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Abstract

In this paper, we propose a self-supervised learning procedure for training a robust
multi-object tracking (MOT) model given only unlabeled video. While several
self-supervisory learning signals have been proposed in prior work on single-object
tracking, such as color propagation and cycle-consistency, these signals cannot be
directly applied for training RNN models, which are needed to achieve accurate
MOT: they yield degenerate models that, for instance, always match new detections
to tracks with the closest initial detections. We propose a novel self-supervisory
signal that we call cross-input consistency: we construct two distinct inputs for
the same sequence of video, by hiding different information about the sequence
in each input. We then compute tracks in that sequence by applying an RNN
model independently on each input, and train the model to produce consistent
tracks across the two inputs. We evaluate our unsupervised method on MOT17 and
KITTI — remarkably, we find that, despite training only on unlabeled video, our
unsupervised approach outperforms four supervised methods published in the last
1-2 years, including Tracktor++ [1]], FAMNet [5], GSM [18]], and mmMOT [29].

1 Introduction

Multi-object trackers identify all instances of a particular object type in video, and track each instance
through the segment of video in which it is visible in the camera frame. Annotating training data
for multi-object tracking is tedious and costly; for example, annotation of pedestrian tracks in just
six minutes of video in the training set of the MOT15 Challenge [14]] requires an estimated 22
hours [20] of human labeling time using LabelMe [28]]. While unsupervised, heuristic detect-to-track
methods [2, 4] have been proposed that group detections into tracks by estimating motion using a
combination of spatial and visual cues, these methods suffer low-accuracy in scenarios with frequent
occlusion where heuristics are insufficient.

Recent work has proposed applying self-supervised learning for training single-object tracking
models on unlabeled video [24, 25]]. These approaches train a model to propagate instance labels
from a reference frame through the rest of a video sequence. In contrast to work on self-supervised
representation learning from video, these fully unsupervised approaches do not require fine-tuning to
apply the model for single-object tracking.

However, a significant limitation in prior work is that the model independently compares pairs of
frames at a time. In multi-object tracking, a key challenge is robustly re-localizing tracks across
potentially long occlusions, especially when an object instance is occluded by other instances of the
same object type. Pairwise frame comparisons are thus insufficient for high-accuracy multi-object
tracking; instead, learning recurrent features that encode the history of a track is crucial for enabling
robust re-localization. However, extending prior work to learn RNN parameters is challenging. For
example, Wang et al. [25] propose training using forward-backward consistency: from a patch in an
initial frame, after tracking forwards through video and then backwards to return to the initial frame,
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the final patch should align with the original patch. Training an RNN in this way would be ineffective
as the RNN could simply memorize the features of the original patch.

To address this challenge, we propose a novel self-supervised learning method, cross-input con-
sistency. We first compute object detections in each frame of unlabeled video (like unsupervised,
heuristic detect-to-track methods, we assume that a robust detector is available). Then, we derive a
learning signal from the unlabeled video by sampling a short sequence of contiguous frames from the
video, constructing two input variations of that sequence that each hide different information about
objects detected in the sequence, and training the tracker to produce consistent tracking outputs when
applied independently on each of the two inputs. We propose two alternative input-hiding schemes
for computing the input variations: visual-spatial hiding and occlusion-based hiding. Visual-spatial
hiding applies the tracker once when only observing spatial inputs (bounding box coordinates in
the video frame), and once when only observing visual inputs (pixel values inside detection boxes).
Occlusion-based hiding eliminates information about object detections in random intermediate sub-
sequences of frames to simulate occlusion incidents; thus, it constructs two inputs by eliminating
different subsequences of detections in each input. After sampling a sequence of video and com-
puting the two input variations under the chosen input-hiding scheme, we apply the tracker model
independently on each input, and back-propagate a learning signal that measures the consistency
between tracks computed across the two inputs. To attain high consistency, the model must accurately
group detections that correspond to the same object: if the model were to instead arbitrarily group
detections into tracks, then variations in the inputs would cause the tracker to produce inconsistent
outputs.

To implement cross-input consistency, we adapt a now standard RNN model and tracker architecture
from prior work [12]: the tracker processes each frame in sequence by matching detections in the
current frame with tracks computed up to the previous frame. In prior work, this model is trained
under a supervised procedure: they sample a video sequence (Iy,...,I,) and a track ¢ in that
sequence, and apply the tracker on ¢ over the sequence. On each frame I;, the RNN outputs a
probability distribution indicating the likelihood that the prefix of a track ¢ up to I; matches with
each detection in I;. Prior work back-propagates the label (i.e., the correct detection of ¢ in I;) under
cross entropy loss.

In contrast, under our method, on each training iteration, we propose to sample a sequence
(Io,...,I,) from a corpus of unlabeled video, and apply the RNN model to compute a transi-
tion matrix that specifies the probability that each detection in I (rows) matches with each detection
in I, (columns). We select the sequence length n so that most objects in I are still visible in 7,,.
Then, when applying the tracker on two input variations extracted from the sequence, we obtain
two transition matrices (one for each input). We compute the dot-product similarity to measure the
consistency between these matrices, and back-propagate the negative similarity as a loss function.

We evaluate our approach on the MOT17 and KITTI benchmarks against 9 baselines, including both
unsupervised and supervised methods. We train our tracker model using cross-input consistency over
a corpus of unlabeled video, which can be cheaply obtained. Like other unsupervised methods, we
use an object detector trained on image-level bounding box annotations in COCO [17]], but do not use
any expensive video-level annotations. We find that, on MOT17, our approach improves both IDF1
and MOTA accuracy over the unsupervised baselines by 14% to 18%. Moreover, remarkably, our
fully unsupervised approach outperforms five of the seven supervised methods we compared, even
though these methods train on expensive video-level bounding box and track annotations.

Our code is available at https://favyen. com/uns20/,

2 Related Work

Self-supervised learning over video has been studied extensively in many contexts. Most work focuses
on learning representations of video that can be applied through fine-tuning for tasks such as activity
recognition, image classification, and object detection [6, [7, (9} [15| [23| 26]. More closely related to
our work, several recent approaches have proposed leveraging widely available unlabeled video to
directly train single-object tracking models, without needing fine-tuning [13}[16]. Vondrick et al. [24]
train a model to colorize gray-scale video by propagating colors from a colored reference frame. The
model is then applied to track objects at inference time by propagating instance IDs instead of colors.
Wang et al. [25] train a model to capture correspondence by applying a cycle-consistent loss: from
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Figure 1: Overview of cross-input consistency. An input-hiding scheme produces two inputs, A and
B, from one video sequence; these inputs contain identical information about objects detected in the
first and last frames of the sequence, but vary in intermediate frames. We apply the tracker model on
each input to derive two transition matrices that match detections between the first and last frames
to represent tracker outputs. We then back-propagate a similarity score between the matrices that
encourages the model to produce consistent outputs across both inputs.
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Figure 2: Tracker model architecture. The model scores the likelihood that each detection in the
current frame matches with each track.

a patch in an initial frame, after tracking forwards through video and then backwards to return to
the initial frame, the final patch should align with the original patch. As we discussed in Section|[I}
self-supervisory signals used in prior work such as color propagation and cycle-consistency are not
effective for training RNN models, which are needed to achieve accurate MOT.

Our work is also related to unsupervised, heuristic detect-to-track multi-object tracking methods
such as SORT [2]] and V-IOU [4]]. These methods group detections across different frames using a
combination of heuristic spatial cues (e.g., Kalman filter over bounding box coordinates) and visual
cues (e.g., optical flow) to track objects. Like our approach, these methods assume that a robust
detector is available; however, because they rely on heuristics to group detections into tracks, they
suffer low-accuracy in scenarios with frequent occlusion.

Multi-object tracking has been studied extensively in supervised settings, where methods are trained
on video-level bounding box and track annotations [T} 8, [12], (18], 30]. However, such annotations
are expensive to hand-label, and so these methods are costly to extend to new types of video.

Other work explores using unsupervised and self-supervised learning to further improve the perfor-
mance of fully supervised methods. SimpleRelD [11]] proposes improving the performance of one
supervised method, CenterTrack [30], by training a re-identification model through unsupervised
learning. However, while the model can in principle be trained only on image-level annotations
through hallucinated motion techniques, their SimpleReID+CenterTrack tracking method depends
on expensive video-level annotations to attain high-accuracy. In contrast, our method achieves
competitive results without any video-level supervision.

3 Cross-Input Consistency

In our novel cross-input consistency method, we derive an learning signal for training an RNN
tracker model through a three-step process. We assume that a corpus of unlabeled video is available,
along with an object detector for the object category of interest. During pre-processing, we apply
the detector on each frame of unlabeled video to compute object detections. Then, during training,



we first repeatedly randomly sample a sequence of contiguous frames from the video, (Io, ..., I,),
where each I, is a video frame. Let Dy by the detections automatically computed in [ by the
detector, and let d¥ = (im, z,y,w, h) be a detection in Dy, where (z,y, w, h) are the 4D spatial
coordinates (center point and lengths) of the detection bounding box, and ¢m is the window of
I, corresponding to that box. We apply an input-hiding scheme to select two input variations
A(D), B(D) for the video segment, where each variation is a modified sequence of detections in
the frames, A(D) = (Dg',...,DA), B(D) = (D§, ..., DE). For example, some detections may
be removed entirely, while others may be partially hidden. Second, we apply the tracker model
independently on each input variation to derive two probabilistic tracking outputs (one per input),
represented as transition matrices. Third, we compare the transition matrices with dot-product
similarity to update the RNN parameters.

Figure [I| summarizes our approach.

Below, we first introduce the model architecture that we adapt from prior work in Section 3.1} We
then detail our novel training procedure, including the computation of the transition matrices and
dot-product loss, in Section[3.2} Finally, we propose two input-hiding schemes for selecting the input
variations required by our approach in Section 4]

3.1 Background: Tracker Model

We adopt a tracker model that is similar to prior work [12]]. We summarize the architecture in Figure
Given a video sequence (I, . .., I,,), and sets of detections Dy, = {d¥, ..., dfm} detected in each
frame I}, to initialize the tracking process, we create a length-1 track ¢; = (d?) for each detection d?
in the first video frame Iy. When processing subsequent frames, we will match the new detections
with existing tracks, extending existing tracks if there is a match and initializing new tracks otherwise.
Specifically, on each subsequent frame I, the model outputs a probability p; ; that each track ¢;
corresponds to each detection d;? € Dy. Atinference time, we formulate the problem of matching
tracks with detections in I}, as a bipartite matching problem, where the cost of matching ¢; with
df is 1 — p; ;. We solve this problem and compute a minimum-cost matching using the Hungarian

algorithm; for each pair (¢;, df) in the matching, we append d? to ;. For each detection in [, that no

track matches to, we create a new track for that detection.

The model consists of a CNN, RNN, and matcher network. Together, these components score the
likelihood that the ith track, ¢; = (di,.. ., dy,), matches with the jth detection in I, d¥. We first
apply the CNN to derive detection-level features. Given a detection d = (im, x, y, w, h), the CNN
inputs ¢m resized to 64 x 64, and consists of 6 strided convolutional layers, with ReL.U activation in
the first 5 layers and linear activation in the last layer. It outputs a 64-vector, which we concatenate
with the 4D spatial coordinates to derive a 68-vector detection representation f(d). Then, we compute
track-level features f(¢;) by applying the RNN (an LSTM with 64 hidden states) over the sequence
of detection-level features of detections in the track, (f(d1),. .., f(dm)). We use the output of the
RNN on the last timestep as the track-level features f(¢;). Finally, we apply a matching network to
score the likelihood that ¢; matches d;?. The matching network inputs the concatenation of f(¢;) and

f (df), applies four fully-connected layers, and outputs a match score.

3.2 Training Procedure

We develop a novel self-supervised learning method for training the model parameters on unlabeled
video. During training, we repeatedly sample sequences of video (I, ..., I,). We apply one of
two input-hiding schemes, which we will detail in the following section, to extract two distinct
input variations A(D) and B(D) from a sampled video sequence, where each input is a sequence
of detections. We then apply the tracker independently on A(D) and B(D) to derive two tracking
outputs for the same video sequence. In cross-input consistency, we train the model by enforcing
similarity between these two outputs.

To represent tracker outputs, we compute an |Dg| x |D,| 4 1 transition matrix M (™), where
M i((;’") ,7 < | Dy is the probability that the track ¢; matches d’. We use the last column to represent

tracks that are no longer visible in I,,, i.e., Mi((l)gjl is the probability that the track ¢; has exited the

camera frame. When applying the model over video sequences during training, we update tracks with



new detections based on the scores output by the model on intermediate frames, but do not create
additional tracks on frames after I; thus, each track ¢; corresponds directly to a detection dY in I
(e.,t; = <d?, ...)). Thus, we can also think of MO:n) a5 the probability that a detection in the first
frame df matches a detection in the last frame d}.

Applying the tracker on both input variations yields two transition matrices A(*") and B(>-") that
match objects detected in I with those in [,,. We train the model (CNN, RNN, and matching network)
to maximize the dot-product similarity between these matrices. In addition to pushing the model to
produce consistent outputs across both inputs, we also design our training method so that the model
cannot attain a high similarity score by, for example, saying that all objects visible in I are no longer
visible in 1,,.

In our method, it is important that the training sequence length n be chosen so that, in most sequences,
most (but not all) objects in I are still visible in I,,, but that objects nevertheless move non-trivially
during the sequence (so that the tracking task is not too easy). In general, we find that setting n to
one-half of the average time that objects linger in the camera frame works well; this value can be
quickly estimated by hand-labeling the duration of a few (e.g., 10-20) objects randomly sampled
from the video.

Below, we detail our method to compute transition matrices, and discuss dot-product similarity loss.

Transition Matrix. We propose computing a transition matrix M (°*) on each frame I}, to represent
the tracker outputs, where M, i(g,k) is the probability that the track ¢; matches the detection dé?. On
intermediate frames, we apply the Hungarian method on M (°-¥) to match detections in Dy, with tracks,
updating each track with the matched detection (if any). On the last frame [,,, we use the M (0,m)
matrix produced under different inputs (denoted A7) and B(0:7)) to compute and back-propagate
a consistency score. Because we do not create new tracks after [y during training, Mi(g-’") is the
likelihood that d? and d’ match (since ¢; begins with d?).

We first construct a score matrix S(*-%), by computing Si(_oj’k) as the score (any real number) output
by the tracker model given the track ¢; and detection d?. We then transform the score matrix into a

probability matrix to derive M (%*), We could simply compute M (*-F) by taking softmax along rows
in S(%*)_ However, computing the transition matrix in this way would allow the tracker to cheat and
maximize similarity between A(%™) and B by simply matching all detections in Ij to a single
detection d7 € D,,. Indeed, we find that in practice this yields degenerate models.

Thus, instead, we compute M (9-F):% and A7 (0:F).col by applying softmax along rows and columns,
respectively, and compute M (%%) = min (M (OF)row 7 f(0.k)coly.

M exp(Si;) co _ _ exp(Si;)
" 2 exp(Sik) " e exp(Sk.)

This produces a transition matrix M (*:¥) that is almost doubly stochastic: rows and columns sum
to at most 1, but not necessarily exactly 1. The operation ensures that the model must match each
detection in I to unique detections in I,, to maximize the consistency score between AOm) and
B if two detections in I, o are matched to the same detection in I,,, then the columnar softmax
would reduce those probabilities in the corresponding matrix to at most 0.5, thereby reducing any
dot-products involving those rows.

M; ; =min(M%¥, M) (1)

i,J A

Dot-Product Similarity. We train the RNN tracker by computing two transition matrices A"
and B(®™) over different input variations, and then back-propagating a loss that measures the
inconsistency between the matrices. In particular, we use the dot-product to measure the similarity of
corresponding rows in the matrices. We define the loss as:

L=- ZlogZAon)B(O"

Here, L is computed by taking the logarithm of the dot product of corresponding rows in A(%:")
and B(%™)  averaged across rows. Note that this is equivalent to the cross-entropy loss between the
diagonal matrix and the matrix product of A(°") and the transpose of B(0:"),
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Figure 3: Visual-spatial hiding. One input includes only visual information about the detections,
while the other includes only spatial bounding box coordinates.

This loss function has several desirable properties. First, the dot-product is maximized when the
matrices computed based on different inputs are most similar. This pushes the matching model
to learn reasonable visual and spatial tracking constraints, because arbitrarily matching tracks to
detections will lead to dissimilarity. Second, the dot-product pushes each matrix to be almost doubly
stochastic rather than leaving some rows and columns summing to much less than 1. The model can
only produce doubly stochastic A() and B(*:") matrices by finding unique detections in I,, for
each detection in I.

Spatial Mask. In some cases, training as described above may converge at a local minimum where
the model outputs uniform probabilities for all entries in M. To mitigate this issue, we add a spatial
constraint to the loss that penalizes the tracker when it matches detections that are highly improbable
to correspond to the same object based on bounding box positions. We first compute a mask matrix

C0:m) o that C’i(f)j’n) = 0 if it is “improbable” that d9 matches d%, and Ci(g-’”) = 1 otherwise. Then,
we compute L as:
_ (0,n) »(0,n) ~(0,n)
L=- ZlOgZAm Bi i Cij
i J

We determine whether matches in C' are improbable by applying a simple floodfill-like algorithm that
propagates sets of labels from the first frame I to the last frame I,,. If the label from a detection d? in
Iy does not propagate to a detection df, then it implies there is no sequence of intermediate detections

that could form a track between d? and d?. In Iy, we label each detection d? with a set containing
only that detection, i.e., {d?}. In I}, we label each detection d? with the union of sets of labels of

detections df ~!in preceding frames I;,_; (1 < I < 10) such that the bounding boxes of d;? and df -
intersect. Note that we consider several preceding frames since the detector may occasionally fail to

localize an object in an intermediate frame. Then, C’fg’") = 1 only if the label set for d} includes dy.

Artificial Detections. To improve the model’s robustness in learning visual features, we artificially
construct additional detections in I,, by pairing the spatial coordinates of detections in I,, with object
images selected randomly from frames in the underlying video data that are temporally far from
(Iy,...,I). Thus, these artificial detections added to D,, have correct spatial coordinates, but
include visual cues that do not correspond to any object in Iy, and so the tracker model must learn to
leverage visual cues so that it does not assign high probabilities in M (0,7) to artificial detections.

We exclude artificial detections in the mask C. Then, to perform well under dot-product similarity,
the model must learn to leverage visual features to distinguish the correct detections in I,, from
artificially constructed ones — a tracker that only considers spatial features would assign half of its
probability mass along each row to artificial detections, and thus would be penalized by the loss.

4 Input-Hiding Schemes

In this section, we detail two alternative input-hiding schemes for selecting the two input variations,
denoted A(D) = (D¢,..., D) and B(D) = (DF, ..., DB). Recall that D is the original set of
all objects detected in a video sequence (I, ..., I,,). Although we only introduce two schemes, our
cross-input consistency framework is general-purpose, and there may be other input-hiding schemes
that offer comparable or better performance.
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Figure 4: Occlusion-based hiding produces input variations with different subsequences of occluded
frames where all detections are hidden from the tracker. It also independently applies the tracker
before and after a hand-off frame (/4 and /), and merges the outputs through the matrix product.

4.1 Visual-Spatial Hiding

Under visual-spatial hiding, we apply one tracker instance that observes only visual features and one
tracker instance that observes only spatial features: in A(D), we setz = 0,y = 0,w = 0, h = 0 for
all detections (hide all spatial information), and in B(D), we set ém = 0 (hide the image content).

Training with cross-input consistency forces the model to produce similar outputs between the visual
and spatial inputs. We find that, in practice, the model naturally learns to robustly track objects,
because doing anything else would not lead to high consistency. For example, when given visual
features, the model must learn to match detections based on visual similarity in order to be consistent
with matching based on spatial proximity. Similarly, when given spatial features, the model must
learn to estimate motion across occlusion, since the visual-only instance would not have difficulty
re-localizing a visually distinctive object following frames where it was occluded.

A key issue with visual-spatial hiding is that the visual-only instance can estimate the change in
spatial coordinates of an object between two frames by comparing the background of the detection
bounding boxes of that object across the frames, similar to optical flow. This reduces performance
because the visual-only instance then learns only to process the background rather than learn a robust
embedding for contrasting distinct objects. To mitigate the issue, we make adjustments to the training
and inference procedures.

Training. We prevent the visual-only instance from focusing on background features when matching
detections in [,, with those in I by encumbering its ability to aggregate estimates of changes in
spatial coordinates across sequences of consecutive frames: although processing the background is
sufficient to compute spatial movement between detections that are in close proximity (e.g., detections
of the same object between consecutive frames), this strategy fails for detections that share no overlap.
Thus, for sufficiently large n, where objects move substantially during the sampled video sequence,
background processing is only an issue because the tracker can add up changes that it computes
between each pair of consecutive frames.

In particular, we eliminate the recurrent unit for the visual-only instance: its matching network
inputs visual features for detections in I and for detections in I,,, and scores each pair of detections
in A(%") without observing intermediate frames. On the other hand, we make no changes to the
spatial-only instance: it computes B(>™) by processing 4D spatial coordinates for each detection in
every frame in the sequence, and employs both the recurrent unit and the matching network. Figure 3]
illustrates the training procedure.

Inference. The separation of visual and spatial inputs, and the specialized training procedure that
we employ, imposes two challenges during inference. First, because the visual-only and spatial-
only instances observe very different inputs, we cannot expect the model to perform well when we
provide both inputs—in effect, we have trained two separate models. Second, since we eliminated
recurrent features for the visual-only instance during training, the visual-only instance is essentially a
re-identification model, and we must decide how to apply it during inference to take advantage of
multiple prior observations of a track in previous frames.

To address the first challenge, during inference, for an input video sequence (I, . .., Iy.), we indepen-
dently compute the visual-only tracker output A(%*) and the spatial-only tracker output B(%*) We

then compute M (%) as the minimum of A¥) and B(%%) and use M (%% to update tracks before
processing the next frame. Taking the minimum for a matching between track ¢; and detection d?



ensures that the final transition probability reflects whichever of the visual features or spatial features
that make d? less likely to match with ¢;. This is desirable—for example, two red sedans visible
in the same segment of video will have high visual similarity, and we may have to leverage spatial
features to distinguish them.

The second challenge is that the visual-only tracker lacks recurrent features, and thus is only able to
compare palrs of frames. To address this, when using the visual-only tracker, for each track-detection

pair (t;, dj) we compute 5 scores by applying the model on dk and 5 randomly selected images

associated with the track ¢; in previous frames. We then average these scores to derive A( %) This
enables the model to use context from multiple preceding frames when localizing an object in a new
frame.

4.2 Occlusion-based Hiding

We also experimented with an occlusion-based hiding scheme. Since we found that visual-spatial
hiding performs better, we introduce occlusion-based hiding only at a high level here, but include
details in the supplementary material.

Occlusion-based hiding produces the variations A(D) and B(D) by simulating random occlusion
incidents where all detections in occluded frames are eliminated from the input, i.e., if I, is occluded
for A(D), then D,f is empty. We only occlude intermediate frames (i.e., a frame I}, is only considered
for occlusion if 0 < k < n) so that the transition matrices still compare detections in I with those in
I,,. When processing an occluded I}, the tracker is forced to match all tracks to the absent column
in that frame, and re-localize the tracks after the occlusion. In occlusion-based hiding, we also
incorporate an RNN hand-off method that cuts off the propagation of RNN features from I to I,, by
employing two separate RNN executions: for some handoff index 1 < h < n, we apply the model
from Iy to I, and separately apply the model from I}, to I,,, and combine the transition matrices by
taking their product. We summarize the scheme in Figure 4]

5 Evaluation

We compare our method and nine baselines on the MOT17 [21] and KITTI [[10] benchmarks.

Baselines. We compare with two unsupervised methods (SORT [2]] and V-IOU [4]) and seven
fully supervised methods (Tracktor++ [1], MHT-BLSTM [12], FAMNet [5], LSST [8]], GSM [18]],
mmMOT [29], and CenterTrack [30]). Like our approach, SORT and V-IOU require an object
detector, but do not train on any video-level bounding box and track annotations in the MOT17
and KITTI training sets. The fully supervised methods train on video-level annotations; Tracktor++
incorporates a core component that uses only the detector regression network, but requires video-level
annotations for training a re-identification network. Results for 8 baselines are available on MOT17,
and results for 4 baselines are available on KITTI.

Dataset. MOT17 [21]] consists of 14 video sequences of pedestrians in a wide range of contexts,
including a moving camera inside a shopping mall and a fixed, elevated view of an outdoor plaza.
The dataset is split into 7 training sequences and 7 test sequences; each split includes approximately
11 minutes of video. KITTI [10] consists of 48 video sequences captured from vehicle-mounted
cameras, split into 20 for training and 28 for testing, and the objective is to track cars.

Training. The supervised baselines train on video-level bounding box and track annotations provided
by MOT17 and KITTI. In contrast, our method trains only on a corpus of unlabeled video. Because
video-level annotations are expensive to label, our method requires substantially less annotation time,
and thus greatly reduces the effort needed to apply multi-object tracking on new datasets.

For MOT'17, we collect unlabeled video from two sources: we use five hours of video from seven
YouTube walking tours, and all train and test sequences from the PathTrack dataset [20] (we do not
use the PathTrack ground truth annotations). For KITTI, we use both the 46 minutes of video in the
KITTTI dataset together with 7 hours of video from Berkeley DeepDrive [27]. We train our tracker
model on an NVIDIA Tesla V100 GPU; training time varies between 4 and 24 hours depending on
the input-hiding scheme. During training, we randomly select sequence lengths n between 4 and 16



Method IDF1 | MOTA
Occlusion (ours) 52.4 56.7
Visual-Spatial (ours) | 57.3 60.2
Spatial-Only (ours) 56.5 57.8
Table 1: Ablation study on the MOT17 training set.

Method IDF1 | MOTA || MT | ML | FP FN | Idsw | Frag

Unsupervised | Visual-Spatial (ours) | 58.3 56.8 || 538 | 880 | 12K | 231K IK 2K
Methods SORT [2] 39.8 43.1 || 295 | 997 | 28K | 288K SK | 7K
10U [3] 394 45.5 || 369 | 953 | 20K | 282K 6K | 7K

Tracktor++ [[1] 52.3 53.5 || 459 | 861 | 12K | 248K 2K | 5K

MHT-BLSTM [12] 51.9 47.5 || 429 | 981 | 26K | 268K 2K | 3K

Supervised | FAMNet [3] 48.7 52.0 || 450 | 787 | 14K | 254K 3K | 5K
Methods LSST [8]] 62.3 54.7 || 480 | 944 | 26K | 228K IK | 4K
GSM [18] 57.8 56.4 || 523 | 813 | 14K | 230K IK | 3K

CenterTrack [30]] 59.6 61.5 || 621 | 752 | 14K | 201K 3K | 5K

Table 2: Performance on the MOT17 test set. We compare methods in terms of IDF1 and MOTA, but
include other non-comprehensive metrics from MOT17 as well for completeness.

Method HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA
Visual-Spatial (ours) 62.5 61.1 | 653 67.7 73.8 69.1 83.1 80.3
SORT [2]] 42.5 440 | 413 47.3 73.9 42.8 83.0 | 80.8
FAMNet [5]] 52.6 61.0 | 455 64.4 78.7 48.7 77.4 | 81.5
mmMOT [29] 62.1 72.3 | 54.0 76.2 84.9 59.0 824 | 86.6
CenterTrack [30] 73.0 756 | 712 80.1 84.6 73.8 89.0 | 86.5

Table 3: Performance on the KITTT test set (tracking cars). We show unsupervised methods, including
our approach, at the top, and methods that require video-level annotations at the bottom. We use HOTA
to compare methods, but include other non-comprehensive metrics from KITTI for completeness.

frames, and apply stochastic gradient descent one sequence at a time. We apply the Adam optimizer
with learning rate 0.0001, decaying to 0.00001 after plateau.

In contrast to MOT17, KITTI does not provide object detections for use by tracking methods. We
extract detections from video using a YOLOvVS model trained on COCO. On MOT17, we pre-process
the provided Deformable Parts Model, Faster R-CNN, and Scale-Dependent Pooling detections with
classification and regression following the pre-processing method in Tracktor++ [[1]].

Metrics. We use Multi-Object Tracking Accuracy (MOTA) [21] and ID F1 Score (IDF1) [22] on
MOT17, and Higher Order Tracking Accuracy (HOTA) [[19] for KITTI. Broadly, these comprehensive
metrics measure the accuracy of inferred tracks against ground truth tracks, and penalize both when
an inferred track contains a detection that doesn’t match to some ground truth detection (or vice
versa), and when a ground truth track is split into two or more inferred tracks (or vice versa). MOT17
and KITTI employ several other non-comprehensive metrics, many of which are used to compute
MOTA, IDF1, and HOTA; we report these for completeness.

Ablation Study. We first compare occlusion-based hiding and visual-spatial hiding on the MOT17
training set in Table|l} Visual-spatial hiding yields higher performance on both MOTA and IDF1 —
because objects are often visible in the video for only a short duration, when training under occlusion-
based hiding, the model is unable to learn to re-localize objects over simulated occlusions since the
simulated occlusion must then also be short. Under Spatial-Only, we show results for visual-spatial
hiding when inputting only the spatial coordinates of detections during inference (no image features).




Figure 5: Output of Visual-Spatial on a portion of an MOT17 sequence. Our method tracks objects
through several instances of occlusion.

Quantitative Results. Table shows results on the MOT17 test seﬂ and Table shows results on
the KITTI test seﬂ Metrics are automatically computed by the challenge websites. Per the challenge
policies, we only submit the best method, and thus show Visual-Spatial performance.

On MOT17, our approach substantially outperforms both of the unsupervised baselines. Moreover,
despite training only on unlabeled video, our method outperforms Tracktor++ [1]], MHT-BLSTM [12],
FAMNet [5], and GSM [18]], even though these baselines (all of which except MHT-BLSTM were
published in the last 1-2 years) are supervised methods that train on expensive video-level annotations
in the MOT17 training set. Our approach is also competitive with LSST [8]], yielding higher MOTA
but lower IDF1. Nevertheless, CenterTrack [30] yields slightly higher accuracy on both metrics.

Similarly, on KITTI, our approach outperforms SORT [2]], FAMNet [5], and mmMOT [29], but yields
lower performance than CenterTrack [30].

Qualitative Results. We show qualitative results in Figure 5]

Additional Experiments. In the supplementary material, we report results for five additional
experiments, where we compare MOTA on the MOT17 training set when various experimental
parameters are changed, including detector accuracy, unlabeled video corpus size, and the training
example sequence length n.

6 Conclusion

In this paper, we have shown that a robust, fully unsupervised multi-object tracker can be trained
through a novel self-supervisory learning signal, cross-input consistency, that enforces consistency in
the tracking outputs across different input variations of one video sequence. Despite training only on
unlabeled video, our approach outperforms four supervised trackers published in the last 1-2 years
(Tracktor++ [1]], FAMNet [3], GSM [18]], and mmMOT [29]), which train on expensive video-level
bounding box and track annotations.

Social Impact. By enabling a robust multi-object tracker to be trained given only unlabeled video,
our work promises to greatly reduce the effort for users to apply multi-object tracking on new datasets
without sacrificing accuracy. Thus, we believe that our novel self-supervised MOT method can open
up new video analytics tasks that were previously too costly. This impact may be positive or negative
depending on the nature of these tasks — however, in general, we believe that tasks with greater
potential for negative impact such as surveillance and pedestrian tracking would not benefit from the
reduction in annotation cost associated with our method.

Funding Transparency Statement. This research was supported in part by the Qatar Computing
Research Institute (QCRI).

!These results are taken from https://motchallenge.net/results/MOT17/, where our method is
denoted UNS20regress. Baselines are denoted SORT17, IOU17, Tracktor++, MHT_bLSTM, FAMNet, LSST17,
GSM_Tracktor, and CTTrackPub.

These results are taken from http: //www.cvlibs.net/datasets/kitti/eval_tracking.php!
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