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ABSTRACT

The growing economic importance of data has generated interest in principled
methods for data valuation. Particular attention has been given to the Shapley
value, a result from cooperative game theory that defines the unique distribution of
a game’s rewards to contributors subject to specified fairness axioms. By casting
a machine learning task as a cooperative game, Shapley-based data valuation
purports to equitably attribute model performance to individuals. However, the
practical operationalization of this process depends on a wide array of practitioner
decisions. Many of these decisions lie outside of the scope of the underlying
machine learning task, introducing a potential for arbitrary decision making. The
sensitivity of valuation outcomes to these intermediate decisions threatens the
desired fairness properties. In light of these surfaced concerns, we evaluate the
face-value equitability of Shapley for data valuation.

1 INTRODUCTION

As data is increasingly recognized as a valuable asset, there are growing calls for ethical and legal
frameworks governing data ownership. While existing legislation, such as the European Union’s
General Data Protection Regulation and the California Consumer Privacy Act, focuses primarily
on privacy and security, much of the broader landscape of data-related policy remains unaddressed.
At the same time, the rapid rise of generative AI has intensified concerns about intellectual property
infringement, emphasizing the urgent need to trace model behavior to specific training data points.

In this context, the technical question of data valuation—the process of assigning a numerical score
to each data contributor in a dataset—has become highly relevant Zhang et al. (2024). Data valuation
can shape the distribution of monetary rewards and determine how individuals and communities
access and participate in the data economy. Furthermore, it has the potential to influence which
creative inputs are acknowledged and credited, shaping perceptions of intellectual property and
contributions in data-driven innovations Worledge et al. (2023). The social implications of these
decisions are profound, requiring a focus on ensuring fair outcomes to maintain trustworthiness.

This paper spotlights a new challenge in the operationalization of Shapley-based data valuation:
valuation sensitivity to the choices made in mapping machine learning tasks to a cooperative game.
Using a vignette based on linear regression, we illustrate the surprising complexity of the decision
space even in seemingly straightforward contexts. By highlighting these nuances, we aim to contribute
towards bridging the gap between theory and the socially responsible deployment of data valuation
methodologies.

2 RELATED WORK

The Economic Value of Data A growing body of literature explores the economic value of data
from a variety of perspectives. The difficulty of handling the value of data as an asset in accounting
settings is explored in(Moody & Walsh). (Stein & Maass, 2022) provides a review of methods within
business and accounting for valuing data on the basis of costs, income-potential, and sale value on
a market. Others have assessed the intrinsic value of data by appealing to privacy considerations
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(Kleinberg et al., 2001), property law(Jurcys et al., 2020), and investment value(Cheong et al., 2023).
A significant amount of recent literature has sought to describe functional characteristics of data
marketplaces (Agarwal et al., 2019; Tian et al., 2023; Zhang et al., 2024). Additionally, many works
have sought to quantify intrinsic quality of data and its instrumental value in machine learning
applications (Sim et al., 2022; Schoch et al., 2023). When learned models have economic value
through revenue-generation or cost-savings (Agarwal et al., 2019), data valuation seeks to attribute
that economic performance to individual contributors to the training data.

The Shapley value (?), a key concept in cooperative game theory, has been widely applied to data
valuation (??). Other cooperative game-based valuation methods have since been proposed (Kwon
& Zou, 2022; Wang & Jia, 2023). For a comprehensive review of semivalue-based data valuation,
including the Shapley value, see Zhang et al. (2024, Sec. 8.2). Other credit allocation methods
from cooperative game theory, notably the core, have also been explored for data valuation(Yan &
Procaccia, 2021). Some task-agnostic methods have been proposed but have not seen widespread
uptake(Just et al., 2022; Ki et al., 2023).

Data Valuation Use Cases The data valuation literature has proposed a wide array of practical
uses of values, including incentivizing data contribution from high-quality contributors(Zhu et al.,
2019), attributing credit within multi-institute collaborations(Kumar et al., 2022), allocating payouts
(Han et al., 2023), informing data acquisition(Ghorbani et al., 2020), and cleaning datasets of ‘noisy’
data (Namba et al., 2024; ?; Zhou et al., 2022). Despite the data Shapley value and related notions
being defined only within the context of a fixed learning application, some have taken these values to
possibly correspond to some intrinsic quality of the data, leading to the Shapley value being used to
imply value for another task (Schoch et al., 2023) or inform data pricing and market behavior (Tian
et al., 2022; 2023).

Several studies have explored the use of semivalues in domain-specific applications. For instance,
royalty-sharing frameworks (Wang et al., 2024) and revenue distribution models (Zhu et al., 2019;
Ma et al., 2021) seek to leverage the Shapley value to fairly allocate payments, whether to copyright
holders in content generation or contributors in medical data collection. In federated learning, the
Shapley value has been proposed for fair credit attribution across institutions (Wang et al., 2020;
Kumar et al., 2022).

Fairness and Arbitrariness The axiomatic fairness guarantees provided by the Shapley value
and related notions merely constrain payouts to contributors within a defined game. Determining
if outcomes derived from these valuations are ‘fair’ or ‘equitable’ likely requires consideration of
context, similar to what has been shown for fairness claims for other machine learning tasks (Dwork
et al., 2020). This assessment should be informed by broader work on algorithmic fairness in machine
learning(Barocas et al.). The equitability of a single component of the data valuation pipeline - the fair
allocation of rewards of a specified game - does not imply fairness of the process as a whole (Bower
et al., 2017; Dwork & Ilvento, 2019). The precise definition of what makes policy outcomes dependent
on data valuation fair is likely to be challenging to define (Binns, 2021),(Bothmann et al., 2024).

Given this, the practical fairness of data valuation and its consequences is dependent on implementa-
tion choices made by practitioners. This latitude introduces further ethical considerations when they
constitute ‘arbitrary’ decisions. The moral implications of ‘arbitrariness’ are not straightforward and
have recently begun to be studied in other ML fairness contexts (Black et al., 2022; Ganesh et al.,
2025; Creel & Hellman, 2022). (Creel & Hellman, 2022) proposes that arbitrariness itself does not
pose a fundamental moral issue, but rather the “ but the systematicity of their arbitrariness” can give
rise to ethical concerns. This calls for further attention to data valuation pipelines to assess whether
analyst decisions are arbitrary in a way that promote systematic unfairness before claims of equity
can be made.

3 PRACTICAL SPECIFICATION OF SHAPLEY-BASED DATA VALUATION

Data Shapley Let D denote a set of players of a cooperative game defined by a utility function U
that maps subsets of D to the score attained when that coalition plays the game. The Shapley (1952)
value of a contributor i denotes the reward that should be allocated to i in order to distribute the
team’s collective score, U(D), in a way that satisfies the a desirable set of fairness axioms. These
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fairness axioms and the form of the Shapley value are provided in full in Appendix A. The data
Shapley value extends this notion of value to data valuation in machine learning by casting supervised
learning problems as cooperative games (Ghorbani & Zou, 2019; Jia et al., 2019). This notion of
value is widely recognized to be defined with respect to a specific learning task. Per (Ghorbani &
Zou, 2019), the data Shapley value of an observation may change due to changes to the learning
architecture, and should change under change of task, with the provided example “regressing to the
age of heart disease onset instead of heart disease incidence”. Furthering this, we seek to highlight
the sensitivity of the data Shapley value to the specification of the utility function even within the
same substantive machine learning task.

Practitioner Choices: Defining the Game The utility function specified for data Shapley valuation
depends on all choices entailed in specifying the learning task, including the learning algorithm
and the model performance metric. Some of these choices are made implicitly and without careful
scrutiny, especially those that do not influence the training behavior on the entire dataset and thus
have no influence on the underlying ML task. We call particular attention to the role of specifying the
behavior of the learning algorithm on small coalitions and monotonic transformations of the model
performance function.

4 ILLUSTRATIVE EXAMPLE

4.1 SCENARIO DESCRIPTION

Consider a scenario in which a regional health agency is using data-driven decision-making to
optimize healthcare and improve resource allocations. As a model task, we consider hospital length of
stay predictions — a key public health application (Stone et al., 2022). Suppose the agency acquires
data from regional hospitals, implements a policy informed by a learned model, and subsequently
observes a related decrease in costs. The agency seeks to allocate a portion of the cost savings
to compensate data contributors, aiming to reward contributions fairly while avoiding reinforcing
inequities.

In the underlying machine learning task, the agency models the length of hospitalization using
a small set of real-valued features (d = 4) describing patient admission states using regularised
linear least squares regression1. The regularization hyperparameter is optimized using leave-one-out
cross validation (LOOCV). The dataset, D, contains n = 25 electronic health records from two
hospitals: a large, wealthy hospital (A) and a smaller hospital serving an economically disadvantaged
community (B). The distinction between data from hospitals (A) and (B) is encoded in the distribution
of admission states (see Appendix B for additional details on data generation).

In the following experiments, we identify several junctures where an analyst may face ambiguity in
making a decision in defining the learning algorithm or valuation metric. We propose a justifiable
alternative utility function, selecting one among many possible variations. We then present experi-
mental results on its impact in our outlined scenario and discuss broader implications for real-world
applications.

4.2 MULTIPLE UTILITY SPECIFICATIONS

Baseline Valuation For the baseline valuation, we derive one justifiable specification of the learning
algorithm and model performance based on the underlying task. The assumptions implicit in this
specification are assessed through the exploration of variations in subsequent sections.

The learning algorithm, Aλ0
, is taken to be regularized linear least squares regression using the

regularization hyperparameter determined by LOOCV during training in the underlying ML task. In
practice, the computational complexity of Shapley value estimation may make retuning hyperparame-
ters infeasible. Further, hyperparameter tuning may not be possible to reasonably define on small
training coalitions. As a result, many applications will see at least some hyperparameter or model
selection that is not incorporated into the learning algorithm, used for Shapley valuation.

1We assume the response (hospitalization duration) is truly a linear function of the covariates (admission
states). While model misspecification may affect valuations, we reserve this exploration for future work.
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Figure 1: Variability of Shapley valuation outcomes under alternative utility specifications for the same
learning task. Blue marks denote individuals in majority population(A), red marks denote individuals
from minority population(B). (a) rank changes arising from re-specifying learning behavior on small
coalitions; (b) valuation distributions without and with hyperparameter tuning into algorithm; (c)
valuation outcomes when scaled RMSE is reported.

The model performance is evaluated on an held-out test set T . While elements of T should ideally
be assigned a value for its use, we only assign elements of D a value, and leave equitable value
assignment strategies to members of T for future work. Performance score, V , is reported as the
mean square error (MSE) of the model on this test set. This yields baseline utility U0 = V ◦ Aλ0

.

Variant 1: Defining Behavior on ‘Small’ S Coalitions In general, machine learning algorithms A
are designed for large datasets, and may not have appropriate behavior on small coalitions.

Within the example scenario, the practitioner may recognize that fitting a linear model with d
free parameters to a training coalition with fewer observations does not correspond to an analysis
the agency would have carried out in a counterfactual setting where only S was available as a
training set. The analyst could incorporate this process assumption to capture an observation’s
actual marginal improvement to practical outcomes by defining an alternative utility where the
learning algorithm returns a naive ‘untrained’ model when |S| < d. This results in alternative utility:
U1(S) = U0(S)I{|S| ≥ d}+ U0(∅)I{|S| < d}.

This adjustment excludes marginal improvements from small coalitions in the value computation.
Fig. 1a illustrates the resulting rank shifts, highlighting reward sensitivity across all outcome policies.

Han et al. (2023) note that Shapley valuations tend to be dominated by marginal contributions from
small coalitions. As a result, valuation outcomes are highly sensitive to the practitioner’s decisions
in defining behavior on a small dataset. As shown experimentally, this particular variation to U
systematically benefits individuals in population B As it does not change A(D), this specification is
not intrinsic to the learning task and instead is up to the practitioner’s discretion, giving rise to an
ethics concern that arbitrariness is causing systematic impacts.

Variant 2: Defining Role of Hyperparameters in Algorithmic Counterfactual Hyperparameter
tuning, such as cross-validation, is commonly treated as part of the learning algorithm. It may seem
natural to tune hyperparameters for counterfactual models as well, but this is often avoided due to
computational costs. However, whether or not hyperparameter tuning is performed can significantly
impact data valuations. As cross-validation worsens the small coalition issue raised in variant 1, we
consider optimization on a representative held-out validation set.

We simulate this behavior by defining the variant utility function U2 = maxλ∈L(V0 ◦ Aλ) where L
denotes the domain of the LOOCV optimization in the underlying task.

Figure 1b illustrates how incorporating regularization hyperpameter tuning into the algorithm af-
fects valuation distributions across hospital populations. We see that this choice raises valuations
for Hospital B while reducing within-group variability, whereas Hospital A sees a slight decline.
Without regularization, the model overfits to Hospital B — the minority in the test set — leading to
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large negative marginal effects when individuals from Hospital B are added to the empty coalition.
Regularization mitigates this impact, which ultimately benefits Hospital B.

Variant 3: Alternative Reporting of Performance Metric Model scores in machine learning
often undergo monotonic transformations without affecting real-world decisions. For instance, while
models are commonly trained using mean square error (MSE), performance can equivalently be
reported with root mean square error (RMSE) without loss of information or change in relative
performances. A practitioner might assume that similar transformations in data valuation are benign.
However, with semivalues, monotonic transformations can significantly alter valuations, even leading
to rank reversals—an unexpected consequence given that such transformations typically preserve
model rankings. To study this effect, we introduce U4 = K

√
U0, a variation of the baseline valuation

method U0 that replaces MSE with RMSE with scaling to preserve the sum of values. Valuation
outcomes under this variant are depicted in Fig. 1c.

Results All three variants give rise to systematic changes to Shapley valuation outcomes despite
corresponding to the same substantive learning task. Valuation changes corresponding to rank changes
and wealth transfer from one demographic group to another are possible. These represent changes to
the exact closed-form shapley values associated with each game.

5 DISCUSSION

While the use of the Shapley value offer a principled framework for attributing value to data con-
tributors, the equitability promise for the data valuation application depends on the appropriate
specification of the underlying game. As shown, there is ambiguity in which game should be used. Al-
ternative specifications of the underlying game can correspond to the same essential machine learning
task, however lead to significantly different valuations for the same points. This highlights a concern
that the Shapley value may not be corresponding to a contributors’ ‘true’ value to a given learning
task. This calls for significantly more attention to this requirement for practical data valuation.

Challenges arise from the imperfect mapping between machine learning tasks and cooperative games
in the classical sense. While the composition of any learning algorithm and any model evaluation
metric can constitute a utility function that defines a game, the subtle specification of the learning
algorithm and metric can map the same machine learning task to different games with dramatically
different valuations. Further complexities arise from the use of approximation methods and the need
to translate computed valuations into concrete outcomes. Since raw valuation scores do not always
translate directly to actionable insights, practitioners often employ normalization, thresholding, or
ranking mechanisms. Careful evaluation of these choices is critical to ensuring fair and meaningful
applications of data valuation.

While, the purpose of this paper is to highlight the impact of subtle decisions in data valuation,
the development of prescriptive norms for making these decisions remains an area for future work.
Establishing principled best practices—tailored to different applications and learning tasks—would
provide much-needed guidance to practitioners. A formal framework for aligning data valuation
choices with practical objectives would enhance the reliability and interpretability of semivalue-based
data valuation.
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A SHAPLEY VALUE

Consider a cooperative game where a coalition of players, S, can attain a score according to function
U(S). ? defines the Shapley value, ϕi, of player i on team D participating in this game as:

ϕi =
1

|D|
∑

S⊆D\{i}

U(S ∪ {i})− U(S)(|D|−1
|S|

) , (1)

1. Null Player Axiom: If the addition of player i to any subset of the team results in no change
to that coalition’s reward, contributor i should be given value 0.

2. Symmetry Axiom: If players i and j have equivalent contributions when added to any subset
S, they should be given the same value.

3. Linearity Axiom: If U is sum of sub-scores U1, U2, ...Un, ϕi should be the sum of Shapley
values for each sub-score.

4. Group Rationality Axiom: The full value of the team’s collective reward should be distributed
to players:

∑
i∈D ϕi = U(D)− U(∅).
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B EXPERIMENT DETAILS

Parameters Value
Total contributors n 25

from Hospital A nA 17
from Hospital B nB 8

Observed features d 4
Model Parameters m 4
Covariate Means

Hospital A x̄A [2, 10, 1, 5]
Hospital B x̄B [12, 2, 5, 1]

Covariate Variance
Hospital A Σx,A 1.5 Id
Hospital B Σx,B 1.0 Id

Response Noise Scale
Hospital A σy,A 0.5
Hospital B σy,B 1.1

True Model Parameters β [3, -3, 1, -1]

Table 1: Parameters for experiment

Data Generative Model Covariate data is generated according to a two component multivariate
gaussian mixture model, with each component corresponding to one hospital population. Data from
Hospital H (which we take to be representative of some Population H) is drawn according to

xi ∼ N (x̄H ,Σ2
x)

yi = x⊤
i β

⋆ + ϵi; ϵi
iid.∼ N (0, σ2

y)

with the numerical parameters specified in Table 1.

Utility Specification

Aλ(S) = argminβ
∑

i∈S(yi − x⊤
i β)

2 + λ · ∥β∥2 ,
V (β) = −∑

(x,y)∈T (y − x⊤β)2 .

Exact Semivalue Computation The score for a coalition fit with regularizer λ on a test set with
Hospitals A and B represented in wA and wB fractions of the test set respectively is computed by
computing the fit

β̂(X, y;λ) = (XTX + λ)−1(XT y)

This learned model is scored using negative MSE on each subpopulation. Given the gaussian
distribution for each subpopulation and linear response, this can be done analytically allowing
approximation of the score on a large test set2.

VH(S;λ) = − E
x,y∼H

[(β̂(S;λ)x− y)2]

= −((β̂ − β∗) · xh)
2 − σ2

x||(β̂ − β∗)||2 + σ2
y

The utility evaluated on a test set with fA representation from population A and fB representation
from population B is:

U(S;λ) =
∑

H∈{A,B}

fHVH(S;λ)

Experimental results are computed for a test set with 75% representation of Population A and 25%
representation of Population B.

2In the retrospective payout setting, the test set can be collected after model deployment, so the constraint on
the size of D would not necessarily imply small T
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The Shapley value - possible to compute exactly due to the small dataset size - is comptued as:

ϕi(U) =
∑

S∈Pow(D)

w(i)(S)U(S)

Where

w(i)(S) =

{(
n−1
|S|−1

)−1
i ∈ S(

n−1
|S|

)−1
i /∈ S

Utility Variation Experiment Denote the optimal regularization from leave-one-out cross val-
idation as λ0. For the drawn dataset, among candidate set L = {10−4, 10−3, 10−2, 10−1, 1, 10},
λ0 = 10−2. Using the primitives described in ‘Exact Semivalue Computation’, the baseline valuation
method and variations are formalized as follows:

• Baseline Valuation: U0(S) = U(S;λ0)

• Small S Variation: U1(S) = U(S;λ0)I{|S| ≥ 4}+ U(∅)I{|S| < 4}
• Hyperparameter Retuning Setting: U2(S) = maxλ∈L U(S, λ)

• Score Transformation: U3(S) =
√

U(S;λ0)
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