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ABSTRACT

Meta-learning has emerged as a potent paradigm for quick learning of few-shot
tasks, by leveraging the meta-knowledge learned from meta-training tasks. Well-
generalized meta-knowledge that facilitates fast adaptation in each task is pre-
ferred; however, recent evidence suggests the undesirable memorization effect
where the meta-knowledge simply memorizing all meta-training tasks discourages
task-specific adaptation and poorly generalizes. There have been several solutions
to mitigating the effect, including both regularizer-based and augmentation-based
methods, while a systematic understanding of these methods in a single framework
is still lacking. In this paper, we offer a novel causal perspective of meta-learning.
Through the lens of causality, we conclude the universal label space as a con-
founder to be the causing factor of memorization and frame the two lines of pre-
vailing methods as different deconfounder approaches. Remarkably, derived from
the causal inference principle of front-door adjustment, we propose two frustrat-
ingly easy but effective deconfounder algorithms, i.e., sampling multiple versions
of the meta-knowledge via Dropout and grouping the meta-knowledge into multi-
ple bins. The proposed causal perspective not only brings in the two deconfounder
algorithms that surpass previous works in four benchmark datasets towards com-
bating memorization, but also opens a promising direction for meta-learning.

1 INTRODUCTION

Recently, there has been renewed interest in meta-learning which empowers more human-like ma-
chines that suffice to learn a wide range of tasks with minimal supervision (Bengio et al., 1991;
Thrun & Pratt, 2012; Finn et al., 2017; Raghu et al., 2020). While metric-based meta-learning al-
gorithms (Vinyals et al., 2016; Snell et al., 2017) only solve few-shot classification problems, we
focus on gradient-based meta-learning algorithms in this work that are more flexible (Finn et al.,
2017; Li et al., 2017). Gradient-based meta-learning algorithms formulate the meta-knowledge as
the initialization for a base learner and learn the initialization by a bi-level optimization procedure
during the meta-training phase. Concretely, the initialization is adapted to each meta-training task
by its support set, while the performance of the adapted model on its query set in turn serves as
feedback to update the initialization.

This bi-level optimization scheme, though designed to learn a well-generalized initialization, runs a
high risk of inducing a sufficiently expressive initialization that memorizes all meta-training tasks.
This kind of overfitting is named memorization overfitting (Yin et al., 2020), where the initialization
solves the query set even without relying on the support set for adaptation. As a consequence, such
an initialization poorly generalizes to meta-testing tasks. As suggested in Yin et al. (2020), the more
non-mutually exclusive meta-training tasks are and the more powerful the model initialization is,
the higher risk of memorization arises. To combat the memorization overfitting, Yin et al. (2020)
proposed to regularize the capacity of the initialization, and task augmentation strategies have been
recently explored in (Rajendran et al., 2020; Yao et al., 2021).

Despite the effectiveness of the three algorithms, understanding their benefits rigorously within a
unified analytic tool remains a mystery. To bridge the gap, we develop a causal perspective on meta-
learning, as illustrated by the causal graph in Figure 1. We argue that the universal label space of
the base learner turns to be a confounder causing a spurious correlation between the initializations
learned in different steps of meta-training. Such a spurious correlation biases the meta-knowledge
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Figure 1: An overview of meta-learning training. Yellow nodes are inputs to the meta-model, green
nodes are outputs by the meta-model, and black nodes represent intermediate variables. (a) The
workflow of meta-learning, where a set of meta-training tasks are sampled from p(T ), and a task-
specific model φi is updated by the support set si, then meta-knowledge θ is optimized on the
likelihood of query sets {qi}Ni=1. (b) The causal graph of meta-learning, where θ′ and θ are the
initialization learned from last step and current step, respectively.

that should be only updated by the performance of task-specific models. Fortunately, the causal
graph in Figure 1b offers valuable insights into how to minimize memorization via deconfounder
approaches. In particular, we have demonstrated the deconfounding role of both lines of existing
works: 1) regularizer-based methods directly weaken the correlation between the initialization meta-
trained in the last step (i.e.,θ′) and the task-specific model Φ during meta-training, though the limited
flexibility of the initialization in this case still promotes spurious relations; 2) augmentation-based
methods take different mapping functions from task labels to the universal label space for various
tasks, but the performance highly depends on the independence between mapping functions.

Drawing upon the causal perspective, we put forward a new direction of deconfounder approaches
by applying the causal inference principle of front-door adjustment. We propose two easy im-
plementations of this principle, which are to sample multiple stratification of the initialization by
Dropout and to predict the label as well as the bin that the label belongs to, respectively. Take the
backbone of MAML (Finn et al., 2017) as an example. We name the two deconfounder approaches
as MAML-Dropout and MAML-Bins, respectively.

The main contributions of our paper are as follows. (1) We, for the first time, develop a causal
perspective of meta-learning and shed light on the memorization overfitting with causality in Sec-
tion 2.2. (2) We place existing methods into the proposed causal framework and adequately demon-
strate how they alleviate the memorization overfitting in Section 2.3 and Section 2.4. (3) We propose
a new deconfounder approach following the principle of front-door adjustment in Section 2.4 and
two methods that implement the approach in Section 3. (4) We showcase that our methods remain
compatible with off-the-shelf meta-learning algorithms and consistently improve their performance.

2 PROBLEM FORMULATION

2.1 META-LEARNING AND THE OVERFITTING PROBLEM

Meta-learning learns the model initialization θ from a series of tasks Ti sampled from a specific
task distribution p(T ). All tasks in p(T ) share some common features, so that starting from the
initialization θ a new task sampled from the same task distribution can be quickly learned with a
resulting task-specific model φ. The tasks used to learn the initialization are considered as meta-
training tasks Dtrain, while novel tasks are meta-testing tasks Dtest. Each i-th task Ti consists of
a support set si = {(xsi,j , ysi,j)}

Ks
i

j=1
and a query set qi = {(xqi,j , y

q
i,j)}

Kq
i

j=1
, where (x, y) denote the

features and the label of a sample, Ks
i and Kq

i denote the number of support and query samples.

Gradient-based meta-learning formulate learning such a initialization θ as a bi-level optimization
problem (See Figure 1a). During inner-loop optimization, the adapted model φi for the i-th task
is initialized from θ and updated by its support set si. In outer-loop optimization, the initial-

2



Under review as a conference paper at ICLR 2022

ization θ is optimized according to performances of adapted models on query sets, i.e.,by losses
between label yqi,j and prediction ŷqi,j . Following (Grant et al., 2018; Gordon et al., 2019; Yin
et al., 2020), we formulate the objective of meta-learning as maximizing the conditional likelihood
pφ(ŷq|xq, θ, s), where the inner-loop optimization learns the conditional distribution of task-specific
models p(φ|θ, s) and the outer-loop optimizes the distribution of θ p(θ|Dtrain). Consequently, the
objective for inner-loop optimization (i.e., task objective) is

L(φi) =
1

Ks

Ks∑
j=1

L(fφi,θ(x
s
i,j), y

s
i,j),

and the objective for outer-loop optimization (i.e., meta-objective) is

L(θ) =
1

N

N∑
i=1

Ep(φi|θ,si)[
1

Kq
i

Kq
i∑

j=1

L(fφi,θ(x
q
i,j), y

q
i,j)].

Take the algorithm of MAML (Finn et al., 2017) as a concrete example. During the outer-loop
update, MAML optimizes the delta function p(θ|Dtrain) on meta-training tasks to learn the initial-
ization θ of a base learner f ; in the inner-loop update, p(φ|θ, s) is also a point estimation by gradient
optimization, i.e.,φi = θ − α∇θ 1

Ks

∑Ks

j=1 L(fθ(x
s
i,j), y

s
i,j). Finally, we predict for a query sample

by the adapted model, i.e., p(ŷqi,j |x
q
i,j , φi) = fφi

(xqi,j) (Grant et al., 2018; Yin et al., 2020).

In meta-learning, there are two types of overfitting problems: 1) memorization overfitting, which
happens when the meta-knowledge memorizes all query sets in meta-training tasks even without
adapting on the support sets, and 2) learner overfitting, which happens when meta-knowledge is only
effective on meta-training tasks and fails to generalize to meta-testing tasks (Yin et al., 2020; Rajen-
dran et al., 2020). In this paper, we focus on the former. Regularizer-based and augmentation-based
methods have been proposed to combat the memorization overfitting, but how to systematically
understand the benefits of these methods within a unified analytic tool is still a mystery.

2.2 A CAUSAL VIEW OF META-LEARNING

Firstly, we introduce causality and causal graph, which are main theories supporting our work.
Then, we show the causal graph for gradient-based meta-learning and formulate the memorization
overfitting (Yin et al., 2020; Rajendran et al., 2020) in a causal view. Besides, we explain the reason
why existing methods alleviate the memorization in various degrees via our causal graph. Lastly,
we propose a deconfounding principle with frontdoor adjustment.

Causation and Causal Graph. Causation describes causal relationship among variables instead of
correlation. Causal graph (Pearl et al., 2016) addresses causality problems with a directed acyclic
graph G =< V,E >, where a node Vi ∈ V denotes a variable and a directed edge Vi → Vj ∈ E
denotes that variable Vi is a direct cause of Vj .
Revisit of meta-learning: a causal view. During the meta-training phase, given N meta-training
tasks, we define si and qi to be the support set and the query set of task i, respectively. Then, in
meta-training data Dtrain, we have all support sets S as {si}Ni=1 and all query sets Q as {qi}Ni=1.
Support sets S and query sets Q consist of randomly drawn examples that are i.i.d. Thus, given
meta-training tasks, S andQ are independent. Given query sets of the training set, the input variables
XQ = {xqi}Ni=1 is determined, so Q→ XQ. It is obvious that query sets Q has a causal effect on
labels of query sets (i.e.,Q→ Y ). According to the workflow of meta-learning shown in Figure 1a,
we can easily find the causal links of inner-loop optimization S → Φ and outer-loop optimization
Φ→ ŶQ→ θ← Y as shown in Figure 1b.
In Figure 1b, let θ′ denote the meta-knowledge learned from last step. It is trained in the same way
as θ (the meta-knowledge learned from current step); therefore, there is also a causal link from Y
to θ′ (i.e., Y → θ′). We omit the connection from the predictions in the last step since the causal
effect can be merged into the effect from Φ→ ŶQ (See Appendix A.1). The connection θ′ → Φ
denotes that meta-knowledge θ′ obtained in last update has a causal effect on task-specific models Φ
since Φ is always trained by leveraging meta-knowledge θ′ as initialization. Finally, we can obtain
the causal graph of meta-learning as shown in Figure 1b.
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Figure 2: Simplified causal graphs of meta-training and deconfounded methods. (a) simplified
causal graph among Y , θ′ and θ. (b) deconfounded meta-knowledge. (c) simplified causal graph
among Y , θ′, Φ and θ. (d) deconfounded by frontdoor adjustment. See Figure 4 in Appendix A.2
for complete causal graphs.

In Figure 1b, the key idea of meta-learning is that by utilizing the past meta-knowledge θ′ as ini-
tialization, one can optimize the task-specific model Φ with new support sets S for a more general
meta-knowledge θ. But it ignores the confounder Y (in causal path ŶQ ← Φ ← θ′ ← Y → θ)
which influences both the meta-knowledge in the past step and the current step, leading to spurious
correlation between θ′ and θ. This spurious correlation biased by the confounder Y makes the task-
specific model especially challenging to be sufficiently adapted by the support set S, thereby putting
the initialization at high risk of memorization.
We would highlight the difference of labels Y in meta-learning from those in conventional machine
learning. In meta-learning, despite the universal label space, the same label varies from task to task
in semantic meanings. For example, the label of 0 may indicate “dog” in one task and represent
“cat” in another. Thus, Y is not only affected by query sets Q, but also by a hidden variable (i.e.,
how to map a task label to the universal label space for various tasks). The hidden variable can be
denoted as a unobserved exogenous variable and omitted in Figure 1b.
Deconfounded meta-learning. In meta-learning, the meta-knowledge θ is learned by p(θ|θ′, S,Q)
in each step, although the correlation between θ′ and θ would be spurious since the causal path
ŶQ ← Φ← θ′ ← Y → θ shown in Figure 1b demonstrates Y is a confounder of path θ′ → · · · → θ
(see proof in A.2). Given Dtrain = (S,Q) and omitting the intermediate nodes, we simplify the
causal graph with three nodes {Y, θ′, θ} as shown in Figure 2a. Y opens the backdoor path from
θ and θ′. However, the backdoor adjustment is not applicable to to cut the causal relationship
between Y and θ′ because the edges Y → θ and Y → θ′ in the causal graph would be changed
simultaneously since they perform exactly the same roles in meta-learning. Despite this, we propose
two kinds of deconfounded methods applying to MAML (Finn et al., 2017) —one is inspired by
some recent works (Rajendran et al., 2020; Yin et al., 2020; Yao et al., 2021; Tseng et al., 2020); the
other is based on front-door criterion. These methods are introduced in Section 2.3 and Section 2.4.

2.3 DECONFOUNDED META-KNOWLEDGE

One possible solution to break the connection from Y to θ′ is to use different label mapping functions
in different steps of meta-training as shown in Figure 2b. Y ′ ← Q → Y denotes two kinds of
meta label representation of query sets’ labels. In this fork structure, Y and Y ′ are independent,
conditional on query setsQ. The backdoor path from Y to θ′ is closed. Thus, there is no confounder
in the new causal graph and the model can learn p(θ|θ′, S,Q) directly.

Under this view, Meta-augmentation (Rajendran et al., 2020) and MetaMix (Yao et al., 2021) can
be considered as two deconfounded meta-knowledge models. Both these two methods random-
ize the labels of query sets to prevent the memorization. As spurious correlations are reduced,
these methods achieve better performance than original MAML. Meta-augmentation applies a CE-
Increasing augmentation(Rajendran et al., 2020) in each step which changes the labels of the same
task. MetaMix generates fake data with manifold mixup (Verma et al., 2019) and channel shuffle.
As a result, in different steps, meta-knowledge θ is even optimized on a different label space.

In fact, even these two methods reduce spurious correlations, they have different performances on
same tasks. This phenomenon is due to only a partial of the correlation is blocked by conditioning
on Q. The augmentation function sampled from a random space still confounds the model. To be
specific, Y ′ and Y are not independent.

Another possible way to deconfound meta-knowledge is to constrain the meta-knowledge θ′ to
weaken the correlation between Y and θ′. Meta-regularization on weights (Yin et al., 2020) ap-
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plies this method. Meta-regularization limits the meta-knowledge by a meta-regularized objective
to avoid memorization of meta-training tasks. However, naive regularization weakens the usability
of fast adaptation in the inner-loop as Y → θ is limited simultaneously. As a result, regularizer-
based method suffers from a trade-off of effectiveness and generalization. Besides, the weakened
correlation between θ′ and Φ still confounds the model.

2.4 DECONFOUNDED META-LEARNING MODEL

With considering the mediator Φ in the path from θ′ to θ, we can also simplify the causal path
ŶQ ← Φ ← θ′ ← Y → θ in Figure 1b with four nodes {Y, θ′,Φ, θ} as shown in Figure 2c. Then,
the other way block the backdoor path from θ′ to θ is to disconnect the path from meta-knowledge
θ′ to Φ via frontdoor adjustment. We propose a novel way to deconfound meta-learning model in
Figure 2d, and propose to calculate p(θ|do(Φ), Q) instead of p(θ|Φ, Q), which enables the model
eliminating the confounder Y , i.e.,p(θ|do(θ′), S,Q). This is so called “frontdoor adjustment”, which
is proved in Appendix A.2. The deconfounded meta-learning model is

p(θ|do(θ′), S,Q) =
∑
Φ

p(Φ|θ′, S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)
∑
θ′i

p(θ|Φ, θ′i, Q)p(θ′i) =
∑
θ′i

p(θ|Φ, θ′i, Q)p(θ′i),
(1)

where p(Φ|θ′, S) = 1 in delta function. In Eq.(1), we stratify the confounded past meta-knowledge
θ′, i.e.,θ′ = {θ′i}, where θ′i is a stratum of θ′. p(θ|Φ, θ′i, Q) denotes optimizing θ grouped by θ′i.
Thus, Φ is grouped in the same way. We propose two implementations of MAML to stratify θ′ in
Section 3. After frontdoor adjustment, we break the frontdoor path from θ′ to Φ. Therefore, the
model would not memorize the query-set of meta-training tasks.

3 TWO METHODS TO DECONFOUND MAML

3.1 MAML-DROPOUT

Our first idea is inspired from MC-dropout (Gal & Ghahramani, 2016). We split θ′ into different
parts by dropout, i.e.,

p(θ|do(Φ), Q) =

∫
p(θ|Φ, θ′i, Q)p(θ′i)dθ

′
i ≈

1

M

M∑
i=1

p(θ|Φ, θ′i, Q) =
1

M

M∑
i=1

p(θ|Φ, θ′, Q, zi),

(2)
whereM is sample times, θ′i indicates a combination of θ′ and zi, which is a set of dropout variables
sampled from Bernoulli distribution. θ′ is independent with zi.

Different from DropGrad (Tseng et al., 2020), we add dropout layers in forward network only on
query sets during meta-training. We adopt multi-step optimization in inner-loop (Antoniou et al.,
2019) to update almost all meta-knowledge on a training step, which avoids limiting the model’s
flexibility. In each training step, a batch of meta-training tasks are used to optimize the model, so
empirically, we sample different parts of θ′ through Monte Carlo method for different tasks in a
batch to approximate results of Eq.(2). The meta-training objective of MAML-Dropout is

L(θ) = − 1

N

N∑
i=1

T∑
t=0

vt
Kq
i

Kq
i∑

j=1

L(fφi,t,zi,t(x
q
j), y

q
j ),

s.t. φi,t =

{
θ′, if t = 0

φi,t−1 − α∇φi,t−1

1
Ks

i

∑Ks
i

j=1 L(fφi,t−1
(xs), ys)), else

,

(3)

where N is the number of meta-training tasks, T is the number of inner-loop steps, vt denotes the
importance weight of the target set loss at step t (Antoniou et al., 2019), Kq

i denotes the number
of query samples in the i-th task, learned weights φi,t and random variable zi,t parameterizes the
adaptive model. The gradients of the dropped part in φi,t are set to zero.

In the meta-testing phase, we remove all dropout layers. All meta-knowledge guides the model to
learn a new task without regularization and spurious correlation.
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3.2 MAML-BINS

As meta-knowledge in MAML extracts powerful features (Raghu et al., 2020), we propose another
method to stratify θ′ through the linear combination of features. In this situation, we add an auxiliary
task to classify training data to several bins covering all training data points and dividing features
into finite groups. So we have Eq.(1) as:

p(θ|do(Φ), Q) =
1

M

∑
M

p(θ|Φ, θ′m, Q) =
1

M

∑
M

p(θ|Φ, θ′, Q,Wm), (4)

where θ′m = Wm × θ′ is a linear combination of features determined by a bin m.

We define an N -way M -bin task as an N -way classification with M bins. We propose an auxiliary
task as a M -class classification problem to assign data to different bins. We detail the auxiliary
task in Appendix C. We cluster features of all training data to K bins with a pretrained classifier
and set the cluster id of the data point as its auxiliary task label, i.e.,b. During the inner-loop step,
the model learns the main task and the auxiliary classification, i.e.,the combination of a group of
meta-knowledge. The output of model is O = fφ(x), where O ∈ RM×N . The prediction of bins is
p(b̂|x, φ) = 1

N

∑N
j=1O

T
j and the prediction of classification is p(ŷ|x, φ) = 1

M

∑M
i=1Oi, where OTj

is the j-th column vector ofO andOi is the i-th row vector ofO, which is parameterized byWi×φ.
Therefore, we have the outer-loop objective is:

L(θ) =
1

NT

NT∑
i=1

Ep(φi|θ,si){
1

Kq
i

Kq
i∑

j=1

[L(ŷqj , y
q
j ) + λL(b̂qj , b

q
j)]}, (5)

where λ is the weight of bin-classification loss.

As for a regression task, we split the value range of training data into several intervals as bins and
set the interval id of the data point as its auxiliary task label. The training process is like a “1-way
M -bin classification”, and its objective is same as Eq.(5). A M -bin task reshapes meta-knowledge
θ′ to M stratifications, and frontdoor adjustment is implemented in this way.

MAML-Dropout only adds dropout layers and MAML-Bins only adds an additional objective in the
outer-loop optimization, which are easy to apply and do not incur additional computation overhead.
We combine MAML-Dropout and MAML-Bins in Algorithm 1 and discuss more in Appendix B.

4 RELATED WORK

Gradient-based meta-learning methods (Finn et al., 2017; Raghu et al., 2020; Grant et al., 2018;
Li et al., 2017; Lee & Choi, 2018) learn a model initialization as meta-knowledge and fast adapt
to new tasks with the initialization. Because these methods are model agnostic, they are wildly
implemented in many research areas, e.g.,few-shot learning, reinforcement learning and transfer-
learning. However, the learned initialization tends to overfit the meta-training tasks, especially the
query set of meta-training tasks. Yin et al. (2020) and Rajendran et al. (2020) firstly formulated
the meta-overfitting problem. Various methods were proposed to solve the overfitting problem in
gradient-based methods. The most common way is using the standard regularization techniques,
such as adding adaptive noise (Lee et al., 2019), limiting trainable parameters (Yin et al., 2020;
Oh et al., 2021; Zintgraf et al., 2019), and enforcing the similarity of different tasks (Jamal & Qi,
2019).A regularizer-based method, DropGrad (Tseng et al., 2020), applies dropout to support sets
but not to the query set. The common positive effect of these methods is weakening the spurious
correlation. But, they still use confounded past meta-knowledge which limits the flexibility of
meta-knowledge as described in Section 2.3. Recently, Yao et al. (2021) and Rajendran et al. (2020)
proposed task-augmentation methods to solve the overfitting problem. Both these methods partially
block the backdoor path and achieve outstanding performance than regularization algorithms.

Our work solves the confounder of meta-learning through causal reasoning, especially causal graph
and do-calculus (Pearl, 2009; Pearl et al., 2016). Some recent works (de Haan et al., 2019; Zhang
et al., 2020; Kocaoglu et al., 2018; Yang et al., 2020; Kurutach et al., 2018; Qi et al., 2020; Nair et al.,
2019; Mahajan et al., 2019; Nauta et al., 2019) have shown that causal reasoning helps deep learning
models to mine causal relation instead of correlation; meanwhile, the deep model’s powerful rep-
resentation ability is beneficial to causal models dealing with high-dimensional data. Most relevant
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to ours are Bengio et al. (2020) and Yue et al. (2020) which combined meta-learning and causality.
The goal of Bengio et al. (2020) is to leverage a meta-learning objective to discover causal struc-
tures for fast transfer learning, which solves a completely different research problem from ours. Yue
et al. (2020) proposed IFSL to deconfound the pre-trained knowledge during meta-testing, which
cannot handle the memorization issue arised during meta-training. Our work mainly focuses on the
meta-training process and solves memorization overfitting, which is crucial in meta-learning.

5 EXPERIMENT

We compare our methods with the state-of-the-art solution of memorization overfitting —MetaMix
(Yao et al., 2021). We evaluate the performance on different backbones, such as MAML (Finn
et al., 2017), ANIL (Raghu et al., 2020), MetaSGD (Li et al., 2017), and T-NET (Lee & Choi, 2018)
(together with MetaMix in Appendix E.4), to show the compatibility of our methods. In addition,
the ablation study and the analysis of hyperparameters show the robustness of our methods.

5.1 SINUSOID REGRESSION

Table 1: Performance (MSE ± 95% confidence in-
terval) of sinusoid regression problem.

Model 5-shot 10-shot

IFSL 0.59± 0.15 0.15± 0.04
DropGrad 0.57± 0.15 0.14± 0.07
MR-MAML 0.57± 0.11 0.10± 0.02
Meta-Aug 0.53± 0.10 0.10± 0.02

ANIL 0.54± 0.10 0.10± 0.02
ANIL-MetaMix 0.51± 0.10 0.08± 0.02
ANIL-ours 0.49± 0.10 0.08± 0.02

MAML 0.59± 0.12 0.16± 0.06
MAML-MetaMix 0.47± 0.10 0.08± 0.02
MAML-ours 0.45± 0.08 0.06± 0.01

MetaSGD 0.56± 0.11 0.14± 0.04
MetaSGD-MetaMix 0.46± 0.10 0.07± 0.02
MetaSGD-ours 0.43± 0.07 0.04± 0.01

T-Net 0.54± 0.11 0.11± 0.03
T-Net-MetaMix 0.49± 0.10 0.08± 0.02
T-Net-ours 0.47± 0.09 0.07± 0.02

First, we evaluate the performance on a toy
sinusoid regression problem. We construct
a more challenging problem to further cor-
roborate the superiority of our methods. The
data for each task is created in forms of
A · sinw · x+ b + ε , with A ∈ [0.1, 5.0],
w ∈ [0.5, 2.0] and b ∈ [0, 2π]. Gaussian ob-
servation noise with µ = 0 and ε = 0.3 is
added to each data point sampled from the
target task. The regression results are com-
puted by a two-layer Multilayer Perceptron.
Implementation of our methods (MAML-
Dropout+MAML-Bins) in this experiment
uses 5 bins and 0.3 dropout rate. Please
kindly refer to Appendix D.1 for more de-
tails of the experimental setup. We report the
mean squared error (MSE) as the evaluation
criterion.

According to Table 1, comparing with some
basic gradient-based meta-learning algo-
rithms: IFSL (Yue et al., 2020) only focuses
on the meta testing phase, so, it cannot improve the performance in a non-mutually-exclusive task;
MR-MAML (Yin et al., 2020) achieves a minor improvement, which accords with our analysis in
Section 2.3. Meta-Augmentation’s (Rajendran et al., 2020) error is larger than MetaMix (Yao et al.,
2021) because mapped labels in different steps generated by MetaMix is more random and indepen-
dent. Our methods bring a huge improvement applied in different baselines.

We also evaluate our method separately, as shown in Figure 3b. We find that both methods have
positive effects and using them together achieves the best performance. Besides, we explore how
the number of bins and the dropout rate influence results (see Figure 5b and Figure 5d in Appendix
E.1). As a result, the dropout rate should be in [0.1, 0.3] because a low dropout rate stratifies θ′ in
similar ways while a high dropout rate limits the generalization of meta-knowledge. For the same
reason, the optimal number of bins M is also in a range of [4, 10].

5.2 DRUG ACTIVITY PREDICTION

Following Yao et al. (2021), we apply our methods to the drug activity prediction task (Martin et al.,
2019). The task set contains 4276 assays (i.e.,tasks). In each task, we need to predict activities
of several compounds on a specific target protein; whereas there are only a few labeled data in the
support set. We split tasks into meta-training tasks, meta-validation tasks and meta-testing tasks in
the same way as Yao et al. (2021). Other details of datasets and settings are given in Appendix D.3.
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Table 2: Performance of drug activity prediction.

Model Group 1 Group 2 Group 3 Group 4
Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3 Mean Med. >0.3

ANIL 0.357 0.294 50 0.300 0.245 45 0.327 0.301 50 0.338 0.302 50
ANIL-ours 0.394 0.321 53 0.312 0.284 46 0.338 0.271 48 0.370 0.297 50

MAML 0.366 0.317 53 0.312 0.239 44 0.321 0.258 43 0.348 0.280 47
MAML-ours 0.410 0.376 60 0.320 0.275 46 0.355 0.257 48 0.370 0.337 56

MetaSGD 0.388 0.306 51 0.298 0.236 41 0.326 0.237 46 0.353 0.316 52
MetaSGD-ours 0.390 0.342 57 0.316 0.269 43 0.358 0.339 56 0.360 0.311 50

We also evaluate the square of Pearson coefficientR2 between the prediction and the ground-truth in
each task (Martin et al., 2019; Yao et al., 2021), rather than the mean squared error as an evaluation
metric because values of these data are noisy and the coefficient is more meaningful. As the same
reason, MAML-Bins brings additional noise, so we only apply MAML-Dropout with 0.1 dropout
rate in this experiment. Results of our method are reported in Table 2. In four different groups, our
method (MAML-Dropout) is capable of improving the performance on all three backbones.

5.3 POSE PREDICTION

Table 3: Performance (MSE ± 95% confidence interval)
of pose prediction.

Model 10-shot 15-shot

Weight Decay 2.772± 0.259 2.307± 0.226
CAVIA 3.021± 0.248 2.397± 0.191
Meta-dropout 3.236± 0.257 2.425± 0.209
Meta-Aug 2.553± 0.265 2.152± 0.227
MR-MAML 2.907± 0.255 2.276± 0.169
IFSL 3.186± 0.256 2.482± 0.231
TAML 2.785± 0.261 2.196± 0.163

ANIL 6.746± 0.416 6.513± 0.384
ANIL-MetaMix 6.354± 0.393 6.112± 0.381
ANIL-ours 6.289± 0.416 6.064± 0.397

MAML 3.098± 0.242 2.413± 0.177
MAML-MetaMix 2.438± 0.196 2.003± 0.147
MAML-ours 2.396± 0.209 1.931± 0.134

MetaSGD 2.803± 0.239 2.331± 0.182
MetaSGD-MetaMix 2.390± 0.191 1.952± 0.154
MetaSGD-ours 2.369± 0.204 1.926± 0.112

T-Net 2.835± 0.189 2.609± 0.213
T-Net-MetaMix 2.563± 0.201 2.418± 0.182
T-Net-ours 2.487± 0.212 2.402± 0.178

We also evaluate another regression
task created from Pascal 3D data (Xi-
ang et al., 2014). Following Yin et al.
(2020), we randomly select 50 ob-
jects for meta-training and the other
15 objects for meta-testing. Same
as the past works (Yin et al., 2020),
we use a base model with a three-
convolution-block encoder and a four-
convolution-block decoder. Imple-
mentation of our methods (MAML-
Dropout+MAML-Bins) in this experi-
ment uses 5 bins and 0.2 dropout rate.
Detailed settings are described in Ap-
pendix D.2.

In Table 3, we evaluate more algo-
rithms in this experiment. We find it
is difficult for regularizer-based meth-
ods to overcome memorization overfit-
ting, especially under 10-shot setting.
If there are only few samples in the sup-
port set, model is hard to adapt to a
specific task and tends to memorize the
query set in the meta trainging phase.
In this task, our methods’ performance exceeds MetaMix again, which highlights the deconfound-
ing ability of our methods. In Figure 3a, applying our methods separately, the performance of model
still achieves a significant advancement.

5.4 IMAGE CLASSIFICATION

We also study the memorization overfitting in a few-shot image classification problem with two
benchmarks, Omniglot (Lake et al., 2011) and MiniImagenet (Vinyals et al., 2016). Following
Yin et al. (2020); Rajendran et al. (2020), these experiments are under a non-mutually-exclusive
setting. “non-mutually-exclusive N -way K-shot classification” means each class is assigned with
an unchangeable label from 1 to N in different tasks and training steps. Each task contains N
classes labeled from 1 to N . This setting aggravates the memorization overfitting according to the
causality described in Section 2.3 and highlights the power of deconfounding. We use a four-block
convolutional network, which is the same as the model of Yao et al. (2021) and suffer from less meta-
overfitting than the deeper network used in (Yin et al., 2020; Rajendran et al., 2020). We evaluate
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Table 4: Performance (accuracy ± 95% confidence interval) of image classification on Omniglot
and MiniImagenet.

Model Omniglot MiniImagenet
20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot

Weight Decay 86.81± 0.64% 96.20± 0.17% 33.19± 1.76% 52.27± 0.96%
CAVIA 87.63± 0.58% 94.16± 0.20% 34.27± 1.79% 50.23± 0.98%
DropGrad 87.69± 0.57% 94.21± 0.20% 34.42± 1.70% 52.92± 0.98%
MR-MAML 89.28± 0.59% 96.66± 0.18% 35.00± 1.60% 54.39± 0.97%
Meta-dropout 85.60± 0.63% 95.56± 0.17% 34.32± 1.78% 52.40± 0.96%
TAML 87.50± 0.63% 95.78± 0.19% 33.16± 1.68% 52.78± 0.97%

ANIL 88.35± 0.56% 95.85± 0.19% 34.13± 1.67% 52.59± 0.96%
ANIL-MetaMix 92.24± 0.48% 98.36± 0.13% 37.94± 1.75% 59.03± 0.93%
ANIL-ours 92.82± 0.49% 98.42± 0.14% 38.09± 1.76% 59.17± 0.94%

MAML 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
MAML-MetaMix 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%
MAML-ours 92.89± 0.46% 98.03± 0.15% 39.89± 1.73% 59.32± 0.93%

MetaSGD 87.72± 0.61% 95.52± 0.18% 33.70± 1.63% 52.14± 0.92%
MetaSGD-MetaMix 93.59± 0.45% 98.24± 0.16% 40.06± 1.76% 60.19± 0.96%
MetaSGD-ours 93.93± 0.40% 98.49± 0.12% 40.22± 1.78% 60.24± 0.91%

T-Net 87.71± 0.62% 95.67± 0.20% 33.73± 1.72% 54.04± 0.99%
T-Net-MetaMix 93.27± 0.46% 98.09± 0.15% 38.33± 1.73% 59.13± 0.99%
T-Net-ours 93.54± 0.49% 98.27± 0.14% 38.38± 1.77% 59.25± 0.97%
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Figure 3: Ablation study.

different meta-learning backbones and compare them with our methods (MAML-Dropout+MAML-
Bins) using 5 bins and dropout rate 0.1. Detailed settings are described in Appendix D.4.

We report our results in Table 4. Under a non-mutually-exclusive setting, our method significantly
boosts gradient-based methods; even outperforms MetaMix, which proves that our methods have
a better deconfounding ability. Besides, under the same setting, we investigate the influence of
different hyperparameters, including different numbers of bins and dropout rates, on classification
tasks. As shown in Figure 5a and Figure 5c in Appendix E.1, different hyperparameters improve
the performance robustly. The ablation study on image classification is reported in Figure 3c and
Figure 3d. Combining two implements of frontdoor adjustment has the best performance on these
tasks. To show the effectiveness of our proposed methods, we compare pre-inner-update accuracy
and meta-testing post-inner-update accuracy during meta-training under the Omniglot 20-way, 1-
shot setting as shown in Table 5 in Appendix E.2. Additionally, we conduct the experiments on the
mutually-exclusive setting of MiniImageNet in Appendix E.3.

6 CONCLUSION

In this paper, we rethink memorization overfitting from a causal perspective and construct a causal
graph for gradient-based meta-learning. Under this causal graph, we identify the root cause of
the memorization problem as a spurious correlation in meta-learning. Drawing upon our causal
graph, we not only illustrate how existing methods solve the memorization problem but also propose
a novel causal intervention principle to debias the spurious correlation. Two implementations of
the proposed principle have demonstrated their effectiveness and compatibility in four benchmark
datasets. More importantly, we believe that this causal perspective opens a new door to improving
meta-learning.
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REPRODUCIBILITY STATEMENT

We have conducted experiments under the setting in Section 5 and reported the results in Section 5
and Appendix E. We have provided dataset details in Appendix D and implementation details along
with hyperparameter settings in Appendix D. We will release the code upon acceptance.
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A DETAILED PROOF

A.1 PROOF OF MERGED CAUSAL RELATION

We merge the causal relation XQ → Ŷ ′Q → θ′ → Φ→ ŶQ to XQ → Ŷ ′Q. We have:

p(XQ, ŶQ, Ŷ
′
Q,Φ, θ

′) = p(ŶQ|XQ,Φ)p(Φ|θ′)p(θ′|Ŷ ′Q)p(Ŷ ′Q|XQ)p(XQ).

Given θ′, then,

p(XQ, ŶQ,Φ|θ′ = θ∗) =
∑
Ŷ ′Q

p(ŶQ|XQ,Φ)p(Φ|θ′ = θ∗)p(Ŷ ′Q|XQ)p(XQ)

= p(ŶQ|XQ,Φ)p(Φ|θ′ = θ∗)p(XQ),

(A.1)

whose graph is the same as Figure 1b.

A.2 THE CAUSAL EFFECT

Causal effect rule (Pearl et al., 2016) Given a causal graph G in which PA is a set of parent nodes
of X , the causal effect of X on Y is given by

p(Y = y|do(X = x)) =
∑
z

p(Y = y|X = x, PA = z)p(PA = z), (A.2)

where z ranges over all the combinations of values that the variables in PA can take.

If a variable Z has no effect on Y , then we have

p(Y = y|do(X = x)) =
∑
z

p(Y = y|X = x, Z = z)p(Z = z)

=
∑
z

p(Y = y|X = x)p(Z = z)

= p(Y = y|X = x).

(A.3)

In this case, the correlation between X and Y is the causal effect of X on Y . However, if a variable
Z has a effect on Y , then

p(Y = y|X = x) =
∑
z

p(Y = y|X = x, Z = z)p(Z = z|X = x)

6=
∑
z

p(Y = y|X = x, Z = z)p(Z = z),
(A.4)

so the correlation between X and Y is different from the causal effect. In this case, Z open the
backdoor path of X and Y , which causes a spurious correlation.

In Figure 1b, there is no backdoor path between {S, θ} and {Q, θ}, but Y open the backdoor path
between {θ′, θ}. Therefore, the causal effect of {θ′, S,Q} on θ is

p(θ|do(θ′, S,Q)) = p(θ|do(θ′), S,Q) (A.5)

Frontdoor adjustment We apply frontdoor adjustment (Pearl et al., 2016) to calculate
p(θ|do(θ′), S,Q). Firstly, according to the causal graph Figure 1b, we have

p(Φ|θ′, S) = P (Φ|do(θ′), S),

and,

p(θ|do(Φ), Q) =
∑
θ′i

p(θ|Φ, θ′i, Q)p(θ′i)

13



Under review as a conference paper at ICLR 2022

Then, the frontdoor adjustment for meta-learning is

p(θ|do(θ′), S,Q) =
∑
Φ

p(Φ|do(θ′), S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)
∑
θ′i

p(θ|Φ, θ′i, Q)p(θ′i)

=
∑
θ′i

p(θ|Φ, θ′i, Q)p(θ′i)

(A.6)

Complete causal graphs Complete causal graphs of two kinds of deconfounding methods men-
tioned in Section 2.3 and Section 2.4 are shown in Figure 4. Augmentation-based methods ran-
domize the labels of query sets, i.e.,, Y ′ ← Q → Y . The frontdoor adjustment breaks the link
θ′ → Φ. According to causal graphs, both these two kinds of methods solve the problem that Y is a
confounder in meta-learning.
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Figure 4: Complete causal graph of Figure 2b and Figure 2d. (a) The complete causal graph of
augmentation-based methods. (b) The complete causal graph of the frontdoor adjustment.

B DETAILED ALGORITHM

B.1 PSEUDO-CODES

We show the pseudo-codes of meta-training for MAML-Bins together with MAML-Dropout in Alg.
1.

B.2 DISCUSSION OF OUR TWO METHODS

The two proposed methods sample stratification and deconfound in different manners: different
stratums in MAML-Dropout are θ′s dropping different parts of features, while different stratums in
MAML-Bins are different combinations of existing features represented by θ′. They are comple-
mentary and mutually reinforcing, as evidenced in Figure 3. In general, MAML-Dropout tends to
have more stratums than MAML-Bins, accounting for its better performance.

C AUXILIARY CLASSIFICATION TASK

To assign the images into different groups, we propose a novel method to train the feature extractor
and groups the output of network with a standard clustering algorithm, kmeans. Thus, our method
has two procedure: training stage and clustering stage.

Training stage. We train a feature extractor fθ (parametrized by the network parameters θ) and
the classifier C(·|W ) (parametrized by the weight matrix W ∈ Rd×c) from scratch by minimizing
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Algorithm 1 Meta-training Process of MAML-Dropout and MAML-Bins

Require: Task distribution p(T ); Learning rate α, β; A pretrained bin classifier C; Number of
inner-loop steps t; Auxiliary classification loss weight λ; Dropout rate r. Randomly initialize
parameter θ0

while not coverage do
Sample a batch of tasks {Ti}ni=1
for all Ti do

Sample support set si = {(xsi,j .ysi,j)}
Ks

i
j=1 and query set qi = {(xqi,j .y

q
i,j)}

Kq
i

j=1 from Ti
Classify the query set by C and match bin labels B to query set qi = {(xqi,j .y

q
i,j), b

q
i,j}

Kq
i

j=1

Compute the task-specific parameter φi = φi,t on the support set using Eq.(3)
Sample dropout masks zi ∼ Bernoulli(r) for model fφi

Compute the output of the model fφi with dropout masks zi, i.e.,Oi = fφi,zi(X
q
i )

Compute the model prediction Ŷ qi with the mean of Oi’s column vectors and the bin predic-
tion B̂qi with the mean of Oi’s row vectors
Compute the the loss as L(Ŷ qi , Y

q
i ) + λL(B̂qi , B

q
i )

end for
Update θ0 = θ0 − β

n

∑n
i=1∇θ0 [L(Ŷ qi , Y

q
i ) + λL(B̂qi , B

q
i )]

end while

a standard cross-entropy classification loss Lpred using the training examples in the base classes
xi ∈ X . Here, we denote the dimension of the encoded feature as d and the number of output classes
as c. The classifier C(.|W ) consists of a linear layer WT

θ (xi) followed by a softmax function σ.

Note that the training procedure in this model does not involve sampling mini-batches of classes and
data points (episode) as in typical meta-learning algorithms.

Clustering stage. To assign the images into different groups, we fix the pre-trained network param-
eter θ in our feature extractor fθ, and cluster the output of the network by a standard clustering
algorithm, k-means. k-means takes the representation fθ(x) as input, and clusters them into k dis-
tinct groups based on a geometric criterion. More precisely, it jointly learns a d× k centroid matrix
C and the cluster assignments yn of each image n by solving the following problem:

min
C∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k

‖fθ(xn)− Cyn‖22 such that y>n 1k = 1. (A.1)

Solving this problem provides a set of optimal assignments (y∗n)n≤N and a centroid matrix C∗.
These assignments are then used as pseudo-labels of bins; we make no use of the centroid matrix.

D DETAILED EXPERIMENTAL SETUP

D.1 SINUSOID REGRESSION

To set up a toy sinusoid regression problem that is non-mutually-exclusive, we create data for each
task in the following way: The data for each task is created in forms of A · sinw · x+ b + ε, with
A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and b ∈ [0, 2π]. At the test time, we expand the range of the tasks by
randomly sampling the data-generating A uniformly from [0.1, 5], w from [0.5, 2.0], b from [0, 2π]
and use a one-hot vector for each (A, b), w as input to the network. The meta-training tasks are a
proper subset of the meta-testing tasks. We set the number of bins to be 5, the dropout rate to be 0.3
and the weight of auxiliary task to be 1 in these tasks.

D.2 POSE PREDICTION

To preprocess the pose prediction tasks, we follow (Yin et al., 2020) to preprocess the pose tasks1.
There are 50 and 15 categories in the meta-training and meta-testing, respectively, where each cate-
gory contains 100 gray images in the size of 128× 128.

1code link: https://github.com/google-research/google-research/tree/master/meta learning without memorization/pose data
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Following Yin et al. (2020), in pose prediction task, the base model is comprised of a fixed en-
coder with three convolutional blocks and an adapted decoder with four convolutional blocks. Each
convolutional block is composed of a convolutional layer, a batch normalization layer and a ReLU
activation layer. We set the number of bins to be 5, the dropout rate to be 0.2 and the weight of
auxiliary task to be 0.6 in these tasks.

D.3 DRUG ACTIVATY PREDICTION

This task comes from a public dose-response activity assay dataset from ChEMBL 2 and prepro-
cessed by Martin et al. (2019). The training compounds in support sets and the testing compounds
in query sets are separated by Martin et al. (2019) and the split of the meta-training, meta-validation
and meta-testing tasks are as same as Yao et al. (2021).

The base model of drug activity prediction is a two-layer Multilayer Perceptron(MLP) neural net-
work with 500 neurons in each layer. Each fully connected layer is followed by a batch normalization
layer and leaky ReLU activation. In either meta-training or meta-testing, the number of inner-loop
adaptation steps equals to 10. During meta-training, the task batch size, the outer-loop learning rate,
the inner-loop learning rate are set to 8, 0.001 and 0.01. The meta-training process altogether runs
for 50 epochs while 60 epochs using Dropout, each of which includes 500 iterations. Dropout rate
is set to be 0.1. In order to prevent the influence of noise data, we use a query-set-mixup strategy as
Yao et al. (2021), i.e.,we apply manifold mixup on query set for all experiments in this task.

D.4 IMAGE CLASSIFICATION

In image classification, for non-mutually exclusive setting in 5-way miniImagenet, 64 meta-training
classes are split to 5 sets, where 4 sets have 13 classes and the rest one has 12 classes. For each set, a
fixed class label is assigned to each class within this set, which remains unchanged across different
tasks. During meta-training, we randomly select one class from each set and take all the five selected
classes to construct a task, which ensures that each class consistently has one label across tasks. In
our experiments, we list the classes within each set as follows.

• Set 1: n07584110, n04243546, n03888605, n03017168, n04251144, n02108551, n02795169,
n03400231, n03476684, n04435653, n02120079, n01910747, n03062245

• Set 2: n03347037, n04509417, n03854065, n02108089, n04067472, n04596742, n01558993,
n04612504, n02966193, n07697537, n01843383, n03838899, n02113712

• Set 3: n04604644, n02105505, n02108915, n03924679, n01704323, n09246464, n04389033,
n03337140, n06794110, n04258138, n02747177, n13054560, n04443257

• Set 4: n13133613, n01770081, n02606052, n02687172, n02101006, n03676483, n04296562,
n02165456, n04515003, n01749939, n02111277, n02823428, n01532829

• Set 5: n02091831, n07747607, n03998194, n02089867, n02074367, n02457408, n04275548,
n03220513, n03527444, n03908618, n03207743, n03047690

A similar process is applied to Omniglot, where 1200 meta-training classes are randomly split into
20 sets with 60 classes in each set. For all datasets, we utilize the classical convolutional neural
network with 4 convolutional blocks as the base model (Finn et al., 2017; Snell et al., 2017). We set
the number of bins to be 5, the dropout rate to be 0.1 and the weight of auxiliary task to be 0.2 in
these tasks.

The image sizes of Omniglot and MiniImagenet are set to be 28×28×1 and 84×84×3, respectively.

E ADDITIONAL EXPERIMENT RESULTS

E.1 HYPERPARAMETER SENSITIVITY

The hyperparameters in our experiments are determined according to the performance on a hold-
out set of meta-validation tasks. Besides, we analyze the influence of different numbers of bins for

2https://www.ebi.ac.uk/chembl
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MAML-Bins and different dropout rate for MAML-Dropout. The results show the robustness of our
methods against different hyperparameters.
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Figure 5: Hyperparameter analysis in (a - b) Bins Number (c - d) Dropout Rate.

E.2 OVERFITTING ANALYSIS

We compare the shallow and deeper base model under the Omniglot 20-way 1-shot setting in Table
5. As for MAML, the memorization overfitting on the deep model is more serious, which really
hurts the testing performance. Our methods solves the memorization problem in meta-knowledge
achieves a better performance.

Table 5: Comparison between the shallow and deeper base model under the Omniglot 20-way 1-shot
setting.

Methods Meta-training Pre-update Meta-testing Post-update
Shallow Deep Shallow Deep

MAML 14.38± 0.40% 98.59± 0.05% 87.40± 0.59% 8.82± 0.42%
Ours 5.46± 0.38% 5.07± 0.41% 92.11± 0.39% 84.37± 0.59%

E.3 RESULTS UNDER MUTUALLY-EXCLUSIVE SETTING

In Table 6, we report the results under the standard mutually-exclusive setting on MiniImagenet.
Label shuffling is introduced to construct meta-training tasks under the mutually-exclusive setting,
which significantly reduces the memorization overfitting. However, applying the proposed methods
on this setting still achieves comparable and even better performance than original MAML, which
further demonstrates the effectiveness of our proposed methods.

Table 6: Performance (Accuracy) of MiniImagenet under the mutually-exclusive setting.

Model MiniImagenet
5-way 1-shot 5-way 5-shot

MAML 48.70± 1.84% 63.11± 0.92%
MAML-Bins 49.18± 1.70% 63.85± 0.97%
MAML-Dropout 49.68± 1.82% 64.11± 0.96%
MAML-Both 50.06± 1.76% 64.73± 0.92%

E.4 RESULTS TOGETHER WITH METAMIX

We apply our methods together with MetaMix to Omniglot, MiniImagenet and sinusoid regression.
The results in the Table 7 and Table 8 show further and big improvement of the combination com-
pared to using MetaMix only.
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Table 7: Comparison with MetaMix on image classifications.

Model Omniglot MiniImagenet
20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot

MAML 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
MAML + MetaMix 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%
MAML + ours 92.89± 0.46% 98.03± 0.15% 39.89± 1.73% 59.32± 0.93%
MAML + MetaMix + Ours 93.02± 0.68% 98.07± 0.22% 39.92± 1.77% 59.37± 0.95%

Table 8: Comparison with MetaMix on the sinusoid regression.

Model 5-shot 10-shot

MAML 0.59± 0.12 0.16± 0.06
MAML + MetaMix 0.47± 0.10 0.08± 0.02
MAML + ours 0.45± 0.08 0.06± 0.01
MAML + MetaMix + Ours 0.44± 0.09 0.05± 0.02
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