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ABSTRACT

How much of a given dataset was used to train a machine learning model?
This is a critical question for data owners assessing the risk of unauthorized data
usage and protecting their right (United States Code, 1976). However, previous
work mistakenly treats this as a binary problem—inferring whether all or none
or any or none of the data was used—which is fragile when faced with real, non-
binary data usage risks. To address this, we propose a fine-grained analysis called
Dataset Usage Cardinality Inference (DUCI), which estimates the exact proportion
of data used. Our algorithm, leveraging debiased membership guesses, matches
the performance of the optimal MLE approach (with a maximum error < 0.1) but
with significantly lower (e.g., 300⇥ less) computational cost.

1 INTRODUCTION

The increasing legal conflicts over the unauthorized use of datasets to train artificial intelligence
models (e.g., the New York Times’ lawsuit against OpenAI (The New York Times Company, 2023))
signal the increasingly critical issues about the boundary between intellectual property infringement
and fair use, as well as compliance with data privacy regulations (e.g., GDPR (European Parliament
and Council of the European Union, 2016) and CCPA (California Legislature, 2018)). This has driven
extensive research into data provenance and dataset ownership verification in machine learning (Li
et al., 2023; 2020; Tang et al., 2023; Li et al., 2022b; Sun et al., 2022; Sablayrolles et al., 2020; Hu
et al., 2022; Zou et al., 2022; Wenger et al., 2022; Maini et al., 2021; Song & Shmatikov, 2019),
primarily focusing on implanting backdoor into target models by adding poisoning data to the
protected dataset (Li et al., 2023; 2020; Tang et al., 2023; Li et al., 2022b) or thresholding average
statistics over the dataset to conduct hypothesis testing (Maini et al., 2021; Song & Shmatikov, 2019).

However, all these methods are limited to exploring a binary question: whether an entire dataset
were used in training a specific model? Such binary methods are observed to be fragile under
partial dataset utilization (i.e., a practical setting where models are trained on a combination of
subsets from multiple data sources). In Figure 1, we plot the original binary prediction given by two
representative works (Li et al., 2023; Maini et al., 2021) and the continuous scores we retrieved from
their methods (normalized to the range from 0 to 1). (See the implementation details in Appendix B.)
While both methods achieve perfect prediction when predicting binary utilization (either none or
all), their decision fluctuates in cases of partial usage (regardless of the threshold). For example,
both methods will neglect small proportion of usage, and might classify a model as ”utilizing” the
dataset when 50% is employed, yet deeming a model as ”not utilizing” when usage increases to 60%.
These failures could cause severe social problems since the victim can easily bypass the detection by
utilizing a small portion of the dataset. Thus, fine-grained estimation of utilization proportions is
necessary for ensuring a reliable and consistent dataset usage prediction.
On the other hand, practical application of dataset usage detection requires to know the extent of
dataset usage. For example, according to the Section 107 of the U.S. Copyright Act (United States
Code, 1976), determining whether a use qualifies as fair use or copyright infringement must consider
the “amount and substantiality of the portion used in relation to the copyrighted work” and “nature
of the copyrighted work” (i.e., different use cases require different thresholds). However, none
of the existing methods can be naively extended to predict the proportion of dataset usage due to
the following challenges: (1) Finding a promising dataset-level score for the task is non-trivial.
For example, a continuous score forcefully obtained from backdoor watermarking decisions has
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significant errors, as backdoor injection is not a linear process. (2) Even if a promising dataset-level
score could be found, determining thresholds for various usage proportions is still challenging. This
is because the distribution of scores across different proportions is unpredictable unless we obtain
enough samples from the full distribution of all proportions—requiring the training of hundreds of
reference models, a process that is both costly and sensitive (MLE Baselines in Table 1).
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Figure 1: Prior (binary) methods fluctu-
ate between 0 and 1.

All these motivate us to ask the question: Can we reli-
ably and cost-effectively infer the proportion of the target
dataset used in a model? Specifically, our goal is to iden-
tify a suitable continuous score and inferring dataset usage
without any modifications to the data itself. This later con-
straint is critical for broadening the applicability of our
methods to scenarios where all prior binary watermarking
approaches (Guo et al., 2023; Li et al., 2023; Tang et al.,
2023; Hu et al., 2022; Li et al., 2022b; Wenger et al., 2022;
Sablayrolles et al., 2020) fall short: 1) scenarios where
altering high-quality data is undesirable or where data in-
tegrity must be preserved (e.g., in healthcare applications);
2) situations involving previously released datasets that
have likely already been incorporated in trained models.

Our contributions We identified the fragility of previous binary methods in dataset usage inference
(Section 1). Thus, we introduce a new problem of Dataset Usage Cardinality Inference (DUCI) in
machine learning, via a paradigm shift from binary formulations to a granular assessment of dataset
utilization, and propose an efficient and powerful algorithm to precisely estimate the proportion of a
dataset used in model training. Specifically,
1. We formally define the problem of DUCI and discuss the additional challenges in designing the

dataset-level score (Section 3.2).
2. To construct a promising dataset-level score of DUCI task, we developed a novel debiasing

procedure that is applicable to all membership identification techniques (equation 6).
3. We design an unbiased estimator for data usage by debiasing individual membership guesses

(Section 4) and quantify uncertainty in DUCI by constructing accurate confidence intervals and
validate them through extensive experiments (Figure 3).

4. Our experiments confirm the accuracy and cost-effectiveness of our method (Section 5.3): it
provides reliable proportion estimation maximum error < 0.1 with as few as one reference
model (Figure 2), and requires 630⇥ less computational budget than idealized methods while
maintaining comparable performance (Table 1).

5. Our debiasing method can be extended to group-level(Table 2), and effectively address the
challenge of practical quality-dependent dataset sampling schemes.

6. Our methods can also be applied to language models for practical tasks such as quantifying book
copyright infringement (Table 4).

2 PRELIMINARIES

Notation We use T to denote the training algorithm that, in addition to the model architecture, may
have access to auxiliary public information, e.g., a population data pool ⇢. We consider the standard
supervised learning setting, where a trained model ✓ : �! Rn maps an input x 2 � to an n-class
prediction vector ✓(x) 2 [0, 1]n, where k✓(x)k1 = 1. We denote ✓(x)y as the predicted probability
for the groundtruth class y where y 2 [n]. (e.g., in text generation tasks, n is the vocabulary size.)
Membership m of a data point x with regard to the training set D of a model ✓ is m = 1 if x 2 D
(a member), and m = 0 if x /2 D (a nonmember). We define the term membership guess m̂ as
the predicted membership status of a data point x by any algorithm A (denoted as membership
identification algorithms) capable of inferring membership.

2.1 MEMBERSHIP INFERENCE BACKGROUND

Membership inference (MI), examines whether a particular data point x is part of the training set
of a target model ✓, serves as a natural choice of providing membership guess. We next introduce
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the state-of-the-art (SOTA) MI algorithm demonstrating the best performance in our experiments.
Results for other SOTA MI algorithms are included in Appendix G.4 for comparison.

Robust Membership Inference Attack (RMIA) (Zarifzadeh et al., 2024) compares the target
point x with M population data zm ⇠ ⇢ for m = 1, . . . ,M , using the ratio P (x|✓)

P (x) as signal. Here,
P (x|✓) = ✓(x)y and P (x) is a normalization constant for x calculated by integrating over all models
trained with the same structure and training data distribution (but not the same training dataset) as the
target model ✓ (i.e., reference models):

m̂ = MIA(x; ✓) = [Pz⇠⇢(LR✓(x,z)�1)��(x)] for threshold�(x), (1)

where LR✓(x, z) =
⇣

P (x|✓)
P (x)

⌘
·
⇣

P (z|✓)
P (z)

⌘�1
and Pz⇠⇢(LR✓(x, z) � 1) = 1

M

PM
m=1 [LR✓(x,zm)�1].

Additional discussions of related works are deferred to Appendix A.

3 DATASET USAGE CARDINALITY INFERENCE PROBLEM

In this section, we formulate the problem of Dataset Usage Cardinality Inference (DUCI) in machine
learning and analyze the challenges of solving this problem.

3.1 DATASET USAGE AS A NON-BINARY INFERENCE PROBLEM

To precisely assess the degree of dataset utilization, we propose moving beyond the binary ‘Yes’
or ‘No’ paradigm in prior works. Instead, we employ a continuous metric, proportion p 2 [0, 1], to
precisely measure the dataset utilization extent.

Problem formulation: Let X be a target dataset and ✓ a model (trained with an algorithm T ) that
potentially incorporates data from X and other sources. Each data record xi are sampled from X

following certain unknown probability vector p = [pi]
|X|
i=1. The Dataset Usage Cardinality Inference

(DUCI) algorithm A—acting as an agent for the dataset owner with full access to X—aims to
estimate (denoted as p̂) the overall proportion p = 1

|X|E[
P|X|

i=1 1xi selected] of X used in training ✓,
given black-box access to ✓ and knowledge of the training algorithm T . The complete pipeline is
depicted as follows:

Dataset X = [xi]
|X|
i=1 X , T

independently include xi with probability pi # results in p #

TrainingAlgorithm T ! ✓
black-box�����! A! p̂ (2)

Objective We aim to design a DUCI algorithm A that achieves minimal (mean absolute) error across
all possible data usage proportion, i.e.,

min
A

max
p2[0,1]

E [|p� p̂|] , (3)

where p denotes the ground-truth proportion, p̂ denotes the estimated proportion, and the expectation
is over the random trials of the dataset usage cardinality inference pipeline (Equation (2)).

3.2 CHALLENGES IN DATASET USAGE CARDINALITY INFERENCE

A natural strategy for inferring dataset usage is to sum the membership inference guesses over
individual training data. However, we observe that this method suffers from poor performance
(Table 1) due to inherent and systematic errors in identifying individual data point memberships.

Errors in optimal point-wise membership inference: Membership inference at the level of indi-
vidual training data is known to suffer from high error when there are inherent randomness in the
training pipelines (Ye et al., 2022) (such as data sampling and randomness of the training algorithm).
When the training algorithm satisfy certain constraints in terms of output indistinguishability, one can
prove that even the theoretically most informed and optimal membership estimate (m̂i) suffer from an
error that increases with the level of indistinguishability (Kairouz et al., 2015; Steinke et al., 2024).

3
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In practice, existing membership identification methods not only contend with these inherent errors
but also encounter systematic errors due to the inability to capture the precise membership information
from model outputs. For example, state-of-the-art MIAs (Carlini et al., 2022; Bertran et al., 2024;
Zarifzadeh et al., 2024) on a standard Wide ResNet model trained on CIFAR-10, despite employing
extensive resources such as 254 reference models, reveal inaccurate predictions, e.g., an overall AUC
of approximately 72% with less than 2% True Positive Rate in areas with low False Positive Rates.

Challenge: biases arising from the accumulation of errors: The aforementioned per-point member-
ship identification errors, particularly systematic errors, accumulate and introduce biases in solving
the DUCI task. This bias is clearly illustrated in Table 1. In the next section, we will discuss
strategies to address this challenge by mitigating these biases, and show that the debiased aggregated
membership guesses can serve as a promising score for proportion estimation.

4 UNBIASED DATASET USAGE INFERENCE FROM AGGREGATION OF
INDIVIDUAL GUESSES

Given the unavoidable errors in membership identification methods, how can we achieve a
reliable (e.g., unbiased) estimation of the proportion?
Denote X as the dataset of interest, and M as the distribution of the ground-truth membership
vector. By Section 3.1, i.e., the probability of each data record xi being used is pi, we have
M = [Bernoulli(pi)]

|X|
i=1. The target model ✓ is then trained by randomly drawing a membership

vector m = (m1, · · · ,m|X|) ⇠ M, and including the i-th data record of X (denoted as xi) if
mi = 1 for each i. Note that since mi ⇠ Bernoulli(pi), E[mi] = pi for any i = 1, 2, . . . , |X| over
the random trials.

The intuition is that if we can identify an unbiased estimator p̂i of the probability that each data
record xi is used over random trials, i.e., E[p̂i] = E[mi] for i = 1, . . . , |X|, then we can construct an
unbiased estimator p̂ of the true proportion p by aggregation:

p̂ =
1

|X|

|X|X

i=1

p̂i. (4)

This is by the additivity of expectation, i.e., p = 1
|X|E[

P|X|
i=1 mi] = 1

|X|
P|X|

i=1 E[p̂i]. We next
introduce how we identify the unbiased estimator p̂i of E[mi].

Construct p̂i by debiasing individual MIA guesses Note that for any algorithm capable of providing
membership guesses m̂i for data record xi (with ground-truth memberships mi, where mi, m̂i 2
{0, 1}), the rule of total probability ensures the following relationship:

E[m̂i] = P (m̂i = 1|mi = 0) · P (mi = 0) + P (m̂i = 1|mi = 1) · P (mi = 1) (5)

where P (m̂i = 1|mi = 0) and P (m̂i = 1|mi = 1) are the true False Positive Rate (FPR) and True
Positive Rate (TPR) for inferring the membership of each record in dataset X (constants across trials).
Note that P (mi = 1) = 1� P (mi = 0) = E[mi]. Rearranging the terms in Equation (5) yields:

p̂i =
m̂i � P (m̂i = 1|mi = 0)

P (m̂i = 1|mi = 1)� P (m̂i = 1|mi = 0)
. (6)

We assume TPR 6= FPR, which is reasonable given that membership identification algorithms are
designed to discriminate between member and non-member data points, not to act randomly. In our
experiment, we use the state-of-the-art MIA methods to compute the MIA guesses m̂i = MIA(xi; ✓)
(as introduced in Section 2), but note that our approach is flexible and applicable to any membership
prediction technique. We next discuss how to perform the debiasing operation to compute equation 6
and use it for estimating dataset usage proportion p in Equation (4).

Debiasing method To compute the estimators in Equation (6), we require the probabilities P (m̂i =
1|mi = 0) (FPRi) and P (m̂i = 1|mi = 1) (TPRi). A direct, but computationally expensive,
approach is to estimate these probabilities using N empirically trained reference models, where the
training datasets are known. However, this method incurs a sampling error of order ⌦

⇣
1p
N

⌘
(i.e.,

4
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the approximation error of TPRi and FPRi can be notable when N is small). To reduce error and
computational cost, we propose estimating FPR and TPR across the entire dataset X , which requires
as few as a single reference model and can reuse models from the MIA process. This simplification is
justified because the proportion p is a dataset-level statistic, i.e., p = 1

|X|
P|X|

i=1 pi.
1Denote ✓1, . . . , ✓N

as N reference models (where N can be 1), each trained on randomly sampled halves of the dataset
X , we can compute:

P (m̂ = 1|m = 0) = 2
NX

j=1

|X|X

i=1

1MIA(✓j ,xi)=1 and xi /2✓j

N · |X| (7)

P (m̂ = 1|m = 1) = 2
NX

j=1

|X|X

i=1

1MIA(✓j ,xi)=1 and xi2✓j

N · |X| (8)

The confidence interval analysis below reveals that this empirical average is only subject to
O( 1p

N ·|X|
) sampling error (i.e., the standard deviation of the empirical estimation of P (m̂ =

1|m = 0) and P (m̂ = 1|m = 1) over the randomness of ✓j and MIA algorithm). See Appendix F
for the proofs. Thus, employing larger datasets and more reference models enhances the accuracy of
our debiasing method.

Confidence interval and uncertainty estimates for Dataset Usage Cardinality Inference Modern
machine learning algorithms and their data sampling processes are highly randomized. To capture the
intrinsic uncertainty and confidence in data usage inference, we resort to the Lyapunov Central Limit
Theorem (CLT) (Billingsley, 2017) to compute confidence intervals for our estimation method via
aggregate statistics. Specifically, if the individual statistics p̂1, · · · , p̂|X| in Equation (6) are indepen-
dent 2 and the Lyapunov condition is satisfied (see the proofs in Appendix E.2), then their aggregation
converge to a Gaussian distribution as |X| increases. By applying Lyapunov CLT to Equation (4) and
using the sample variance to estimate the average variance (see details in Appendix E), we obtain the
following approximate 95% confidence interval for estimating p.

p̂� t↵/2

s
s2

|X|  p  p̂+ t↵/2

s
s2

|X| (9)

Here p̂ = 1
|X|
P|X|

i=1 p̂i, ↵ = 0.05, t↵/2 is the t critical value, and s2 = 1
|X|�1

P|X|
i=1(p̂i � p̂)2.

5 EXPERIMENTAL SETUP AND RESULTS

5.1 EVALUATION SETTINGS

We considered the general uniformly random sampling setting and special data selection setting,
while ensuring that p is controllable over the random trials (as described in equation 3). The
comparison experiments in Section 5.3 are conducted under the uniformly random sampling, and
Section 5.4 extends the discussion to the special sampling scenarios. For uniformly random sampling,
we examine all methods under dataset usage proportion p 2 [0, 1] with a granularity of 5%, i.e.,
p = 0.00, 0.05, · · · , 1.00. For each p, we evaluate the (mean absolute) error E[|p� p̂|] of proportion
estimation over 30 random trials. In each evaluation trial, we train the target model ✓ on freshly
sampled random p proportion of the protected dataset X , combined with randomly sampled remaining
data from a population pool (that does not overlap with X). For specialized sampling, we constructed
the data selection probability vector p for each ground-truth p using data selection strategies (Paul
et al., 2021) and sample data from X for model training accordingly. We then compute the mean
absolute error (MAE) in the same way.

1To clarify further, under dataset-level estimates TPR = 1
|X|

P
i TPRi and FPR = 1

|X|
P

i FPRi, we have
1

|X|
P

i E[p̂i] = p+ Corri(TPRi�FPRi,pi)
TPR�FPR (See derivation in Appendix D). This suggests that for many practical

samplings (e.g., i.i.d. sampling), this simplification yield an unbiased estimator for p. For special sampling
methods, we can debias subgroups to achieve the unbiasedness (as discussed in Table 2).

2We experimentally validate that p̂1, · · · , p̂|X| are weakly independent (Figure 4) and use > 30 individual
observations to compute valid confidence intervals via Lyapunov CLT.
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Considering the evaluation cost of training target models on various proportions p, we mainly assess
all methods in Section 5.3 across three model architectures: a standard 5-layer fully connected
network (FC-5), a wide ResNet with width 2 (WRN28-2) (Zagoruyko & Komodakis, 2016), and
ResNet-34 (He et al., 2016), as well as three benchmark datasets: CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le & Yang, 2015). We further
validated the applicability of our methods to language models through a book copyright infringement
case study on GPT-2 (Radford et al., 2019), using the BookMIA dataset (Shi et al., 2023). To
implement our unbiased proportion estimator, we use MIA to predict the membership guesses, i.e.,
m̂1, · · · , m̂|X|. We report the best-performing MIA (i.e., RMIA in Section 2.1) and defer discussions
on other MIAs to Appendix C and Appendix G.4. See Algorithm 1 for a pseudocode of our method
and see Appendix G for more implementation details.

5.2 BASELINES

Vanilla Membership Inference Attacks (MIA) baselines To demonstrate the importance of debias-
ing, we compare our method against two intuitive baselines: direct averaging of binary MIA guesses
and real-valued MIA scores outputted by existing MIA methods Zarifzadeh et al. (2024); Carlini et al.
(2022). We assign N reference models with each trained on half of dataset X to MIA baselines:
• MIA Guess: This involves directly counting MIA membership predictions, where the proportion

is calculated as the fraction of member predictions: p̂ = 1
|X|
P|X|

i=1 m̂i. For a fair comparison, we
use the same MIA algorithms that were employed in our method.

• MIA Score: This takes the average of MIA confidence scores across all data points: p̂ =
1

|X|
P|X|

i=1 ĉi, where ĉi is the confidence score of RMIA (i.e., probability before thresholding).

Maximum Likelihood Estimate (MLE) baselines When computation cost is not a concern, the
below computationally expensive MLE estimators serve as an idealized baseline:

p̂MLE(o) = argmax
q

P (o|p = q), (10)

where P (o|p = q) is the conditional probability of observations o (generated from the trained
model ✓) given that q proportion of the records in the target dataset X is used in training. This
probability P (o|p = q) can be empirically approximated via training many (N ) reference models on
freshly sampled random q-fraction of the target dataset X for each of 21 possible proportion value q,
employing the same algorithm T that was used for training the target models (in total 21N reference
models). Regarding the observation o in the MLE baselines, we consider two choices as follows.
• Joint logits (Joint-Logit) of all records in target dataset (high-dimensional): Building on prior

research (Carlini et al., 2022) which demonstrated that scaled logits for individual data points can
serve as effective observations and empirically follow a Gaussian distribution, we naturally extend
this approach to a dataset-wide scale. We concatenate these point-wise logits into high-dimensional
joint logits and model their distribution using a multivariate Gaussian.

P (o|p = q) = P (logit(X; ✓)|N (µq,⌃q)), (11)

where logit(X; ✓) is the the logits of model ✓ on all records in X , and µq and ⌃q are its empirical
mean and covariance matrix across N reference models trained with q proportion of X .

• Averaged logits (Avg-Logit) of all records in the target dataset (one-dimensional): To reduce
the dimensionality of the observation (and thus enable more accurate empirical mean and covariance
estimation), we additionally consider the average of the logits over the dataset X , following the
approach in Maini et al. (2021). The likelihood is then modeled as one-dimensional Gaussian.

P (o|p = q) = P

 
1

|X|
X

x2X

logit(x; ✓)
���N (µq,�

2
q )

!
,

where µq and �q are the empirical mean and variance of the averaged logits of all records in X
across N reference models trained with q proportion of X .

5.3 MAIN RESULTS

In this section, we compare the performance of our method (Algorithm 1) with the baselines in
Section 5.2 in terms of estimation quality and efficiency.

6
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Table 1: Maximum mean absolute error (MAE) (maxp2[0,1] E[|p � p̂|]) over 21 proportions, each
derived from 30 trials, of all methods across various datasets and model architectures within the same
computational budget (# reference models). The lowest error in each test is highlighted in bold. Grey
rows are the idealized computationally expensive MLE baselines.

#Ref Methods CIFAR-10 CIFAR-100 Tiny-ImageNet
FC-5 WRN28-2 ResNet34 WRN28-2 ResNet34 WRN28-2

1 MIA Guess 0.3291 0.4819 0.1611 0.1676 0.0793 0.1478
MIA Score 0.3619 0.4486 0.2950 0.3220 0.2909 0.3040
Ours 0.0678 0.1836 0.0534 0.0873 0.0879 0.0580

2 MIA Guess 0.2617 0.4801 0.1637 0.1458 0.0859 0.1131
MIA Score 0.3587 0.3865 0.2687 0.3074 0.2822 0.2952
Ours 0.0380 0.1787 0.0421 0.0851 0.0723 0.0463

4 MIA Guess 0.2797 0.4350 0.1468 0.1401 0.0746 0.0889
MIA Score 0.3571 0.3822 0.2571 0.2836 0.2593 0.2739
Ours 0.0283 0.1634 0.0325 0.0774 0.0332 0.0424

8 MIA Guess 0.2831 0.3862 0.1493 0.119 0.0768 0.1099
MIA Score 0.3022 0.3621 0.2552 0.2824 0.2588 0.2759
Ours 0.0296 0.1127 0.0180 0.0554 0.0147 0.0341

42 MLE (Joint-Logit) 0.2450 0.2230 0.1983 0.2667 0.2050 0.2067
MLE (Avg-Logit) 0.0533 0.1383 0.0567 0.0617 0.0383 0.0583
MIA Guess 0.2516 0.2889 0.086 0.0797 0.0377 0.0867
MIA Score 0.2948 0.3692 0.2530 0.2920 0.2576 0.2867
Ours 0.0271 0.0722 0.015 0.0339 0.0124 0.0179

630 MLE (Joint-Logit) 0.1400 - - - - -
MLE (Avg-Logit) 0.0283 - - - - -

Comparison under the same computation budget We first fix the total computational budgets to
be the same for all methods and compare their estimation quality. Table 1 shows an overview of
the comparison results under different datasets and model architectures. Note that for our debiasing
process, single reference model is enough and we can directly reuse the reference models used for
launching MIA. For the MIA Guess baseline, we report the best performance achieved across all
candidate MIA methods. We first observe that our method consistently outperform all baselines
under all settings under 42 reference models (which is the minimal number of reference models
required for MLE baselines), whether on well-generalized setting such as WRN28-2 on CIFAR-10
or more challenging datasets like CIFAR-100 and Tiny-Imagenet. These latter datasets have fewer
data records per class, thereby increasing their susceptibility to memorization and generally making
them easier tasks for DUCI. We then tested the case with extremely limited computational budget
(i.e., 1-8 reference models). This is challenging, as the scarcity of empirical samples for estimating
P (m̂ = 1|m = 0) and P (m̂ = 1|m = 1) will lead to less accurate debiasing. Additionally,
existing MIAs themselves also suffer from reduced strength when the number of reference models is
small (Carlini et al., 2022; Zarifzadeh et al., 2024). Remarkably, our method achieves significantly
smaller estimation error than vanilla MIA baselines even with as few as 1 model, i.e., our method can
provide reliable proportion estimates even under a severely restricted computational budget.

Figure 2 further illustrates the detailed comparison under different amount of total computational
budgets, i.e., different number of reference models, under the setting of FC-5 trained on CIFAR-10.
Notably, the advantage of our method compared with MLE methods is significant when given less
computation budget. This is because the accuracy of MLE methods relies heavily on the quality of
approximating the P (o|p) for all possible p 2 [0, 1], a task that becomes challenging with a limited
computation budget. Our results indicate that, under such constraints, the distribution estimation
process required for MLE introduces more significant bias compared to our method. For all methods,
we observe a general trend of reduced prediction error as the number of reference models increases.
This improvement is expected because more reference models provide a more accurate estimation of
the likelihood P (o|p) for MLE methods, the distribution for the MIAs, and TPR and FPR estimation
for our debiasing methods (Section 4), thereby reducing prediction errors.
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Figure 2: Maximum MAE of all methods under
an increasing number of reference models. The
grey dotted line represents the minimum compu-
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method can yield meaningful predictions even
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dicted 95% confidence interval for different p.
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predictions for each p. Bottom: Average width
of the predicted interval over 30 tests for each p.

We also allocate a substantial budget—a total of 30⇥ 21 = 630 reference models—to the strongest
baseline, the MLE methods (grey rows in Table 1), to fully exploit their potential. Note that MLE
methods, which utilize complete proportion distribution information, can serve as idealized baselines
when computational costs are unlimited. The comparison demonstrates that our method can achieve
comparable estimation quality to MLE methods while incurring significantly lower computational
costs, i.e., 100⇥ smaller. Due to the huge computational costs, we only presents the results of FC-5
models trained on CIFAR-10 for this comparison.

Confidence interval for dataset usage inference Our methodology also aims to deliver an interval
estimate with statistical assurances to encapsulate the uncertainty inherent in dataset usage inference.
To evaluate the efficacy of our interval estimation, we conducted tests on the same series of target
models—30 trials for each proportion—employing a significance level of ↵ = 0.05. The confidence
intervals were computed in accordance with Equation (22), where the degrees of freedom is |X|�1 =
499, leading to a t-value of t↵/2 = 1.96.

Figure 3 (Top) displays the frequency of the true proportion p falling within the predicted 95%
confidence interval. There is a consistently high frequency (over 0.9), which demonstrates the high
coverage of our interval predictions. Moreover, the intervals generally have small length, as shown
in Figure 3 (Bottom), suggesting that the overall uncertainty of our proportion prediction is small
(around 0.1). Note that here we derive the additive confidence interval (absolute uncertainty) instead
of the multiplicative confidence interval (relative uncertainty) because the error in Dataset Usage
Inference task is not continuous. (e.g., For a small dataset in size 100, the unit of error is 1%.)
Additionally, we observe that our confidence intervals exhibit greater length when p = 0.5. This is
reasonable as the number of possible p-proportion subsets of the target dataset is the largest when
p = 0.5, thus making dataset usage inference inherently more complex at p = 0.5.

5.4 DISCUSSIONS

We next discuss the properties, further improvement and potential application of our method.

Dataset usage inference under special sampling challenges. While our dataset-level debiasing
methods (Equation (7) and Equation (8)) are statistically guaranteed to be unbiased under common
sampling scenarios like i.i.d. and uniformly random sampling (see Footnote 1 for clarification), the
question remains: can they also achieve near-unbiasedness under special or adversarial sampling?

Table 2: Relative stability of our methods under special sampling, measured by Maximum mean
absolute error (MAE) (maxp2[0,1] E[|p� p̂|]) over 21 proportions.

Sampling MLE (Best) MIA Guess Ours

Random 0.0533 0.2933 0.0619
Significant First 0.6117 0.3876 0.1089
Insignificant First 0.6301 0.3787 0.1077
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Table 3: Dataset usage estimation error decreases as the (relative) size of the target dataset increases for
all methods. Errors are measured by Maximum Mean Absolute Error (MAE)

�
maxp2[0,1] E[|p� p̂|]

�

across 21 proportions using WRN28-2 trained on CIFAR-10

|X| MLE (Best) MIA Guess Ours

500 0.1383 0.2889 0.0722
5000 0.0849 0.268 0.0528
25000 0.08 0.2659 0.0442

To the best of our knowledge, all previous work considers a uniformly random (or i.i.d.) sampling
scenario in method design (or evaluation) (Li et al., 2023; Tang et al., 2023; Maini et al., 2021). This
means that when the target model employs special but unknown sampling, the sampling mismatch
presents a significant challenge for all dataset usage inference techniques.

As noted in Footnote 1, the unbiasedness of our methods in special sampling hinges on the correlation
term Corri(TPRi�FPRi,pi)

TPR�FPR . (Under i.i.d. or uniformly random sampling, this term is zero since pi = p
for all i = 1, 2, . . . , |X|.) For special sampling, we construct subgroups where TPRi � FPRi ⇡
TPR0�FPR0 and debias within each subgroup to achieve an unbiased estimator of pi (see Figure 6
for empirical validation).

To evaluate the performance of all methods under the special sampling challenge, we conduct
experiments where the model trainer applies dataset selection techniques (Guo et al., 2022; Sorscher
et al., 2022) to select p-percentage of the target dataset to include in training. Specifically, we
adopt an error-based coreset selection method, EL2N (Paul et al., 2021), to rank the target dataset
by ”data significance”3 using 10 trained models that have not seen the target dataset. Then, we
constructed the probability vector p(p) over the target dataset X according to this ”data significance”
for each p 2 {0.00, 0.05, . . . , 1.00}. The data in the target dataset that used in the training of target
models are therefore sampled according to each p(p). By contrast, the reference models are trained
under uniformly random p% subset of the target dataset4. These scenarios represent the least favor
samplings for our methods, as the EL2N is closely related to TPRi � FPRi, which introduces
strong correlation between p and the errors.

Table 2 shows that all other methods degrade in performance under special sampling challenges and
exhibit similar performance across the two symmetric sampling methods. This confirms our earlier
discussion on the distribution mismatch challenge from special sampling: they make mistakes occur
early or late in the process. Nevertheless, the effectiveness of our debiasing method largely remains
and yields better performance than all other methods. By contrast, the MLE method suffers the most
significantly under the mismatch, since its superiority comes from fully recover the possible model
distribution when data sampling scheme is known.

Dataset usage estimation error decreases as the ratio |X|
DTrain

increases. In our previous experiments,
we focused on a challenging scenario where the owner’s dataset (size 500) constitutes only a small
portion of the target model’s training set DTrain, i.e., the ratio |X|

DTrain
was small. We now examine the

impact of the (relative) dataset size on the performance of dataset usage inference. To do this, we
evaluated our method across various target dataset sizes, ranging from 500 to 25,000 (i.e., relative
ratios from 0.02 to 1.00), while keeping the target model’s training dataset fixed at 25,000 examples
(half the CIFAR-10 training set).

Table 3 demonstrates that all methods benefit from the increasing relative dataset size. This is
because, as the ratio |X|

DTrain
increases, the randomness from the remaining data in DTrain decreases,

making dataset usage inference easier. For instance, in the extreme case where |X|
DTrain

= 1, there
is no randomness at 100% utilization. This observation highlights that prior evaluations in the
literature (Li et al., 2023; Maini et al., 2021), which test whether a model was trained on private
dataset A versus an alternative dataset B, are oversimplified and offer limited insights into real-world

3A term we use cautiously, as EL2N can only be considered as a reflection of data value.
4Since the sampling method used in the target model is inaccessible, assuming random sampling is the a

reasonable (if not the best) strategy a dataset owner can take for simulating the model trainer.
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scenarios. Additionally, we noticed that while the improvement for MIA baselines is modest (as
MIA does not leverage dataset-level statistics and benefits only from reduced randomness at larger
ratios), our debiasing process sees a more substantial gain. This is because the sampling error in our
debiasing is proportional to 1p

N ·|X|
(see formal proof in Appendix F), meaning that as the target

dataset size increases, our debiasing procedure becomes more accurate.

On (the possibility of) improving our method by leveraging correlation in membership pre-
diction process Our method implicitly that the membership prediction process is ”independent”
across records. Specifically, the prediction of membership probability for one record i does not affect
the prediction for another record j, i.e., E[p̂ip̂j ] = E[p̂i]E[p̂j ]. Will the ignorance of “correlations”
between p̂i and p̂j make our method sub-optimal? We evaluate the magnitude of correlations between
the predictions for pairs of records in the target dataset (no duplication) according to the pairwise
second-order error (Equation (34) in Appendix H). Figure 4 show that most data pairs have near-zero
covariance between their membership predictions. This aligns with the theoretical findings of small
correlation between records in prior works (Pillutla et al., 2023). This trend suggests limited potential
to improve our method by leveraging record correlations on natural dataset.

Case study: quantifying book copyright infringement Copyright infringement in books can be
seen as a specific case of data usage inference: given a model likely infringing on book copyrights,
the authors or publishing houses would want to determine the extent of content usage. We conduct
experiments on GPT-2 (Radford et al., 2019) and 50 new books with first editions in 2023, unseen
by GPT-2, from the BookMIA dataset (Shi et al., 2023). We fine-tune pre-trained GPT-2 on varying
proportions of these books to create target models. The sequences in books are sampled continuously,
rather than randomly and uniformly, from the copyrighted books in order to simulate more realistic
scenarios. Results in Table 4 show that both membership inference baselines (MIA Guess and MIA
Score in Section 5.2) struggle with varying extents of infringement, particularly when infringement
is less significant. In contrast, our method estimates the extent of infringement much more reliably,
with a maximum MAE (Equation (3)) of 0.168, compared to 0.335 for MIA Guess and 0.5 for MIA
Score. Details of our experiment and further analysis are in Appendix I.

�1 �0.75 �0.5 �0.25 0 0.25 0.5 0.75 1
100

101
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104
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Pair-wise Covariance Cov(p̂i, p̂j)

C
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Figure 4: Histogram of the covari-
ance Cov(p̂i, p̂j) between data us-
age predictions of all data pairs i
and j in the target dataset.

Table 4: (Book copyright infringement) Mean Absolute Error
(MAE) E[|p̂i � p|] for all methods under different proportion p.

p MIA Guess MIA Score Our Method

0.0 0.3350 0.5019 0.1356
0.2 0.2200 0.4041 0.1379
0.4 0.2875 0.3270 0.1290
0.6 0.2125 0.2245 0.1684
0.8 0.1200 0.1228 0.0874
1.0 0.1750 0.0091 0.0188

maxp MAE 0.3350 0.5019 0.1684

6 CONCLUSION
We identify and formally define the problem of Dataset Usage Cardinality Inference (DUCI), which
quantifies dataset utilization—a significant issue that has been overlooked or misinterpreted in prior
literature. To solve this, we propose a low-cost, reliable, and unbiased estimator for DUCI, along
with confidence intervals for uncertainty. Our extensive experiments demonstrate the effectiveness of
our approach, including its practical application in detecting book copyright infringement.

Limitations and future works We have thoroughly discussed the special sampling challenges in
DUCI in Table 2 and demonstrated improved robustness of our methods compared to baselines.
However, there is still room for further enhancement, particularly in achieving statistical guarantees
under adversarial samplings. Another promising avenue is applying our methods to related tasks,
such as dataset neighborhood inference. A potential solution for this could be extending our debiasing
and aggregation methods, which are independent of specific MI designs, to orthogonal membership
identification techniques like user-level inference Li et al. (2022a); Chen et al. (2023); Kandpal et al.
(2023). Given that whether similar (but not copyrighted data) data the target models trained on should
be members is still an open question, we leave these extensions for future work.
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A RELATED WORKS

Membership inference attack Membership inference attacks (MIAs) Ye et al. (2022); Shokri
et al. (2017) aim to determine whether a specific data entry is part of the training dataset of a
target model. Initially gained traction in medical research Homer et al. (2008), MIAs were first
introduced into machine learning by Shokri et al. (2017), subsequently inspiring numerous shadow
model attacks Long et al. (2020); Sablayrolles et al. (2019); Song & Mittal (2021); Carlini et al.
(2022). These shadow model attacks train a collection of shadow models (or reference models) to
simulate the target model’s behavior. All shadow models are trained with the same architecture as
the target model using random subsets of data that follow the same distribution as the target model’s
training data, including or excluding the target data point, to estimate a statistical distribution of
certain score function (such as but not limited to loss Sablayrolles et al. (2019); Yeom et al. (2018),
confidence Salem et al. (2018), entropy Song & Mittal (2021), or loss trajectory Liu et al. (2022))
reflecting the data point’s presence or absence in the training set. Aside from shadow model attacks,
an alternative line of research eliminates the need to train multiple shadow models. Instead, they
queries the target model with population data that is related to, or follows the same distribution
as, the target point Wen et al. (2022); Bertran et al. (2023); Zarifzadeh et al. (2024); Jayaraman
et al. (2020); Li & Zhang (2021); Long et al. (2018); Xie et al. (2024). These data are utilized as a
reference for inferring membership. Individual MIAs cannot be directly adapted to solve the dataset
utilization cardinality inference problem because they often cannot achieve perfect distinguishability,
and their predictions vary drastically depending on the specific threshold or test used. Therefore, it
is necessary to consider the uncertainty in the attack decision to reliably infer the extent of dataset
usage. Moreover, the cost of conducting point-wise MIA tests for the entire dataset is another concern,
which calls for an efficient adaptation.

A.0.1 DATASET OWNERSHIP VERIFICATION AND DATASET PROVENANCE TRACING

Dataset Ownership Verification (DOV) and Dataset Provenance Tracing are two related research
area to our Dataset Usage Inference problem. Currently, all known dataset ownership verification
techniques utilize dataset watermarking, which involves altering a subset of the data to embed a
detectable signature Li et al. (2023; 2020); Tang et al. (2023); Li et al. (2022b); Sun et al. (2022);
Sablayrolles et al. (2020); Hu et al. (2022); Zou et al. (2022); Wenger et al. (2022); Maini et al.
(2021); Song & Shmatikov (2019). In addition to these, a handful of non-watermark-based dataset
tracing techniques, although not specifically designed for the dataset ownership problem, can be
adapted to address the dataset ownership problem or are related to this issue. These methods primarily
encompass variants of membership inference techniques that operate beyond the individual level Song
& Shmatikov (2019); Maini et al. (2021); Li et al. (2022a); Miao et al. (2021). Thi

Dataset watermarking Dataset watermarking Li et al. (2023); Tang et al. (2023); Li et al. (2020);
Sun et al. (2022), predominantly utilizing poison-only backdoor attacks (that manipulate only the
training data while keeping training components, model parameters, and structures intact Li et al.
(2022c)), currently leads in the field of dataset ownership inference. Generally, these methods
capitalize on the memorization capabilities of machine learning models during training to embed
spurious features (information divergent from the true data distribution) into the model. This
embedded knowledge is then used for subsequent verification: the detection of specific backdoor
behaviors (targeted or untargeted) in the model’s output during the verification phase indicates the
model was trained with the protected dataset.

While the earlier watermarking techniques modified the target label of poisoned samples Li et al.
(2020); Hu et al. (2022), contemporary and more sophisticated methods employ untargeted backdoor
attacks Li et al. (2022b); Sun et al. (2022) or clean-label backdoor attacks Sablayrolles et al. (2020);
Tang et al. (2023); Zou et al. (2022), which are significantly more stealthy due to their preservation of
label consistency. Several works have extended their focus to different application scenarios, such as
protecting open-source code Sun et al. (2022) or performing classification tasks without knowledge
of labels Wenger et al. (2022). Additionally, recent works have attempted to minimize the impact
on model utility when modifying samples Guo et al. (2023). However, all these modification-based
methods are not suitable for scenarios where the goal is to protect the ownership of already released
datasets, nor do they guarantee data utility in sensitive scenarios, such as with medical data.
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Dataset Inference While several class-level membership inferences Li et al. (2022a); Miao et al.
(2021) exist for object detection, such as voice or face recognition from an individual, these works
are limited to their specific use cases and are not applicable to the broader scenarios considered in
this paper: they require that the data group has a unique pseudo-label. For text data that lacks a clear
boundary between records, Song & Shmatikov (2019) utilizes the long tail of the text data distribution
within a user’s document to carry out user-level MIA. The work most closely related to ours is Dataset
Inference Maini et al. (2021), which hypothesizes that private data in general will have a larger
distance to the decision boundary than public data, since the model always attempts to maximize this
distance during training. It trains a linear binary classifier that takes in the distance-to-boundary for
each data record to predict its membership. The underlying idea of this method is to use membership
inference based on the average of a loss-like signal over the data group as a metric. However, all
these methods still focus on solving the all-or-none binary question, and thus also fail to address the
problem of inferring the dataset usage extent.

Another area of research in copyright infringement, such as Vyas et al. (2023), focuses on protecting
generative models from producing copyrighted content, regardless of whether the model was trained
on copyrighted data. Although this task may appear similar to ours, it focuses on different aspect
of copyright and can be addressed quite differently—for example, by adding distance constraints to
prevent outputs from closely resembling protected content. In contrast, our goal is to infer properties
of a target model’s training set based on its outputs. As this line of work is greatly distinct from ours,
we did not discuss them in the scope of this paper.
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B IMPLEMENTATION DETAILS FOR WATERMARKING AND DATASET
INFERENCE

For both implementations, the target protected dataset X (for which we infer the usage) is of size 500.
All models are Wide Residual Networks trained on 25,000 records from CIFAR-10 (that contains a
randomly sampled fraction of the target dataset). This setting ensures that the target protected dataset
is only a small subset of the target model’s training set, making it a more practical scenario.

B.1 WATERMARKING

The watermarking baseline depicted in Figure 1 is an implementation of Algorithm 1 in (Li et al.,
2023). Our objective is merely to demonstrate the limitations of watermarking methods in addressing
the Dataset Usage Cardinality Inference (DUCI) problem. Consequently, we selected the most robust
and straightforward backdoor watermarking techniques, disregarding stealthiness. We employed the
targeted poisoned-label attack with a simple white square as the trigger pattern (examples are shown
in Figure 5). Considering the random sampling inherent in the DUCI problem, we opted for a poison
rate of 30% for the protected dataset X with a size of 500 (lower poison rates were tested, but the
likelihood of a successful backdoor attack diminishes with reduced poison rates). We designated
class 0 as the target label.

The following steps were undertaken:

1. We randomly sampled m = 2000 instances from the CIFAR10 test set, adhering to the
methodology outlined in the original paper. Specifically, we only chose instances correctly
classified by the benign model to minimize the impact of the model’s intrinsic accuracy on
the test. If the model exhibits low accuracy, it might erroneously categorize benign instances
as poisoned, thereby influencing the confidence value.

2. Following Li et al. (2023), We obtained the confidence score at the ground-truth label for
each benign sample x and its poisoned counterpart x0 from the target model, denoted as
Pb = f(x) and Pp = f(x0), respectively.

3. We conducted a Pairwise T-Test: For each pair of samples, the difference in posterior
probabilities Pb � Pp was calculated. Utilizing these differences, a pairwise left tail T-test
was performed to test the null hypothesis H0 : Pb = Pp + ⌧ , where ⌧ is a hyperparameter.
We select the hyper-parameter ⌧ as the one has best performance on the original task
(⌧ = 0.02).

B.2 DATASET INFERENCE

We implemented a simplified yet effective version of the approach described by Maini et al. (2021),
replacing the random walk distance to the decision boundary of each data point with the direct logits
of each data point queried on the target model. Empirically, we observed no performance degradation
with this simplification, and the underlying principle remains intact5. This approach is based on a
hypothesis that private data in general will have a larger distance (smaller loss and higher prediction
confidence) to the decision boundary than public data, since the model always attempts to maximize
this distance during training. Therefore, comparing the average distance/logits score across the entire
data group with that of public data can help to make a decision. All subsequent steps adhere strictly
to those outlined in the original paper:

1. We randomly sampled 40 data points each time from both the public and private datasets
and queried the target model to compute their confidence scores, c (public) and cv (private).

2. We repeated Step 1 for 10,000 iterations, calculating the mean values µ = c̄ and µv = c̄v .
3. We conducted a Pairwise T-Test on the distributions of c and cv , calculating the p-value to

test the null hypothesis (the dataset is not being used) H0 : µ = µv .

5The distance-to-boundary in a linear model is essentially equivalent to the loss
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Figure 5: Visualization of poisoned data. Following standard method, we add the white square with
random transparency as the trigger pattern.

C IMPLEMENTATION DETAILS OF OUR METHOD

We next introduce the implementation details of our method.

Algorithm 1 provides the pipeline of our method, where we use the existing membership inference
algorithm, denoted as MIA, as the membership identification method to provide membership guesses
m̂i for all xi 2 X . We first trained N reference models, ✓1, . . . , ✓N , such that each reference models
are trained on half of the dataset. Knowing the membership status of all xi 2 X for these reference
models, we can run MIA on them to get membership guesses for each xi, and then compute the
P (m̂ = 1|m = 0) (TPR) and P (m̂ = 1|m = 1) (FPR) as define in Equation (7) and Equation (8).
The aggregation of debiased individual membership guesses gives us an unbiased estimator of the
true proportion p.

C.1 SELECTION OF MEMBERSHIP INFERENCE ALGORITHMS

While any membership identification method that is capable of providing membership guesses can be
applied to our method, we adopt two state-of-the-art MIA algorithm in this paper: Likelihood Ratio
Attack (LiRA) Carlini et al. (2022) and Robust Membership Inference Attack (RMIA) Zarifzadeh
et al. (2024). Given that both methods perform similarly with practical computational budget, and
RMIA shows greater robustness under extremely limited computational resources, we present the
RMIA results in the main paper and include results for both methods in the appendix.

Likelihood Ratio Attack (LiRA) Define the scaled logits for a point x of a model ✓ as
logit(x; ✓) = log

⇣
✓(x)y

1�✓(x)y

⌘
, where ✓(x)y is the value at the ground-truth class y of the predic-

tion vector. LiRA Carlini et al. (2022) generates a membership guess m̂i for a point xi by conducting
a likelihood ratio test, utilizing scaled logits as the test signal, as follows:

m̂i = MIA(xi; ✓) =

"
P
�
logit(xi; ✓)|N (µin,�2

in)
�

P (logit(xi; ✓)|N (µout,�2
out))

> �(xi)

#
(12)

where N (µin,�2
in) and N (µout,�2

out) are the Gaussian distributions of logit(xi; ✓) estimated on the
N reference models trained with (in) and without (out) xi, respectively.
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Algorithm 1 Dataset Usage Inference: Infer the proportion p of data in a dataset X being used in
the training of a given target model ✓
Require: Dataset X , Training algorithm T (including the data distribution D), Membership inference

algorithm MIA, Target model ✓ (black-box access)
Train reference models for debiasing (as few as one model)

1: for j = 1 to N do
2: D  D
3: m(j)  Bernoulli( 12 )

|X|

4: ✓j  T (D [ {m(j) �X}) I Select data from X by m(j)

5: end for
6: Save m1,...,N = {m1, . . . ,mN}

Debias
7: Run MIA for xi 2 X on ✓j for j 2 1 . . . , ✓N to estimate P (m̂ = 1|m = 0) and P (m̂ = 1|m =

1):

P (m̂ = 1|m = 0) = 2
NX

j=1

|X|X

i=1

1MIA(✓j ,xi)=1 and m(j)
i =0

N · |X|

P (m̂ = 1|m = 1) = 2
NX

j=1

|X|X

i=1

1MIA(✓j ,xi)=1 and m(j)
i =1

N · |X|

Launch datase usage inference
8: for i = 1 to |X| do
9: m̂i = MIA(xi; ✓) I Get individual membership guess on the target model

10: Debiasing each individual membership guess m̂i:

p̂i =
m̂i � P (m̂ = 1|m = 0)

P (m̂ = 1|m = 1)� P (m̂ = 1|m = 0)

11: end for
12: Output the proportion estimation p̂ =

P|X|
i=1 p̂i
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The essential idea of LiRA is to compare the likelihood of observing the target model’s signal given
the distribution of models trained with the target point x against the distribution of models trained
without x, where both distributions are estimated as Gaussian.

Robust Membership Inference Attack (RMIA)

m̂i = MIA(xi; ✓) = [Pz⇠⇢(LR✓(xi, z) � 1) � �(xi)]

LR✓(xi, z) =

✓
P (xi|✓)
P (xi)

◆
·
✓
P (z|✓)
P (z)

◆�1

(13)

RMIA Zarifzadeh et al. (2024) compares the target point xi with a number of population data z ⇠ ⇢
from the same distribution, using the ratio P (xi|✓)

P (xi)
as signal, where P (xi|✓) is the prediction score

(SoftMax) of output of the target model and P (xi) is the normalization term which is calculated by
averaging P (xi|✓j) over all reference models ✓j for j = 1, 2, . . . , 2N trained with or without xi, i.e.,
P (xi) =

1
N

PN
i=1 P (xi|✓j) + 1

N

P2N
i=N P (xi|✓j) where ✓1, ✓2, . . . , ✓N�1 are models trained with

xi and ✓N , ✓N+1, . . . , ✓2N are models not trained with xi. For the offline setting, the P (xi) can be
estimated only using models not trained with xi, i.e., ✓N , ✓N+1, . . . , ✓2N . It can be extended to the
offline setting using single reference model.

C.2 LIRA IMPLEMENTATION

Given the target points x 2 X and target model ✓, we implement the LiRA following Carlini et al.
(2022) as follows:

1. Train 2N reference models. Each are trained on uniformly and randomly sampled half of X
together with uniformly and randomly sampled half of the population pool. Therefore, each
xi 2 X will have N reference models trained with it and the remaining N reference models
trained without it.

2. For each xi, estimate two Gaussian distributions on reference models: one distribution on
models trained with data record xi (denoted as N (µin,�2

in)) and another distribution on
models trained without xi (denoted as N (µout,�2

out)). The mean µ and variance �2 of each
distributions are estimated on the scaled logits of each data record xi 2 X over N reference
models (trained with x or without x, respectively).

3. For each data record xi, querying the target model to get the scaled logit logit(xi; ✓) and then
compute the likelihood of observing it on two distributions: P

�
logit(xi; ✓)|N (µin,�2

in)
�

and P
�
logit(xi; ✓)|N (µout,�2

out)
�
.

4. Compute the likelihood ratio LR(xi) =
P(logit(xi;✓)|N (µin,�

2
in))

P (logit(xi;✓)|N (µout,�2
out))

for each data record xi.

5. m̂i = (LR(xi) > �).

C.3 RMIA IMPLEMENTATION

In the original RMIA paper Zarifzadeh et al. (2024), the population data utilized in Equation (41)
are the residual target data. Integrating RMIA scores directly into our aggregation approach would
encounter issues of the differential rate of change as the true proportion of utilized data rises. To
address this, we implemented the following adaptive version of RMIA using extra population data:
Similarly, given the target models ✓ and the target points xi 2 X , we implement the RMIA as
follows:

1. Train N reference models. Each are trained on uniformly and randomly sampled half of X
together with uniformly and randomly sampled half of the population pool. Therefore, each
xi 2 X will have N1 reference models trained with it and the remaining N2 = N � N1

reference models trained without it. (When N >= 2, we can ensure N1 = N2. When
N = 1, we can do approximation as described below.)

2. For each xi 2 X , denote the reference models ✓1, ✓2, . . . , ✓N1 as the models trained with
xi, and ✓N1+1, ✓N1+2, . . . , ✓N1+N2 as the models trained without xi.
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(a) (N >= 2) Compute P (xi|✓)
P (xi)

= f✓(xi)y
1

N1

PN1
j=1 f✓j (xi)y+ 1

N2

PN
j=N1+1 f✓j (xi)y

, where f✓(xi)y

are the model’s confidence value at the ground-truth class.
(b) (N = 1) We can use an linear approximation to compute the denominator. Assume xi

is not in the training set of ✓j . we can estimate the probability for it on a model trained
with it by af✓j (xi)y + 1� a We can estimate the the We select a = 0.3 according to
Figure 6 in (Zarifzadeh et al., 2024). In this case, only N reference models are required
for inference. (Note that the same N models can be shared among all xi as the models
trained without xi.)

3. For t = 1, 2, . . . , T :
(a) Select a zt from the population pool such that it is in the training set of N reference

models and not in the training set of the remaining N reference models. Note that
zt /2 X since it is selected from population pool.

(b) Compute p(zt|✓)
p(zt) = f✓(z

t)yz
1
N

PN
i=1 f✓

zt
(zt)yz+

1
N

PN
i=1 f✓�zt

(zt)yz
.

(c) Compute LR(xi, zt) =
⇣

p(xi|✓)
p(x)

⌘
·
⇣

p(zt|✓)
p(zt)

⌘�1
for (xi, zt) pair.

4. For each xi 2 X , compute Pz(LR(xi, z) > 1) = [LR(xi,z
t)>1]

T

5. m̂i = (Pz(LR(xi, z) > 1) > �).

C.4 SELECTION OF THRESHOLDS �

For the choice of threshold in both LiRA and RMIA, we sweep over all possible threshold to select
the � as the optimal threshold maximizing the Youden’s index (J = TPR� FPR) Youden (1950)
on reference modes, which provides the best balance between sensitivity (TPR) and specificity (1 -
FPR). Depends on the computation of TPR and FPR in dataset usage cardinality inference problem,
the threshold � can be computed either in the individual-level or dataset-level.

Individual-level threshold:

�̂i =argmax
�

[P (m̂�(xi; ✓) = 1|m = 1)� P (m̂�(xi; ✓) = 1|m = 0)] (14)

Here, P (m̂�(xi; ✓) = 1|m = 1) is the True Positive Rate (TPR) computed under threshold � for each
data point xi, and P (m̂�(xi; ✓) = 1|m = 0) is the False Positive Rate (FPR), similarly computed.
Each of them is estimated on reference models.

Dataset-level threshold: The individual threshold may not be optimal when the number of samples is
limited. In such cases, we can adopt dataset-level thresholds:

�̂ =argmax
�

[PX(m̂� = 1|m = 1)� PX(m̂� = 1|m = 0)] (15)

where PX(m̂� = 1|m = 1) is the True Positive Rate (TPR) as depicted in Equation (8) under
threshold �, and P (m̂�(x; ✓) = 1|m = 0) is the False Positive Rate (FPR) in Equation (7), computed
in the same setting.

Our all results presented in the main paper are based on dataset-level threshold and dataset-level
debiasing due to the smaller sampling error under limited reference models.

C.5 EFFECT OF MIA CHOICES

By focusing on the two variants of our methods, we observe that RMIA combined with debiasing
performs better than LiRA combined with debiasing, especially when the number of reference models
is small (Figure 2). This is possibly because by design, LiRA solely relies on computations on the
reference models to perform the MIA. By contrast, RMIA explicitly incorporate population data in
its test in addition to reference models, thus enjoying lower prediction errors, especially under limited
number of reference models.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D ANALYSIS OF POTENTIAL ERRORS FROM SIMPLIFYING RECORD-LEVEL
DEBIASING TO DATASET-LEVEL DEBIASING

In Equation (6), we demonstrated that applying a record-level debiasing process to membership
predictions before aggregation yields an unbiased estimator, p̂ = 1

|X|
P

i=1 |X|p̂i for the ground-truth
proportion p. However, due to the computational cost and notable sampling error when the number
of reference models is small, we instead estimate the TPR and FPR across the entire dataset X . We
next show that the simplification in the debiasing process will not introduce errors in many practical
sampling scenarios, such as uniform or i.i.d. sampling (which are the common scenario considered in
the long line of prior works in binary dataset inference literature listed in the Introduction section).
Only in special cases where there is a strong correlation between the probability of sampling i-th
point pi and its TPRi � FPRi, there would be a error. However, this can be effectively mitigated
by subgroup debiasing, as shown in Table 2.

In Equation (7) and Equation (8), we leverage dataset-level TPR and FPR (i.e., TPR = 1
|X|
P

i TPRi

and FPR = 1
|X|
P

i FPRi) to replace the individual TPRi and FPRi. This simplification avoids
the computationally cost (or large sampling errors) of debiasing each p̂i. This simplification is
justified because the proportion p is a dataset-level statistic, as analyzed below. To avoid confusion,
we introduce p̃ and p̃i as the estimators under dataset-level debiasing, and we next prove p̃ =
1

|X|
P

i p̃i =
1

|X|
P

i
m̂i�FPR
TPR�FPR is an unbiased estimator of p whenever a correlation term between

TPRi � FPRi and pi is zero: Given

E[p̃] = E
"

1

|X|
X

i

p̃i

#
=

1

|X|
X

i

E[p̃i] =
1

|X|
X

i

E

m̂i � FPR

TPR� FPR

�
(16)

Plugging Equation (5) into Equation (16), we can get:

E[p̃] = 1

TPR� FPR
· 1

|X|
X

i

(pi · TPRi + (1� pi) · FPRi � FPR) (17)

=
1

|X|
P

i [pi · (TPRi � FPRi)]
1

|X|
P

i [TPRi � FPRi]
(18)

Given p = 1
|X|
P

i pi, note that

1

|X|
X

i

[pi · (TPRi � FPRi)] =
1

|X|
X

i

pi ·
1

|X|
X

i

(TPRi � FPRi) + Corri(TPRi � FPRi, pi).

(Here, we use the term “correlation” instead of “covariance” because TPRi � FPRi and pi are not
random variables.) Thus, we have:

E[p̃] = p+
Corri(TPRi � FPRi, pi)

TPR� FPR
. (19)

The correlation term suggests that for many practical sampling methods (e.g., uniform sampling,
i.i.d. sampling), this simplification results in an unbiased estimator for p because the correlation
is 0. For specialized sampling methods, subgroup debiasing can ensure (empirical) unbiasedness,
as discussed in Table 2, by making TPRi � FPRi constant within each subgroup. This ensures
that the correlation term for each subgroup is 0, providing a group-level debiasing approach. Note
that the term “correlation” (slightly abused here) is used in the context of how the value of pi, a
pre-fixed constant in the DUCI pipeline, is determined. This is distinct from the correlation between
membership predictions in Figure 4.
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E DERIVATION OF THE CONFIDENCE INTERVAL

Modern machine learning algorithms and their data sampling processes are highly randomized. To
capture the intrinsic uncertainty and confidence in dataset usage inference, we resort to the Lyapunov
Central Limit Theorem (CLT) Billingsley (2017) to compute confidence intervals for our estimation
method via aggregate statistics. We first introduce the Lyapunov CLT.
Definition E.1 (Lyapunov condition Billingsley (2017)). If a sequence of independent random
variables {Xi}ni=1 satisfy E[Xi] = µi <1, E[(Xi � µi)2] = �2

i <1, and for some � > 0:

lim
n!1

1

s2+�
n

nX

i=1

E
⇥
|Xi � µi|2+�

⇤
= 0, (20)

where s2n =
Pn

i=1 �
2
i > 0, the Lyapunov condition is said to hold for {Xi, i = 1, . . . , n}.

Theorem E.2 (Lyapunov Central Limit Theorem Billingsley (2017)). Let {Xi}ni=1 be a sequence of
independent random variables with means µi = E[Xi] and variances �2

i = Var(Xi). If the Lyapunov
condition is satisfied, the following sum converges in distribution to a standard normal distribution:

Pn
i=1(Xi � µi)

sn

d�! N (0, 1).

where sn =
pPn

i=1 �
2
i and d�! denotes the convergence in distribution.

Theorem E.2 states that if the individual statistics p̂1, · · · , p̂|X| in Equation (6) are independent
(without needing to be sampled from the same distribution), and the Lyapunov condition is satisfied,
their aggregation

P|X|
i=1 p̂i converge to a Gaussian distribution as |X| increases. Therefore, applying

Lyapunov CLT to Equation (4), we obtain the approximate 95% confidence interval for estimating p.

p̂� t↵/2

s
s2|X|

|X|  p  p̂+ t↵/2

s
s2|X|

|X| . (21)

Here, p̂ is as given in Equation (4), ↵ = 0.05, t↵/2 is the t critical value, and s2|X| =
1

|X|
P|X|

i=1 �
2
i ,

where �2
i is the population variance of p̂i which can be empirically estimated over the random trials.

However, considering the cost of launching this confidence interval inference, we porpose to use

the sample variance to overestimate
s2|X|
|X| (see proof in Appendix E.1). This gives us the following

approximate 95% confidence interval for estimating p.

p̂� t↵/2

s
s2

|X|  p  p̂+ t↵/2

s
s2

|X| . (22)

Similarly, p̂ is as given in Equation (4), ↵ = 0.05, t↵/2 is the t critical value, and s2 =
1

|X|�1

P|X|
i=1(p̂i � p̂)2, where p̂ = 1

|X|
P|X|

i=1 p̂i.

E.1 PROOF OF OVERESTIMATION E[s2] �
P|X|

i=1 �2
i

|X|

Lemma E.3. Given a set of independent random variables p̂1, · · · , p̂|X| with variances �2
1 , · · · ,�2

|X|
(which may not be identically distributed), the sample variance s2 defined as

s2 =
1

|X|� 1

|X|X

i=1

(p̂i � p̂)2 where p̂ =
1

|X|

|X|X

i=1

p̂i

is at least as large as the average variance
P|X|

i=1 �2
i

|X| .

Proof. We start from the expectation of the squared differences:

E[(p̂i � p̂)2] = E[p̂2i ]� 2E[p̂ip̂] + E[p̂2] (23)
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We next analyze each term.

For the first term, we have

E[p̂2i ] = �2
i + µ2

i (24)

where µi = E[p̂i] for any i.

For the second term, we expand it as

E[p̂ip̂] =E

2

4p̂i ·
1

|X|

|X|X

j=1

p̂j

3

5 =
1

|X|

|X|X

j=1

E[p̂ip̂j ] (25)

=
1

|X|

0

@E[p̂2i ] +
X

j 6=i

E[p̂i]E[p̂j ]

1

A (26)

=
1

|X|

0

@�2
i + µ2

i + µi

X

j 6=i

µj

1

A (27)

=
1

|X|

0

@�2
i + µ2

i + µi

0

@
|X|X

j=1

µj � µi

1

A

1

A (28)

=
1

|X|

0

@�2
i + µi

|X|X

j=1

µj

1

A (29)

where equation 26 is by computing E[p̂ip̂j ] as follows.

• If i = j, E[p̂ip̂i] = E[p̂2i ] = �2
i + µ2

i .

• If i 6= j, E[p̂ip̂j ] = E[p̂i]E[p̂j ] = µiµj .

For the third term, by definition, we have

E[p̂2] = Var(p̂) + (E[p̂])2 =
1

|X|2

|X|X

j=1

�2
j +

0

@ 1

|X|

|X|X

j=1

µj

1

A
2

(30)

By plugging equation 24, equation 29 and equation 30 into equation 23, we prove that

E[(p̂i � p̂)2] = �2
i + µ2

i �
2

|X|

0

@�2
i + µi

|X|X

j=1

µj

1

A+
1

|X|2

|X|X

j=1

�2
j +

0

@ 1

|X|

|X|X

j=1

µj

1

A
2

(31)

Thus

|X|X

i=1

E[(p̂i � p̂)2] =

|X|X

i=1

�2
i +

|X|X

i=1

µ2
i �

|X|X

i=1

2

|X|

0

@�2
i + µi

|X|X

j=1

µj

1

A

+

|X|X

i=1

0

B@
1

|X|2

|X|X

j=1

�2
j +

0

@ 1

|X|

|X|X

j=1

µj

1

A
2
1

CA

=

✓
1� 1

|X|

◆ |X|X

i=1

�2
i +

|X|X

i=1

µ2
i �

1

|X|

0

@
|X|X

j=1

µj

1

A
2

(32)
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Recognize that by Cauchy–Schwarz inequality, the terms involving µi can be lower bounded as
follows.

|X|X

i=1

µ2
i �

1

|X|

0

@
|X|X

i=1

µi

1

A
2

�
|X|X

i=1

µ2
i �

1

|X| · |X| ·
|X|X

i=1

µ2
i = 0

Thus Equation (32) can be immediately written as
|X|X

i=1

E[(p̂i � p̂)2] �
✓
1� 1

|X|

◆ |X|X

i=1

�2
i

Thus by the definition of s2 and by the additivity of expectation, we compute expected value of the
sample variance as follows.

E[s2] = 1

|X|� 1

|X|X

i=1

E[(p̂i � p̂)2]

� 1

|X|� 1

0

@
✓
1� 1

|X|

◆ |X|X

i=1

�2
i

1

A =

P|X|
i=1 �

2
i

|X|

Therefore, s2 is at least as larger as the average variance
P|X|

i=1 �2
i

|X| .

E.2 PROOF OF THE LYAPUNOV CONDITION

We next prove that p̂1, · · · , p̂|X| satisfy Lyapunov condition (Definition E.1).
Lemma E.4 (Boundedness). The random variables p̂1, p̂2, . . . , p̂|X| have bounded third moments.

Proof. Observe that the estimated global TPR = 1
|X|
Pn

i=1 TPRi and FPR = 1
|X|
P|X|

i=1 FPRi are
constants over the random trials with respect to the membership identification algorithm and xi, and
by the assumption that TPR 6= FPR (as stipulated in Equation (6)), we prove that p̂i is upper-bounded
and lower-bounded by constant. Specifically,

p̂i =

(
a = �FPR

TPR�FPR when m̂i = 0,

b = 1�FPR
TPR�FPR when m̂i = 1.

Since p̂i is bounded, i.e., |p̂i � µi|  C for some constant C, all moments are automatically bounded.
Specifically, the third-order moments E[|p̂i � µi|3]  C3.

Lemma E.5 (Limit Property). The sequence p̂1, p̂2, . . . , p̂|X| satisfies the following:

lim
|X|!1

1

s2+�
|X|

|X|X

i=1

E
⇥
|p̂i � µi|2+�

⇤
= 0 for � = 1

where µi = E[p̂i] = p is the mean of p̂i, �2
i = Var(p̂i) is the variance of p̂i, and s2|X| =

P|X|
i=1 �

2
i is

the sum of the variances.

Proof. Assume � = 1 for simplicity (a common choice). Denote Mi as the third moments of p̂i, i.e.,
Mi = E[|p̂i � µi|3]. From Lemma E.4, we have that there exists Ci such that Mi  Ci for all i.
Without loss of generality, we can assume C1 = C2 = . . . = C|X| = C. (A simple choice is to let
C = max(C1, C2, . . . , C|X|).) Then, we have

1

s3|X|

|X|X

i=1

Mi 
1

s3|X|

|X|X

i=1

C =
C|X|
s3|X|

.
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Since s2|X| grows linearly with |X|, we have s2|X| = O(|X|). Therefore, from the algebraic properties
of big-O notation, we have s|X| = O(

p
|X|). Thus,

C|X|
s3|X|

=
C|X|

(O(
p
|X|))3

=
C|X|

O((
p
|X|)3)

=
C|X|

O(|X|3/2)
=

C

O(
p
|X|)

! 0 as |X|!1.

Since the independent random variables p̂1, p̂2, . . . , p̂|X| satisfy E[p̂i] = pi <1 and E[p̂2i ]�p2i <1
for any i = 1, 2, . . . , |X| ( Lemma E.4), and have the limit property when � = 1 ( Equation (20))
( Lemma E.5), we finish the proof that {Xi}ni=1 satisfies Lyapunov condition. Therefore, by applying

the Lyapunov CLT Theorem E.2, the sum
P|X|

i=1 p̂i

sn
converges in distribution to a normal distribution

as |X| increases. This ensures that the confidence interval derived remains valid even when the
individual p̂i are not identically distributed but are independent.
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F PROOF OF THE SAMPLING ERROR OF DATASET-LEVEL DEBIASING

Under the mild assumption in Appendix E that membership predictions on different target data
records are independent (experimentally validated in Figure 4 that MIA(✓j , xi) and MIA(✓j , xi0)
are weakly correlated random variables for any i 6= i0, where the randomness is over ✓j and the
randomness of the MIA algorithm). We next provide the formal proof:

Observe that Equation (7) and Equation (8) are empirical average of the membership prediction
MIA(✓j , xi) over reference models ✓j , j = 1, · · · , N and target data records xi, i = 1, · · · , |X|,
and that the reference models are independently trained on random subsets of the target dataset. Then
under the independent assumption and by the additive property of variance for independent random
variables, we compute the variance of Equation (7) and Equation (8) as follows.

Var[Equation (7)] =
1

N · |X|Var[1MIA(✓ j,x i)=1 and x i/2✓ j ]

Var[Equation (8)] =
1

N · |X|Var[1MIA(✓ j,x i)=1 and x i2✓ j ]

where ✓j
uniform ������ {✓1, · · · , ✓N} and xi

uniform ������ {x1, · · · , x|X|}. Thus the sampling error of

estimates in Equation (7) and Equation (8) is asymptotically upper bounded by O

✓
1p

N ·|X|

◆
.
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G EXPERIMENT DETAILS AND ADDITIONAL RESULTS

G.1 EXPERIMENT SETTINGS

Evaluation setting: We consider an evaluation granularity of 5%, which is small enough for
relatively accurate and meaningful dataset usage inference (DUI). To measure the DUI perfor-
mance, we compute mean absolute errorE[|p � p̂|] over 30 random trials for each proportion
p 2 {0.00, 0.05, . . . , 1.00}, and then evaluate the maximum error among all proportions, denoted
as maxp E[|p� p̂|]. In each trial, we train the target model ✓ on a freshly sampled p proportion of
the protected dataset X (using uniformly random sampling or special sampling), combined with
randomly sampled remaining training data from a data population pool (that does not overlap with
X). The size of X in the experiments presented in Section 5.3 is 500, to maintain a challenging and
practical relative size. (In practice, the model is usually trained on a mixture of datasets, and the
overall size of these additional datasets is typically much larger than the target dataset.) We then test
the performance under size 5,000 and 25,000 and show in Section 5.4 that dataset usage estimation
error decreases as the dataset size increases.

Model training details: We consider three model architectures: a standard 5-layer fully connected
network (FC-5), a wide ResNet with width 2 (WRN28-2) (Zagoruyko & Komodakis, 2016), and
ResNet-34 (He et al., 2016). We use three benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and a scaled-down version of ImageNet (Tiny-ImageNet) (Le
& Yang, 2015). We sample the protected dataset X from the training set of each benchmark dataset
and use the remaining training set as the population pool.

For target models, we train them on a freshly sampled random p proportion of the protected dataset
X , combined with randomly sampled remaining training data from the population pool (that does not
overlap with X), such that the complete training dataset size for the target model is always half of the
training set of the benchmark dataset. For example, the CIFAR-10 training set consists of 50,000
images. Therefore, the training set size for the target model is 25,000.

For the reference models used for our method and MIA baselines, we train each one on half of X
combined with remaining data sampled from the population pool, ensuring the complete training set
of the reference model has the same size as the target models.

For all target models and reference models, we trained them to achieve the following test accuracies:
for CIFAR-10, 53% for FC-5, and 92% for WRN28-2; for CIFAR-100, 68% for WRN28-2, and 65%
for ResNet-34; for Tiny-ImageNet, 58% for WRN28-2 and 54% for ResNet-34.

G.2 IMPLEMENTATION DETAILS OF BASELINES

MLE baselines The MLE baselines require to estimate the distribution for the observation of models
trained on each proportion of X . To approximate the distribution of o|p, empirically, we train N
reference models on freshly sampled random p-fraction of the target dataset X combined with
remaining data sampled from the population pool for each of the 21 possible proportion values (i.e.,
p = 0.00, 0.05, . . . , 1.00), employing the same algorithm T that was used for training the target
models (in total 21N reference models). The complete training set size of the reference model is the
same as the reference models used for our method. Regarding the two choices of observation o in the
MLE baselines:

• Joint logits of all records in target dataset (high-dimensional): Building on prior research (Car-
lini et al., 2022) which demonstrated that scaled logits for individual data points can serve as
effective observations and empirically follow a Gaussian distribution, we naturally extend this
approach to a dataset-wide scale. We concatenate these point-wise logits into high-dimensional
joint logits and model their distribution using a multivariate Gaussian.

P (o|p = q) = P (logit(X; ✓)|N (µq,⌃q)),

where logit(X; ✓) is the the logits of model ✓ on all records in X , and µq and ⌃q are its empirical
mean and covariance matrix across N reference models trained with q proportion of X .

• Averaged logits of all records in the target dataset (one-dimensional): To reduce the dimension-
ality of the observation (and thus enable more accurate empirical mean and covariance estimation),
we additionally consider the average of the logits over the dataset X , following the approach
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in Maini et al. (2021). The likelihood is then modelled as the following one-dimensional Gaussian
distribution.

P (o|p = q) = P

 
1

|X|
X

x2X

logit(x; ✓)
���N (µq,�

2
q )

!
,

where µq and �q are the empirical mean and variance of the averaged logits of all records in X
across N reference models trained with q proportion of X .

The step-by-step procedure is as follows:

1. For each q 2 {0.00, 0.05, . . . , 1.00}:
(a) Train N reference models on a proportion q of X combined with data randomly

sampled from the population pool.
(b) Query the reference models using X to obtain observations o(e.g., the average logits)

for all data in X and estimate the Gaussian distribution on these observations.
(c) Query the target model using X to obtain the target observation otar.
(d) Calculate the likelihood of observing otar given the distribution for q.

2. Select the q with the highest likelihood of observing otar.

MIA baselines To demonstrate the importance of debiasing, we also compare our methods against
two intuitive baselines: the direct aggregation of MIA guesses and MIA scores. (Some might think
that MIA scores indicate the probability or confidence that a data point is a member, which could be
used to estimate dataset usage.) We employ the same 2N reference models as our method, with each
model trained on half of dataset X:

• MIA Guess: This involves directly counting MIA membership predictions, where the proportion
is calculated as the fraction of member predictions: p̂ = 1

|X|
P|X|

i=1 m̂i. For a fair comparison, we
use the same MIA algorithms that were employed in our methods.

• MIA Score: This takes the average of MIA confidence scores across all data points: p̂ =
1

|X|
P|X|

i=1 ĉi, where ĉi is the confidence score of RMIA (i.e., the probability of observing that i-th
record’s likelihood to be a member is greater than randomly sampled population data points).

The step-by-step implementation of the MIA algorithms is provided in Appendix C.2 and Ap-
pendix C.3. These implementations follow the standard procedures described in the original papers.

G.3 FORMING SUBGROUPS BY TPRi � FPRi

Figure 6: Samples of TPRi � FPRi value for 6 subgroups.
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G.4 RESULTS USING DIFFERENT MIA

In the main paper, we present the results of our method using RMIA (Zarifzadeh et al., 2024) due to
its superior performance at a limited number of reference models. Additionally, we have implemented
another state-of-the-art MIA algorithm, LiRA (Carlini et al., 2022). (Comparisons between RMIA
and LiRA can be found in Appendix C.) All results in the main paper, when including the performance
of LiRA, are provided in this section.

Comparison under fixed computation budget Figure 7 presents the complete version of Figure 2,
including the performance of the MIA baseline using LiRA and our method using LiRA. Our methods
(red and pink) are clearly more accurate in proportion prediction than all baselines. The comparisons
between our method using LiRA and direct predictions from LiRA further confirm the effectiveness
of our debiasing method. While our method using RMIA is more robust with a smaller number of
reference models compared to using LiRA (analyzed in Appendix C.5), the MIA Baseline (RMIA)
and MIA Score (RMIA) show less sensitivity to the number of reference models, possibly due to
their inclusion of population data. Overall, they perform better with fewer reference models than the
MIA Baseline (LiRA), which is consistent with the results reported in Zarifzadeh et al. (2024).
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Figure 7: Maximum mean absolute error (MAE) of all methods under an increasing number of
reference models. The grey dotted line represents the minimum computational budget required for
MLE methods (2 for each proportion). Notably, our method can yield meaningful predictions even
under limited computational budget (e.g., a single pair of reference models).

Confidence interval Figure 8 adds the confidence interval of our method using LiRA (correspond-
ing to Figure 3 in the main paper). The top figure demonstrates the effectiveness of our methods using
both membership identification methods, while the lower figure illustrates that our 95% confidence
interval predictions are consistently tight.
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Figure 8: (Confidence Interval) Top: Frequency of the true proportion p falling within the predicted
95% confidence interval for different p. The frequency was computed across 30 interval predictions
for each p. Bottom: Average width of the predicted interval over 30 tests for each p.
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G.5 PERFORMANCE OF OUR METHOD IN DETERMINING BINARY DATASET USAGE

While methods restricted to binary predictions under an all-or-none dataset usage scenario cannot
ensure consistent predictions for partial utilization (Figure 1), a method providing fine-grained
estimates can naturally be reduced to solve the binary problem.

To illustrate this, consider the null hypothesis (H0 : s = s0 + ⌧ ) used in prior binary dataset inference
literature. For different contexts, s and s0 can take the following forms:

1. Dataset Inference Maini et al. (2021): s and s0 represent the distances to the decision
boundary measured on a private dataset and a population dataset, respectively. This hypoth-
esis assumes that if the model was trained on the private dataset, the distance measured on
the private dataset would exceed that on the public dataset.

2. LLM Dataset Inference Maini et al. (2024): s and s0 are the weighted aggregations of 52
MIA scores over the private and population datasets. This hypothesis assumes that merged
MIA scores would be significantly higher for members than non-members over enough
samples.

3. Backdoor Watermarks Guo et al. (2023); Li et al. (2023); Tang et al. (2023); Hu et al.
(2022); Li et al. (2022b); Wenger et al. (2022); Sablayrolles et al. (2020): s and s0 are the
confidence score on the target label given backdoored inputs and given clean inputs. This
hypothesis assumes that a model trained on a poisoned dataset (if successfully backdoored)
will assign higher confidence to the target class when triggered, but not for clean inputs.

For DUCI, a straightforward simplification to the dataset inference problem can be made by set s = p̂,
s0 = 0, and ⌧ serves as a threshold, which may vary depending on the data type. Table 9 report the
performance of our method adapted for solving the binary dataset inference problem.

Table 5: Comparison of p-values between DUCI and binary dataset usage algorithms for determining
whether a dataset X (size 500) has been used. The complete training dataset of the target model has
a size of 25,000. For p-values, a smaller value for Dataset Used is better, while a larger value for
Dataset Not Used is better.

Methods p-value
Dataset Used # Dataset Not Used "

Backdoor Watermark (poison 30% of X) 7.10⇥ 10�5 0.334
Backdoor Watermark (poison 100% of X) 6.18⇥ 10�54 1.000
Dataset Inference 7.27⇥ 10�10 0.937
Ours 3.15⇥ 10�51 1.000

Consistent with the performance shown in Figure 1, all methods can perfectly solve the binary
dataset usage problem when the significance level is set to common thresholds such as 0.05 or 0.01.
This challenge becomes especially critical and significantly impacts performance when the dataset
is not fully sampled or when the protected dataset’s relative size is small. Our method performs
exceptionally well, achieving comparable results to backdoor watermarking when the entire dataset is
poisoned. In principle, the performance of Dataset Inference should be close to our method; however,
the slight drop in performance may be attributed to the choice of signal, as the loss-based score is less
distinguishable in distribution than the likelihood ratio-based score. We did not compare with (Maini
et al., 2024) as combining multiple MIAs is orthogonal to our approach. Our method can debias any
number of MIAs using the same reference models without retraining, with combination possible after
debiasing if needed.

Finally, it is important to note that directly comparing the reported error of DUCI at p = 0 and p = 1
to that of dataset inference is inherently unfair. DUCI predicts a continuous value, whereas dataset
inference is a simple binary classification task.
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H ON (THE POSSIBILITY OF) IMPROVING DATASET USAGE INFERENCE VIA
PAIR-WISE “CORRELATION”

Our method in Section 4 treat individual records in the target dataset separately, and thus implicitly
require “independence” among records to perform well. Will the ignorance of “correlations”
between records predictions make our method sub-optimal for the problem of dataset usage
inference? If the “correlations” between records predictions exists, how can we debias mem-
bership predictions? In this section, we explore the room for improving our aggregation method
via exploiting correlations among different records in the target dataset. We first show that under
natural datasets (without manually crafted data), the room for improvement is small as the correlation
between records prediction is almost zero. However, in Appendix H.2, we demonstrate that with a
dataset containing specially designed canaries (i.e., correlation exists), our method can be extended
to second-order debiasing given pairwise membership predictions, enabling more accurate dataset
usage inference.

H.1 ON THE POSSIBILITY OF COVARIANCE REDUCTION

For the sake of understanding the role of correlation, let us now focus on the simplest scenario of
inferring the usage of a dataset with two records. Under such settings, the mean squared error (MSE)
for our proportion estimator in Equation (4) is is given by:

MSE(p̂) =E
"✓

1

2
(p̂1 + p̂2)� p

◆2
#

(33)

=
1

4
Var(p̂1) +

1

4
Var(p̂2) +

1

2
Cov(p̂1, p̂2) (34)

where the last equality is by the unbiasedness property of p̂1 and p̂2. This naturally motivates us to
ask: Can we reduce the correlation (i.e., covariance term defined in Equation (34)) between data
pairs in the target dataset, thereby reducing the error of dataset usage inference estimator? To answer
this question, we evaluate the magnitude of correlations among data records in the target dataset, and
plot the histogram in Figure 4. We observe that a majority of data pairings incur near-zero covariance
values. This is in line with prior works Pillutla et al. (2023) that observe small correlation between
membership guesses on different data records. Only a small number of outliers (less than 0.01%)
show positive covariance values larger than 0.05 – these pairs sometimes consist of records very
similar to each other (examples are provided in Figure 10). These trends imply that the room for
improving our aggregation methods via reducing covariance between data pairs is generally very
small. It is an intriguing open problem as to whether our method could be further improved if the
data owner is allowed to enforce high correlations among different data records, e.g., by modifying
the target dataset.

H.2 ON THE POSSIBILITY OF PAIR-WISE BIAS REDUCTION (SECOND-ORDER DEBIASING)

If correlations between membership predictions exist (i.e., E[p̂ip̂j ] � E[p̂i]E[p̂j ] 6= 0), is it still
possible to aggregate group-level statistics unbiasedly to predict dataset usage? In this section, we
provide an example of second-order debiasing (when all records in the target dataset are uniformly
randomly sampled, i.e, pi = p for any record i when the ground-truth proportion is p).

Debiasing pair-wise membership guesses to estimate dataset usage proportion Suppose a mem-
bership identification method is able to predict pair-wise memberships m̂im̂j for any pair of points
(xi, xj) where i, j 2 1, 2, . . . , |X|. We now apply it to randomly sampled data record pairs from the
target dataset. For each data pair (xi, xj), denote mi and mj as their ground-truth memberships, and
denote m̂i and m̂j as their pair-wise membership guesses (by definition mi,mj , m̂i, m̂j 2 {0, 1}).
Let P (m̂im̂j = 00), P (m̂im̂j = 01), P (m̂im̂j = 10) and P (m̂im̂j = 00) be the frequency of each
pair-wise guesses.
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To estimate the dataset usage proportion, we need to perform debiasing operations (similar to Section 4
6 ) on the observed pair-wise membership guesses. For this, we first estimate the following matrix
M (i.e., all off-diagonal values in this matrix represent error types, analogous to TPR and FPR) of
conditional distribution of the pair-wise membership guesses m̂im̂j given different ground-truth
pair-wise membership values mimj , on empirically trained reference models (of which we know the
training datasets).

M =

2

664

P (00|00) P (00|01) P (00|10) P (00|11)
P (01|00) P (01|01) · · · · · ·

...
...

. . .
...

P (11|00) · · · · · · P (11|11)

3

775 ,

where for brevity we denoted P (a|b) to be P (m̂im̂j = a|mimj = b), and the randomness is over
the training algorithm and the random data pairs.

Therefore, by the total probability, we have

M ·

2

64

P (mimj = 00)
P (mimj = 01)
P (mimj = 10)
P (mimj = 11)

3

75 =

2

64

P (m̂im̂j = 00)
P (m̂im̂j = 01)
P (m̂im̂j = 10)
P (m̂im̂j = 11)

3

75 (35)

To estimate the dataset usage proportion, one only need to observe that when a randomly sampled
q-proportion of the target dataset is used for training, the ground-truth pair-wise membership values
follow the following distribution: P (mimj = 11) = q2, P (mimj = 01) = P (mimj = 10) =
(1 � q)q, and P (mimj = 00) = (1 � q)2. By plugging them to Equation (35), we can estimate
the dataset usage proportion by finding a q that enables the closest observations to the empirically
observed pair-wise membership guesses, as follows.

p̂ = argmin
q
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H.2.1 EXAMPLE OF PAIR-WISE DEBIASING GIVEN LIKELIHOOD-BASED MEMBERSHIP
PREDICTION

We begin by selecting the most basic pair-wise statistic—pair-wise likelihood (analogous to loss and
considered the weakest MIA signal)—as the basis for generating pair-wise membership predictions.
As baselines, we include likelihood-ratio-based methods (a stronger likelihood-based signal), per-
point MIA (LiRA Carlini et al. (2022)), and the best signal (RMIA). Our results demonstrate that,
under second-order debiasing, even the weakest signal performs comparably to the aggregation of
membership predictions using the best first-order signal.

Pair-wise membership inference The idea of pair-wise membership inference is to design a test that
can simultaneously guess the membership status of a pair of points (xi, xj) for any i, j 2 1, 2, . . . , |X|.
We can use the general maximum likelihood estimation to design a pair-wise test, as follows.

m̂im̂j = arg max
s2{00,01,10,11}

P (o|mimj = s) (36)

where we consider the observation o as averaged logits of the data pair (xi, xj) and model the
distribution of this observation o when mimj = s for each s 2 {00, 01, 10, 11} as a multivariate
Gaussian, similarly as Equation (11).

6The second-order debiasing is a natural extension of straightforward debiasing since under uniformly

random sampling, method in Section 4 is solving p̂ = argminq E
���M


(1� q)

q

�
�


P (m̂i = 0)
P (m̂i = 1)

� ���
2

2

�
in

principle.
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Performance of the second-order debiasing We refer to our method presented in the main paper,
which is based on the aggregation of debiased individual membership guesses, as the aggregating
individual statistics method (Agg Individual) to distinguish it from the pair-wise test. In Figure 9, we
observe that the pair-wise test enables better performance (smaller bias) for proportion estimation
compared to the Agg Individual method using LiRA. This suggests (1) the second-order debiasing is
accurate, and (2) that pair-wise statistics (naive likelihood value) may capture more information than
the corresponding individual statistics (stronger likelihood ratio).

However, we observe that the pair-wise test does not outperform the RMIA-based Agg Individual
method (which is stronger than the LiRA-based method). We hypothesize that this is because the
score (likelihood based rank score) used in RMIA is much stronger than the score used in LiRA
and our pair-wise test. The RMIA score captures more data information, bridging the gap between
first-order and second-order statistics. It is an intriguing open question whether we can design more
powerful pair-wise tests using stronger MIA scores like those used in RMIA.7

Additionally, it is important to note that the current pair-wise test requires much higher computational
cost than the aggregation of individual statistics due to the computation of MLE for each sampled data
pair. The computational cost for inference of the pair-wise test is O(|X|2), while our Agg Individual
method is O(|X|). Therefore, identifying ways to reduce this cost could be another direction for
future research.

Figure 9: Comparison between the dataset usage inference using pair-wise statistics and individual
statistics (red and pink) when only 4 pairs of reference models are used. For the pair-wise test, we
follow Appendix H.2 and aggregate the debiased pair-wise membership guesses over 20000 randomly
sampled data pairs in the target dataset. All evaluation settings are the same as ??.

7There is no straightforward method for adapting RMIA scores for pair-wise testing.
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Figure 10: Examples of pairs with large covariance.
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I CASE STUDY: QUANTIFYING BOOK COPYRIGHT INFRINGEMENT

The issue of copyright infringement in books can be considered a specific case of data usage inference:
given a model that likely infringes on book copyrights, the author or publishing house would want to
determine the extent to which their content is used. We conducted our experiment using pre-trained
GPT-2 (Radford et al., 2019). For a rigorous setting, we selected books from the BookMIA dataset
constructed by Shi et al. (2023). This dataset contains 50 new books with first editions in 2023, which
could not have been included in the pre-training data of GPT-2, and 50 old books—known to be
memorized by ChatGPT—whose memorization status by GPT-2 is uncertain. We split each book
into chunks of 512 tokens.

Target Model: We partition the 50 new books in the BookMIA dataset Shi et al. (2023) into two
subsets: a protected pool of 30 books and a population pool of 20 books. We fine-tune a total of
m = 4 target models. For fine-tuning each of the m target models, we first randomly partition
the protected pool into six disjoint sets of books S0, S0.2, S0.4, S0.6, S0.8, and S1.0, where each Sp

contains n = 5 books as the target books for testing the case of infringement proportion p. The
fine-tuning dataset for each target model is then constructed as follows:

1. Protected pool chunks: For each protected book X 2 Sp for p 2 {0.0, 0.2, 0.4, 0.6, 0.8}:
we select the beginning p proportion of the chunks from the protected book X .

2. Population pool chunks:We add another n = 5 randomly sampled books from the popula-
tion pool (as the remaining dataset).

Therefore, for each of these m = 4 target models, we have n = 5 target books with p proportion of
content included in the training for each possible proportion value p 2 {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
This setup results in a total of 20 trials for each p.

Note that in this experiment, the used chunks are sequentially chosen rather than uniformly randomly
chosen as in Section 5.1, to maintain the continuity of the text in a book.

Reference model: We train two reference models, each with a fine-tuning set that includes two parts:

1. Protected pool chunks: Each model uses half of the chunks from each of the 30 books
in the protected pool. More specifically, both models are trained on all 30 books, but each
model only uses half amount of the chunks from each book without overlap.

2. Population pool chunks: Each model also includes half of the chunks from 2n = 10
randomly selected books from the population pool of 20 books as the remaining data.

This ensures that 1) for each chunk used in training the target model, one reference model is fine-tuned
on it while the other is not, and 2) among the remaining data (exclusive the target books), we can
select chunks that are present in only one of the reference models as the population data (used for
launching the MIA in Zarifzadeh et al. (2024)).

All target and references models incur training loss of around 2.9 and test loss of around 3.2, which
is even lower than the loss reported by Prat (2023), thus indicating the high performance of our
fine-tuned model. The time for fine-tuning a single model (both target and reference models) for 6
epochs on a single NVIDIA GeForce RTX 3090 GPU is approximately 17 minutes.

Experiment setting We use the same MIA algorithm (Zarifzadeh et al., 2024) for all methods and
select the optimal MIA threshold as described in Appendix C.4 on reference models. The above-
mentioned population data are used for launching the MIA (Zarifzadeh et al., 2024). We consider
MIA Guess and MIA Score as our baselines:

1. MIA Guess: For each book X with chunks {ci}|X|
i=1, we perform MIA on each chunk

ci to obtain an individual membership prediction m̂i. We then compute the ratio p̂ =
1

|X|
P|X|

i=1 m̂i.

2. MIA Score: Similar to MIA Guess, we conduct the same process but, instead of obtaining
binary predictions, we directly aggregate the MIA scores as described in Section 5.2.

For our methods, we repeat the debiasing process described in Algorithm 1 given by E(m̂|m = 0)
and E(m̂|m = 1) estimated on top of the membership guesses or scores provided by the MIA. The

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

inference time for our methods on 30 target books, including the estimation of P (m̂|m = 0) and
P (m̂|m = 1), on a single NVIDIA GeForce RTX 3090 GPU takes 408 seconds.

Results and analysis Although MIA on text generation models has been explored since (Song
& Shmatikov, 2019), previous research typically conducts MIA by querying individual texts and
gathering a single statistic to infer whether the entire collection is part of the training data. A few
discussions on book copyright infringement issue in prior works (Radford et al., 2019) also focus on
this Yes or NO question, which is just the binary version of our dataset usage inference problem.

Our experiment shows that membership inference methods struggle to distinguish varying extents of
infringement, particularly when the infringement is less significant. As observed in Table 6, for both
MIA baselines, the error in proportion estimation is large when the actual fraction of the book used
in the target model’s training is small. This is expected because when less content from a book is
used, the target model learns a poor and incomplete representation of this book’s data distribution,
making it harder to distinguish membership. However, our method proves effective in more reliably
estimating the extent of copyright infringement, despite the significant bias from the accumulation
of individual membership prediction errors.8 For example, our method achieves a maximum mean
absolute error of 0.168 across all tested proportions, compared to 0.5 for the MIA Score and 0.335
for the MIA Guess.

Table 6: Mean Absolute Error E[|p̂i � p|] for different values of p. The lowest error under each
proportion p

proportion p MIA Guess MIA Score Our Method

0.0 0.3350 0.5019 0.1356
0.2 0.2200 0.4041 0.1379
0.4 0.2875 0.3270 0.1290
0.6 0.2125 0.2245 0.1684
0.8 0.1200 0.1228 0.0874
1.0 0.1750 0.0091 0.0188

maxp2[0,1] E[|p̂i � p|] 0.3350 0.5019 0.1684

8We observed that the MIA score is more stable than MIA Guess due to the small number of chunks per book.
For our method, we chose to debias the MIA score (replacing the binary score m̂i in Equation (5), Equation (8),
and Equation (7) with the continuous, non-binary MIA score).
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