1) A dataset of teapots viewed under different lighting conditions. The goal is
to disentangle the colour of the teapot from the colour of the light (Figure 1). We call this dataset
Shift3DIdent, since it is built upon the popular 3DIdent dataset (Zimmermann et al., 2021). 2) A
synthetic dataset of standardised student test scores grouped by school. The goal is to disentangle
student aptitude from the socio-economic factors associated with the school (Figure 2a). We call this
dataset TestScores.

We introduce a model called the Context-Aware Variational Autoencoder (CxVAE), which is able to
perform style-content disentanglement on datasets with severe conditional shift. This model exhibits
two key differences from the Group VAE (GVAE) (Bouchacourt et al., 2018; Hosoya, 2019): 1) An
encoder architecture that infers the content variable c conditionally on the style variable s. 2) An
adversarial loss that constrains the distribution of content variables in a group c1:K to be mutually
independent of one another. We show empirically that our method outperforms the set of existing
models with respect to multiple disentanglement metrics.

We investigate the cause of the improvement in disentanglement performance brought by our model.
Focusing on the TestScores dataset, we vary the strength of the conditional shift effect and
re-train GVAE and CxVAE on each setting. After re-evaluation, we observe that the performance of
the models is evenly matched when the conditional shift effect is negligible. However, as the strength
of the conditional shift effect increases, the performance of GVAE decreases significantly. This shows
that CxVAE addresses the problem of conditional shift directly.

Our contribution in this work is threefold: 1) We introduce two new datasets — TestScores and
Shift3DIdent — for evaluating style-content disentanglement under conditional shift. These
are a first step towards a unified benchmark for conditional shift. 2) We propose, implement, and
evaluate a new method for performing style-content disentanglement,the Context-Aware Variational
Autoencoder. Full details of the implementation, datasets, metrics, and experiments can be found on
the GitHub repository 1. 3) We show that the design of our model directly addresses the problem of
conditional shift.

2 RELATED WORK

Style-Content Disentanglement. This problem is known as style-content disentanglement (Tenen-
baum & Freeman, 2000), content-transformation disentanglement (Hosoya, 2019), and disentangle-
ment with group supervision (Shu et al., 2020), to name a few. Recent work (Shu et al., 2020; Locatello
et al., 2020) has contextualised group disentanglement as a subproblem of weakly-supervised disen-
tanglement, where disentangled representations are learned with the help of non-datapoint supervision
(e.g., grouping, ranking, restricted labelling). Early work in this area focused on separating between
visual concepts (Kulkarni et al., 2015; Reed et al., 2015). This area has received renewed interest
after the theoretical impossibility result of Locatello et al. (2019) and the identifiability proofs of
Khemakhem et al. (2020) and Mita et al. (2021). A key aspect of recent weakly-supervised models is
the interpretation of the grouping as a signal of similarity between datapoints (Chen & Batmanghe-

1https://anonymous.4open.science/r/style-content-conditional-shift-0CC7
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Figure 1: Conditional shift in the Shift3DIdent dataset. It appears that the objects in the two
images of the leftmost column have the same colour. However, each image was generated by a
different combination of object-colour, spotlight-colour: One teapot is actually orange, while the
other is bright green. We can see this by looking at other examples of the same objects under different
lighting conditions. The images to the right depict different views of the same corresponding object.

lich, 2020). Recently, (Kügelgen et al., 2021) have proved that style-content representations are
identifiable. However, their proof relies on the assumption that the mappings between observations
and latent variables are invertible, which is not the case in conditional shift.

Controlling for the Style Variable. Controlling on group-level variables is a well-established
solution for dealing with confounders. However, existing methods rely on observing the confounding
directly (Pearl et al., 2016). While conditioning the content encoder on the style variable is common
in the areas of semi-supervised learning and fair representations (Kingma et al., 2014; Louizos et al.,
2016), we are the first to apply it to unsupervised group disentanglement where explicit group labels
are not available. In the field of sequence disentanglement, state-of-the-art methods (Hsu et al., 2017;
Denton & Birodkar, 2017; Li & Mandt, 2018) infer the content variable (capturing shorter timescales)
conditionally on the style variable (capturing longer timescales). Recent works in weakly-supervised
disentanglement (Shu et al., 2020; Locatello et al., 2019; Roeder et al., 2019) also condition the
content variable on the group, but their style variable is a discrete variable used for selection rather
than a representation. It marks which units of the content representation are common within the
group and which are free to vary. We argue that this is not sufficient to account for the variation in
p(C|X,S) produced by the conditional shift, so we include AdaGVAE (Locatello et al., 2020) in our
evaluation for comparison (see Section 6).

Conditional Shift. This phenomenon has recently received attention in the realm of supervised
learning (Liu et al., 2023). There are two main approaches to overcoming this challenge: causal
methods (Scholkopf et al., 2021) and distributionally robust optimisation (Blanchet et al., 2019).
Our content encoder conditioned on the style variable is a new strategy to deal with conditional
shift. This problem has been studied extensively in the context of supervised learning (Zhang et al.,
2013a; Gong et al., 2016). However, we are the first to explore the effect of conditional shift on
unsupervised learning. Methods for mitigating the effects of conditional shift typically focus on
learning domain-invariant representations (Ben-David et al., 2009). However, Zhao et al. (2019)
show that learning a domain-invariant representation is not sufficient for learning a correct mapping
between content variables from different groups.

Image Translation. These methods produce excellent results on high-dimensional data, but they do
not use an explicit content variable that can be used for downstream tasks. Note that our variational
latent posterior is different from the one used in COCO-FUNIT (Saito et al., 2020). The authors are
motivated by the same limitations with existing works as we are, namely that unsupervised translation
methods struggle to disentangle under conditional shift. However, because they train explicitly for
translation rather than disentanglement, they arrive at a different solution than ours. When performing
a translation, their approach is to condition the representation of the target group on the source
image, thereby bypassing the need for an accurate content representation. This mechanism produces
impressive results on image translation tasks, but it cannot be extended to models based on the GVAE
which do not train explicitly for translation; in our case, there are no source and target groups in
the training set. Regardless, we evaluate COCO-FUNIT on the test score dataset and show that our
model outperforms it both in terms of disentanglement and translation.

3



Published as a workshop paper at ICLR 2024 - Data-Centric Machine Learning Workshop

Typical School

School A
School B
School C

Maths Test Score

R
ea

di
ng

 T
es

t 
S
co

re

(a) Test scores grouped by school.
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(b) Failed translation (GVAE).

Typical School

School A
School B
School C
A -> Typical

Maths Test Score

R
ea

di
ng

 T
es

t 
S
co

re

(c) Successful translation (ours).

Figure 2: Our model correctly disentangles between student aptitude and school characteristics,
whereas the GVAE fails. We ask the counterfactual question “What score would student k from
school A have obtained if they had attended the typical school?”. The task is to generate a set of test
scores by translating the scores from school A onto the distribution of scores from the typical school.
Each line shows the translation for an individual student. Our model preserves the relative positions
of the scores, whilst also capturing the distribution of the typical school.

3 BACKGROUND

We start by formalising the problem of style-content disentanglement. Consider a training dataset
of D-dimensional observations organised into N groups: xn,1:Kn = {xn,k}Kn

k=1, xn,k ∈ RD, n ∈
{1 : N}. At test time, we are given a new group of observations x1:K ∈ RD×K . The underlying
probabilistic model consists of a group of observations x1:K ∈ RD×K , a group of content variables
c1:K ∈ RC×K , a group of target variables y1:K ∈ RI×K , and a single style variable s ∈ RS . The
observations x1:K can be seen, while the other variables are hidden. We assume that all the latent
variables are independent and normally distributed s ∼ N (0, 1), ck ∈ N (0, 1). Each observation
xk depends only on the style s and the corresponding content ck (Figure 3a). Additionally, the
target variable yk only depends on the corresponding content ck. The joint distribution factorises as
p(x1:K ,y1:K , c1:K , s) = p(s)

∏K
k=1 p(ck) p(xk|ck, s) p(yk|ck).

The goal of style-content disentanglement is to learn a distribution qϕ(s, c1:K |x1:K) that infers the
latent variables (s, c1:K) conditionally on the group of observations x1:K in a way that matches the
true latent posterior p(s, c1:K |x1:K) as closely as possible. The content variables c1:K will then be
used to train a predictor for the target variable h(yk|ck). Although this final step is outside the scope
of style-content disentanglement per se, we can use the accuracy of the resulting predictor h as an
evaluation metric.

3.1 GROUP VARIATIONAL AUTOENCODER

The conventional approach for style-content disentanglement is to learn the representation network
qϕ(s, c1:K |x1:K) by using it as the variational latent posterior distribution in a Variational Autoen-
coder (Bouchacourt et al., 2018; Hosoya, 2019; Németh, 2020). In addition to the representation
network, the autencoder comprises a generator pθ(xk|s, ck) decoding each observation xk from the
style s and its corresponding content ck. The two networks pθ, qϕ are trained by maximising the
Evidence Lower Bound (ELBO) (Kingma & Welling, 2014; Rezende et al., 2014) on the training
data. The ELBO for a group n ∈ {1 : N} has the following form:

Eqϕ(sn,cn,1:K |xn,1:Kn )

[
Kn∑
k=1

log pθ(xn,k|sn, cn,k)

]
−KL

[
qϕ(sn, cn,1:K |xn,1:K) || p(sn)

Kn∏
k=1

p(cn,k)

]
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(a) Group generative model (b) Inference model of GVAE (c) Our inference model (CxVAE)

Figure 3: Our variational distribution conditions the content variable ck on the style variable s.

When defining the variational latent posterior, virtually all existing works make the modelling
assumption that the style and content variables are conditionally independent given the observations
qϕ(s, c1:K |x1:K) = qϕ(s|x1:K)

∑K
k=1 qϕ(ck|xk) (Figure 3b).

This assumption significantly simplifies the computational architecture of the representation network
by splitting it into two networks: a style encoder qϕ(s|x1:K) and a content encoder qϕ(ck|xk).
However, we claim that this assumption is partly to blame for the diffiiculty of existing models to
disentangle under conditional shift.

4 CONTEXT-AWARE VARIATIONAL AUTOENCODER

We propose a new inference model — the Context-Aware Variational Autoencoder (CxVAE) — that
can perform style-content disentanglement on datasets with conditional shift. There are two key
differences between the GVAE and our model:

Conditioning on the style. We modify the content encoder by adding the style variable s in the con-
ditioning qϕ(ck|xk). This formulation reflects the factorisation of the underlying probabilistic model
that does not make any independence assumptions p(s, c1:K |x1:K) = p(s|x1:K)

∑K
k=1 p(ck|xk).

Conditioning the content ck on the style s represents a necessary step towards enabling the encoder
qϕ to produce a group of content variables c1:K that are marginally independent of one another. This
is because the observation xk acts as a probabilistic collider between the style s and the content ck
(Pearl et al., 2016).

Adversarial loss. In addition to the ELBO, we train the representation network qϕ explicitly to
produce groups of content variables c1:K that are marginally independent of one another. We train an
adversarial network t : RC×∗ → {0, 1} whose task is to classify whether a set of content variables
{c1, . . . , cT } are inferred from the same group. During training, the network receives as input either
a set of content variables from the same group cn,1:Kn

, for which it should output the value 1, or a
random selection of content variables from different groups {cσ1

, . . . cσT
}, for which it should output

the value 0. The encoder network qϕ is trained to reduce the accuracy of the adversarial network t.
By implication, this objective reduces the mutual information among the content variables within a
group c1:K . The loss of the CxVAE is max

θ,ϕ
min
t

ELBO(θ, ϕ) + ADV(θ, ϕ, t), where the ELBO is:

ELBO(θ, ϕ) =
1

N

N∑
n=1

Eqϕ(sn,cn,1:Kn |xn,1:Kn )

[
Kn∑
k=1

log pθ(xn,k|sn, cn,k)

]

− 1

N

N∑
n=1

KL
[
qϕ(sn|xn,1:Kn

) ∥ pθ(sn)
]
− Eqϕ(sn|xn,1:Kn )

[
Kn∑
k=1

KL
[
qϕ(cn,k|xn,k, sn) ∥ pθ(cn,k)

]]

5 EVALUATION

We show that our CxVAE produces a considerable improvement in disentanglement over competing
style-content disentanglement methods. We also show that this improvement is proportional to the
strength of the conditional shift effect in the dataset.
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Model Setup. We compare our conditional CxVAE with the state-of-the-art in group disentanglement,
namely the GVAE (Hosoya, 2019; Bouchacourt et al., 2018), COCO-FUNIT (Saito et al., 2020),
and AdaGVAE (Locatello et al., 2019). As in Hosoya (2019), the group encoder is applied to each
datapoint in the group and then all the outputs are averaged.

For all experiments, our CxVAE will be a modified GVAE such that the style variable s is concatenated
with the observation xk and fed into the content encoder in order to compute the content variable ck.
For sampling the variational latent posteriors, we use the standard reparametrisation trick. We use
an Adam optimiser with learning rate of 1e-4 with β1 = 0.9, β2 = 0.5. For the Shift3DIdent
dataset, we implement all networks (encoders and decoders) as convolutional nets with 4 hidden
layers and 64 filters each. Both latent variables have 16 latent dimensions. For the TestScores
dataset, we use MLPs with 3 hidden layer of 32 activations each. The style variable will have 4
dimensions and the content variable will have 2 dimension.

We train each model for 64 epochs, and use the last 10 epochs for evaluation. Additionally, we run
the experiment for 100 different random seeds initialisations, both for the data generating process and
the networks. Confidence intervals are computed by resampling train-test splits, weight initialisations
and sampling seeds. We use the same 100 seeds in each model. This gives 1000 measurements to
plot in Table 1.

5.1 DATASETS

TestScores. Consider the task of fair comparisons between students attending different schools
based on their standardised test scores in maths and reading (Braun et al., 2006). The typical
assumption in the literature is that each school has a similar distribution of aptitude among its students,
so our goal is to learn disentangled student-level (content) and school-level (style) representations of
the scores. The content representation cn,k should reflect the aptitude of student k from school n
independently of which school the student had attended. Additionally, we treat the content cn,k as
the ground-truth target variable yn,k and use it for evaluating the quality of the content representation.
This analysis is crucial for university admission boards aiming to judge students based on their
aptitude regardless of the socio-economic circumstances associated with attending one school or
another, such as affluence, location, or curriculum (Raudenbush & Willms, 1995; Braun et al., 2006).

We generate our TestScores using the classic “varying intercept, varying slope” mixed-effects
model (Laird & Ware, 1982; Pinheiro & Bates, 2001; Gelman & Hill, 2006). This is a well-established
approach for modelling student scores xn,k as a function of individual aptitude αn,k and school-level
characteristics (βn, γn), e.g., affluence, curriculum, or location (Raudenbush & Willms, 1995; Braun
et al., 2006). We choose this model for its simplicity and for the wide variety of phenomena to which
it can be applied. All the scores and factors are 2-dimensional vectors, with one component for the
maths score and another for the reading score. xn,k = βn−γn⊙αn,k+ ϵn,k is the score of student k
from school n. αn,k ∼ N (0, I2) is the aptitude of student k in school n. βn ∼ N (0, I2) is the mean
score in school n. γn ∼ Exp(1) is the standard deviation of scores in school n. ϵn,k ∼ N (0, 0.1∗ I2)
is a per-student error term. For the evaluation procedure, we use the above model to generate
N = 32,768 values for (βn, γn). For each school n, we generate M = 128 values for αn,k. We
then randomly select half of the schools to assemble a training dataset with 2,097,152 scores split
across 16,384 schools. We take the other half of schools to create the holdout dataset, so that every
testing school and student are unseen during training.

Looking at the data (Figure 2a), it is clear that we are dealing with the conditional shift scenario.
The same reading score could be obtained by either a high-achieving student from school C or a
low-achieving student from school B. Inferring the aptitude of the student requires knowing the
distribution of scores within each school. In other words, the distribution of aptitude c given the score
p(cn,k|xn,k) changes from one school n to another.

Shift3DIdent. This dataset comprises images from the 3DIdent dataset (Zimmermann et al.,
2021) depicting teapots of different colours being lit by spotlights of different colours. Within a
group, the images have the same spotlight colour and only the colour of the teapot varies. The goal is
for the style representation to encode the spotlight colour and for the content representation to encode
the object colour. This goal is useful for many real-world applications, such as object recognition.
Once we have separated the group-level variation from the instance-level variation, we can use the
content representation as a low-level feature on which to train a classifier that predicts the colour of
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Figure 4: Conditional shift in the dataset causes the relative performance gain of our CxVAE
over the GVAE. We show performance on datasets generated with different values of the λ hyper-
parameter, controlling the amount of conditional shift. For low values of λ the conditional distribution
of student aptitude given a score changed very little from one group to another, and so CxVAE and
GVAE perform equally well. However, as λ increases, the GVAE fails to disentangle.

the object. With better disentanglement the predictor would have higher accuracy at identifying the
true colour of the object.

This is a challenging problem because the data exhibits conditional shift. The same exact image could
have been generated by different combination of spotlight colour and object colour, as can be seen in
Figure 1. This makes it difficult to identify the true colour of the object by just looking at one single
image. Indeed, all existing methods infer the content variable using only one image and fail to learn
disentangled representations on this dataset.

To generate the dataset, we select N = 4,096 spotlight colours (styles) and, for each style, generate
K = 16 object colours (contents). Half of the groups are kept for training, and half for testing. We
combine each content with the corresponding style and generate the observation x. We treat the value
of the object colour as the target variable y.

5.2 EVALUATION METRICS

Target Variable Regression. After inferring the content variables c for the entire testing set, we use
half of them as training inputs for a model to predict the target variable h(y|c). We use the other
half to evaluate this predictor by taking the average mean-squared error between the prediction and
the ground-truth y. This error will be our first measure of disentanglement. It reflects how much
information about the target y is contained in the content c.

Mutual Information Gap. We use the Mutual Information Gap (Chen et al., 2018) to measure
the quality of the disentanglement. We measure empirically the amount of mutual information
between the inferred latent variables s, c and the ground-truth style factor s′. Consequently, the
goal is to have maximal mutual information between the style variable s and the ground-truth style
s′, and minimal mutual information between the content variables c and the ground-truth s′. The
gap between the two (normalised with the entropy of the ground-truth factors) is the metric of
disentanglement MIG = 1

H(s′) (I(s; s
′)− I(c; s′)). Since the data-generating process is known, the

mutual information between the inferred style variable and the ground-truth style variable I(s; s′) is
straightforward to implement by following the approach from Chen et al. (2018). We measure only
the mutual information between the ground-truth group factor s′ and the latent variables because, as
pointed out by Németh (2020), the common failure case we are trying to guard against in style-content
disentanglement is that the content variables c might learn information belonging to the ground-truth
style factor s′.

Translation Between Styles. We measure how well the learned representations can answer the
question “What would the score of student k from school n have been if they had attended the typical
school (the school with scores distributed according to N (0, I2))?”. This problem, also known as
translation, is a commonly used downstream task for disentangled representations (Tenenbaum &
Freeman, 2000). We translate the score of student k to the typical school and then take the mean

7
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Table 1: Our CxVAE model outperforms existing methods at disentanglement on the
Shift3DIdent and TestScores datasets. The competing models are: GVAE (Hosoya, 2019),
AdaGVAE (Locatello et al., 2020), and COCO-FUNIT (Saito et al., 2020). The improvement in scores
brought by our model is greater than the 95% confidence interval around each score. Confidence
intervals are computed by resampling train-test splits, weight initialisations and sampling seeds.

Shift3DIdent TestScores

MODEL RGRSN ↓ MIG ↑ TRNSL ↓ RGRSN ↓ MIG ↑ TRNSL ↓
GVAE 0.08 ± 0.02 0.09 ± 0.06 0.23 ± 0.18 0.41 ± 0.01 0.04 ± 0.02 0.49 ± 0.01
AdaGVAE 0.09 ± 0.05 0.39 ± 0.11 0.15 ± 0.05 0.41 ± 0.01 0.05 ± 0.02 0.49 ± 0.01
CFUNIT 0.05 ± 0.01 0.13 ± 0.04 0.13 ± 0.06 0.40 ± 0.02 0.04 ± 0.01 0.49 ± 0.02
CxVAE 0.05 ± 0.03 0.72 ± 0.06 0.08 ± 0.05 0.35 ± 0.02 0.44 ± 0.08 0.37 ± 0.02

squared error against the ground-truth translation, which is generated when the data is generated
using the ground-truth generative factors. For our dataset, the correct translation corresponds to the
Earth-Mover distance between the multivariate normal distributions of scores in each school (Knott
& Smith, 1984).

In order to obtain the translation, we first infer the content variable of student k from school n and
the style variable of the typical school. We then feed the two variables to the decoder. For evaluation,
we translate all the scores from each school n and then measure the distance between the predicted
translation and the ground-truth translation. We compute the total error as an average over all the
translation errors.

Translation is a well-established downstream task for evaluating disentanglement (Tenenbaum &
Freeman, 2000). In the case of the TestScores dataset, translation corresponds to the counterfac-
tual question “What score would student k from school A have obtained if they had attended the
typical school (i.e., a school whose scores are distributed according to N (0, I2))?” We can also use
translation as an additional qualitative comparison between CxVAE and other group disentanglement
methods, which can be seen in Figure 2.

6 RESULTS

We show that our CxVAE is able to style-content disentangle in a setting where conditional shift
produces ambiguous observations. The results in Table 1 show that our model, CxVAE, produces
representations that disentangle between spotlight colour and object colour much more than a
representative selection of existing models: GVAE, AdaGVAE, and COCO-FUNIT. Our model’s
MIG score is much higher than the one produced by competing models and the performance gap is
greater than the 95% confidence interval for any one of these models.

Our CxVAE produces considerable improvements over the competing methods in terms of fitting
the holdout set, disentangled representations, translation accuracy, and predicting the generative
factors (Table 1). While the scores of the existing methods cluster together, the gap between them
and CxVAE is larger than the 95% confidence interval of any method.

7 CONDITIONAL SHIFT CAUSES THE GAP IN PERFORMANCE

By modifying the data-generating process (Equation ??), we show that conditional shift explains
the increased performance of CxVAE. We insert a hyper-parameter λ to control the strength of the
conditional shift; λ = 1 means the conditional shift stays the same as in the previous experiment,
while λ = 0 means there is no conditional shift.

Consider the case where the maths score only depends on the school and the reading score only
depends on the student. In this situation, the two generative factors can be easily disentangled since
you can infer the student aptitude from the reading score and the school profile from the maths score.
We use this as an extreme case of lack of conditional shift and insert a hyper-parameter λ in our

8
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data-generating process that will continuously move between this case and the original case. Our

modified data-generating process is xn,k =

[
λ
1

]
⊙ βn +

[
1
λ

]
⊙ αn,k ⊙

(
γn ·̂

[
λ
1

])
+ ϵn,k, where ·̂

denotes the elementwise power operation and the generative factors (αn,k, βn, γn, ϵn,k) are sampled
as before. This model has no conditional shift when λ = 0 because each ground-truth factor controls
a separate component of the data. Inferring the student aptitude requires only the reading score and
can ignore the school characteristics. When λ = 1, the problem exhibits conditional shift in exactly
the same way as before.

We hypothesise that the conditional shift causes the performance gap between CxVAE and other group
disentanglement methods. If our hypothesis is correct, then the gap should decrease as λ approaches
0. The measurements displayed in Figure 4 confirm our expectations. For low values of λ the
performance of our CxVAE is evenly matched to the GVAE. As λ increases, CxVAE metrics remain
stable while GVAE performance decreases substantially. It is clear that the degree of confounding in
the dataset explains the performance gain that we see in CxVAE.

8 CONCLUSIONS

In this work, we show empirically that conditioning the content encoder on the style variable produces
style-content disentangled representations on datasets with conditional shift. We also show that
the strength of the conditional shift effect in the data-generating process determines the amount of
improvement that our model brings over other group disentanglement methods. Our evaluation is
run on two important downstream tasks for style-content disentanglement: One is the problem of
inferring student aptitudes from test scores grouped by school, and another is identifying the colours
of objects viewed under different lighting conditions.

9 REPRODUCIBILITY STATEMENT

Details for reproducing the experiments are presented in Section 5 and on
the anonymised GitHub repo: https://anonymous.4open.science/r/
style-content-conditional-shift-0CC7.
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