
Repo4QA: Answering Complex Coding Questions via Dense Retrieval on
GitHub Repositories

Anonymous ACL submission

Abstract
Open-source platforms such as Github and001
Stack Overflow both play important roles in002
our software ecosystem. It is crucial but time-003
consuming for programmers to raise their spe-004
cific programming questions on coding forums005
such as Stack Overflow, which guides them to006
actual solutions on Github repositories. We007
show our interest in accelerating such a pro-008
cess and find that traditional Information Re-009
trieval based methods fail to handle the long010
and complex questions in coding forums and011
thus cannot find the suitable coding reposi-012
tories. In order to bridge the semantic gap013
between repositories and real-world coding014
questions effectively and efficiently, we intro-015
duce a specialized dataset named Repo4QA,016
which includes over 12,000 question-repository017
pairs constructed from Stack Overflow and018
Github. Furthermore, we propose QuReCL,019
a contrastive learning model based on Code-020
BERT, to jointly learn the representation of021
both questions and repositories. Experimental022
results demonstrate that our model can simulta-023
neously capture the semantic features in both024
questions and repositories through jointly em-025
bedding, and outperforms existing state-of-art026
methods.027

1 Introduction028

With the increasing popularity of software develop-029

ers, Stack Overflow and Github, the two large-scale030

communities widely used in open source ecosys-031

tems have attracted growing research interests. As032

the idiom goes, “Don’t reinvent the wheel”, tack-033

ing programming problems with existed codes and034

documents is a more effective and economical way,035

while various resources in repositories can provide036

more useful information than text-formed answers.037

Specifically, developers can get help and advice to038

solve the technical challenges they face, and be pro-039

vided a variety of solutions and tools in repositories040

on Github for their software development. Note041

that a vast number of challenges have already been042

considered and settled by the community, sophis- 043

ticated schemes posted on Github can help to sat- 044

isfy requirements or to solve problems discussed in 045

Stack Overflow. Naturally, many answers in Stack 046

Overflow provide links to Github repositories, and 047

a large amount of these answers are acknowledged 048

to be high-quality and helpful by the community. 049

This phenomenon is worth researching to deter- 050

mine its contribution to the efficiency improvement 051

and code reuse of the whole open source ecosys- 052

tem. 053

Motivated by the trend of interplay between 054

Stack Overflow and Github, we introduce a novel 055

question-repository matching task. Given a natural- 056

language-formed question in the programming do- 057

main, the task is defined as searching for the most 058

relevant and helpful Github repository in reposi- 059

tories corpus as answer. Figure 1 illustrates the 060

interaction between a question and a repository. 061

Key information for problem solving is framed in 062

the figure. 063

To this end, we introduce Repo4QA, a dataset 064

consisting of 12,995 question-repository pairs for 065

complex coding question solving. The questions 066

are collected from Stack Overflow, and the repos- 067

itories are crawled from Github through the hy- 068

perlinks provided in corresponding answers. Each 069

repository is instrumental for trouble-shooting con- 070

firmed by forum users with upvotes. 071

The proposed task has its own characteristics. 072

Different from code searching task (Husain et al., 073

2019; Cambronero et al., 2019), our task needs 074

to find a reasonable semantic alignment between 075

two long-form sentences. Questions and reposi- 076

tories have more complex structure and richer in- 077

formation than short-form web queries and code 078

snippets. Compared with community-based QA 079

task (Qiu and Huang, 2015a; Zhao et al., 2017), 080

our task is a cross-platform task resulting in se- 081

mantic gap between questions and answers, which 082

is more challenging for traditional IR-based meth- 083

1



Figure 1: An example of interaction between question
at Stack Overflow and repository at Github.

ods such as BM-25(Robertson et al., 1995). Be-084

sides, unlike common questions, questions about085

programming are more difficult and specialized.086

Terminology of programming is widely used to087

form questions. There are even some questions088

described with codes. Moreover, complex models089

considering more interactions between QA pairs090

are more computational expensive in our task.091

To address the aforementioned issues, we pro-092

pose a contrastive learning based model, QuReCL,093

to jointly learn the representation of Questions and094

Repositories. QuReCL computes a single vector095

for each question and repository, and similarity096

score of the vectors is calculated to measure the097

relatedness for ranking. With experimental evalua-098

tion and comprehensive analyses, we show that our099

method strongly outperforms baselines. We also100

demonstrate that QuReCL is more computationally101

efficient than baselines in inference step.102

In conclusion, the main contributions of this pa-103

per are concluded into three points respectively.104

• Dataset : A novel cross-platform Question-105

Answering task is presented, aiming at an-106

swering real-world programming questions 107

with existing Github repositories. We also 108

collect a dataset, Repo4QA for this task. 109

• Methodology: A practical contrastive learn- 110

ing model, QuReCL, is proposed to jointly 111

learn embedding of both questions and repos- 112

itories, which can be applied to related prod- 113

ucts with great flexibility. 114

• Experiment : Experimental results are given to 115

demonstrate the effectiveness and efficiency 116

of the proposed QuReCL model compared 117

with baselines. 118

2 Related Work 119

Datasets Existing datasets in the programming 120

domain focus on text-code interaction. Code- 121

SearchNet (Husain et al., 2019), Deep Code Search 122

(Gu et al., 2018) and CoDesc (Hasan et al., 2021) 123

collect large-scale corpus of code snippet with cor- 124

responding descriptions. CoSQA (Huang et al., 125

2021) collects pairs of web query and function 126

code for code question answering. Stack Over- 127

flow resources are mined (Yin et al., 2018) as long- 128

form natural language queries to retrieval code 129

snippets (Nie et al., 2016; Yao et al., 2018; ?). 130

CodeXGLUE (Lu et al., 2021) includes text-to- 131

code generation task and code memorization task. 132

The only text-to-text task is documentation transla- 133

tion in CodeXGLUE. 134

Neural Matching Networks Ranking methods 135

are widely used in text matching and semantic 136

search tasks, such as community-based question 137

answering (Qiu and Huang, 2015b; Zhang et al., 138

2021), open domain question answering (Qu et al., 139

2020; Cohen et al., 2018), and visual question an- 140

swering (Lee et al., 2020). Specifically, in the pro- 141

gramming domain, traditional IR-based ranking 142

models regard code as text and match keywords in 143

queries (Bajracharya et al., 2006). Recently, deep 144

learning based methods represent coding questions 145

and answers with vectors and leverage similarities 146

to rank answers (Gu et al., 2018; Cambronero et al., 147

2019; Wan et al., 2019). 148

Considering the computational cost for match- 149

ing, representation-based learning approaches 150

(Huang et al., 2013) encode query and document 151

each into a vector and judge the relevancy by 152

the similarity of vectors. Towards a better rep- 153

resentation of repository, paper2repo (Shao et al., 154

2020) maps the embeddings of academic papers 155

2



and repositories into the same space for ranking156

and recommendation. Very recently, pre-trained157

models including CodeBERT (Feng et al., 2020)158

that trained from data in programming domain have159

been applied to improve representation learning.160

LM Based Retrieval and Ranking Pretrained161

language models (Kenton and Toutanova, 2019;162

Liu et al., 2019b) dramatically advance the state of163

the art on various NLP tasks. However, limitations164

on text length and the trade-off of effectiveness and165

efficiency are important issues, as the cross atten-166

tion operations are too expensive in pair-wise cross-167

encoders. Recent work (Karpukhin et al., 2020;168

Xiong et al., 2020; Khattab and Zaharia, 2020; Nie169

et al., 2020; Gao et al., 2021a) try to reduce the com-170

putational interaction between query and document171

and move it to the online re-rank procedure. By172

storing representation of document offline, these173

methods facilitate cheap runtime cost while achiev-174

ing promising results on retrieval tasks.175

Moreover, contrastive learning on pre-training176

models is broadly applicable to several sentence-177

level tasks recently. SBERT (Reimers and178

Gurevych, 2019) use siamese and triplet network179

to derive embedding of two sentences, and then180

fine-tune the model to yield useful sentence embed-181

dings. Some work aims to improve BERT sentence182

embeddings in an unsupervised way (Gao et al.,183

2021b; Kim et al., 2021) by data augmentation.184

3 Preliminaries185

3.1 Repo4QA Dataset186

Questions We collect complex programming187

questions from the well-known coding forum Stack188

Overflow. Stack Overflow provides data dump 1189

from 2014 to 2021. Answers within 200 characters190

which contain a hyperlink to a Github repository191

are selected. Questions with such kind of answers192

are often complicated.Responders are required not193

only to get through the requirements raised by ques-194

tioners, but also to be familiar to repositories stored195

in Github. The goal of our research is to fill in the196

gap between the questioner and various of open197

source tools.198

To filter out topics without specific repository-199

for-solution intent such as bug-reporting discus-200

sion, we discard answers discussing particular re-201

sources in repository including issues, commits202

1https://archive.org/details/stackexchange

and releases. We control the quality and correct- 203

ness of answers by only mining posts with one or 204

more upvotes. After removing answers with inac- 205

cessible Github repository links, these answers and 206

corresponding questions compose 12,995 QA pairs 207

consisting of 12,713 unique questions. Codes are 208

marked with [code] token to help our model learn 209

the combination of natural language and code in 210

questions. 211

Repositories We crawl repositories through the 212

Github API with given hyperlinks in answers. For 213

our task, we mine basic information such as a name, 214

a description, topics (also called tags) and stars of 215

a repository. A description is a short textual docu- 216

mentation to describe a repository briefly. Topics 217

are keywords to classify a repository. For instance, 218

“python” tag indicates the programming language 219

that the repository uses, and “deep-learning” tag 220

shows that the repository is used in the deep learn- 221

ing domain. The Readme file is obtained to provide 222

documentation in detail. Most repositories intro- 223

duce the main contribution and usage in the head 224

of Readme file. We investigate 30 repositories ran- 225

domly and find that the most informative part of 226

a Readme file is about 2-3 paragraphs at the start, 227

which is far less then 512 tokens. Hence, we cut 228

the first 8192 characters of a Readme file after text 229

cleaning to represent the repository in natural lan- 230

guage. 9,663 unique repositories are mined in this 231

step, in which 2,862 repositories have at least one 232

topic. 233

Construction Questions and repositories are 234

aligned according to QA pairs mined in questions 235

to constitute a QA pair sample. For each pair, the 236

original answer is replaced by the repository men- 237

tioned. We then select a small dataset from the 238

entire QA pairs with high quality. All samples in 239

small dataset have at least one topic. The statistics 240

of both datasets is listed in Table 2. 241

Comparison To the best of our knowledge, this 242

is the first dataset applied to solving complex re- 243

alistic programming problems with existing web 244

resources. In this part, we conduct a comparison 245

between Repo4QA and datasets from two aspects: 246

(1) Code intelligence. (2) Community-based QA. 247

As presented in Table 1, datasets in the program- 248

ming domain tend to use only the title of the ques- 249

tion in Stack Overflow or a short textual query 250

including web query and short description as query. 251

However, we find out that in complex questions 252

3



Dataset Domain Size Query Type Answer Type Annotation
CSN (Husain et al., 2019) Coding 2.3M Short description Function code No

Deep Code Search(Gu et al., 2018) Coding 18.2M Short description Function code No
CoSQA (Huang et al., 2021) Coding 20.6K Web Query Function code Yes

QECK (Nie et al., 2016) Coding 312.9K SO question title Code block No
StaQC (Yao et al., 2018) Coding 268K SO question title Code block Partly

CoNaLa (Yin et al., 2018) Coding 598.2K SO question title Code block Partly
SO-DS (Heyman and Van Cutsem, 2020) Coding 12.1k SO question title Code block No

CQA-Quora (Lyu et al., 2019) Open 76.2k Quora question Quora Answer No
CQA-SO (Zhang et al., 2021) Coding 13.9k SO question SO Answer No

Repo4QA (ours) Coding 13.0k SO question Github repository No

Table 1: Overview of existing datasets on Code Intelligence and Community-based QA

Dataset Type Samples Avg. length

Large
Question 12,995 7.97 + 104.50

Repository 9,954 9.79 + 572.58

Small
Question 3,766 8.02 + 105.73

Repository 2,862 9.77 + 688.03

Table 2: The statistics of Repo4QA dataset. Avg.
length means title length + body length for question,
and description length + Readme length for repository.
Readme file has the maximum character length of 8192.

raised in Stack Overflow, problems are almost de-253

scribed in detail in the body of questions. The254

importance of the question body should not be ne-255

glected. We find out that in Community-based QA256

datasets, their QA pairs are on the same page, while257

our Repo4QA aims to bridge the semantic gap be-258

tween natural languages and Github repositories,259

which is a challenge to represent for its length (av-260

eragely over 500 words) and heterogeneous text261

structure. In comparison, the average length of262

question/answer in CoSQA dataset (Huang et al.,263

2021) is 6.60/71.51, and the average length of an-264

swer in CQA-SO (Zhang et al., 2021) dataset is265

85.6.266

4 Methodology267

4.1 Task Description268

Before diving into detail of our model, we first269

describe symbols used in the answer selection270

problem. Given a question in a natural language271

question set q ∈ Q, and a set of repositories272

R = {r1, r2, · · · , rn} from Github. Each ques-273

tion has the title, the content and the tags, while274

each repository has descriptions and the documen-275

tation. Tags are not contained in some repositories. 276

Our main task is to find the most possibly helpful 277

repository r ∈ R to solve the question q. 278

Due to the limitation of calculating resources in 279

real-life application, joint embedding is an effec- 280

tive and efficient way to find repositories related to 281

question raised. Ideally, we would train a model 282

that jointly learns the embedding of Q and R with a 283

triplet network. To be specifically, given any ques- 284

tion qi and repository r+i , r−i , where r+i is one of 285

the answer to qi, and r−i is not related to qi, we 286

aim to learn a representation function ex = f(x) 287

to make s(eqi , er+i
) and s(eqi , er−i

) satisfying the 288

inequality: s(eqi , er+i
) > s(eq, er−i

), where s de- 289

notes similarity, e.g cosine similarity or Euclidean 290

distance-based similarity. Then we rank all the an- 291

swers for a given question according to similarity. 292

4.2 Model Architecture 293

CodeBERT

title

iq body

iq tags

iq

iq

Projection Layers

CodeBERT

desc

ir
doc

ir
topics

ir

ir

Cross-Batch 

Memory

i
q

i
r

j
q

j
r

Figure 2: The QuReCL applies a weight-sharing Code-
BERT for encoding questions and repositories. Similar-
ity is computed between model outputs and embeddings
stored in Cross-Batch Memory for model training.

4



We present our QuReCL as Figure 2 illustrated294

in this part. Different from natural language in com-295

mon domain, language used in programming do-296

main contains various of out-of-vocabulary words,297

e.g “flask” is a tool used for web in python program-298

ming. In order to solve this problem, we leverage299

CodeBERT as our text encoder. CodeBERT is a300

bi-modal pre-trained RoBERTa-based (Liu et al.,301

2019b) model for natural language (NL) and pro-302

gramming language (PL) tasks. It is a bidirectional303

Transformer with 12 layers, 768 dimensional hid-304

den states and 12 attention heads pre-trained on the305

large-scale CodeSearchNet (Husain et al., 2019)306

corpus. CodeBERT achieves the state-of-the-art in307

most NL-PL tasks such as natural language code308

search and code documentation generation. By309

expanding its vocabulary from RoBERTa, Code-310

BERT can represent programming terms that oc-311

cur in the training corpus properly, especially for312

word-combining terminologies common used in313

programming domain. For example, “pyflask” is314

an OOV word in most model’s vocabulary, but the315

WordPiece encoding will cut “pyflask” to “py” and316

“flask”.317

In detail, for each question qi =318

(qtitlei , qbodyi , qtagi ), where qtitlei , qbodyi , qtagi319

denotes the title, the body and the tags of qi, we put320

a [CLS] token in the front of the 3 sentences and321

separate them by [SEP] after tokenization. Then322

we feed the tokenized sequences into CodeBERT323

to acquire pooled contextualized representations of324

them respectively. A [Q] is placed in the start to325

identify the query. In practice, we adopt the mean326

pooling value of contextual representation as the327

output of CodeBERT:328

qi = C-BERT([Q]qtagi [S]qtitlei [S]qbodyi [S]) (1)329

Where [S] denotes [SEP] Similarly, for each330

repository, rj = (rdescj , rdocj , rtopicj ), where331

rdescj , rdocj , rtopicj denotes the description, readme332

documentation and topics of rj , we have formala-333

tion as follows:334

ri = C-BERT([A]rtopici [S]rdesci [S]rdoci [S]) (2)335

Note that few readme files exceed the token336

length limit of 512 in CodeBERT, we only take337

the first 510 tokens (2 tokens are left for [Q]/[A]338

and [SEP]) of the Readme file as documentation.339

In practice, the head content of readme file is de- 340

scriptive and summative enough for our task, which 341

is more informative than usage and example part. 342

4.3 Contrastive Learning for Joint 343

Embedding 344

We obtain an encoding model of questions and 345

repositories by a CodeBERT encoder and projec- 346

tion layer. To make this model learn the joint em- 347

bedding of both questions and repositories, we in- 348

corporate contrastive learning methods to Code- 349

BERT. Contrastive learning aims to learn represen- 350

tations by contrasting positive and negative exam- 351

ples as the name implies. It matches the target to 352

satisfy the inequality : s(eqi , er+i ) > s(eq, er−i
). 353

We select N QA pairs into a batch, resulting 2N 354

data points. It is clear that the QA pair is a positive 355

pair. Instead of choosing negative pairs explicitly, 356

every non-matched Q-A sample pair is regarded as 357

negative pairs. 358

Loss Function Denote X = {x|x ∈ {qi} ∪ 359

{ri}} is the set of computed embedding vectors of 360

questions and repositories in batch. 361

Typical metric-learning based loss function fo- 362

cuses on modeling the distance between questions 363

and answers. However, compared with other QA 364

tasks, our questions are more complex and long- 365

formed, which means, different questions implicate 366

diverse semantic information. We insist that a good 367

dense representation model should not only control 368

the distance of queries and documents, but can also 369

represent the semantic difference between ques- 370

tions and repositories. 371

To achieve this, we leverage the NT-Xent loss 372

applied in SimCLR (Chen et al., 2020) is our train- 373

ing target at first. The loss function for a positive 374

pair (i, j) is defined as follow : 375

Lbase
i,j = −log e(sim(xi,xj)/τ)∑2N

k=1,k ̸=i e
(sim(xi,xk)/τ)

(3) 376

where τ is a temperature hyperparameter. Co- 377

sine similarity is implemented as a similarity func- 378

tion. The loss is calculated in all positive pairs 379

bidirectionally including (i, j) and (j, i). The over- 380

all base is the average loss of all positive pairs 2: 381

Lbase =
1

2N

N∑
k=1

(Lbase
2k−1,2k + Lbase

2k,2k−1) (4) 382

2Pairs are placed orderly in mini-batch

5



Loss Function Revisited Inspired by the discus-383

sion of NT-Xent loss optimization in the recent384

works (Chen and He, 2021; Kim et al., 2021) , we385

revisit our task and NT-Xent loss. The NT-Xent386

loss consists of four interactions as follows:387

(1) qi →← ri : The main element that gathers388

paired question and repository together in the389

vector space.390

(2) qi ←→ qj : The factor that separates embed-391

ding of questions.392

(3) ri ←→ rj : The component that make reposi-393

tories to be distant from each other.394

(4) qi ←→ rj : An important role that cause un-395

matched question-repository pairs segregated.396

Unlike unsupervised methods (Gao et al., 2021b;397

Kim et al., 2021) neglecting the impact of similarity398

computing between data points and their augmen-399

tations. The semantic gap exists not only between400

different questions but also different repositories401

in our task. It is necessary to consider how im-402

portant the factor (2) and (3) are in the learning403

procedure. To this end, we reformulate NT-Xent to404

Weighted-NT-Xent :405

Lw =
1

2N

N∑
k=1

(Lw
2k−1,2k + Lbase

2k,2k−1) (5)406

Lw
i,j = −log

e(sim(xi,xj)/τ)∑2N
k=1,k ̸=iw(i, k)e

(sim(xi,xk)/τ)

(6)407

where408

w(i, k) =


α if{xi,xk} ⊆ ∪qj

β if{xi,xk} ⊆ ∪ rj
1 otherwise

(7)409

The Weighted-NT-Xent gives the weight for the410

self-model similarity result. We can control the411

contribution of case (2) and case (3) as mentioned412

above, by changing the value of α and β. We413

expect that this refinement can reveal the impact414

of self-modal contrastive learning during the cross-415

modal contrastive learning task. We will report and416

discuss the fact that the setting of α and β greater417

than 1 results better performance in the experiments418

section.419

Cross-Batch Memory Augmentation and Neg- 420

atives Sampling Cross-batch memory (XBM) 421

(Wang et al., 2020) can considerably boost the 422

performance of contrastive learning tasks. The 423

XBM module stores embeddings and labels for data 424

points. It is maintained as a first-input-first-output 425

(FIFO) queue. Enqueue and dequeue procedures 426

happen when a mini-batch arrives. As mentioned 427

above, for an anchor question qi, we pair it with 428

rest N − 1 repositories {rj |j ̸= i} in the N -size 429

mini-batch as negative pairs. In practice, heavy- 430

weight BERT-based model has acute GPU memory 431

cost issue. The size of mini-batch is often limited in 432

NLP tasks using BERT-based model3. By pairing 433

anchors with samples stored in XBM, information 434

provided by negative pairs is significantly enriched. 435

Moreover, we select hard negatives with tags/topics 436

labeling, from the intuition that tags/topics overlap 437

leads to similar discussion. 438

5 Experiments 439

We carry out our experiments to evaluate the perfor- 440

mance of methods on our Repo4QA dataset. Fur- 441

ther, we discuss whether our proposed QuReCL 442

model outperforms state-of-the-art methods in sim- 443

ilar tasks. In addition, an ablation study is con- 444

ducted to explore how components of our proposed 445

model impact performance. 446

5.1 Experimental Setup 447

Dataset We conduct experiments on the 448

Repo4QA-small dataset, by randomly splitting 449

Repo4QA-small dataset into 2,966/400/400 450

for training/testing/validation. For repositories 451

retrieval, we evaluate the performance from 452

3 different corpus: the test split, the whole 453

Repo4QA-small repositories and the whole 454

Repo4QA-large repositories, which is a more 455

realistic setting since the documents do not occur 456

in training period. If given more repositories, 457

for example, the whole Github repositories, a 458

piratical solution is to filter several repositories 459

with traditional IR approaches such as BM-25, 460

then rerank these repositories via our model. 461

Metrics We adopt two common metrics to mea- 462

sure the effectiveness of our proposed model, 463

namely, Mean Reciprocal Rank (MRR) and Preci- 464

sion@K. In practice, we evaluate the performance 465

of K = 1, 5. The two metrics are widely used in 466

information retrieval and answer ranking. 467

3Maximum mini-batch size is 8 in this work

6



Baselines As Repo4QA is a new challenge, no468

model is specifically designed for it. Existing469

methods such as ColBert(Khattab and Zaharia,470

2020) focus on passage ranking tasks such as MS471

MARCO(Nguyen et al., 2016), with short query472

and passages related. While query expansion meth-473

ods (Nogueira et al., 2019b,a) are not so helpful474

because of the complexity of our queries. Pair-wise475

cross-encoders are more suitable for the rerank task476

after we retrieval the dense representation for the477

consideration of effective-efficient trade-off. For478

a fair comparison, diversified methods for similar479

tasks such as sentence embedding and metric learn-480

ing models are introduced as baselines. We use481

the exact same processed data for our model as the482

input of these baselines.483

• BM25(okapi) (Robertson et al., 1995) BM25484

is a well-known lexical retrieval model.485

We employ the implementation from the486

rank_bm25 library.4487

• GloVe (Pennington et al., 2014) The mean em-488

bedding of the whole sentence is regarded as489

the representation of the sentence. Sentence490

representation similarity is computed for rank-491

ing.492

• Universal Sentence Encoder (Cer et al., 2018)493

It is a transformer-based network which aug-494

ments unsupervised learning with training on495

SNLI dataset. 5496

• BERT (Kenton and Toutanova, 2019) We use497

the [CLS] token output for sentence embed-498

ding.499

• CodeBERT Similar to the strategy applied on500

BERT, the [CLS] token output is adopted. Be-501

sides, we train a Siamese-formed CodeBERT502

and a Triplet-formed CodeBERT for compari-503

son in supervised learning.504

• S-BERT (Reimers and Gurevych, 2019) is a505

Siamese BERT-Networks. We employ the all-506

roberta-large-v1 model hosted on hugging-507

face, which is pretrained over 1B+ QA pairs508

for better sentence embedding. 6509

4https://github.com/dorianbrown/rank_bm25
5https://tfhub.dev/google/universal-sentence-encoder/4
6https://huggingface.co/sentence-transformers/all-

roberta-large-v1

5.2 Model Comparisons 510

The performance of different approaches on 511

Repo4QA task is reported in Table 3. From these 512

experimental results, we can obtain the following 513

summaries : 514

• Our proposed model outperforms all competi- 515

tive baselines on MRR, P@1 and P@5 metrics. 516

Especially, for retrieval task on Repo4QA- 517

large dataset, traditional IR-based and word 518

embedding approaches cannot differ target 519

from similar repositories, while contrastive- 520

learning methods strongly outperform others. 521

This result demonstrates the difficulty of un- 522

derstanding long-form questions compared 523

with short queries, and the necessity of precise 524

retrieval on large corpus via semantic search 525

instead of lexical matching. 526

• Poor performance is shown by BERT and 527

CodeBERT if directly employing mean pool- 528

ing output to similarity computation. The 529

results are even worse than using average 530

GloVe embeddings. Universal Sentence En- 531

coder shows effectiveness among unsuper- 532

vised learning methods and SBERT achieves 533

great performance, since they are trained on 534

large QA corpus. 535

• Nearly all supervised methods achieve 536

higher performance than unsupervised mod- 537

els, though no early interaction such as cross- 538

attention between questions and repositories 539

is considered. This phenomenon demonstrates 540

the sound effect of contrastive learning. 541

5.3 Ablation Study 542

Effects of model components To discover the 543

impact of different aspects of QuReCL, an empiri- 544

cal ablation study is performed in this part. Remov- 545

ing or replacing components of QuReCL decreases 546

the performance as Table 4 shows. We replace the 547

NT-Xent loss with Circle loss (Sun et al., 2020) for 548

comparison. 549

Discussion of Weighted-NT-Xent As mentioned 550

above, we design the Weighted-NT-Xent, to diver- 551

sify the impact of the four types of interactions 552

between QA pairs. The hyperparameter α and β 553

controls the weight of similarity computation. In 554

our practice, we set α = β for better hyperpa- 555

rameter serach. The original NT-Xent is the case 556

7



Models
Test Small Large

MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5

BERT-base 7.98 4.25 9.50 3.08 1.50 3.75 1.23 0.50 1.75
CodeBERT-base 2.22 0.25 2.25 0.34 0 0.25 0.05 0 0
Glove 19.82 13.00 26.00 10.33 7.00 14.50 5.74 3.75 6.50
BM25 43.22 35.25 51.75 28.23 22.00 35.50 22.13 17.50 27.00
Universal Sentence Encoder 62.72 49.75 78.25 41.24 31.25 51.75 27.09 20.00 33.00
S-BERT 80.23 72.00 91.00 59.22 47.00 73.50 43.89 34.50 55.75
Siamese-CodeBERT 79.37 70.75 88.50 56.62 44.50 68.25 41.67 32.25 53.00
Triplet-CodeBERT 82.96 76.00 89.75 61.86 50.25 76.50 46.24 36.75 57.25
QuReCl (ours) 86.11 80.50 93.00 69.20 59.00 82.25 53.95 41.00 68.50

Table 3: Experimental results on the Repo4QA-small test set. The best figure of MRR and P@1 metric is in bold.
Our QuReCL model outperforms both unsupervised and supervised baselines.

Models MRR P@1

QuReCL 86.11 80.50
w/o XBM -3.07 -3.75
w/o NT-Xent -5.61 -6.25

Table 4: Results of ablation study on model structure.

of α = 1, which means interactions are treated557

equally during learning. Some previews works558

(Chen and He, 2021; Kim et al., 2021) discard the559

self-augmentation interplay, which equals the situ-560

ation that α = 0. In our task, we acknowledge the561

opinion that the most important issue in training is562

to make model gather (qi, ri) and separate (qi, rj).563

However, samples in (qi, qj) and (ri, rj) pairs are564

semantically diverse. Learning to dissociate them565

is beneficial at the top view of our task. So we566

search for the suitable hyperparameter α from 0 to567

2.5 and expect this refinement can precisely lead to568

better performance for our task, as we can see in569

Table 5.570

We report that α = 2 is the best among our571

settings, ascending the original NT-Xent loss by572

0.81%, which demonstrates the importance of573

learning to differ queries and documents. Ignor-574

ing the interaction (α = 0) between repositories575

themselves will reduce the performance badly.576

6 Conclusion577

In this paper, we introduce an automatically col-578

lected novel dataset Repo4QA for the proposed579

task. Furthermore, we propose QuReCL, a con-580

trastive learning method to fine-tune CodeBERT581

for our task. Experimental results demonstrate that582

α MRR P@1 P@5

2.5 84.70 78.00 94.00
2 86.11 80.50 95.00
1.5 85.56 79.75 93.25
1 85.30 79.00 94.75
0.5 85.12 78.00 94.75
0 84.29 77.00 93.50

Table 5: Results of different hyperparameter α settings.

our method outperforms baseline models in effec- 583

tiveness and efficiency. Detailed analysis are con- 584

ducted to investigate the impact on performance 585

brought by components of our model. We look 586

forward to other applications and more research 587

interest on our task. Moving forward, we are plan- 588

ning to deploy our dataset and method to solve 589

programming questions in software engineering 590

practice, and consider code stored in repositories 591

for better informatively modeling bi-modal Github 592

repositories. 593

References 594

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng 595
Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes. 596
2006. Sourcerer: a search engine for open source 597
code supporting structure-based search. In Compan- 598
ion to the 21st ACM SIGPLAN symposium on Object- 599
oriented programming systems, languages, and ap- 600
plications, pages 681–682. 601

J. Cambronero, Hongyu Li, Seohyun Kim, Koushik 602
Sen, and S. Chandra. 2019. When deep learning met 603
code search. Proceedings of the 2019 27th ACM 604
Joint Meeting on European Software Engineering 605

8



Conference and Symposium on the Foundations of606
Software Engineering.607

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,608
Nicole Limtiaco, Rhomni St John, Noah Constant,609
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,610
et al. 2018. Universal sentence encoder for english.611
In Proceedings of the 2018 Conference on Empirical612
Methods in Natural Language Processing: System613
Demonstrations, pages 169–174.614

Ting Chen, Simon Kornblith, Mohammad Norouzi, and615
Geoffrey Hinton. 2020. A simple framework for616
contrastive learning of visual representations. In In-617
ternational conference on machine learning, pages618
1597–1607. PMLR.619

Xinlei Chen and Kaiming He. 2021. Exploring simple620
siamese representation learning. In Proceedings of621
the IEEE/CVF Conference on Computer Vision and622
Pattern Recognition, pages 15750–15758.623

Daniel Cohen, Liu Yang, and W. Croft. 2018. Wikipas-624
sageqa: A benchmark collection for research on non-625
factoid answer passage retrieval. The 41st Interna-626
tional ACM SIGIR Conference on Research & Devel-627
opment in Information Retrieval.628

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-629
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,630
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A631
pre-trained model for programming and natural lan-632
guages. In Proceedings of the 2020 Conference on633
Empirical Methods in Natural Language Processing:634
Findings, pages 1536–1547.635

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a. Coil:636
Revisit exact lexical match in information retrieval637
with contextualized inverted list. In Proceedings of638
the 2021 Conference of the North American Chap-639
ter of the Association for Computational Linguistics:640
Human Language Technologies, pages 3030–3042.641

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.642
Simcse: Simple contrastive learning of sentence em-643
beddings. arXiv preprint arXiv:2104.08821.644

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.645
Deep code search. 2018 IEEE/ACM 40th Interna-646
tional Conference on Software Engineering (ICSE),647
pages 933–944.648

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ish-649
tiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum Haque,650
Tahmid Hasan, Wasi Ahmad, Anindya Iqbal, and651
Rifat Shahriyar. 2021. CoDesc: A large code–652
description parallel dataset. In Findings of the Asso-653
ciation for Computational Linguistics: ACL-IJCNLP654
2021, pages 210–218, Online. Association for Com-655
putational Linguistics.656

Geert Heyman and Tom Van Cutsem. 2020. Neural code657
search revisited: Enhancing code snippet retrieval658
through natural language intent. arXiv preprint659
arXiv:2008.12193.660

J. Huang, D. Tang, L. Shou, M. Gong, and N. Duan. 661
2021. Cosqa: 20,000+ web queries for code search 662
and question answering. In Proceedings of the 59th 663
Annual Meeting of the Association for Computational 664
Linguistics and the 11th International Joint Confer- 665
ence on Natural Language Processing (Volume 1: 666
Long Papers). 667

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, 668
Alex Acero, and Larry Heck. 2013. Learning deep 669
structured semantic models for web search using 670
clickthrough data. In Proceedings of the 22nd ACM 671
international conference on Information & Knowl- 672
edge Management, pages 2333–2338. 673

H. Husain, Hongqi Wu, Tiferet Gazit, Miltiadis Alla- 674
manis, and Marc Brockschmidt. 2019. Codesearch- 675
net challenge: Evaluating the state of semantic code 676
search. ArXiv, abs/1909.09436. 677

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 678
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 679
Wen-tau Yih. 2020. Dense passage retrieval for open- 680
domain question answering. In Proceedings of the 681
2020 Conference on Empirical Methods in Natural 682
Language Processing (EMNLP), pages 6769–6781. 683

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 684
Toutanova. 2019. Bert: Pre-training of deep bidirec- 685
tional transformers for language understanding. In 686
Proceedings of NAACL-HLT, pages 4171–4186. 687

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi- 688
cient and effective passage search via contextualized 689
late interaction over bert. In Proceedings of the 43rd 690
International ACM SIGIR conference on research 691
and development in Information Retrieval, pages 39– 692
48. 693

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. 694
Self-guided contrastive learning for BERT sentence 695
representations. In Proceedings of the 59th Annual 696
Meeting of the Association for Computational Lin- 697
guistics and the 11th International Joint Conference 698
on Natural Language Processing (Volume 1: Long 699
Papers), pages 2528–2540, Online. Association for 700
Computational Linguistics. 701

Kyungjae Lee, Nan Duan, Lei Ji, Jason Li, and Seung- 702
won Hwang. 2020. Segment-then-rank: Non-factoid 703
question answering on instructional videos. In Pro- 704
ceedings of the AAAI Conference on Artificial Intelli- 705
gence, volume 34, pages 8147–8154. 706

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu 707
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. 708
2019a. On the variance of the adaptive learning rate 709
and beyond. In International Conference on Learn- 710
ing Representations. 711

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 712
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 713
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. 714
Roberta: A robustly optimized bert pretraining ap- 715
proach. arXiv preprint arXiv:1907.11692. 716

9

https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197


Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey717
Svyatkovskiy, Ambrosio Blanco, Colin Clement,718
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong719
Zhou, Linjun Shou, Long Zhou, Michele Tufano,720
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-721
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.722
2021. Codexglue: A machine learning benchmark723
dataset for code understanding and generation. ArXiv,724
abs/2102.04664.725

Shanshan Lyu, Wentao Ouyang, Yongqing Wang,726
Huawei Shen, and Xueqi Cheng. 2019. What we727
vote for? answer selection from user expertise view728
in community question answering. In The World729
Wide Web Conference, pages 1198–1209.730

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,731
Saurabh Tiwary, Rangan Majumder, and Li Deng.732
2016. Ms marco: A human generated machine read-733
ing comprehension dataset. In CoCo@ NIPS.734

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-735
aochen Li. 2016. Query expansion based on crowd736
knowledge for code search. IEEE Transactions on737
Services Computing, 9:771–783.738

Ping Nie, Yuyu Zhang, Xiubo Geng, Arun Ramamurthy,739
Le Song, and Daxin Jiang. 2020. Dc-bert: Decou-740
pling question and document for efficient contextual741
encoding. In Proceedings of the 43rd International742
ACM SIGIR Conference on Research and Develop-743
ment in Information Retrieval, pages 1829–1832.744

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019a.745
From doc2query to doctttttquery. Online preprint.746

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and747
Kyunghyun Cho. 2019b. Document expansion by748
query prediction. arXiv preprint arXiv:1904.08375.749

Jeffrey Pennington, Richard Socher, and Christopher D750
Manning. 2014. Glove: Global vectors for word rep-751
resentation. In Proceedings of the 2014 conference752
on empirical methods in natural language processing753
(EMNLP), pages 1532–1543.754

Xipeng Qiu and Xuanjing Huang. 2015a. Convolutional755
neural tensor network architecture for community-756
based question answering. In Twenty-Fourth interna-757
tional joint conference on artificial intelligence.758

Xipeng Qiu and Xuanjing Huang. 2015b. Convolutional759
neural tensor network architecture for community-760
based question answering. In IJCAI.761

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce762
Croft, and Mohit Iyyer. 2020. Open-retrieval con-763
versational question answering. In Proceedings of764
the 43rd International ACM SIGIR conference on765
research and development in Information Retrieval,766
pages 539–548.767

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:768
Sentence embeddings using siamese bert-networks.769
In Proceedings of the 2019 Conference on Empirical770
Methods in Natural Language Processing and the 9th771

International Joint Conference on Natural Language 772
Processing (EMNLP-IJCNLP), pages 3982–3992. 773

Stephen E Robertson, Steve Walker, Susan Jones, 774
Micheline M Hancock-Beaulieu, Mike Gatford, et al. 775
1995. Okapi at trec-3. Nist Special Publication Sp, 776
109:109. 777

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, 778
A. Zhang, Shuochao Yao, Shengzhong Liu, Tian- 779
shi Wang, C. Zhang, and T. Abdelzaher. 2020. pa- 780
per2repo: Github repository recommendation for aca- 781
demic papers. Proceedings of The Web Conference 782
2020. 783

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, 784
Liang Zheng, Zhongdao Wang, and Yichen Wei. 785
2020. Circle loss: A unified perspective of pair simi- 786
larity optimization. In Proceedings of the IEEE/CVF 787
Conference on Computer Vision and Pattern Recog- 788
nition, pages 6398–6407. 789

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou 790
Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal 791
attention network learning for semantic source code 792
retrieval. 2019 34th IEEE/ACM International Con- 793
ference on Automated Software Engineering (ASE), 794
pages 13–25. 795

Xun Wang, Haozhi Zhang, Weilin Huang, and 796
Matthew R Scott. 2020. Cross-batch memory for em- 797
bedding learning. In Proceedings of the IEEE/CVF 798
Conference on Computer Vision and Pattern Recog- 799
nition, pages 6388–6397. 800

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 801
Chaumond, Clement Delangue, Anthony Moi, Pier- 802
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 803
et al. 2019. Huggingface’s transformers: State-of- 804
the-art natural language processing. arXiv preprint 805
arXiv:1910.03771. 806

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, 807
Jialin Liu, Paul N Bennett, Junaid Ahmed, and 808
Arnold Overwijk. 2020. Approximate nearest neigh- 809
bor negative contrastive learning for dense text re- 810
trieval. In International Conference on Learning 811
Representations. 812

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan 813
Sun. 2018. Staqc: A systematically mined question- 814
code dataset from stack overflow. Proceedings of the 815
2018 World Wide Web Conference. 816

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 817
Vasilescu, and Graham Neubig. 2018. Learning to 818
mine aligned code and natural language pairs from 819
stack overflow. 2018 IEEE/ACM 15th International 820
Conference on Mining Software Repositories (MSR), 821
pages 476–486. 822

Wei Zhang, Zeyuan Chen, Chao Dong, Wen Wang, 823
Hongyuan Zha, and Jianyong Wang. 2021. Graph- 824
based tri-attention network for answer ranking in cqa. 825
In Proceedings of the AAAI Conference on Artificial 826
Intelligence, volume 35, pages 14463–14471. 827

10



Zhou Zhao, Hanqing Lu, Vincent W Zheng, Deng Cai,828
Xiaofei He, and Yueting Zhuang. 2017. Community-829
based question answering via asymmetric multi-830
faceted ranking network learning. In Thirty-First831
AAAI Conference on Artificial Intelligence.832

A Implementation Details833

Our implementation is based on the Hugging-834

Face’s Transformers (Wolf et al., 2019), some835

baseline models are implemented with Sentence-836

Transformers (Reimers and Gurevych, 2019). We837

leverage microsoft/codebert-base to initialize pa-838

rameters and weights in CodeBERT model. Mini-839

batch size is set to 8. Temperature hyperparameter840

τ is 0.2. Rectified Adam (Liu et al., 2019a) with be-841

tas = (0.9,0.999) is used as our optimizer. Learning842

rate is set to 1e-5 at first, then decrease to 2e-7 at843

epoch 20 with a CosineAnnealingLR. Cross-batch844

memory with size 64 begins to enqueue at epoch845

5. All experiments are conducted on an NVIDIA846

GTX 3090 with 24GB GPU memory.847

B Effects of Question/Repository848

Components849

To explore the importance of different components850

of questions and repositories, we conduct an abla-851

tion study by removing a component from the ques-852

tion of repository. As listed in Table 6, the perfor-853

mance drops heavily when we delete constituents.854

Documentation is the most important element, as855

the most huge performance decrease is caused by856

deleting Readme documentation from repositories.857

The loss decreases more slowly , because the dif-858

ference between samples is harder to distinguish859

without such an informative constituent.860

Models MRR P@1

Complete Data 86.11 80.50
w/o question title -3.77 -4.75
w/o question body -35.43 -36.25
w/o question tags -3.85 -4.75
w/o repository desc -2.77 -3.50
w/o repository doc -47.83 -38.50
w/o repository topics -3.96 -5.00

Table 6: Results of ablation study on data structure by
removing a component.

11


