Repo4QA: Answering Complex Coding Questions via Dense Retrieval on
GitHub Repositories

Anonymous ACL submission

Abstract

Open-source platforms such as Github and
Stack Overflow both play important roles in
our software ecosystem. It is crucial but time-
consuming for programmers to raise their spe-
cific programming questions on coding forums
such as Stack Overflow, which guides them to
actual solutions on Github repositories. We
show our interest in accelerating such a pro-
cess and find that traditional Information Re-
trieval based methods fail to handle the long
and complex questions in coding forums and
thus cannot find the suitable coding reposi-
tories. In order to bridge the semantic gap
between repositories and real-world coding
questions effectively and efficiently, we intro-
duce a specialized dataset named Repo4QA,
which includes over 12,000 question-repository
pairs constructed from Stack Overflow and
Github. Furthermore, we propose QuReCL,
a contrastive learning model based on Code-
BERT, to jointly learn the representation of
both questions and repositories. Experimental
results demonstrate that our model can simulta-
neously capture the semantic features in both
questions and repositories through jointly em-
bedding, and outperforms existing state-of-art
methods.

1 Introduction

With the increasing popularity of software develop-
ers, Stack Overflow and Github, the two large-scale
communities widely used in open source ecosys-
tems have attracted growing research interests. As
the idiom goes, “Don’t reinvent the wheel”, tack-
ing programming problems with existed codes and
documents is a more effective and economical way,
while various resources in repositories can provide
more useful information than text-formed answers.
Specifically, developers can get help and advice to
solve the technical challenges they face, and be pro-
vided a variety of solutions and tools in repositories
on Github for their software development. Note
that a vast number of challenges have already been

considered and settled by the community, sophis-
ticated schemes posted on Github can help to sat-
isfy requirements or to solve problems discussed in
Stack Overflow. Naturally, many answers in Stack
Overflow provide links to Github repositories, and
a large amount of these answers are acknowledged
to be high-quality and helpful by the community.
This phenomenon is worth researching to deter-
mine its contribution to the efficiency improvement
and code reuse of the whole open source ecosys-
tem.

Motivated by the trend of interplay between
Stack Overflow and Github, we introduce a novel
question-repository matching task. Given a natural-
language-formed question in the programming do-
main, the task is defined as searching for the most
relevant and helpful Github repository in reposi-
tories corpus as answer. Figure 1 illustrates the
interaction between a question and a repository.
Key information for problem solving is framed in
the figure.

To this end, we introduce Repo4QA, a dataset
consisting of 12,995 question-repository pairs for
complex coding question solving. The questions
are collected from Stack Overflow, and the repos-
itories are crawled from Github through the hy-
perlinks provided in corresponding answers. Each
repository is instrumental for trouble-shooting con-
firmed by forum users with upvotes.

The proposed task has its own characteristics.
Different from code searching task (Husain et al.,
2019; Cambronero et al., 2019), our task needs
to find a reasonable semantic alignment between
two long-form sentences. Questions and reposi-
tories have more complex structure and richer in-
formation than short-form web queries and code
snippets. Compared with community-based QA
task (Qiu and Huang, 2015a; Zhao et al., 2017),
our task is a cross-platform task resulting in se-
mantic gap between questions and answers, which
is more challenging for traditional IR-based meth-

Extracting text from HTML file using Python | rite

Asked 12 years, 9 months ago Active 2 daysago Viewed 429k times

I'd like to extract the text from an HTML file using Python. I want essentially the same output | would
get if | copied the text from a browser and pasted it into notepad
276
I'd like something more robust than using regular expressions that may fail on poorly formed HTML.
I've seen many people recommend Beautiful Soup, but I've had a few problems using it. For one, it
picked up unwanted text, such as JavaScript source. Also, it did not interpret HTML entities. For
example, | would expect ' in HTML source to be converted to an apostrophe in text, just as if I'd
pasted the browser content into notepad.
Update html2text looks promising. It handles HTML entities correctly and ignores JavaScript.
However, it does not exactly produce plain text; it produces markdown that would then have to be
turned into plain text. It comes with no examples or documentation, but the code looks clean.
Body
python html text html-content-extraction Tags
Share Improve this question Follow edited May 23 17 at 10:31 asked Nov 30 '08 at 2:28
== Community ¢ E John D. Cook
-1 A 285k 0 #63 93
34 Answers Active | Oldest | Votes
2 Next
html2text is a Python program that does a pretty good job at this
1 60 Share Improve this answer Follow edited Jun 30 18 at 20:54 answered Nov 30 ‘08 at 3:23

RexE
Ye2$ 15.8k © 14 054 080

& Alireza Savand
- 3,284 02 2 36

% Alir3z4 / html2text OWatch ~ 25 Tr star 1k

<> Code (O Issues 66 © Actions @ Security |2 Insights

Add file ~ m About peccription

[Convert HTML to Markdown-|
formatted text.

& alir3zdgithub.io/htmi2text/

11 Pull requests 7

¥ master ~ Go tofile

= READMEmd

html2text

Readme

htmi2text is a Python script that converts a page of HTML into clean, easy-to-read
plain ASCI text. Better yet, that ASCII also happens to be valid Markdown (a text-to-
HTML format).

0 Readme 1OPICS

a8 GPL-30 License
Usage: html2text [filename [encoding]]

Figure 1: An example of interaction between question
at Stack Overflow and repository at Github.

ods such as BM-25(Robertson et al., 1995). Be-
sides, unlike common questions, questions about
programming are more difficult and specialized.
Terminology of programming is widely used to
form questions. There are even some questions
described with codes. Moreover, complex models
considering more interactions between QA pairs
are more computational expensive in our task.

To address the aforementioned issues, we pro-
pose a contrastive learning based model, QuReCL,
to jointly learn the representation of Questions and
Repositories. QuReCL computes a single vector
for each question and repository, and similarity
score of the vectors is calculated to measure the
relatedness for ranking. With experimental evalua-
tion and comprehensive analyses, we show that our
method strongly outperforms baselines. We also
demonstrate that QuReCL is more computationally
efficient than baselines in inference step.

In conclusion, the main contributions of this pa-
per are concluded into three points respectively.

* Dataset: A novel cross-platform Question-
Answering task is presented, aiming at an-

swering real-world programming questions
with existing Github repositories. We also
collect a dataset, Repo4QA for this task.

* Methodology: A practical contrastive learn-
ing model, QuReCL, is proposed to jointly
learn embedding of both questions and repos-
itories, which can be applied to related prod-
ucts with great flexibility.

» Experiment: Experimental results are given to
demonstrate the effectiveness and efficiency
of the proposed QuReCL model compared
with baselines.

2 Related Work

Datasets Existing datasets in the programming
domain focus on text-code interaction. Code-
SearchNet (Husain et al., 2019), Deep Code Search
(Gu et al., 2018) and CoDesc (Hasan et al., 2021)
collect large-scale corpus of code snippet with cor-
responding descriptions. CoSQA (Huang et al.,
2021) collects pairs of web query and function
code for code question answering. Stack Over-
flow resources are mined (Yin et al., 2018) as long-
form natural language queries to retrieval code
snippets (Nie et al., 2016; Yao et al., 2018; ?).
CodeXGLUE (Lu et al., 2021) includes text-to-
code generation task and code memorization task.
The only text-to-text task is documentation transla-
tion in CodeXGLUE.

Neural Matching Networks Ranking methods
are widely used in text matching and semantic
search tasks, such as community-based question
answering (Qiu and Huang, 2015b; Zhang et al.,
2021), open domain question answering (Qu et al.,
2020; Cohen et al., 2018), and visual question an-
swering (Lee et al., 2020). Specifically, in the pro-
gramming domain, traditional IR-based ranking
models regard code as text and match keywords in
queries (Bajracharya et al., 2006). Recently, deep
learning based methods represent coding questions
and answers with vectors and leverage similarities
to rank answers (Gu et al., 2018; Cambronero et al.,
2019; Wan et al., 2019).

Considering the computational cost for match-
ing, representation-based learning approaches
(Huang et al., 2013) encode query and document
each into a vector and judge the relevancy by
the similarity of vectors. Towards a better rep-
resentation of repository, paper2repo (Shao et al.,
2020) maps the embeddings of academic papers

and repositories into the same space for ranking
and recommendation. Very recently, pre-trained
models including CodeBERT (Feng et al., 2020)
that trained from data in programming domain have
been applied to improve representation learning.

LM Based Retrieval and Ranking Pretrained
language models (Kenton and Toutanova, 2019;
Liu et al., 2019b) dramatically advance the state of
the art on various NLP tasks. However, limitations
on text length and the trade-off of effectiveness and
efficiency are important issues, as the cross atten-
tion operations are too expensive in pair-wise cross-
encoders. Recent work (Karpukhin et al., 2020;
Xiong et al., 2020; Khattab and Zaharia, 2020; Nie
etal., 2020; Gao et al., 2021a) try to reduce the com-
putational interaction between query and document
and move it to the online re-rank procedure. By
storing representation of document offline, these
methods facilitate cheap runtime cost while achiev-
ing promising results on retrieval tasks.

Moreover, contrastive learning on pre-training
models is broadly applicable to several sentence-
level tasks recently. = SBERT (Reimers and
Gurevych, 2019) use siamese and triplet network
to derive embedding of two sentences, and then
fine-tune the model to yield useful sentence embed-
dings. Some work aims to improve BERT sentence
embeddings in an unsupervised way (Gao et al.,
2021b; Kim et al., 2021) by data augmentation.

3 Preliminaries

3.1 Repod4QA Dataset

Questions We collect complex programming
questions from the well-known coding forum Stack
Overflow. Stack Overflow provides data dump !
from 2014 to 2021. Answers within 200 characters
which contain a hyperlink to a Github repository
are selected. Questions with such kind of answers
are often complicated.Responders are required not
only to get through the requirements raised by ques-
tioners, but also to be familiar to repositories stored
in Github. The goal of our research is to fill in the
gap between the questioner and various of open
source tools.

To filter out topics without specific repository-
for-solution intent such as bug-reporting discus-
sion, we discard answers discussing particular re-
sources in repository including issues, commits

"https://archive.org/details/stackexchange

and releases. We control the quality and correct-
ness of answers by only mining posts with one or
more upvotes. After removing answers with inac-
cessible Github repository links, these answers and
corresponding questions compose 12,995 QA pairs
consisting of 12,713 unique questions. Codes are
marked with [code] token to help our model learn
the combination of natural language and code in
questions.

Repositories We crawl repositories through the
Github API with given hyperlinks in answers. For
our task, we mine basic information such as a name,
a description, topics (also called tags) and stars of
a repository. A description is a short textual docu-
mentation to describe a repository briefly. Topics
are keywords to classify a repository. For instance,
“python” tag indicates the programming language
that the repository uses, and “deep-learning” tag
shows that the repository is used in the deep learn-
ing domain. The Readme file is obtained to provide
documentation in detail. Most repositories intro-
duce the main contribution and usage in the head
of Readme file. We investigate 30 repositories ran-
domly and find that the most informative part of
a Readme file is about 2-3 paragraphs at the start,
which is far less then 512 tokens. Hence, we cut
the first 8192 characters of a Readme file after text
cleaning to represent the repository in natural lan-
guage. 9,663 unique repositories are mined in this
step, in which 2,862 repositories have at least one
topic.

Construction Questions and repositories are
aligned according to QA pairs mined in questions
to constitute a QA pair sample. For each pair, the
original answer is replaced by the repository men-
tioned. We then select a small dataset from the
entire QA pairs with high quality. All samples in
small dataset have at least one topic. The statistics
of both datasets is listed in Table 2.

Comparison To the best of our knowledge, this
is the first dataset applied to solving complex re-
alistic programming problems with existing web
resources. In this part, we conduct a comparison
between Repo4QA and datasets from two aspects:
(1) Code intelligence. (2) Community-based QA.
As presented in Table 1, datasets in the program-
ming domain tend to use only the title of the ques-
tion in Stack Overflow or a short textual query
including web query and short description as query.
However, we find out that in complex questions

Dataset Domain Size Query Type Answer Type Annotation

CSN (Husain et al., 2019) Coding 2.3M Short description Function code No
Deep Code Search(Gu et al., 2018) Coding 18.2M Short description Function code No
CoSQA (Huang et al., 2021) Coding 20.6K Web Query Function code Yes
QECK (Nie et al., 2016) Coding 312.9K SO question title ~ Code block No

StaQC (Yao et al., 2018) Coding 268K SO question title ~ Code block Partly

CoNalLa (Yin et al., 2018) Coding 598.2K SO question title ~ Code block Partly
SO-DS (Heyman and Van Cutsem, 2020) Coding 12.1k SO question title ~ Code block No
CQA-Quora (Lyu et al., 2019) Open 76.2k Quora question Quora Answer No
CQA-SO (Zhang et al., 2021) Coding 13.9k SO question SO Answer No
Repo4QA (ours) Coding 13.0k SO question Github repository No

Table 1: Overview of existing datasets on Code Intelligence and Community-based QA

Dataset Type Samples Avg. length
Question 12,995 7.97 + 104.50
Large .
Repository 9,954 9.79 + 572.58
Small Question 3,766 8.02 + 105.73
Repository 2,862 9.77 + 688.03

Table 2: The statistics of Repo4QA dataset. Avg.
length means title length + body length for question,
and description length + Readme length for repository.
Readme file has the maximum character length of 8192.

raised in Stack Overflow, problems are almost de-
scribed in detail in the body of questions. The
importance of the question body should not be ne-
glected. We find out that in Community-based QA
datasets, their QA pairs are on the same page, while
our Repo4QA aims to bridge the semantic gap be-
tween natural languages and Github repositories,
which is a challenge to represent for its length (av-
eragely over 500 words) and heterogeneous text
structure. In comparison, the average length of
question/answer in CoSQA dataset (Huang et al.,
2021) is 6.60/71.51, and the average length of an-
swer in CQA-SO (Zhang et al., 2021) dataset is
85.6.

4 Methodology
4.1 Task Description

Before diving into detail of our model, we first
describe symbols used in the answer selection
problem. Given a question in a natural language
question set ¢ € (@, and a set of repositories
R = {ryi,re,--- ,rp} from Github. Each ques-
tion has the title, the content and the tags, while
each repository has descriptions and the documen-

tation. Tags are not contained in some repositories.
Our main task is to find the most possibly helpful
repository r € R to solve the question gq.

Due to the limitation of calculating resources in
real-life application, joint embedding is an effec-
tive and efficient way to find repositories related to
question raised. Ideally, we would train a model
that jointly learns the embedding of () and R with a
triplet network. To be specifically, given any ques-
tion ¢; and repository r;r ,r; , where rj is one of
the answer to ¢;, and r; is not related to ¢;, we
aim to learn a representation function e, = f(z)
to make s(egq;, e,+) and s(ey,, e,) satisfying the
inequality: s(eqi:ergr) > s(eq,ezr_f), where s de-
notes similarity, e.g cosine similarity or Euclidean
distance-based similarity. Then we rank all the an-
swers for a given question according to similarity.

4.2 Model Architecture

m

q T, q r
I I]
[
() (e e o)
e e
CodeBERT CodeBERT Cross-Batch
Memory

{III}_{

4 I

Figure 2: The QuReCL applies a weight-sharing Code-
BERT for encoding questions and repositories. Similar-
ity is computed between model outputs and embeddings
stored in Cross-Batch Memory for model training.

We present our QuReCL as Figure 2 illustrated
in this part. Different from natural language in com-
mon domain, language used in programming do-
main contains various of out-of-vocabulary words,
e.g “flask” is a tool used for web in python program-
ming. In order to solve this problem, we leverage
CodeBERT as our text encoder. CodeBERT is a
bi-modal pre-trained RoBERTa-based (Liu et al.,
2019b) model for natural language (NL) and pro-
gramming language (PL) tasks. It is a bidirectional
Transformer with 12 layers, 768 dimensional hid-
den states and 12 attention heads pre-trained on the
large-scale CodeSearchNet (Husain et al., 2019)
corpus. CodeBERT achieves the state-of-the-art in
most NL-PL tasks such as natural language code
search and code documentation generation. By
expanding its vocabulary from RoBERTa, Code-
BERT can represent programming terms that oc-
cur in the training corpus properly, especially for
word-combining terminologies common used in
programming domain. For example, “pyflask”™ is
an OOV word in most model’s vocabulary, but the
WordPiece encoding will cut “pyflask” to “py” and
“flask”.

In detail, for each question ¢;

titl body tag titl body _tag
(qzl e’qz 7qz‘)’ Where qlz eaqz) 4y

denotes the title, the body and the tags of ¢;, we put
a [CLS] token in the front of the 3 sentences and
separate them by [SEP] after tokenization. Then
we feed the tokenized sequences into CodeBERT
to acquire pooled contextualized representations of
them respectively. A [Q] is placed in the start to
identify the query. In practice, we adopt the mean
pooling value of contextual representation as the
output of CodeBERT:

q; = C-BERT([Q]¢/*[S]q!™[S]¢;°™[S]) (1)

Where [S] denotes [SEP] Similarly, for each

. topi
repository, r; = (r;lesc’ r;loc, TjOPZC)’ where
t
pdesc pdoc TP qenotes the description, readme

jo 00
documentation and topics of r;, we have formala-

tion as follows:

r; = C-BERT([AJr{™"“[S]r{**[S]r{**[S]) (2)
Note that few readme files exceed the token
length limit of 512 in CodeBERT, we only take
the first 510 tokens (2 tokens are left for [Q]/[A]
and [SEP]) of the Readme file as documentation.

In practice, the head content of readme file is de-
scriptive and summative enough for our task, which
is more informative than usage and example part.

4.3 Contrastive Learning for Joint
Embedding

We obtain an encoding model of questions and
repositories by a CodeBERT encoder and projec-
tion layer. To make this model learn the joint em-
bedding of both questions and repositories, we in-
corporate contrastive learning methods to Code-
BERT. Contrastive learning aims to learn represen-
tations by contrasting positive and negative exam-
ples as the name implies. It matches the target to
satisfy the inequality : s(eg;, e,+) > s(eg,e,.-).

We select N QA pairs into a Batch, resultinlg 2N
data points. It is clear that the QA pair is a positive
pair. Instead of choosing negative pairs explicitly,
every non-matched Q-A sample pair is regarded as
negative pairs.

Loss Function Denote X = {x|x € {q;} U
{ri}} is the set of computed embedding vectors of
questions and repositories in batch.

Typical metric-learning based loss function fo-
cuses on modeling the distance between questions
and answers. However, compared with other QA
tasks, our questions are more complex and long-
formed, which means, different questions implicate
diverse semantic information. We insist that a good
dense representation model should not only control
the distance of queries and documents, but can also
represent the semantic difference between ques-
tions and repositories.

To achieve this, we leverage the NT-Xent loss
applied in SImCLR (Chen et al., 2020) is our train-
ing target at first. The loss function for a positive
pair (i, j) is defined as follow :

[base l e(sim(xi,x;)/7) 3
(/A Ong Lkt € (sim(xi,xx)/T) 3)

where 7 is a temperature hyperparameter. Co-
sine similarity is implemented as a similarity func-
tion. The loss is calculated in all positive pairs
bidirectionally including (7, j) and (j,4). The over-
all base is the average loss of all positive pairs 2

1 N

Lbase -
2N
k=1

(Lg(lzfs—el,Qk + insgk) @

%Pairs are placed orderly in mini-batch

Loss Function Revisited Inspired by the discus-
sion of NT-Xent loss optimization in the recent
works (Chen and He, 2021; Kim et al., 2021) , we
revisit our task and NT-Xent loss. The NT-Xent
loss consists of four interactions as follows:

(1) q; =< r; : The main element that gathers
paired question and repository together in the
vector space.

(2) qgj <~ qj : The factor that separates embed-
ding of questions.

(3) rj < rj : The component that make reposi-
tories to be distant from each other.

(4) gj <= rj : An important role that cause un-
matched question-repository pairs segregated.

Unlike unsupervised methods (Gao et al., 2021b;
Kim et al., 2021) neglecting the impact of similarity
computing between data points and their augmen-
tations. The semantic gap exists not only between
different questions but also different repositories
in our task. It is necessary to consider how im-
portant the factor (2) and (3) are in the learning
procedure. To this end, we reformulate NT-Xent to
Weighted-NT-Xent :

N
1 b
LY = N Z(Uzuk—l,% + Lop’s,—1) (5
=1

[I e(sim(xi,%;)/7)
I IS i, k)elsim e)
(6)
where
o if{xiaxk} C qu
w(i,k) =46 if{xi,x} Cur (7)

1 otherwise

The Weighted-NT-Xent gives the weight for the
self-model similarity result. We can control the
contribution of case (2) and case (3) as mentioned
above, by changing the value of « and 5. We
expect that this refinement can reveal the impact
of self-modal contrastive learning during the cross-
modal contrastive learning task. We will report and
discuss the fact that the setting of « and /3 greater
than 1 results better performance in the experiments
section.

Cross-Batch Memory Augmentation and Neg-
atives Sampling Cross-batch memory (XBM)
(Wang et al., 2020) can considerably boost the
performance of contrastive learning tasks. The
XBM module stores embeddings and labels for data
points. It is maintained as a first-input-first-output
(FIFO) queue. Enqueue and dequeue procedures
happen when a mini-batch arrives. As mentioned
above, for an anchor question q;, we pair it with
rest N — 1 repositories {r;|j # i} in the N-size
mini-batch as negative pairs. In practice, heavy-
weight BERT-based model has acute GPU memory
cost issue. The size of mini-batch is often limited in
NLP tasks using BERT-based model®. By pairing
anchors with samples stored in XBM, information
provided by negative pairs is significantly enriched.
Moreover, we select hard negatives with tags/topics
labeling, from the intuition that tags/topics overlap
leads to similar discussion.

S Experiments

We carry out our experiments to evaluate the perfor-
mance of methods on our Repo4QA dataset. Fur-
ther, we discuss whether our proposed QuReCL
model outperforms state-of-the-art methods in sim-
ilar tasks. In addition, an ablation study is con-
ducted to explore how components of our proposed
model impact performance.

5.1 Experimental Setup

Dataset We conduct experiments on the
Repo4QA-small dataset, by randomly splitting
Repo4QA-small dataset into 2,966/400/400
for training/testing/validation. For repositories
retrieval, we evaluate the performance from
3 different corpus: the test split, the whole
Repo4QA-small repositories and the whole
Repo4QA-large repositories, which is a more
realistic setting since the documents do not occur
in training period. If given more repositories,
for example, the whole Github repositories, a
piratical solution is to filter several repositories
with traditional IR approaches such as BM-25,
then rerank these repositories via our model.

Metrics We adopt two common metrics to mea-
sure the effectiveness of our proposed model,
namely, Mean Reciprocal Rank (MRR) and Preci-
sion@K. In practice, we evaluate the performance
of K = 1,5. The two metrics are widely used in
information retrieval and answer ranking.

*Maximum mini-batch size is 8 in this work

Baselines As Repo4QA is a new challenge, no
model is specifically designed for it. Existing
methods such as ColBert(Khattab and Zaharia,
2020) focus on passage ranking tasks such as MS
MARCO(Nguyen et al., 2016), with short query
and passages related. While query expansion meth-
ods (Nogueira et al., 2019b,a) are not so helpful
because of the complexity of our queries. Pair-wise
cross-encoders are more suitable for the rerank task
after we retrieval the dense representation for the
consideration of effective-efficient trade-off. For
a fair comparison, diversified methods for similar
tasks such as sentence embedding and metric learn-
ing models are introduced as baselines. We use
the exact same processed data for our model as the
input of these baselines.

* BM25(okapi) (Robertson et al., 1995) BM25
is a well-known lexical retrieval model.
We employ the implementation from the
rank_bm?25 library.*

* GloVe (Pennington et al., 2014) The mean em-
bedding of the whole sentence is regarded as
the representation of the sentence. Sentence
representation similarity is computed for rank-
ing.

¢ Universal Sentence Encoder (Cer et al., 2018)
It is a transformer-based network which aug-
ments unsupervised learning with training on
SNLI dataset.

¢ BERT (Kenton and Toutanova, 2019) We use
the [CLS] token output for sentence embed-
ding.

* CodeBERT Similar to the strategy applied on
BERT, the [CLS] token output is adopted. Be-
sides, we train a Siamese-formed CodeBERT
and a Triplet-formed CodeBERT for compari-
son in supervised learning.

* S-BERT (Reimers and Gurevych, 2019) is a
Siamese BERT-Networks. We employ the all-
roberta-large-vl model hosted on hugging-
face, which is pretrained over 1B+ QA pairs
for better sentence embedding. ©

“https://github.com/dorianbrown/rank_bm25

Shttps://tfhub.dev/google/universal-sentence-encoder/4

Shttps://huggingface.co/sentence-transformers/all-
roberta-large-v1

5.2 Model Comparisons

The performance of different approaches on
Repo4QA task is reported in Table 3. From these
experimental results, we can obtain the following
summaries :

* Our proposed model outperforms all competi-
tive baselines on MRR, P@1 and P@5 metrics.
Especially, for retrieval task on Repo4QA-
large dataset, traditional IR-based and word
embedding approaches cannot differ target
from similar repositories, while contrastive-
learning methods strongly outperform others.
This result demonstrates the difficulty of un-
derstanding long-form questions compared
with short queries, and the necessity of precise
retrieval on large corpus via semantic search
instead of lexical matching.

* Poor performance is shown by BERT and
CodeBERT if directly employing mean pool-
ing output to similarity computation. The
results are even worse than using average
GloVe embeddings. Universal Sentence En-
coder shows effectiveness among unsuper-
vised learning methods and SBERT achieves
great performance, since they are trained on
large QA corpus.

* Nearly all supervised methods achieve
higher performance than unsupervised mod-
els, though no early interaction such as cross-
attention between questions and repositories
is considered. This phenomenon demonstrates
the sound effect of contrastive learning.

5.3 Ablation Study

Effects of model components To discover the
impact of different aspects of QuReCL, an empiri-
cal ablation study is performed in this part. Remov-
ing or replacing components of QuReCL decreases
the performance as Table 4 shows. We replace the
NT-Xent loss with Circle loss (Sun et al., 2020) for
comparison.

Discussion of Weighted-NT-Xent As mentioned
above, we design the Weighted-NT-Xent, to diver-
sify the impact of the four types of interactions
between QA pairs. The hyperparameter « and 3
controls the weight of similarity computation. In
our practice, we set a« = [for better hyperpa-
rameter serach. The original NT-Xent is the case

Test Small Large

Models

MRR P@l P@5 MRR P@l P@5 MRR P@l1 P@5
BERT-base 798 425 950 3.08 1.50 3.75 1.23 050 1.75
CodeBERT-base 222 025 225 034 0 0.25 0.05 0 0
Glove 19.82 13.00 26.00 10.33 7.00 1450 574 375 6.50
BM25 4322 35.25 51.75 28.23 22.00 3550 22.13 17.50 27.00
Universal Sentence Encoder 62.72 49.75 7825 4124 31.25 51.75 27.09 20.00 33.00
S-BERT 80.23 72.00 91.00 5922 47.00 73.50 43.89 3450 55.75
Siamese-CodeBERT 79.37 70.75 88.50 56.62 4450 68.25 41.67 32.25 53.00
Triplet-CodeBERT 8296 76.00 89.75 61.86 5025 7650 4624 36.75 57.25
QuReCl (ours) 86.11 80.50 93.00 69.20 59.00 82.25 53.95 41.00 68.50

Table 3: Experimental results on the Repo4QA-small test set. The best figure of MRR and P@ 1 metric is in bold.

Our QuReCL model outperforms both unsupervised and supervised baselines.

Models MRR P@1
QuReCL 86.11 80.50
w/o XBM -3.07 -3.75
w/o NT-Xent -5.61 -6.25

Table 4: Results of ablation study on model structure.

of « = 1, which means interactions are treated
equally during learning. Some previews works
(Chen and He, 2021; Kim et al., 2021) discard the
self-augmentation interplay, which equals the situ-
ation that oo = 0. In our task, we acknowledge the
opinion that the most important issue in training is
to make model gather (g;, 7;) and separate (g;, ;).
However, samples in (g;, g;) and (r;,7;) pairs are
semantically diverse. Learning to dissociate them
is beneficial at the top view of our task. So we
search for the suitable hyperparameter a from O to
2.5 and expect this refinement can precisely lead to
better performance for our task, as we can see in
Table 5.

We report that & = 2 is the best among our
settings, ascending the original NT-Xent loss by
0.81%, which demonstrates the importance of
learning to differ queries and documents. Ignor-
ing the interaction (o = 0) between repositories
themselves will reduce the performance badly.

6 Conclusion

In this paper, we introduce an automatically col-
lected novel dataset Repo4QA for the proposed
task. Furthermore, we propose QuReCL, a con-
trastive learning method to fine-tune CodeBERT
for our task. Experimental results demonstrate that

a MRR P@l P@5
25 8470 78.00 94.00
2 86.11 80.50 95.00
1.5 8556 79.75 93.25
1 85.30 79.00 94.75
0.5 85.12 78.00 94.75
0 84.29 77.00 93.50

Table 5: Results of different hyperparameter « settings.

our method outperforms baseline models in effec-
tiveness and efficiency. Detailed analysis are con-
ducted to investigate the impact on performance
brought by components of our model. We look
forward to other applications and more research
interest on our task. Moving forward, we are plan-
ning to deploy our dataset and method to solve
programming questions in software engineering
practice, and consider code stored in repositories
for better informatively modeling bi-modal Github
repositories.

References

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng
Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes.
2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Compan-
ion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and ap-
plications, pages 681-682.

J. Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and S. Chandra. 2019. When deep learning met
code search. Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of
Software Engineering.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169-174.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In /n-
ternational conference on machine learning, pages

1597-1607. PMLR.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15750-15758.

Daniel Cohen, Liu Yang, and W. Croft. 2018. Wikipas-
sageqa: A benchmark collection for research on non-
factoid answer passage retrieval. The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 1536-1547.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a. Coil:
Revisit exact lexical match in information retrieval
with contextualized inverted list. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3030-3042.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE),
pages 933-944.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ish-
tiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum Haque,
Tahmid Hasan, Wasi Ahmad, Anindya Igbal, and
Rifat Shahriyar. 2021. CoDesc: A large code—
description parallel dataset. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021, pages 210-218, Online. Association for Com-
putational Linguistics.

Geert Heyman and Tom Van Cutsem. 2020. Neural code
search revisited: Enhancing code snippet retrieval
through natural language intent. arXiv preprint
arXiv:2008.12193.

J. Huang, D. Tang, L. Shou, M. Gong, and N. Duan.
2021. Cosqa: 20,000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers).

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333-2338.

H. Husain, Hongqi Wu, Tiferet Gazit, Miltiadis Alla-
manis, and Marc Brockschmidt. 2019. Codesearch-

net challenge: Evaluating the state of semantic code
search. ArXiv, abs/1909.09436.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171-4186.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research

and development in Information Retrieval, pages 39—
48.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2528-2540, Online. Association for
Computational Linguistics.

Kyungjae Lee, Nan Duan, Lei Ji, Jason Li, and Seung-
won Hwang. 2020. Segment-then-rank: Non-factoid
question answering on instructional videos. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 8147-8154.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019a. On the variance of the adaptive learning rate
and beyond. In International Conference on Learn-
ing Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Shanshan Lyu, Wentao Ouyang, Yongqing Wang,
Huawei Shen, and Xueqi Cheng. 2019. What we
vote for? answer selection from user expertise view
in community question answering. In The World
Wide Web Conference, pages 1198—1209.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on
Services Computing, 9:771-783.

Ping Nie, Yuyu Zhang, Xiubo Geng, Arun Ramamurthy,
Le Song, and Daxin Jiang. 2020. Dc-bert: Decou-
pling question and document for efficient contextual
encoding. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1829-1832.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019a.
From doc2query to doctttttquery. Online preprint.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019b. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532-1543.

Xipeng Qiu and Xuanjing Huang. 2015a. Convolutional
neural tensor network architecture for community-
based question answering. In Twenty-Fourth interna-
tional joint conference on artificial intelligence.

Xipeng Qiu and Xuanjing Huang. 2015b. Convolutional
neural tensor network architecture for community-
based question answering. In IJCAL

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval con-
versational question answering. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 539-548.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th

10

International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982-3992.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang,
A. Zhang, Shuochao Yao, Shengzhong Liu, Tian-
shi Wang, C. Zhang, and T. Abdelzaher. 2020. pa-
per2repo: Github repository recommendation for aca-
demic papers. Proceedings of The Web Conference
2020.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei.
2020. Circle loss: A unified perspective of pair simi-
larity optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 6398-6407.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal
attention network learning for semantic source code
retrieval. 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 13-25.

Xun Wang, Haozhi Zhang, Weilin Huang, and
Matthew R Scott. 2020. Cross-batch memory for em-
bedding learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition, pages 6388—-6397.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N Bennett, Junaid Ahmed, and
Arnold Overwijk. 2020. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. Proceedings of the
2018 World Wide Web Conference.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 476—486.

Wei Zhang, Zeyuan Chen, Chao Dong, Wen Wang,
Hongyuan Zha, and Jianyong Wang. 2021. Graph-
based tri-attention network for answer ranking in cqa.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14463-14471.

Zhou Zhao, Hanqing Lu, Vincent W Zheng, Deng Cai,
Xiaofei He, and Yueting Zhuang. 2017. Community-
based question answering via asymmetric multi-
faceted ranking network learning. In Thirty-First
AAAI Conference on Artificial Intelligence.

A Implementation Details

Our implementation is based on the Hugging-
Face’s Transformers (Wolf et al., 2019), some
baseline models are implemented with Sentence-
Transformers (Reimers and Gurevych, 2019). We
leverage microsoft/codebert-base to initialize pa-
rameters and weights in CodeBERT model. Mini-
batch size is set to 8. Temperature hyperparameter
715 0.2. Rectified Adam (Liu et al., 2019a) with be-
tas = (0.9,0.999) is used as our optimizer. Learning
rate is set to le-5 at first, then decrease to 2e-7 at
epoch 20 with a CosineAnnealingLR. Cross-batch
memory with size 64 begins to enqueue at epoch
5. All experiments are conducted on an NVIDIA
GTX 3090 with 24GB GPU memory.

B Effects of Question/Repository
Components

To explore the importance of different components
of questions and repositories, we conduct an abla-
tion study by removing a component from the ques-
tion of repository. As listed in Table 6, the perfor-
mance drops heavily when we delete constituents.
Documentation is the most important element, as
the most huge performance decrease is caused by
deleting Readme documentation from repositories.
The loss decreases more slowly , because the dif-
ference between samples is harder to distinguish
without such an informative constituent.

Models MRR Pe@1
Complete Data 86.11 80.50
w/o question title 377 475
w/o question body -35.43 -36.25
w/o question tags -3.85 -4.5

w/o repository desc ~ -2.77 -3.50
w/o repository doc -47.83 -38.50
w/o repository topics -3.96 -5.00

Table 6: Results of ablation study on data structure by
removing a component.

11

