
ACIL: Analytic Class-Incremental Learning with
Absolute Memorization and Privacy Protection

Huiping Zhuang1, Zhenyu Weng2∗, Hongxin Wei3, Renchunzi Xie3, Kar-Ann Toh4, Zhiping Lin2

1Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, China
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
3School of Computer Science and Engineering, Nanyang Technological University, Singapore

4Department of Electrical and Electronic Engineering, Yonsei University, Korea
1hpzhuang@scut.edu.cn, 2{zhenyu.weng, ezplin}@ntu.edu.sg
3{hongxin001, XIER0002}@e.ntu.edu.sg, 4katoh@yonsei.ac.kr

Abstract

Class-incremental learning (CIL) learns a classification model with training data
of different classes arising progressively. Existing CIL either suffers from serious
accuracy loss due to catastrophic forgetting, or invades data privacy by revisiting
used exemplars. Inspired by linear learning formulations, we propose an analytic
class-incremental learning (ACIL) with absolute memorization of past knowledge
while avoiding breaching of data privacy (i.e., without storing historical data).
The absolute memorization is demonstrated in the sense that class-incremental
learning using ACIL given present data would give identical results to that from
its joint-learning counterpart which consumes both present and historical samples.
This equality is theoretically validated. Data privacy is ensured since no historical
data are involved during the learning process. Empirical validations demonstrate
ACIL’s competitive accuracy performance with near-identical results for various
incremental task settings (e.g., 5-50 phases). This also allows ACIL to outperform
the state-of-the-art methods for large-phase scenarios (e.g., 25 and 50 phases).

1 Introduction

Class-incremental learning (CIL) [26, 16] trains a network phase-by-phase with training data in
each phase having distinctive classes. The CIL has received an increasing popularity owing to the
need to adapt learned models to unseen data classes without needing to train from scratch, allowing
resource-saving and environmentally-friendly machine learning. Developing CIL is a natural call
in our dynamic world where data and respective target category or task are usually available in a
specific location or time slot. In addition, the CIL is intuitively motivated as it resembles real human
learning processes where a person could continuously adopt knowledge of new object categories on
top of the learned information.

Merits of CIL come with costs. The CIL could struggle with the notorious catastrophic forgetting
[1], rendering the network losing grasp of the learned knowledge when accepting new tasks, which
is also known as the task-recency bias. To mitigate the forgetting issue, several branches of CIL
methods, such as the bias correction-based [2] and replay-based (or exemplar-based) [16] CIL, have
been proposed. These CIL techniques are allowed to store a small number of samples from previous
tasks to fight the forgetting of old knowledge. In particular, the replay-based CIL has achieved the
state-of-the-art performance [12]. However, such competitive results have been obtained at the cost
of revisiting the historical samples, which has brought concerns in terms of data privacy protection.

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Data Privacy in CIL. Data privacy is becoming more of value in our interconnected modern world,
which naturally applies to CIL problems asking for exemplar-free learning. Note that the “privacy” in
CIL (i.e., cannot re-use past exemplars) may be different from the definition of other fields (such as
data encryption). The increasing concern of data privacy contradicts many existing CIL techniques,
such as the replay-based CIL. Several methods from the regularization-based CIL [9] respect privacy
as they only impose regularization terms on the loss functions. However, without re-accessing the
trained samples, their accuracy performance cannot compete with that of the replay-based CIL.
Another exemplar-free CIL branch is the generative adversarial network (GAN)-based learning [21],
which preserves privacy by generating historical samples using GANs. This CIL relies heavily on
GANs’ performance and has not been tested in challenging datasets such as ImageNet [3].

In summary, existing CIL techniques either invade data privacy (e.g., replay-based CIL) or cannot
provide satisfactory accuracy performance (e.g., regularization-based CIL). In addition, as the
forgetting issue persists (though mitigated), CIL’s performance experiences a significant degradation
as learning phases increase, a pattern shared by many existing CIL techniques (e.g., [4]). The
performance degradation escalates in large-phase scenarios—a learning scenario with a large number
of learning phases for increment (e.g., 50 learning phases [24]). This has motivated us to find new
CIL methods that well tackles the catastrophic forgetting without invading data privacy.

In this paper, we propose an analytic class-incremental learning (ACIL) to handle the issue of
forgetting and privacy invasion in CIL. The ACIL is inspired by analytic learning [29, 5], a technique
that formulates network training into learning of linear stacks. The analytic learning component
allows the ACIL to conduct CIL in a recursive learning manner that can absolutely memorize the
knowledge of every historical sample (i.e., address catastrophic forgetting) while avoiding the breach
of data privacy (i.e., without storing any past data). The key contributions are summarized as follows.

•We introduce the ACIL, which holds absolute memorization of previous knowledge when accepting
new tasks.

• The ACIL does not store past samples, thereby achieving data privacy protection, a rare but valuable
CIL property.

•We provide theoretical validation of ACIL’s absolute memorization, showing that the CIL using
ACIL given present data provides an identical result to that from its joint-learning counterpart that
adopts data from both present and historical phases.

• Experiments on benchmark datasets show that the ACIL gives competitive CIL results that do
not degrade over increment of data classes during learning phases. In particular, it outperforms the
state-of-the-arts by a considerable margin for relatively large-phase scenarios (e.g., 25 or 50 phases).

2 Related Works

2.1 Class-Incremental Learning

Bias correction-based CIL mainly tries to address the task-recency bias. The end-to-end incremental
learning [2] reduces the bias by introducing a balance training stage where only an equal number
of samples for each class is used. The bias correction (BiC) [23] includes an additional trainable
layer which aims to correct the bias. The method named LUCIR proposed in [6] fights the bias by
changing the softmax layer into a cosine normalization one.

Replay-based CIL stores a small subset of data from the previously accessed tasks to reinforce
the network’s memory of old knowledge. This CIL branch quickly draws attention due to the
appealing ability to resist the catastrophic forgetting. For instance, the PODNet [4] adopts an efficient
spatial-based distillation loss to reduce forgetting, with a focus on the large-phase setting, achieving
reasonably good results. The AANets [11] employs a new architecture containing a stable block
and a plastic block to balance the stability and plasticity. On top of the replay-based CIL, methods
exploring exemplar storing techniques [13] are also fruitful. For instance, the reinforced memory
management (RMM) [12] seeks a dynamic memory management using reinforcement learning. By
plugging it onto PODNet and AANets, the RMM attains a state-of-the-art performance.

Regularization-based CIL imposes additional constraints on the loss functions to avoid forgetting.
The regularization can be imposed on weights by estimating the parameters’ importance so relevant
weights do not drift significantly. The elastic weight consolidation (EWC) [8] captures the prior

2



importance using an diagonally approximated Fisher information matrix. The EWC is improved by
[10] through finding a better approximation of the Fisher information matrix. The regularization can
also be imposed on activations to prevent activation drift, which outperforms its weight-regularization
counterpart in general. The learning without forgetting (LwF) [9] prevents activations of the old
network from drifting while learning new tasks. The less-forgetting learning [7] penalizes the
activation difference except the fully-connected layer.

GAN-based CIL replays past samples by generating them using GANs. The deep generative replay
[17] generates synthetic samples using an unconditioned GAN. It is later improved by memory replay
GAN [22] adopting a label-conditional GAN. In general, the GAN-based CIL relies heavily on
GAN’s generative performance, and is only tested on relatively small datasets, such as MNIST.

The bias correction-based and replay-based CILs allow storing exemplars, leading to privacy invasion.
The exemplar-free methods (e.g., regularization-based and GAN-based CIL) do not give competitive
results. Our ACIL can memorize historical knowledge without re-accessing the data from previous
tasks, allowing it to perform CIL with absolute memorization and privacy reservation.

2.2 Analytic Learning

The analytic learning has been developed to circumvent limitations imposed by back-propagation
(BP), such as gradient vanishing/exploding, divergence during iteration and long training time (i.e.,
need many epochs). The analytic learning also goes by other names such as pseudoinverse learning
[5] due to the use of matrix inverse. The analytic learning starts with the shallow learning. One
quick example is the radial basis network [15], which trains the parameters using a least-squares (LS)
estimation after conducting a kernel transformation in the first layer. The multilayer analytic learning
[18, 20] converts the nonlinear network learning into linear segments that can be solved adopting
LS techniques in a one-epoch training style. For instance, the dense pseudoinverse autoencoder [19]
trains a stacked autoencoder layer-by-layer by concatenating shallow and deep features using LS
solutions. The analytic learning could experience out-of-memory issue as the weights are learned
involving the entire dataset at once. Such a memory issue can be addressed by the block-wise
recursive Moore-Penrose learning (BRMP) [28] by replacing the joint learning with a recursive one.
This much resembles the replacement of gradient descent with stochastic gradient descent to reduce
memory usage, but differs in that the BRMP can exactly reproduce its joint-learning result.

The analytic learning and its recursive formulation (e.g., BRMP) brings inspiration to the CIL realm.
The BRMP can stream new samples to update the weight without weakening the impact of previous
samples. This matches the ACIL’s need for the enhanced memorization of previously trained data.
By bridging the analytic learning and its recursive formulation, our ACIL can be built to absolutely
remember historical samples, without needing to re-access them.

3 The Proposed Method

This section presents the algorithmic details of ACIL, including a base training agenda and a CIL
agenda. Our presentation of ACIL is mainly rooted in CNNs which contain a CNN backbone (feature
extractor) followed by a fully-connected network (FCN) layer (classifier) for classification problems.
An overview of ACIL is depicted in Figure 1.

3.1 The Base Training Agenda

The base training agenda of ACIL has two stages in a sequential oder, namely a base training via BP
and an analytic re-alignment base training (ARaBT), which are illustrated in Figure 1(a) and Figure
1(b) respectively.

Base Training via BP. The first stage (see Figure 1(a)) of the base training agenda duplicates the
conventional BP training on the base dataset. That is, the network is trained with a BP-based iteration
algorithm (e.g., SGD with momentum) for multiple epochs with an appropriate learning rate scheduler
(e.g., step decay scheduler). Let WCNN and WFCN represent the weights for the CNN backbone and
the FCN classifier. After the BP-base base training, given an input X , the output of the network is

Y = fsoftmax(fflat(fCNN(X,WCNN))WFCN)

3



…

flatten

Softmax
Classifier

Analytic 
Classifier

…

Trained CNN feature extractor flatten
expansion

Autocorrelation 
matrix

sav
ing

CNN parameters

Analytic 
Classifier

…

Trained CNN feature extractor flatten
expansion

Phase #0

Autocorrelation 
matrix Phase #1update

Analytic 
Classifier

…

Trained CNN feature extractor flatten
expansion

Data
Base

Data
Phase 1

Data
Phase N

…

Autocorrelation 
matrix Phase #K-1

…

M x 1 x

1 x

1 x

Autocorrelation 
matrix Phase #Kupdate

(a) Base training via BP (b) Analytic re-alignment base training

(c) Analytic class-incremental learning for phase 1

(d) Analytic class-incremental learning for phase N

Data
Base

Base training agenda

Class-incremental learning agenda

Figure 1: The ACIL begins with the base training agenda: (a) training a network with BP-based iteration
method for M epochs on the base dataset, followed by (b) ARaBT for 1 epoch only on the same dataset, which
expands the FCN dimension to enhance feature extraction. Subsequently, (c-d) the CIL agenda is conducted in
a recursive manner adopting the dataset (train for 1 epoch) at the current phase only and a correlation matrix (see
definition in (8)) encrypted with historical information.

where fCNN(X,WCNN) indicates the CNN backbone output with an X passing through it; fflat is a
flattening operator, reshaping a training sample into a 1-D vector; fsoftmax is the softmax function.

Analytic Re-alignment Base Training. The second stage of base training (see Figure 1(b)), the
ARaBT, is the key to the formulation of ACIL. In this stage, the ARaBT “re-aligns” the network’s
learning to match the learning dynamics of an analytic learning.

Prior to our development, some definitions related to CIL are introduced. A K-phase CIL indicates
that a network is trained for K phases where training data of each phase comes with different
classes. Let Dtrain

k ∼ {X train
k ,Y train

k } and Dtest
k ∼ {X test

k ,Y test
k } be the training and testing datasets

at phase k (k = 1, 2, . . . ,K). Xk ∈ RNk×w×h×c (e.g., images with a shape of w × h × c) and
Yk ∈ RNk×dyk (with phase k including dyk

classes) are stacked input and label (one-hot) tensors.
Here Dtrain

0 ∼ {X train
0 ,Y train

0 } represents the base training set utilized to conduct the ARaBT.

The first step is to extract the feature matrix (denoted by X (cnn)
0 ) by feeding the input tensor X train

0
through the trained CNN backbone, followed by a flattening operation, i.e.,

X (cnn)
0 = fflat(fCNN(X train

0 ,WCNN)) (1)

where X (cnn)
0 ∈ RN0×dcnn . Instead of building one FCN layer to map the feature onto the classification

terminal, we conduct a feature expansion (FE) process by inserting an additional FCN layer which
expands the feature space into a higher one. That is, the feature X (cnn)

0 is expanded to X (fe)
0 as follows

X (fe)
0 = fact(fflat(fCNN(X train

0 ,WCNN))Wfe) = fact(X
(cnn)
0 Wfe) (2)

where X (fe)
0 ∈ RN0×d(fe) with d(fe) being the expansion size (with dcnn ≤ d(fe)). fact is an activation

function (we adopt ReLU in this paper), and Wfe is the FE matrix expanding the CNN-extracted
feature. The need for FE process can be justified by the fact that analytic-learning methods require
more parameters to achieve their maximum performance. For the FE matrix, we determine d(fe) with
a very simple trick by drawing every element from a normal distribution. Such a randomization
technique has been shown to capture useful information for classification problems (e.g., see [5, 29]).

Finally, the expanded feature X (fe)
0 is mapped onto the label matrix Y train

0 using a linear regression
procedure via solving

argmin
W

(0)
FCN

∥∥∥Y train
0 −X (fe)

0 W
(0)
FCN

∥∥∥2
F

+ γ
∥∥∥W (0)

FCN

∥∥∥2
F

(3)

4



where ‖·‖F indicates the Frobenius norm, and γ regularizes the above objective function. Also, ·T is
the matrix transpose operator. The optimal solution to (3) can be found in

Ŵ
(0)
FCN = (X (fe)T

0 X (fe)
0 + γI)−1X (fe)T

0 Y train
0 (4)

where Ŵ
(0)
FCN indicates the estimated FCN weight of the final classifier layer.

3.2 The Class-Incremental Learning Agenda

With the network learning aligned with the analytic learning (see (4)), we may proceed to CIL in
an analytic learning fashion. To this end, assume that we are given Dtrain

0 , . . . ,Dtrain
k−1, the learning

problem in (3) can be extended to

argmin
W

(k−1)
FCN

∥∥∥∥∥∥∥∥∥


Y train
0 0 0 . . . 0

0 Y train
1 0 . . . 0

...
0 0 . . .Y train

k−1

−

X (fe)

0

X (fe)
1
...

X (fe)
k−1

W
(k−1)
FCN

∥∥∥∥∥∥∥∥∥

2

F

+ γ
∥∥∥W (k−1)

FCN

∥∥∥2
F

(5)

where

X (fe)
i = fact(fflat(fCNN(X train

i ,WCNN))Wfe). (6)

Note that the stacked label matrix in (5) has a sparse structure due to the fact that datasets from
different phases are mutually exclusive. The solution to (5) can be written as

Ŵ
(k−1)
FCN =

(
k−1∑
i=0

X (fe)T
i X (fe)

i + γI

)−1 [
X (fe)T

0 Y0 . . . X (fe)T
k−1Yk−1

]
(7)

where Ŵ
(k−1)
FCN ∈ Rd(fe)×

∑k−1
i=1 dyi with a column size proportional to k.

Equation (7) gives an LS-based analytical solution for joint learning on Dtrain
0:k−1. The goal of ACIL is

to calculate the analytical solution that satisfies (5) at phase k based on Ŵ
(k−1)
FCN given Dtrain

k without
any samples from Dtrain

0:k−1. Specifically, we aim to obtain Ŵ
(k)
FCN recursively based on Ŵ

(k−1)
FCN and

data X (fe)
k ,Y train

k that are available only at the current learning phase. However, the updated weight
Ŵ

(k)
FCN must satisfy the joint learning in (5) given Dtrain

0:k . Let

Rk−1 = (
∑k−1

i=0
X (fe)T

i X (fe)
i + γI)−1 (8)

be the regularized feature autocorrelation matrix (RFAuM) at learning phase k−1. Then our solution
can be summarized in the following Theorem.
Theorem 3.1. The FCN weight recursively obtained by

Ŵ
(k)
FCN =

[
Ŵ

(k−1)
FCN −RkX

(fe)T
k X (fe)

k Ŵ
(k−1)
FCN RkX

(fe)T
k Y train

k

]
(9)

is identical to that obtained by (7) at phase k. The RFAuM Rk can also be recursively calculated by

Rk = Rk−1 −Rk−1X
(fe)T
k (I + X (fe)

k Rk−1X
(fe)T
k )−1X (fe)

k Rk−1 (10)

Proof. See the supplementary materials.

As shown in Theorem 3.1, the proposed ACIL constructs a recursive update of the FCN weight matrix
without any loss of historical information. One can first conduct the base training agenda on the base
dataset (e.g., compute Ŵ

(0)
FCN), and perform CIL afterwards adopting the recursive formulation to

obtain Ŵ
(k)
FCN for k > 0. The computational steps of ACIL is summarized in Algorithm 1.

Absolute Memorization. As observed in Theorem 3.1, the CIL in (9) yields an identical result to
that of the joint learning in (7). This allows the ACIL to operate with absolute memorization in the
sense that the recursive formulation (i.e., the incremental learning) gives the same answer as the one

5



Algorithm 1 ACIL

Base training agenda: with Dtrain
0 .

1. Conventional training with BP on base
dataset.
2. ARaBT: i) Obtain feature matrix with (2); ii)
Obtain re-aligned weight Ŵ (0)

FCN with (4). iii)
Save RFAuM R0.

CIL agenda:
for k = 1 to K (with Dtrain

k , Ŵ
(k−1)
FCN and

Rk−1) do
i) Obtain feature matrix with (6);
ii) Update RFAuM Rk with (10);
iii) Update weight matrix Ŵ

(k)
FCN with (9);

end for

obtained by its joint analytic learning counterpart. Such an absolute memorization differentiates our
method from the existing CIL techniques that are struggling to fight the forgetting issue. To the best
of our knowledge, the ACIL is the first CIL that achieves absolute memorization.

Data Privacy Protection. Another benefit of our ACIL lies in privacy protection. Algorithm 1 shows
that, during the CIL agenda, no historical samples are granted. Instead, the Rk is cached to encrypt
information for historical samples. However, it is impossible to reverse-engineer the process to obtain
the original samples based on the Rk only, avoiding possible breaching of data privacy. This is an
attractive feature as data privacy has attracted increasing concern in the CIL community.

Although methods in regularization-based CIL (e.g., LwF) could also protect data privacy, the
accuracy performance is less ideal. In comparison, as latter shown in the experiments (e.g., Table
1), the proposed ACIL preserves data privacy while achieving very competitive results. In addition,
the RFAuM holds a fixed shape (i.e., a square matrix of Rdce×dce ) regardless of the sample size. This
takes up less storage room than that of the replay-based CIL.

An Analytic-Learning Branch of CIL. We may categorize the ACIL into a new branch (i.e.,
analytic-learning branch) of CIL. Unlike other branches, the ACIL does not forget any historical
information at all. It also attains privacy protection, a rare but valuable CIL feature. Even with several
appealing features, the ACIL is naturally not as powerful as the BP-based joint learning. The ACIL is
facilitated but also constrained by the fact that it freezes the training of CNN weights. As seen in (6),
the feature matrix X (fe)

i during the CIL agenda is constructed purely based on a transfer learning w.r.t.
the CNN backbone trained on the base dataset. That is, the ACIL extracts the feature of new task
classes using a somewhat obsolete feature extractor. This would lead to certain performance drop.
However, we would argue that the benefits of ACIL greatly outweigh the potential accuracy loss. Our
argument are well supported by the experiments, displaying very competitive results using ACIL.

4 Experiments

We evaluate the proposed ACIL on CIFAR-100, ImageNet-Subset and ImageNet-Full datasets which
are benchmark datasets for CIL. We compare the ACIL with several state-of-the-art CIL techniques,
including LwF [9], EWC [8], Semantic Drift Compensation (SDC) [25], BIC [23], iCaRL [16],
LUCIR [6], Mnemonics [13], PODNet [4], AANets [11] and RMM [12]. GAN-based CIL is not
included as it is only tested on less challenging datasets (e.g., MNIST) and its performance relies
heavily on the GAN training.

The LwF adopts distillation-based loss functions to prevent forgetting. The EWC uses Fisher
information matrix. The SDC studies and compensates the semantic drift of features. The LwF, EWC,
SDC and the proposed ACIL belong to the privacy-preserving methods. The other methods, i.e., BIC,
iCaRL, Mnemonics, PODNet, AANets and RMM, are replay-based methods, requiring storage of
past exemplars.

4.1 Datasets and Implementation Details

Datasets. CIFAR-100 contains 100 classes of 32× 32 color images with each class having 500 and
100 images for training and testing respectively. ImageNet-Full has 1000 classes, and 1.3 million

6



Table 1: Comparison of Ā and F among compared methods. The ACIL adopts dyk = 8k, 15k, 15k (“1k”=1000)
on CIFAR-100, ImageNet-Subset and ImageNet-Full respectively. The ACIL, LwF, EWC and SDC do not keep
old data while other compared methods adopt the same replay settings (e.g., [4, 16]) by reserving 20 exemplars
per old class. Results for Ā(%) are duplicated from [11]) except for the 3-combo method “POD+AANets+RMM”
which is copied from the RMM paper [12] (its ImageNet-Full results are not listed due to no ImageNet option in
the source code). Results for F(%) are cloned from [13]. The strict-memory setting results can be found in
Table A in the supplementary materials.

Metric Method Privacy CIFAR-100 ImageNet-Subset ImageNet-Full
K=5 10 25 50 K=5 10 25 50 K=5 10 25 50

Ā(%)

LwF (TPAMI 2018) X 49.59 46.98 45.51 - 53.62 47.64 44.32 - 51.50 46.89 43.14 -
EWC (PNAS) X 34.01 32.33 - - 42.35 26.76 - - - - - -
SDC (CVPR 2020) X 55.96 56.56 - - - 62.97 - - - - - -
BiC (CVPR 2019) × 59.36 54.20 50.00 - 70.07 64.96 57.73 - 62.65 58.72 53.47 -
iCaRL (CVPR 2017) × 57.12 52.66 48.22 - 65.44 59.88 52.97 - 51.50 46.89 43.14 -
LUCIR (CVPR 2019) × 63.17 60.14 57.54 - 70.84 68.32 61.44 - 64.45 61.57 56.56 -
PODNet (ECCV 2020) × 64.83 63.19 60.72 57.98 75.54 74.33 68.31 62.48 66.95 64.13 59.17 -
LUCIR+Mnemonics (CVPR 2020) × 64.95 63.25 63.70 - 73.30 72.17 71.50 - 66.15 63.12 63.08 -
POD+AANets (CVPR 2021) × 66.31 64.31 62.31 - 76.96 75.58 71.78 - 67.73 64.85 61.78 -
POD+AANets+RMM (NeurIPS 2021) × 68.36 66.67 64.12 - 79.50 78.11 75.01 - - - - -
ACIL X 66.30 66.07 65.95 66.01 74.81 74.76 74.59 74.13 65.34 64.84 64.63 64.35

F(%)

LwF (TPAMI 2018) X 43.36 43.58 41.66 - 55.32 57.00 55.12 - 48.70 47.94 49.84 -
iCaRL (CVPR 2017) × 57.12 34.10 36.48 - 43.40 45.84 47.60 - 26.03 33.76 38.80 -
BiC (CVPR2019) × 31.42 32.50 34.60 - 27.04 31.04 37.88 - 25.06 28.34 33.17 -
LUCIR (CVPR 2019) × 18.70 21.34 26.46 - 31.88 33.48 35.40 - 24.08 27.29 30.30 -
LUCIR+Mnemonics (CVPR 2020) × 11.64 10.90 9.96 - 10.20 9.88 11.76 - 13.63 13.45 14.40 -
ACIL X 9.00 9.72 9.28 9.32 3.91 3.40 3.20 3.43 2.75 3.45 3.31 3.40

images for training with 50,000 images for testing. ImageNet-Subset, in particular, is constructed by
selecting 100 specific classes from ImageNet-Full based on what defined in [4].

Network Architecture. The architectures for CIL in the experiments are ResNet-32 on CIFAR-100
and ResNet-18 on both ImageNet-Full and its subset. These two architectures are commonly adopted
for CIL performance comparison. Our ACIL imposes a slight change (i.e., inserts an expansion FCN
layer), but the CNN backbones are identical to those from the selected ResNet architectures.

Training Details. For conventional BP training in the base training agenda, we train the network
using SGD for 160 (90) epochs for ResNet-32 (ResNet-18). The learning rate starts at 0.1 and it is
divided by 10 at epoch 80 (30) and 120 (60). We adopt a momentum of 0.9 and weight decay of
5× 10−4 (1× 10−4) with a batch size of 128. The input data are augmented with random cropping,
random horizontal flip and normalizing. For fair comparison, this base training setting is identical
to that of many CIL methods (e.g., [6, 13]). For the ARaBT and ACIL’s incremental learning steps,
no data augmentation is adopted, and the training ends within only one epoch. The results for the
ACIL are measured by the average of 3 runs on an RTX 2080Ti GPU workstation. Note that in ACIL,
the CNN is only trained during the BP base training phase. After that, the parameters of the CNN
backbone are fixed during the incremental phases (i.e, phase #1 to #K) including the ARaBT.

CIL Protocol. We follow the protocol adopted in [4, 11]. The network is first trained (i.e., phase #0)
on the base dataset containing half of the full classes from the original dataset. Subsequently, the
network gradually learns the remaining classes evenly for K phases (i.e., K-phase CIL), with the
dataset in each phase containing disjoint classes from one another. Most existing methods only report
results for K = 5, 10, 25. We include K = 50 as well to validate ACIL’s absolute memorization.

4.2 Evaluation Metric

Two metrics are adopted to evaluate the ACIL. The overall accuracy performance is evaluated by
the average incremental accuracy (or average accuracy) Ā (%): Ā = 1

K+1

∑K
k=0Ak where Ak

indicates the average test accuracy of the network incrementally trained at phase k by testing it on
Dtest

0:k. The Ā evaluates the overall performance of CIL algorithms. A higher Ā score is preferred
when evaluating CIL algorithms. The other evaluation metric is the forgetting rate F (%) defined in
[13]: F = AZ

K −AZ
0 where AZ

k denotes the average accuracy at phase k by testing it on Dtest
0 . The

forgetting rate reveals the degree to which a CIL method forgets the base classes. Hence, it is a good
indicator to evaluate CIL’s forgetting issue.

4.3 Result Comparison

We tabulate the average incremental accuracy Ā and the forgetting rate F from the compared
methods in Table 1. As shown in the upper panel, overall, the “combo” CIL techniques—techniques

7



40

60

CI
FA

R-
10

0
LUCIR+Mnemonics
LUCIR

BiC
iCaRL

LwF
EWC

SDC
POD+AANets

PODNet
ACIL

40

60

80

Im
ag

eN
et

_S
ub

se
t

0 2 4
phase#(K=5)

40

60

Im
ag

eN
et

-F
ul

l

0 2 4 6 8 10
phase#(K=10)

0 5 10 15 20 25
phase#(K=25)

Figure 2: Avg. accuracy w.r.t. phase. The RMM curve is not included as its source code is only applicable for
strict-memory settings.

that combine more than one CIL methods—give very competitive Ā scores. In particular, the
“POD+AANets+RMM” combo, which incorporates PODNet [4], AANets [11] into RMM [12],
obtains the most competitive results that can be treated as current the state-of-the-art counterpart.

As shown in the upper panel of Table 1, the ACIL gives a slightly worse average accuracy for 5-phase
CIL in general. However, ACIL’s performance catches up with those of the state-of-th-arts as K
increases, and begins to lead for K ≥ 25 (i.e., large-phase CIL scenarios). For instance, for 5-phase
CIL, the ACIL gives an accuracy of 66.30% on CIFAR-100, which is slightly worse than the results
from several combo techniques such as the “POD+AANets” combo (66.31%) by 0.01% and the
“POD+AANets+RMM” combo (68.36%) by 2.06%. However, for 25-phase CIL, the ACIL (with
65.95%) outperforms these combo methods, e.g., outperforming the second best by 1.83% (64.12%
from the “POD+AANets+RMM” combo). Such an overtaking pattern is naturally expected owing
to ACIL’s absolute memorization. That is, the accuracy of ACIL remains unchanged for different
K values, while other CIL methods experience various levels of forgetting issue that intensifies as
K increases. Note that there could be a very mild Ā degradation from ACIL as K increase (e.g.,
66.30%→65.95). Although theoretically the ACIL should give identical results regardless of K, the
possible mild drop is likely caused by quantization errors since large K indicates more computation
rounds hence more quantization operations (e.g., see TABLE VI [28]).

This pattern on CIFAR-100 is quite consistent with those on ImageNet-Subset and ImageNet-Full.
On ImageNet-Full, the ACIL begins to outperform the compared methods for K ≥ 10, and leads
(with 64.63%) the second best result (63.08% from the “LUCIR+Mnemonics” combo) by 1.55% for
25-phase learning. On ImageNet-Subset, the ACIL falls behind the “POD+AANets+RMM” comb
even for 25-phase learning, but the gap is very small (74.59% v.s. 75.01%). The overtaking pattern is
further detailed in Figure 2.

In addition, we report the 50-phase CIL for the proposed ACIL. As expected, the average accuracies
(i.e., 66.01%, 74.13% and 64.35% on CIFAR-100, ImageNet-Subset and ImageNet-Full) are very
close to those trained withK = 5, 10 or 25. This allows the ACIL to further outperform the compared
methods that are not specializing in large-phase incremental problems. Although the PODNet also
aims at large-phase problems, its performance cannot compete with ACIL’s (57.98% v.s. 66.01% on
CIFAR-100, and 62.48% v.s. 74.13% on ImageNet-Subset).

Why ACIL Performs Well. Conventionally, the analytic learning cannot compete with BP [28].
However, if the feature extractor (e.g., CNN layers) is pre-trained with BP with the classifier head
designed by analytic learning related techniques, the performance can catch up [14]. Such a scenario
fits well in the CIL procedure in this paper, explaining why our ACIL performs well.

The expansion size d(fe) from the FE process has a huge impact on the CIL performance. As plotted in
Figure 3, the Ā on ImageNet-100 and ImageNet-Full increases with larger d(fe)). The performance on
CIFAR-100 starts to decline for d(fe)) > 10k, likely because the expansion ratio for ResNet-32 case
is unreasonably large (e.g., d(fe))/d(cnn) = 15k/64) compared with that of ResNet-18 (15k/512) on
ImageNet datasets. As observed in Figure 3, the ACIL on ImageNet datasets should work better with

8



even larger d(fe)), but our 11GB GPU experiences memory leak. Still, the expansion up to d(fe)) = 15k
allows the ACIL to give very competitive results (see Table 1).

The forgetting rate F is also presented in the bottom panel of Table 1. Our ACIL demonstrates
the lowest F scores on all the three benchmark datasets. This is a further evidence supporting our
absolute-memorization claim. Note that the absolute memorization does not lead to F = 0. Even
a healthy joint learning would reduce the performance on the base classes. This can be explained
by the example as follows. LetM50 andM100 be the two networks jointly trained on the base 50
classes and the 100 full classes from CIFAR-100 respectively. TestingM100 on the base dataset
would still experience performance loss compared with that obtained by testingM50 on the base
dataset, i.e., F > 0. Hence, although our ACIL perfectly remembers the pass samples, non-zero
forgetting rate still applies when incrementally learning new classes. Nonetheless, the forgetting rate
has been shown to be much lower than the existing CIL methods. For instance, for 5-phase learning
on ImageNet-Full, the “LUCIR+Mnemonics” combo exhibits 13.63% forgetting, but our ACIL only
has 2.75%! Yet, the low F score does not suggest strong resistance for learning new tasks since the
average accuracy has been shown to be comparable to state-of-the-art results (see upper panel of
Table 1). That is, the ACIL bears a relatively good stability-plasticity balance.

Data Privacy Protection. Apart from the competitive incremental accuracy, the ACIL is in strong
support of data privacy. As indicated in Algorithm 1, the incremental learning surrenders any samples
from previous tasks, allowing data privacy across learning phases or platforms. As shown in Table 1,
privacy-preserving CIL (e.g., LwF, EWC and SDC) suffers much more intensively (e.g., 45.51% from
LwF of 25-phase CIL on CIFAR-100) than the replay-based CIL (e.g., 64.12% from RMM combo of
25-phase CIL on CIFAR-100). Our ACIL maintains the privacy while providing comparable or better
accuracy performance (e.g., 65.95% of 25-phase CIL on CIFAR-100). Such a comfortable balance
would certainly attract attention as we are living in a world that values and protects data privacy.

1k 2k 5k 8k 10k 15k

64.5

65.0

65.5

66.0

66.5

Av
g.

 A
cc

ur
ac

y

CIFAR-100

1k 2k 5k 8k 10k 15k

70

71

72

73

74

ImageNet-Subset

1k 2k 5k 8k 10k 15k
56

58

60

62

64

66

ImageNet-Full

Figure 3: The impact of expansion size d(fe).

FE process w/ regularization Ā (%)
10−1 10−2 10−3

× X × × 52.99%
X X × × 66.30%
X × X × 66.25%
X × × X 66.23%
X × × × 51.12%

Table 2: Ablation study regarding expansion and
regularization.

Memory for Storage. The ACIL stores Rk instead of exemplars. As an example, for fix-exemplar
setting, the memory used by storing Rk (8k) on CIFAR-100/CUB200-2011/ImageNet is 8k×8k = 64
million (M) tensor elements, while other methods consume 6.1M/301.1M/3010.6M respectively (e.g.,
on ImageNet 224×224×3×20×1000 ≈ 3010.6M). This shows that our method is memory-friendly
to large-shaped image datasets (e.g., ImageNet).

4.4 Ablation Study

In the proposed ACIL, the FE process governed by d(fe) and the regularization controlled by γ are
essential. To show this, we adopt an ablation study by conducting a 5-phase CIL of ResNet-32 (with
d(fe) = 8k) on CIFAR-100 to observe the performance shift w.r.t. these modules. As reported in
Table 2, without the FE process (see the first two rows in Table 2), the average incremental accuracy
experiences a sharp drop (e.g., 66.30%→52.99%). The need for the FE process was enlightened by
the fact that the analytic learning is naturally prone to under-fitting due to simple linear regression
[29]. Widening the feature size helps to capture the missing discriminative information.

The regularization factor γ, on the other hand, plays an important role but behaves robustly during the
CIL experiments. As shown rows 2-5 in Table 2, the ACIL performs robustly for a considerably wide
range of γ values (e.g., 10−3-10−1). However, it would be unwise to remove the regularization as the
ACIL could suffer from a strong accuracy reduction without its support (e.g., 66.30%→51.12%).

9



4.5 Potential Positive and Negative Societal Impacts

A main characteristic of ACIL is privacy-preserving. It allows researchers to avoid breaching user
privacy while pushing forward their learning methods. From this angle, our method gives a positive
societal impact by protecting privacy. We do not foresee obvious societal impacts. However, our
ACIL does rely certainly on the CNN feature extractor in a similar way of transfer learning. In this
case, there might be various follow-up research aiming to improve the extraction power by many
trials and errors, leading to certain electricity pressure consumed by GPU operations.

5 Conclusion

In this paper, we have presented an analytic class-incremental learning (ACIL) which bears two
valuable features (i.e., the absolute memorization and the data privacy protection) for addressing
several existing limitations of class-incremental learning. The analytic learning has been incorporated
as a key component to conduct incremental learning of new tasks in a recursive manner. Such a
recursive learning style allows the ACIL to have absolute memorization. That is, the incremental
learning of ACIL given present data would produce identical results to that of a joint learning
which accesses both present and historical data, a property that has been theoretically validated.
The recursive formulation has also the merit of not storing any samples from historical tasks, thus
avoiding the breach of data privacy. Experiments have been conducted to validate our claims. Overall,
our ACIL gives very competitive accuracy results. In particular, it outperforms the state-of-the-art
methods for large-phase scenarios (e.g., incremental learning with 50 phases).

6 Acknowledgment

We thank the anonymous reviewers for their very constructive comments for improving this
manuscript. This work was supported in part by the Science and Engineering Research Council,
Agency of Science, Technology and Research, Singapore, through the National Robotics Program
under Grant 1922500054.

References
[1] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class

incremental learning algorithms for visual tasks. Neural Networks, 135:38–54, 2021.

[2] Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[4] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:
Pooled outputs distillation for small-tasks incremental learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16,
pages 86–102. Springer, 2020.

[5] Ping Guo, Michael R Lyu, and NE Mastorakis. Pseudoinverse learning algorithm for feedforward
neural networks. Advances in Neural Networks and Applications, pages 321–326, 2001.

[6] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[7] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks. arXiv preprint arXiv:1607.00122, 2016.

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.

10



Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[9] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2018.

[10] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M. López, and Andrew D.
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In 2018 24th International Conference on Pattern Recognition (ICPR), pages 2262–2268, 2018.

[11] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2544–2553, June 2021.

[12] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Reinforced memory management for
class-incremental learning. Advances in Neural Information Processing Systems, 34, 2021.

[13] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-
class incremental learning without forgetting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[14] Cheng-Yaw Low, Jaewoo Park, and Andrew Beng-Jin Teoh. Stacking-based deep neural
network: Deep analytic network for pattern classification. IEEE Transactions on Cybernetics,
50(12):5021–5034, 2020.

[15] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks.
Neural Computation, 3(2):246–257, 1991.

[16] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[17] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 2994–3003, 2017.

[18] Kar-Ann Toh. Learning from the kernel and the range space. In the Proceedings of the 17th
2018 IEEE Conference on Computer and Information Science, pages 417–422. IEEE, June
2018.

[19] Jue Wang, Ping Guo, and Yanjun Li. Densepilae: a feature reuse pseudoinverse learning
algorithm for deep stacked autoencoder. Complex & Intelligent Systems, pages 1–11, 2021.

[20] X. Wang, T. Zhang, and R. Wang. Noniterative deep learning: Incorporating restricted boltzmann
machine into multilayer random weight neural networks. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 49(7):1299–1308, 2019.

[21] Chenshe Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, and Bogdan
Raducanu. Memory replay gans: learning to generate images from new categories without
forgetting. In Conference on Neural Information Processing Systems (NIPS), 2018.

[22] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, and Bogdan
Raducanu. Memory replay gans: Learning to generate images from new categories without
forgetting. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 5966–5976, 2018.

[23] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[24] Shipeng Yan, Jiangwei Xie, and Xuming He. DER: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3014–3023, June 2021.

11



[25] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[26] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming
Zhang, and C.-C. Jay Kuo. Class-incremental learning via deep model consolidation. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
March 2020.

[27] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(6):1452–1464, 2018.

[28] Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Blockwise recursive Moore-Penrose inverse
for network learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pages
1–14, 2021.

[29] Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Correlation projection for analytic learning of
a classification network. Neural Processing Letters, pages 1–22, 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Will be

included.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] See the Supplementary material.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [No] Will
release the code and instructions shortly.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes] Results are reported by the average of 3 runs.

12



(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use ResNet and

have cited the paper.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All datasets are publicly accessible.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] All datasets are publicly accessible with no
personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Related Works
	Class-Incremental Learning
	Analytic Learning

	The Proposed Method
	The Base Training Agenda
	The Class-Incremental Learning Agenda

	Experiments
	Datasets and Implementation Details
	Evaluation Metric
	Result Comparison
	Ablation Study
	 Potential Positive and Negative Societal Impacts 

	Conclusion
	 Acknowledgment

