
Under review as a conference paper at ICLR 2024

GRADIENT-FREE PROXY FOR
EFFICIENT LANGUAGE MODEL SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The demand for efficient natural language processing (NLP) systems has led to
the development of lightweight language models. Previous work in this area
has primarily focused on manual design or training-based neural architecture
search (NAS) methods. Recently, zero-shot NAS methods have been proposed
for evaluating language models without the need for training. However, prevail-
ing approaches to zero-shot NAS often face challenges such as biased evaluation
metrics and computational inefficiencies. In this paper, we introduce weight-
weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored
for lightweight language models. Our approach utilizes two evaluation proxies:
the parameter count and principal component analysis (PCA) value of the feed-
forward neural (FFN) layer. This provides a comprehensive and unbiased assess-
ment of the language model’s performance. Additionally, by eliminating the need
for gradient computations, we optimize the evaluation time, thus enhancing the
efficiency of designing and evaluating lightweight language models. We conduct
a comparative analysis on the GLUE and SQuAD datasets to evaluate our ap-
proach. The results demonstrate that our method significantly reduces training
time compared to one-shot NAS methods and achieves higher scores in the testing
phase compared to previous state-of-the-art training-based methods. Furthermore,
we perform ranking evaluations on a dataset sampled from the FlexiBERT search
space. Our approach exhibits superior ranking correlation and further reduces
solving time compared to other zero-shot NAS methods that require gradient com-
putation.

1 INTRODUCTION

NAS-BERT EfficientBERT AutoBERT-Zero W-PCA
0

200

400

600

800

1000

GP
U

da
ys

96
58

1000

0.5

Search Time of NAS Methods

Figure 1: Comparison of the run-
ning time between W-PCA and
other training-based NAS methods
for lightweight language models.
Our method achieves a substantial
reduction in search time for the op-
timal network structure by two to
three orders of magnitude, as we do
not need to train the supernet.

Large language models (LLMs) have shown exceptional per-
formance across various domains (OpenAI, 2023). How-
ever, their size and computational demands pose challenges
in resource-constrained environments like mobile devices and
edge computing. Therefore, there is a growing need to ex-
plore lightweight language models that can operate efficiently
on these platforms. One approach to address this challenge
is through knowledge distillation (KD) (Hinton et al., 2015),
where a larger language model acts as a teacher to train a
smaller, more lightweight language model (Turc et al., 2019;
Sanh et al., 2020; Jiao et al., 2020; Sun et al., 2020; Wang
et al., 2020). However, the student models trained for these
tasks were manually designed. To effectively search for stu-
dent models, the use of neural architecture search (NAS) has
become essential.

NAS is a technique that automates the process of designing
neural networks, enabling the exploration of a wide range of
architectures to identify the most optimal ones for a given
task. Vanilla NAS approaches primarily used reinforcement
learning (Zoph & Le, 2016) or genetic algorithms (Real et al.,
2019) to train neural networks from scratch, but these methods were computationally expensive.

1

Under review as a conference paper at ICLR 2024

55 60 65 70 75
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Synaptic Diversity
 : 0.021 : 0.175

55 60 65 70 75
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Synaptic Saliency
 : 0.131 : 0.186

55 60 65 70 75
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1e7
Activation Distance
 : 0.081 : 0.123

55 60 65 70 75
0.000

0.001

0.002

0.003

0.004

Head Importance
 : 0.050 : 0.171

55 60 65 70 75
GLUE Score

0.01

0.02

0.03

0.04

0.05

0.06

Head Softmax Confidence
 : 0.037 : 0.046

55 60 65 70 75
GLUE Score

200

300

400

500

600

700

PCA
 : 0.449 : 0.667

55 60 65 70 75
GLUE Score

0.6

0.8

1.0

1.2

1.4

1.6 1e7
#params

 : 0.429 : 0.546

55 60 65 70 75
GLUE Score

1

2

3

4

5

6

7

8

9
1e9

W-PCA
 : 0.513 : 0.689

Figure 2: Plots depicting the evaluation of zero-shot proxy metrics on 500 randomly sampled ar-
chitectures from the FlexiBERT search space, in relation to the GLUE score of the pretrained and
finetuned architecture. The metric W-PCA is calculated as the product of the number of parameters
(#params) and the principal component analysis (PCA).

Subsequently, one-shot NAS methods, such as gradient-based (Liu et al., 2018) and single path
one-shot (SPOS) methods (Guo et al., 2020), were proposed. These methods are more efficient as
they leverage pre-trained models or parameter sharing. Importantly, many lightweight model search
tasks in natural language understanding (NLU) are accomplished using one-shot NAS (Xu et al.,
2021; Dong et al., 2021; Gao et al., 2022). While one-shot NAS reduces training costs compared
to training from scratch, it still requires various training strategies to effectively train the supernet.
However, to further enhance search efficiency, it is necessary to introduce zero-shot NAS (Mellor
et al., 2021). Zero-shot, also known as training-free NAS, is a promising approach that eliminates
the need for training neural networks and directly evaluates their performance using proxy metrics.
This significantly reduces the training time and computational resources required for NAS.

Existing zero-shot NAS methods (Abdelfattah et al., 2020; Zhou et al., 2022; Mellor et al., 2021;
Celotti et al., 2020; Serianni & Kalita, 2023) have primarily focused on ranking correlations on
NAS benchmark datasets (Klyuchnikov et al., 2022), with limited consideration for specific deep
learning tasks. This limitation hinders their applicability and effectiveness in practical scenarios.
Additionally, these methods often solely consider a single feature of the models, leading to biased
evaluations and potentially overlooking important characteristics.

In our research, we aim to address these limitations and improve the applicability of zero-shot NAS.
As shown in Figure 2, we attempted to incorporate previous zero-shot proxies into language model
evaluation but obtained unsatisfactory results. However, we observed a strong correlation in ranking
between principal component analysis (PCA) and the number of parameters (#params), with their
product demonstrating even better performance.

Motivated by these findings, we propose a novel approach called Weight-Weighted PCA (W-PCA),
which takes into account both the parameter count and PCA values of the model. By integrating
these two factors, our aim is to achieve a more accurate and unbiased evaluation of language models
in the context of zero-shot NAS. Furthermore, we have designed a search space specifically for NLU
tasks and applied our designed zero-shot proxies, as well as the previous zero-shot proxies used in
Transformer, to this search space. To the best of our knowledge, this is the first work that applies
zero-shot NAS to NLU tasks.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

2.1 LIGHTWEIGHT BERT MODELS

Turc et al. observed that distillation and pre-training + fine-tuning have mutually reinforcing effects.
DistilBERT (Sanh et al., 2020) utilizes a triple loss function for training the lightweight model.
TinyBERT (Jiao et al., 2020) applies distillation in both the pre-training and task-specific learning
phases. MobileBERT (Sun et al., 2020) proposes a bottleneck structure to reduce the parameter
count. MiniLM (Wang et al., 2020) introduces a compression method called deep self-attentive
distillation. In this study, we incorporate both the standard BERT-base (Devlin et al., 2019) and
MobileBERT models, along with their weight-sharing variations, where each layer is integrated into
the supernet.

2.2 ONE-SHOT NAS FOR EFFICIENT MODELS

Numerous methods have been proposed for performing neural architecture search (NAS) to develop
efficient models. NAS-BERT (Xu et al., 2021) trains a large supernet on a carefully designed search
space that includes diverse architectures, generating multiple compressed models with adaptable
sizes and latency. EfficientBERT (Dong et al., 2021) proposes a three-stage coarse-to-fine search
scheme to optimize the combination of the multilayer perceptron (MLP) in the feed-forward network
(FFN), ultimately reducing the parameter count of the FFN. AutoBERT-Zero (Gao et al., 2022)
devises a search space that includes unary and binary math operators for constructing attention
structures and backbones for general pre-trained language models (PLMs) from scratch. To the best
of our knowledge, it is the most recent NAS method that incorporates lightweight BERT models in
the experiment.

2.3 ZERO-SHOT NAS

Zero-shot NAS has been applied to transformer-based architectures in several ways. We provide a
summary of these applications below.

Synaptic Saliency (Tanaka et al., 2020) aims to prevent layer collapse during network pruning, as
this collapse can significantly reduce the accuracy of the network. The formulation for this approach
is expressed as follows:

S(θ) =
∂L
∂θ

⊙ θ

where L represents the loss function, θ denotes the network’s parameters, and ⊙ is the Hadamard
product. Abdelfattah et al. generalize synaptic saliency as a zero-shot metric for NAS by summing
over all n parameters in the network: S =

∑n
i=1 S(θi)

Synaptic Diversity builds upon previous research on rank collapse in transformers. In this phe-
nomenon, the output of a multihead attention block tends to converge to rank 1 for a given set of
inputs, which significantly impairs the performance of the transformer. Zhou et al. propose a method
that utilizes the nuclear norm of an attention head’s weight matrix Wm as an approximation of its
rank. This approach leads to the computation of the synaptic diversity score as follows:

SD =
∑
m

∥ ∂L
∂Wm

∥nuc ⊙ ∥Wm∥nuc

Activation Distance is a proxy metric introduced by Mellor et al. to assess the ReLU activations
of a network. By computing the Hamming distance between the activations within the initialized
network for each input in a minibatch, this metric determines the similarity of the activation maps.
The authors observe that when the activation maps for a given set of inputs exhibit higher similarity,
the network faces greater difficulty in disentangling the input representations during the training
process.

Jacobian Covariance evaluates the Jacobian J =
(

∂L
∂x1

, . . . , ∂L
∂xN

)
of the network’s loss function

with respect to the minibatch inputs. Further details of this metric can be found in the original paper
(Mellor et al., 2021).

3

Under review as a conference paper at ICLR 2024

Jacobian Cosine (Celotti et al., 2020) is proposed as an improvement to the Jacobian Covariance
metric, aiming to enhance computation speed and effectiveness. This improvement involves utilizing
cosine similarity instead of a covariance matrix to measure similarity. The metric is computed as
follows:

S = 1− 1

N2 −N

N∑
i=1

|JnJT
n − I| 1

20

Here, Jn represents the normalized Jacobian, and I is the identity matrix. The metric is computed
using a minibatch of N inputs. In their large noise and more noised scores, the authors introduce
various noise levels to the input minibatch, hypothesizing that architectures exhibiting high accuracy
will demonstrate robustness against noise.

Attention Confidence, Importance, and Softmax Confidence ”Confident” attention heads exhibit
high attention towards a single token, indicating their potential importance to the transformer’s task.
Researchers have proposed different approaches to calculating confidence, including examining the
softmax layer of the attention head and analyzing the sensitivity of the attention head to weight mask-
ing by computing the product between the attention head’s output and the gradient of its weights.
Serianni & Kalita summarize the findings from (Voita et al., 2019; Behnke & Heafield, 2020; Michel
et al., 2019) regarding the following metrics:

Confidence: Ah(X) = 1
N

∑N
n=1 |max(Atth(xn))|

Softmax Confidence: Ah(X) = 1
N

∑N
n=1 |max(σh(xn))|

Importance: Ah(X) = |Atth(X) ∂L(X)
∂Atth(X) |

where X = {xn}Nn=1 represents a minibatch of N inputs, L denotes the loss function of the model,
and Atth and σh denote an attention head and its softmax, respectively. To obtain an overall met-
ric for the entire network, Serianni & Kalita extend these scores by averaging them across all H
attention heads: A(X) =

∑H
h=1

1
HAtth(X)

3 OUR GRADIENT-FREE WEIGHT-WEIGHTED PCA PROXY

Vanilla PCA Proxy. To evaluate the performance of candidate architectures, we utilize PCA (Prin-
cipal Component Analysis) values of the BERT blocks. These values provide a measure of the
valuable information contained in each dimension of the hidden states. Our metric is computed as
follows:

Sf (X) =
1

N

N∑
i=1

PCA dim(xi, η) (1)

where X = {xi}Ni=1 represents a minibatch of N inputs, where ”dim” refers to the dimension. We
calculate the PCA values for the hidden states after the initial linear transformation in the FFN layer.
By analyzing PCA dim (the dimensions with PCA values exceeding a threshold η), we can identify
the dimensions that contain a higher amount of valuable information. The metric for an m-layer
neural network model is obtained by summing Sf (X) over all layers, resulting in:

S(X) =

m∑
f=1

Sf (X) (2)

where PCA dim(xi, η) refers to the PCA value of the vector xi in a specific dimension, considering
a threshold value η. The metric Sf (X) represents the PCA-based value for a specific layer f .

In order to calculate the PCA values, we first need to compute the covariance matrix. Let’s dive into
the details of how the covariance matrix is computed. Given a minibatch of N hidden states repre-
sented by the matrix X = {xi}Ni=1, where each xi is a hidden state vector, we want to calculate the
covariance matrix C. The covariance matrix C is an D ×D symmetric matrix, where D represents
the dimensionality of the hidden states. The (i, j)-th element of the covariance matrix C, denoted as

4

Under review as a conference paper at ICLR 2024

Cij , captures the covariance between the i-th dimension and the j-th dimension of the hidden states.
To compute Cij , we need to calculate the covariance between the i-th and j-th dimensions across
the minibatch. The covariance between two dimensions is a measure of how those dimensions vary
together. The formula to compute the covariance between the i-th and j-th dimensions is as follows:

Cij =
1

N

N∑
k=1

(xik − x̄i)(xjk − x̄j) (3)

Here, xik and xjk represent the i-th and j-th components of the hidden state vectors xk, respec-
tively. x̄i and x̄j represent the mean values of the i-th and j-th dimensions across the minibatch,
respectively. In other words, we compute the covariance matrix by taking the average of the pairwise
products of the centered values of the hidden state dimensions. Once we compute all the elements of
the covariance matrix following the above formula, we obtain the full covariance matrix C. The co-
variance matrix C provides information about how the different dimensions of the hidden states vary
together across the minibatch. This matrix is then used in the subsequent steps of the methodology,
such as eigendecomposition to obtain the principal components and their corresponding eigenvalues.

Next, we perform eigendecomposition on the covariance matrix C, which yields its eigenvectors
and eigenvalues. The eigenvectors form the principal components, while the eigenvalues represent
the importance of the corresponding eigenvectors. We sort the eigenvectors in descending order of
their eigenvalues. By examining the dimensions with PCA values surpassing the threshold η, we can
identify the dimensions that contain a higher amount of valuable information. These dimensions are
considered important for evaluating the performance of the candidate architectures.

Finally, to compute the overall metric S(X) for an m-layer neural network model, we sum the layer-
specific metrics Sf (X) over all layers. By utilizing this methodology, we can effectively assess the
performance of candidate architectures based on their PCA values and identify the dimensions that
contribute significantly to the valuable information in the hidden states.

Weight-weighted PCA Proxy. Besides PCA, we also observe that the weight parameters have
strong correlation and are easy to compute. Thus, we propose a new metric called W-PCA, which
combines the number of parameters (denoted as w) with the PCA values to assess the performance of
candidate architectures. The W-PCA metric quantifies the amount of valuable information captured
by each dimension relative to the number of parameters in the architecture.

The W-PCA metric is computed as the product of the number of weight parameters (w) and the PCA
value for each dimension. Mathematically, it can be expressed as:

W-PCA(X) = w × S(X) (4)

The W-PCA metric provides a comprehensive evaluation of candidate architectures by considering
both their complexity (number of parameters) and the amount of valuable information present in
each dimension. By incorporating PCA, we can identify dimensions that contribute significantly to
the overall performance of the architecture.

Advantages of our method include:

1. Strong Correlation: The W-PCA metric captures the relationship between the number of pa-
rameters and the valuable information in each dimension. This relevance is crucial in evaluating
the efficiency and effectiveness of candidate architectures. By considering the PCA values, we can
identify dimensions that contribute the most to the architecture’s performance, allowing for informed
decision-making during architecture search.

2. Gradient-Free: Unlike many traditional optimization methods that rely on gradients, our
methodology is gradient-free. This eliminates the need for extensive backpropagation and derivative
calculations, making the evaluation process more efficient and less computationally expensive.

3. One forward propagation only: Our methodology requires only forward propagation during
the evaluation of candidate architectures. This simplifies the implementation and reduces the com-
putational overhead, as it avoids the need for complex and resource-intensive operations such as
backpropagation.

5

Under review as a conference paper at ICLR 2024

search

Teacher Backbone

Student Backbone

Distillation

logits

Class Label

Best architecture

 W-PCA: 1.3e7 1.08e7 7.8e6

Population of architectures

……

I n p u t t e x t

m
layers ...

Candidate block

Input

Output

MHA

Add & Norm

FFN

Add & Norm

Output

Input

MHA

FFN

Add & Norm

Add & Norm

Linear

Linear

input dimension

output dimension

n candidate
hidden dimensions

FFN details

...

(a) BERT (b) Mobile-BERT

Figure 3: Overview of the W-PCA framework for NLU tasks. We employ a genetic algorithm to
identify the optimal structure with the highest W-PCA value from the combinations in (2 × n)m.
Subsequently, we refine it through additional training using knowledge distillation (KD). FFN and
MHA represent the feed-forward network and multi-head attention, respectively.

By leveraging the advantages of strong relevance, gradient-freeness, and the use of only forward
propagation, our methodology based on the W-PCA metric provides an efficient and effective ap-
proach for training-free architecture search. It enables researchers and practitioners to evaluate
candidate architectures based on their valuable information content relative to the number of param-
eters, facilitating the exploration of architecture design space and aiding in the development of more
efficient and effective models.

4 SEARCH SPACE FOR NLU TASKS

To enhance the evaluation of W-PCA’s performance on NLU tasks, we have meticulously crafted
a search space. Drawing inspiration from SPOS (Guo et al., 2020), our search targets a model
comprised of multiple layers, with each layer capable of being a lightweight BERT model. The
hidden dimension of the FFN layer within each BERT block is determined through random selection.
This deliberate randomness aids in exploring a diverse range of architectures during the search
process.

5 RANKING EVALUATION

5.1 DATASETS

Table 1: Comparison of different zero-shot prox-
ies on the FlexiBERT benchmark. ”Time” repre-
sents the computation time for the metric calcu-
lated 1,000 times.
Proxy Time ∇-free τ ρ

Synaptic Diversity (Zhou et al., 2022) 110 s 0.021 0.175
Synaptic Saliency (Abdelfattah et al., 2020) 121 s 0.157 0.266
Activation Distance (Mellor et al., 2021) 68 s 0.081 0.123
Jacobian Cosine (Celotti et al., 2020) 103 s 0.116 0.149
Head Importance (Serianni & Kalita, 2023) 112 s 0.050 0.171
Head Confidence (Serianni & Kalita, 2023) 81 s 0.306 0.364

Vanilla PCA 61 s 0.449 0.667
W-PCA 74 s 0.513 0.689

To assess the accuracy of the proposed proxy
indicators for neural network evaluation, we
employed a benchmark consisting of a well-
trained BERT structure suggested by Serianni
& Kalita as the testing dataset. Specifically,
this benchmark selected 500 structures from
the FlexiBERT (Tuli et al., 2023) search space
(as presented in Table 6) and utilized ELEC-
TRA (Clark et al., 2020), rather than the MLM
method, for training to efficiently pretrain a
compact BERT model. The training dataset
comprised 8,013,769 documents sourced from
the OpenWebText (Gokaslan et al., 2019) cor-
pus, amounting to a total of 38GB. For detailed

training information, please refer to Appendix A. After training, the scores obtained by fine-tuning
on the GLUE dataset will serve as the reference for evaluating the correlation among different zero-
shot proxies.

6

Under review as a conference paper at ICLR 2024

5.2 RESULTS AND ANALYSIS

The evaluation results comprise the Kendall rank correlation coefficient (Kendall τ) and the Spear-
man rank correlation coefficient (Spearman ρ). As shown in Table 1, Vanilla PCA has already
exceeded the previous zero-shot proxy in terms of ranking correlation, and W-PCA performs even
better than Vanilla PCA. Moreover, the absence of gradient computation further boosts the compu-
tational efficiency of W-PCA compared to proxies.

6 ACCURACY COMPARISION

6.1 DATASETS

To enable an accurate comparison to other lightweight BERT models, we evaluate the performance
of W-PCA using the GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2016) datasets and
their corresponding task-specific evaluations.

6.2 IMPLEMENTATION DETAILS

6.2.1 SEARCH SPACE

The search space is shown in Figure 3, where we set the values of m set to 12 and n set to 6,
respectively. Each block has a hidden size of 528, with the inner hidden size of the MobileBERT
series blocks being one-fourth of the total hidden size. The hidden dimensions of the FFN increase
by a factor of 132 for each multiple from 1 to n. The value of PCA dim is calculated with η set to
0.99. We employ a genetic algorithm with a population size of 50 and a generation count of 40 to
identify the combination of blocks that yields the highest PCA value. The crossover probability is set
to 1, the mutation probability to 0.1, and the upper limit for the model parameters to 15.7M in order
to obtain the W-PCA-Small model. By further reducing the upper limit for the model parameters to
10M and halving the number of layers (m), we obtain the W-PCA-Tiny model.

6.2.2 TRAINING

Once we obtain the desired architecture, we pretrain the model using the complete English
Wikipedia (Devlin et al., 2019) and BooksCorpus (Zhu et al., 2015). We then proceed to fine-
tune the model on each individual downstream task. During pretraining, the network is trained with
a batch size set to 256. For the fine-tuning phase of the downstream tasks, the network is trained
with a batch size set to 32. The CoLA task is trained for 50 epochs, while the other tasks are trained
for 10 epochs. The learning rate is set at 0.0001 during pretraining. In the fine-tuning phase, the
learning rate is set at 0.00005 for GLUE tasks and 0.0001 for SQuAD tasks. The training process
utilizes the Adam optimizer with β1 and β2 values set at 0.9 and 0.999, respectively. The weight
decay is set to 0.01. The learning rate decays linearly with a warm-up ratio set to 0.1. The KD loss
function used in our approach is described in Appendix C.

6.3 RESULTS ON GLUE

6.3.1 MODEL ACCURACY AND LATENCY

Table 2 presents the results of the GLUE scores and model latency for the KD-based methods.
Among them, except for the BERT-base teacher model we used ourselves, the results of all the
manual and one-shot methods in the table are from relevant papers. Since zero-shot NAS methods
have not been used in NLU tasks before, we applied the recent top-performing zero-shot proxy
approaches on Transformer language models to the search space shown in Figure 3.

As shown in Table 2, under the search space depicted in Figure 3, our W-PCA metric achieved higher
average scores on the GLUE test set compared to all baseline manual and one-shot methods. At the
same time, it outperformed the previous state-of-the-art (SOTA) method EfficientBERT (Dong et al.,
2021) in terms of parameter count, latency, and average score in the field of lightweight models.
Additionally, W-PCA achieved the highest score on the STS-B task. It is worth noting that, in the
same search space, the optimal structure found by W-PCA surpasses all previous zero-shot methods

7

Under review as a conference paper at ICLR 2024

Table 2: Performance comparison of the test set on the GLUE benchmark. The performance of all
zero-shot proxies is evaluated on the search space depicted in Figure 3. Latency measurements of
the models are conducted using the NVIDIA A100 GPU.
Model Type #Params Latency QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

BERT-base (Devlin et al., 2019) manual 108.9M 274ms 90.5 88.9 93.5 52.1 85.8 84.6/83.4 66.4 71.2 79.6
BERT-base (ours) manual 108.9M 274ms 91.4 88.7 93.0 49.0 87.5 84.9/83.9 76.6 71.3 80.7

BERT-tiny (Turc et al., 2019) manual 14.5M 44ms 84.8 83.2 87.6 19.5 77.1 75.4/74.9 62.6 66.5 70.2
BERT-small (Turc et al., 2019) manual 28.8M 79ms 86.4 83.4 89.7 27.8 77.0 77.6/77.0 61.8 68.1 72.1
DistilBERT-6 (Sanh et al., 2020) manual 67.0M 151ms 88.9 86.9 92.5 49.0 81.3 82.6/81.3 58.4 70.1 76.8
TinyBERT-4 (Jiao et al., 2020) manual 14.5M 45ms 87.7 88.5 91.2 27.2 83.0 81.8/80.7 64.9 69.6 75.0
MobileBERT-tiny (Sun et al., 2020) manual 15.1M 62ms 89.5 87.9 91.7 46.7 80.1 81.5/81.6 65.1 68.9 77.0
EfficientBERT+ (Dong et al., 2021) one-shot 15.7M 62ms 89.3 89.9 92.4 38.1 85.1 83.0/82.3 69.4 71.2 77.9
EfficientBERT++ (Dong et al., 2021) one-shot 16.0M 65ms 90.6 88.9 92.3 42.5 83.6 83.0/82.5 67.8 71.2 78.0

Synaptic Saliency (Abdelfattah et al., 2020) zero-shot 15.7M 58ms 89.4 88.1 91.0 33.6 83.1 82.6/81.1 70.6 70.3 76.6
Activation Distance (Mellor et al., 2021) zero-shot 15.6M 60ms 88.9 87.6 91.2 30.7 82.9 81.1/80.4 70.4 70.1 75.9
Synaptic Diversity (Zhou et al., 2022) zero-shot 15.6M 57ms 88.3 88.1 91.5 25.8 84.7 81.3/80.2 70.6 70.3 75.6
Head Confidence (Serianni & Kalita, 2023) zero-shot 15.6M 63ms 89.5 88.3 92.4 31.7 85.7 82.8/81.9 74.0 70.9 77.5
Softmax Confidence (Serianni & Kalita, 2023) zero-shot 15.6M 61ms 88.4 87.5 90.8 32.5 83.5 81.2/80.5 70.3 69.9 76.1

W-PCA-Tiny zero-shot 9.6M 38ms 88.7 87.6 91.9 27.4 84.8 81.1/79.8 71.1 70.3 75.9
W-PCA-Small zero-shot 15.6M 54ms 90.3 88.7 91.5 38.4 86.4 82.8/82.2 73.8 70.8 78.3

Table 3: Comparison of results on the GLUE dev set with other NAS methods. The ”Time” column
represents the GPU days consumed by the NAS method search. It is not feasible to make a sub-
comparison with AutoBERT-Zero-small as it does not provide individual scores for each task in the
GLUE dev set.
Model #Params Time QNLI MRPC SST-2 CoLA STS-B MNLI-m RTE QQP AVG

NAS-BERT-10 (Xu et al., 2021) 10.0M 96 d 86.3 79.1 88.6 34.0 84.8 76.4 66.6 88.5 75.5
NAS-BERT-30 (Xu et al., 2021) 30.0M 96 d 88.4 84.6 90.5 48.7 87.6 81.0 71.8 90.2 80.3
EfficientBERT-TINY (Dong et al., 2021) 9.4M 58 d 89.3 90.1 90.1 39.1 79.9 81.7 63.2 86.7 77.5
EfficientBERT (Dong et al., 2021) 15.7M 58 d 90.4 91.5 91.3 50.2 82.5 83.1 66.8 87.3 80.4
AutoBERT-Zero-small (Gao et al., 2022) 13.0M ˜1,000 d - - - - - - - - 80.5

Synaptic Diversity (Zhou et al., 2022) 15.6M 0.7 d 88.9 87.6 91.4 32.0 84.1 81.0 73.4 88.2 78.3
Head Confidence (Serianni & Kalita, 2023) 15.6M 0.5 d 90.1 89.7 92.4 37.5 84.1 82.5 75.9 89.1 80.2
Softmax Confidence (Serianni & Kalita, 2023) 15.6M 0.5 d 89.4 88.3 92.0 32.6 84.7 81.6 73.9 88.9 78.9

W-PCA-Tiny 9.6M 0.4 d 89.2 89.2 92.0 33.2 84.0 80.5 71.1 88.0 78.4
W-PCA-Small 15.6M 0.5 d 90.8 90.5 92.8 44.0 85.3 82.9 76.1 88.8 81.4

(Abdelfattah et al., 2020; Mellor et al., 2021; Zhou et al., 2022; Serianni & Kalita, 2023) applied
to Transformer language models, highlighting its exceptional ability in exploring optimal network
structures in zero-shot NAS methods.

6.3.2 SEARCH EFFICIENCY

As shown in Table 3, under our search space, the search efficiency of all zero-shot proxies (including
our W-PCA method) has been improved by two to three orders of magnitude compared to previous
training-based NAS, and achieved competitive performance. The three zero-shot proxies, Synaptic
Diversity (Zhou et al., 2022), Head Confidence (Serianni & Kalita, 2023), and Softmax Confidence
(Serianni & Kalita, 2023), can compete with the optimal structures found by previous training-
based NAS in our search space. Our W-PCA method surpasses all previous training-based methods
in the field of lightweight language models in terms of average score and achieves the best average
score. Moreover, in three out of eight tasks, W-PCA achieves the highest performance. Our method
discovers the latest SOTA effects in the field of lightweight models with almost negligible search
cost, reducing greenhouse gas CO2 emissions by two to three orders of magnitude, and significantly
improving the utilization of global energy resources.

It is also worth noting that in the internal comparison of zero-shot proxies, Head Confidence (Se-
rianni & Kalita, 2023), Softmax Confidence (Serianni & Kalita, 2023), and our W-PCA method
require shorter search time than the Synaptic Diversity (Zhou et al., 2022) method, which needs
to compute gradients, by an additional 0.2 GPU days. Additionally, our W-PCA-Tiny model has
a lower parameter limit set during the search, resulting in slightly lower computation time for the
forward propagation of each neural network individual, thus reducing the search time by 0.1 GPU
days compared to the W-PCA-Small model.

8

Under review as a conference paper at ICLR 2024

Table 5: Comparison results of W-PCA and its product counterparts as proxies on the GLUE dev
set.
Proxy #Params QNLI MRPC SST-2 CoLA STS-B MNLI-m RTE QQP AVG

#Params 15.7M 89.3 88.8 90.7 43.8 83.6 82.6 76.1 87.5 80.3
V-PCA 15.6M 89.9 91.4 92.7 39.4 84.9 82.9 76.0 88.9 80.8
W-PCA 15.6M 90.8 90.5 92.8 44.0 85.3 82.9 76.1 88.8 81.4

6.4 RESULTS ON SQUAD

We compared the W-PCA proposed in this article with manually designed lightweight models,
namely TinyBERT (Jiao et al., 2020), MiniLM (Wang et al., 2020), and the one-shot NAS method
EfficientBERT (Dong et al., 2021), on the SQuAD dataset. The results are presented in Table 4.
Despite having fewer parameters than TinyBERT-4, MiniLM-6, and Efficient++, the W-PCA-Small
model outperforms these methods in terms of both EM and F1 scores on both the SQuAD v1.1
and SQuAD v2.0 datasets. This observation demonstrates the robust adaptability of the investigated
models across diverse datasets.

6.5 ABLATION STUDY

Table 4: Results on SQuAD dev sets. ∗: our im-
plementation.

Model #Params SQuAD v1.1 SQuAD v2.0
EM/F1 EM/F1

BERT-base 108.9M 80.8/88.5 -/-
BERT-base∗ 108.9M 80.7/88.2 75.7/78.7

TinyBERT-4 14.5M 72.7/82.1 68.2/71.8
MiniLM-6 22.9M -/- -/72.7
EfficientBERT++ 16.0M 78.3/86.5 73.0/76.1

W-PCA-Tiny 9.6M 74.6/83.5 69.0/72.1
W-PCA-Small 15.6M 78.4/86.7 73.3/76.8

In order to investigate the effects of each com-
ponent of W-PCA on the experimental results,
we performed ablation experiments. Specifi-
cally, we utilized the components of W-PCA, as
described in Equation (4) where the first com-
ponent is the number of parameters (#Params)
and the second component is the V-PCA value
(defined in Equation (2)), as fitness values for
the genetic algorithm to explore the optimal
network structure in Section 6.2.1. We then
compared the performance of the discovered
network structures with W-PCA.

The results, presented in Table 5, demonstrate
that by multiplying the number of parameters
with the V-PCA value and using W-PCA as the
zero-shot evaluation metric, the performance of

the searched networks significantly improves compared to using either #Params or V-PCA alone as
the evaluation metric.

Encouragingly, the inclusion of an additional feature does not require a substantial increase in com-
putational time, making the multiplication approach highly efficient.

7 CONCLUSION

In this paper, we propose W-PCA, a novel zero-shot NAS method specifically designed for
lightweight language models. In the ranking correlation experiments conducted on the search space
of FlexiBERT, W-PCA achieves a Kendall τ score that surpasses the previous method by 0.207
and a Spearman ρ score that surpasses the previous method by 0.325. In the accuracy experiments
conducted on GLUE and SQuAD, W-PCA not only achieves the highest score, but also signifi-
cantly improves search efficiency. On the GLUE test set, W-PCA improves search efficiency by
over a hundredfold compared to the previous best-performing one-shot NAS method, with an aver-
age score improvement of 0.3. On the GLUE dev set, W-PCA improves search efficiency by 2,000
times and achieves an average score improvement of 0.9 compared to the previous best-performing
one-shot NAS method. Our work contributes to the advancement of NAS methods for lightweight
language models, enabling the design and optimization of efficient and effective systems for natural
language processing.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-cost
proxies for lightweight nas. In International Conference on Learning Representations, 2020.

Maximiliana Behnke and Kenneth Heafield. Losing heads in the lottery: Pruning transformer atten-
tion in neural machine translation. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 2664–2674, 2020.

Luca Celotti, Ismael Balafrej, and Emmanuel Calvet. Improving zero-shot neural architecture search
with parameters scoring. 2020.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng Peng, Xiaozhe Ren, and Xiaodan Liang. Effi-
cientbert: Progressively searching multilayer perceptron via warm-up knowledge distillation. In
Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1424–1437, 2021.

Jiahui Gao, Hang Xu, Han Shi, Xiaozhe Ren, LH Philip, Xiaodan Liang, Xin Jiang, and Zhenguo
Li. Autobert-zero: Evolving bert backbone from scratch. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 10663–10671, 2022.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XVI 16, pp. 544–560. Springer, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4163–4174, 2020.

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,
Alexander Filippov, and Evgeny Burnaev. Nas-bench-nlp: neural architecture search benchmark
for natural language processing. IEEE Access, 10:45736–45747, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In International Conference on Machine Learning, pp. 7588–7598. PMLR, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?, 2019.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2020.

10

Under review as a conference paper at ICLR 2024

Aaron Serianni and Jugal Kalita. Training-free neural architecture search for RNNs and transform-
ers. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2522–2540, Toronto, Canada, July 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.acl-long.142. URL https://aclanthology.
org/2023.acl-long.142.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2158–2170, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow, 2020.

Shikhar Tuli, Bhishma Dedhia, Shreshth Tuli, and Niraj K Jha. Flexibert: Are current transformer
architectures too homogeneous and rigid? Journal of Artificial Intelligence Research, 77:39–70,
2023.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neu-
ral Information Processing Systems, 33:5776–5788, 2020.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: task-
agnostic and adaptive-size bert compression with neural architecture search. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1933–1943,
2021.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and Ron-
grong Ji. Training-free transformer architecture search. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10894–10903, 2022.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2016.

A TRAINING DETAILS OF THE FLEXIBERT SEARCH SPACE

All transformer architectures within the search space were trained on TPUv2s with 8 cores and 64
GB of memory using Google Colaboratory. The entire process of pretraining and finetuning the
benchmark took approximately 25 TPU days. For the evaluation of training-free metrics, 2.8 GHz
Intel Cascade Lake processors with either 16 or 32 cores and 32 GB of memory were employed.

In terms of hyperparameter settings, except for setting the training steps to 100,000 during the pre-
training phase, everything else is the same as training ELECTRA-Small. Specifically, during the
pre-training phase, the generator size multiplier is set to 1/4, the mask percentage is set to 15%, the

11

https://aclanthology.org/2023.acl-long.142
https://aclanthology.org/2023.acl-long.142
https://aclanthology.org/W18-5446

Under review as a conference paper at ICLR 2024

Table 6: The FlexiBERT search space comprises a total of 10,621,440 architectures.
Architecture Element Hyperparameters Values
Hidden dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}

Attention
operation

if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}
if dynamic convolution convolution kernel size: {5, 9}

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

Synaptic Diversity

1 2 3 4 5 6 7 8 9 10

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Synaptic Saliency

1 2 3 4 5 6 7 8 9 10

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

1e6 Activation Distance

1 2 3 4 5 6 7 8 9 10
0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

Head Importance

1 2 3 4 5 6 7 8 9 10

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Head Softmax Confidence

1 2 3 4 5 6 7 8 9 10

200

250

300

350

400

450

500

550

600
PCA

1 2 3 4 5 6 7 8 9 10
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

1e6 #params

1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
1e9 W-PCA

Figure 4: Evaluation of zero-shot metrics with various initialization weights in the FlexiBERT search
space. A total of 10 architectures are randomly sampled from the search space, with each architec-
ture representing a decile range of the GLUE score (e.g., 0-10%, 10-20%, ..., 90-100%). To ensure
robustness, 10 different random seeds are employed for initializing the weights.

warmup step is 10,000, the learning rate is 5e-4, and the batch size is 128. During the fine-tuning
phase, the learning rate is 3e-4, the layerwise lr decay is 0.8, the warmup fraction is 0.1, the attention
dropout is 0.1, and the batch size is 32. For the RTE and STS tasks, 10 epochs are trained, while for
other tasks, 3 epochs are trained. Both during pre-training and fine-tuning phases, the learning rate
decay is linear, the vocabulary size is 30522, the dropout is 0.1, the weight decay value is 0.01, the
ϵ value for the Adam optimizer is 1e-6, β1 value is 0.9, and β2 value is 0.999.

B DISCUSSION OF DIFFERENT INITIALIZATION PARAMETERS

We conducted a series of studies to investigate the impact of random initialization of architectures on
the evaluation of zero-shot metrics in the FlexiBERT search space. From Figure 4, it is evident that
while the parameter quantity remains unaffected by weight initialization, the other zero-shot proxies
exhibit varying degrees of fluctuations during the ten different weight initialization processes. How-
ever, our proposed method, W-PCA, demonstrates smaller fluctuation magnitudes and more stable
performance compared to the proxies of Synaptic Diversity (Zhou et al., 2022), Synaptic Saliency
(Abdelfattah et al., 2020), and Head Importance (Serianni & Kalita, 2023), which exhibit larger
fluctuations.

12

Under review as a conference paper at ICLR 2024

C KD LOSS FUNCTION

The distillation loss function of EfficientBERT (Dong et al., 2021) forms the basis of our approach.
For the student model, we define Li

attn as the loss for the multi-head attention (MHA) output and
Li
hidd as the loss for the feed-forward network (FFN) output in the m-th layer. The embedding loss,

represented by Lembd, is also included. These losses are calculated using the mean squared error
(MSE) as follows:


Li
attn = MSE(AS

i Wa,A
T
j),

Li
hidd = MSE(HS

i Wh,H
T
j),

Lembd = MSE(ESWe,E
T)

(5)

Here, AS
i and HS

i represent the outputs of the MHA and FFN layers, respectively, in the i-th layer
of the student model. Similarly, AT

j and HT
j represent the outputs of the MHA and FFN layers,

respectively, in the j-th layer of the teacher model corresponding to the i-th layer of the student
model.

For our fixed teacher model, BERT-base, which comprises 12 layers, a one-to-one sequential corre-
spondence exists between the layers of the student and teacher models when both models have 12
layers. However, in the case of a student model with only 6 layers, the correspondence remains one-
to-one, but with a 2-layer interval. This implies that the first layer of the student model corresponds
to the second layer of the teacher model, and so forth, until the sixth layer of the student model
aligns with the twelfth layer of the teacher model.

The trainable matrices Wa, Wh, and We are used to adjust the dimensionality of the student and
teacher models. Additionally, we define Lpred as the prediction loss, which is calculated using soft
cross-entropy (CE):

Lpred = CE(zS , zT) (6)

Here, z represents the predicted logit vector.

The total loss is a combination of the above terms:

L =

m∑
i=1

(Li
attn + Li

hidd) + Lembd + γLpred (7)

The coefficient γ is used to control the contribution of the predicted loss. It is set at 0 during the
pretraining phase and 1 during the fine-tuning phase.

D VISUALIZATION OF ARCHITECTURES

Figure 5 illustrates the schematic diagram of the network structure. It is observed that all models
preferentially choose MobileBERT as the candidate block, suggesting that MobileBERT is better
suited for lightweight language models in comparison to BERT-base. Furthermore, with the excep-
tion of the searched model that solely relies on parameter count as the search evaluation metric, the
candidate blocks of MobileBERT are predominantly located in the higher layers, indicating that this
architecture is more adept at analyzing high-level semantic information.

E FURTHER DISCUSSION ON NLU TASKS

E.1 COMPARISON OF LARGER-SIZED MODELS

We conducted experiments using a larger-sized model by increasing the size of the search space,
as described in Section 6.2.1. Specifically, we doubled the hidden size and the hidden dimension
of n candidate dimensions. Additionally, we raised the parameter limit in the genetic algorithm
to 67M, resulting in our W-PCA-Large model. As shown in Table 7, despite having a slightly
lower parameter count, our model outperforms TinyBERT-6 (Jiao et al., 2020) and EfficientBERT

13

Under review as a conference paper at ICLR 2024

BERT-base BERT-base

d = 792

BERT-base MobileBERT MobileBERT BERT-base MobileBERT MobileBERT MobileBERT MobileBERT MobileBERT MobileBERT

BERT-base MobileBERT BERT-base MobileBERT MobileBERT MobileBERT

(b) V-PCA

d = 660 d = 660 d = 528 d = 396 d = 396 d = 396 d = 396 d = 528 d = 528 d = 396 d = 396

MobileBERT BERT-base

d = 528

BERT-base MobileBERT MobileBERT MobileBERT BERT-base MobileBERT MobileBERT MobileBERT BERT-base MobileBERT

(a) #Params

d = 528 d = 528 d = 660 d = 792 d = 660 d = 792 d = 792 d = 528 d = 792 d = 132 d = 396

(c) W-PCA (Tiny)

BERT-base BERT-base BERT-base MobileBERT MobileBERT BERT-base MobileBERT MobileBERT MobileBERT MobileBERT MobileBERT MobileBERT

(d) W-PCA (Small)

d = 396 d = 660 d = 528 d = 528 d = 396 d = 792 d = 396 d = 660 d = 528 d = 528 d = 660 d = 396

d = 528 d = 396 d = 528 d = 528 d = 528 d = 396

Figure 5: Visualizations of the searched architectures, where d represents the hidden dimensions.

Table 7: Performance comparison of larger-scale models on the GLUE test set.
Model #Params QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

TinyBERT-6 (Jiao et al., 2020) 67.0M 89.8 89.0 92.0 38.8 83.1 83.8/83.2 65.8 71.4 77.4
EfficientBERT (Dong et al., 2021) 70.1M 90.4 89.0 92.6 46.2 83.7 84.1/83.2 67.7 74.4 78.7
W-PCA-Large 66.9M 90.9 88.7 93.0 40.0 87.5 84.6/83.3 75.6 71.5 79.5

(Dong et al., 2021) models of similar scale in terms of average GLUE score. This indicates that our
proposed zero-shot proxy also demonstrates good adaptability in larger search spaces.

E.2 COMPARISON WITH ONE-SHOT NAS

SPOS method. We applied the one-shot NAS method in the same search space. Specifically, we
constructed a supernet as shown in Figure 3, which consists of a total of m layers. Each layer is
composed of 2 × n candidate blocks. Before searching for the optimal structure using a genetic
algorithm, we performed one round of pre-training and fine-tuning based on the SPOS method (Guo
et al., 2020). During each batch, a random path is selected from the (2 × n)m combinations for
forward propagation and backward parameter updates.

Implementation details. We first pretrain the supernet on English Wikipedia (Devlin et al., 2019)
and BooksCorpus (Zhu et al., 2015), then utilize 90% of the training set from each GLUE task for
fine-tuning. We reserve the remaining 10% of the MNLI task to evaluate the accuracy of architec-
tures in the search. During the pre-training and fine-tuning process, the number of epochs is set to
10, and the batch size is set to 256 for both. The learning rate for pre-training is set to 1e-4, and the
learning rate for fine-tuning is set to 4e-4. The optimizer, weight decay, and learning rate adjustment
strategy are the same as in the training section. The loss function used is still the MSE loss function
described in Appendix C. After completing this pre-training and fine-tuning process, we proceed
with the workflow described in the main text.

Results & Analysis. As shown in Table 8, despite investing a significant number of GPU days in
the one-shot NAS search, the performance improvement on various-sized models of W-PCA is not
significant. Zero-shot NAS remains the most cost-effective search solution.

14

Under review as a conference paper at ICLR 2024

Table 8: Comparison of zero-shot and one-shot methods on the GLUE test set in the same search
space. ”Time” also refers to the GPU time consumption in the NAS stage.
Model Type #Params Time QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

W-PCA-Tiny zero-shot 9.6M 0.4 d 88.7 87.6 91.9 27.4 84.8 81.1/79.8 71.1 70.3 75.9
one-shot 9.7M 24 d 89.2 87.5 92.3 28.9 83.7 81.4/80.5 71.4 70.5 76.2

W-PCA-Small zero-shot 15.6M 0.5 d 90.3 88.7 91.5 38.4 86.4 82.8/82.2 73.8 70.8 78.3
one-shot 15.6M 28 d 90.3 88.9 92.5 36.1 86.7 83.7/82.5 74.4 70.6 78.4

15

	Introduction
	Related Work
	lightweight BERT models
	one-shot NAS for efficient models
	zero-shot NAS

	Our Gradient-free Weight-weighted PCA Proxy
	Search Space for NLU tasks
	Ranking evaluation
	Datasets
	results and analysis

	accuracy comparision
	Datasets
	Implementation Details
	Search Space
	Training

	Results on GLUE
	Model Accuracy and Latency
	Search Efficiency

	Results on SQuAD
	ablation study

	Conclusion
	Training Details of the FlexiBERT search space
	Discussion of different initialization parameters
	KD loss function
	Visualization of architectures
	Further discussion on NLU tasks
	Comparison of larger-sized models
	Comparison with one-shot NAS

