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ABSTRACT

Several methods have been proposed in recent years to provide bounds on the
Lipschitz constants of deep networks, which can be used to provide robustness
guarantees, generalization bounds, and characterize the smoothness of decision
boundaries. However, existing bounds get substantially weaker with increasing
depth of the network, which makes it unclear how to apply such bounds to re-
cently proposed models such as the deep equilibrium (DEQ) model, which can
be viewed as representing an infinitely-deep network. In this paper, we show that
monotone DEQs, a recently-proposed subclass of DEQs, have Lipschitz constants
that can be bounded as a simple function of the strong monotonicity parameter of
the network. We derive simple-yet-tight bounds on both the input-output mapping
and the weight-output mapping defined by these networks, and demonstrate that
they are small relative to those for comparable standard DNNs. We show that
one can use these bounds to design monotone DEQ models, even with e.g. multi-
scale convolutional structure, that still have constraints on the Lipschitz constant.
We also highlight how to use these bounds to develop PAC-Bayes generalization
bounds that do not depend on any depth of the network, and which avoid the ex-
ponential depth-dependence of comparable DNN bounds.

1 INTRODUCTION

Measuring the sensitivity of deep neural networks (DNNs) to changes in their inputs or weights is
important in a wide range of applications. A standard way of measuring the sensitivity of a function
f is the Lipschitz constant of f , the smallest constantL ∈ R+ such that ‖f(x)−f(y)‖2 ≤ L‖x−y‖2
for all inputs x and y. While exact computation of the Lipschitz constant of DNNs is NP-hard
(Virmaux & Scaman, 2018), bounds or estimates can be used to certify a network’s robustness to
adversarial input perturbations (Weng et al., 2018), encourage robustness during training (Tsuzuku
et al., 2018), or as a complexity measure of the DNN (Bartlett et al., 2017), among other applications.
An analogous Lipschitz constant that bounds the sensitivity of f to changes in its weights can be
used to derive generalization bounds for DNNs (Neyshabur et al., 2018). A growing number of
methods for computing bounds on the Lipschitz constant of DNNs have been proposed in recent
works, primarily based on semidefinite programs (Fazlyab et al., 2019; Raghunathan et al., 2018)
or polynomial programs (Latorre et al., 2019). However, as the depth of the network increases,
these bounds become either very loose or prohibitively expensive to compute. Additionally, they are
typically not applicable to structured DNNs such as convolutional networks which are common in
everyday use.

The deep equilibrium model (DEQ) (Bai et al., 2019) is an implicit-depth model which directly
solves for the fixed point of an “infinitely-deep”, weight-tied network. DEQs have been shown
to perform as well as DNNs in domains such as computer vision (Bai et al., 2020) and sequence
modelling (Bai et al., 2019), while avoiding the large memory footprint required by DNN training in
order to backpropagate through a long computation chain. Given that DEQs represent infinite-depth
networks, however, their Lipschitz constants clearly cannot be bounded by existing methods, which
are very loose even on networks of depth 10 or less.
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In this paper we take up the question of how to bound the Lipschitz constant of DEQs. In particular,
we focus on monotone DEQs (monDEQ) (Winston & Kolter, 2020), a recently-proposed class of
DEQs which parameterizes the DEQ model in a way that guarantees existence of a unique fixed-
point, which can be computed efficiently as the solution to a monotone operator splitting problem.
We show that monDEQs, despite representing infinite-depth networks, have Lipschitz constants
which can be bounded by a simple function of the strong-monotonicity parameter, the choice of
which therefore directly influences the bound. We also derive a bound on the Lipschtiz constant w.r.t.
the weights of the monDEQ, with which we derive a deterministic PAC-Bayes generalization bound
for the monDEQ by adapting the technique of (Neyshabur et al., 2018). While such generalization
bounds for DNNs are plagued by exponential dependence on network depth, the corresponding
monDEQ bound does not involve any depth-like term.

Empirically, we demonstrate that our Lipschitz bounds on fully-connected monDEQs trained on
MNIST are small relative to comparable DNNs, even for DNNs of depth only 4. We show a similar
trend on single- and multi-convolutional monDEQs as compared to the bounds on traditional CNNs
computed by AutoLip and SeqLip (Virmaux & Scaman, 2018), the only existing methods for (even
approximately) bounding CNN Lipshitz constants. Further, our monDEQ generalization bounds are
comparable with bounds on DNNs of around depth 5, and avoid the exponential dependence on
depth of those bounds. Finally, we also validate the significance of the small Lipschitz bounds for
monDEQs by empirically demonstrating strong adversarial robustness on MNIST and CIFAR-10.

2 BACKGROUND AND RELATED WORK

Lipschitz constants of DNNs Lipschitz constants of DNNs were proposed as early as Szegedy
et al. (2014) as a potential means of controlling adversarial robustness. The bound proposed in
that work was the product of the spectral norms of the layers, which in practice is extremely loose.
Virmaux & Scaman (2018) derive a tighter bound via a convex maximization problem; however the
bound is typically intractable and can only be approximated. Combettes & Pesquet (2019) bound the
Lipschitz constant of DNNs by noting that the common nonlinearities employed as activation func-
tions are averaged, nonexpansive operators; however, their method scales exponentially with depth
of the network. (Zou et al., 2019) propose linear-program-based bounds specific to convolutional
networks, which in practice are several orders of magnitude larger than empirical lower bounds.
Upper bounds based on semidefinite programs which relax the quadratic constraints imposed by the
nonlinearities are studied by Fazlyab et al. (2019); Raghunathan et al. (2018); Jin & Lavaei (2018).
The bounds can be tight in practice but expensive to compute for deep networks; as such, Fazlyab
et al. (2019) propose a sequence of SDPs which trade off computational complexity and accuracy.
This allows us to compare our monDEQ bounds to their SDP bounds for networks of increasing
depth (see Section 5). Latorre et al. (2019) show that the complexity of the optimization problems
can be reduced by taking advantage of the typical sparsity of connections common to DNNs, but the
resulting methods are still prohibitively expensive for deep networks.

DEQs and monotone DEQs An emerging focus of deep learning research is on implicit-depth
models, typified by Neural ODEs (Chen et al., 2018) and deep equilibrium models (DEQs) (Bai
et al., 2019; 2020). Unlike traditional deep networks which compute their output by sequential,
layer-wise computation, implicit-depth models simulate “infinite-depth” networks by specifying,
and directly solving for, some analytical conditions satisfied by their output. The DEQ model di-
rectly solves for the fixed-point of an infinitely-deep, weight-tied and input-injected network, which
would consist of the iteration zi+1 = g(zi, x) where, g represents a nonlinear layer computation
which is applied repeatedly, zi is the activation at “layer” i, and x is the network input, which is
injected at each layer. Instead of iteratively applying the function g (which indeed may not con-
verge), the infinite-depth fixed-point z∗ = g(z∗, x) can be solved using a root-finding method. A
key advantage of DEQs is that backpropagation through the fixed-point can be performed analyti-
cally using the implicit function theorem, and DEQ training therefore requires much less memory
than DNNs, which need to store the intermediate layer activations for backpropagation.

In standard DEQs, existence of a unique fixed point is not guaranteed, nor is stable convergence to
a fixed-point easy to obtain in practice. Monotone DEQs (monDEQs) (Winston & Kolter, 2020)
improve upon this aspect by parameterizing the DEQ in a manner that guarantees the existence of a
stable fixed point. Monotone operator theory provides a class of operator splitting methods which
are guaranteed to converge linearly to the fixed point (see Ryu & Boyd (2016) for a primer). The
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monDEQ considers a weight-tied, input-injected network with iterations of the form

z(k+1) = σ(Wz(k) + Ux+ b) (1)

where x ∈ Rn is the input, U ∈ Rh×n the input-injection weights, z(i) ∈ Rh the hidden unit
activations at “layer” i, and W ∈ Rh×h the hidden-unit weights, and b ∈ Rh a bias term, and
σ : Rh → Rh an elementwise nonlinearity. The output of the monDEQ is defined as the fixed point
of the iteration, a z∗ such that

z∗ = σ(Wz∗ + Ux+ b). (2)

Just as for DEQs, forward iteration of this system need not converge to z∗; instead, the fixed point is
found as the solution to a particular operator splitting problem. Various operator splitting methods
can be employed here, for example forward-backward iteration, which results in a damped version
of the forward iteration

z(k+1) = σ(z(k) − α((I −W )z(k) − (Ux+ b))) = σ((I − α(I −W ))z(k) + α(Ux+ b)). (3)

The operator I−α(I−W ) appearing in this iteration is contractive for any 0 < α ≤ 2m/L2, and this
iteration is guaranteed to converge so long as the operator I−W is Lipschitz and strongly monotone
with parameters L (which is in fact the spectral norm ‖I −W‖2) and m (Ryu & Boyd, 2016). In
Section 3, we will see how unrolling this iteration leads directly to a bound on the Lipschitz constant
of the monDEQ. To ensure the strong monotonicity condition, that I −W � mI , the monDEQ
parameterizes W as

W = (1−m)I −ATA+B −BT .
The strong-monotonicity parameter m will in fact figure in directly to the Lipschitz constant of the
monDEQ.

Lipschitz constants for implicit-depth models A few prior works have proposed methods for
bounding the Lipschitz constants of other classes of implicit depth network. Ghaoui et al. (2020)
define restrictive conditions for well-posedness of an implicit network which are different from those
of the monDEQ. In particular, they require the weight matrix W to be such that forward iteration
is stable (as opposed to the stability of the operator splitting methods required by monDEQ). They
derive Lipschitz constants and robustness guarantees under these conditions; for example when
‖W‖∞ < 1, then a Lipschitz bound can be derived by simply manipulating the fixed-point equation
as they demonstrate in equation 4.3. Herrera et al. (2020) propose a framework for implicit depth
models which incorporate the Neural ODE (Chen et al., 2018) (which is the solution of an ODE at a
given time T) but not the monDEQ (which can be cast as finding the equilibrium point of an ODE).
They derive bounds on the Lipschitz constant w.r.t. network weights, but their framework cannot be
applied to bound the Lipschitz constant of the monDEQ.

3 LIPSCHITZ CONSTANTS FOR MONOTONE DEQS

We now present our main methodological contributions, easily-computable bounds on the Lipschitz
constants of monDEQs. We first derive the Lipschitz bound on the input-output mapping defined by
the monDEQ, followed by that for the weight-output mapping. As we describe below, both bounds
turn out to depend inversely on the strong-monotonicity parameter m of the monDEQ. Since m is
chosen for the monDEQ at design time, this implies an analytical handle on its Lipschitz constant.

3.1 LIPSCHITZ CONSTANTS WITH RESPECT TO INPUT

The naive way of computing L for feedforward deep networks is by multiplying the spectral norms
of the weight matrices. As stated above, just employing forward iterations does not lead to con-
vergence of the monDEQ. Analogously, if we were to adopt the naive method and simply unroll
the forward iterations of the monDEQ as described in equation 1, we would end up with an infinite
product of spectral norms, which would not converge unless W itself is contractive. Here again, we
consider unrolling the averaged operator T := I − α(I −W ) employed in the forward-backward
iterations, which ensures that the monDEQ converges, and will also lead to a finite bound on the
Lipschitz constant. Notice that T appears in the forward iterations in equation 3. In the sequel, let
L[A] denote the Lipschitz constant of a function or operator A. The following proposition, which
we prove in Appendix A, bounds the Lipschitz constant L[T ].
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Proposition 1. L[T ] ≤
√

1− 2αm+ α2L[I −W ]2

This implies that for α ∈
(

0, 2m
L[I−W ]2

)
, L[T ] < 1. In our subsequent analysis, we only consider

values of α in this range. We are now ready to state our bound for the Lipschitz constant of the
monDEQ:

Theorem 1 (Lipschitz constant of monDEQ). Let f(x) = z∗ denote the output of the monDEQ on
input x, as in equation 2. Consider any x, y ∈ Rn. Then, we have that

‖f(x)− f(y)‖2 ≤
‖U‖2
m
‖x− y‖2.

In other words, L[f ] ≤ ‖U‖2m .

Proof. Let fk(x) = z(k) denote the kth iterate of the forward-backward iterations as described in
equation 3 (we begin with f0(x) = 0). We will try and unroll these iterations in the following:

‖fk(x)− fk(y)‖2 = ‖σ(Tfk−1(x) + αUx+ αb)− σ(Tfk−1(y) + αUy + αb)‖2
≤ ‖Tfk−1(x) + αUx+ αb− Tfk−1(y)− αUy − αb)‖2 (σ =ReLU is 1-Lipschitz)

= ‖T (fk−1(x)− fk−1(y)) + αU(x− y)‖2 ≤ ‖T (fk−1(x)− fk−1(y))‖2 + α‖U(x− y)‖2
≤ L[T ]‖fk−1(x)− fk−1(y)‖2 + αL[U ]‖x− y‖2

≤ L[T ]k‖f0(x)− f0(y)‖2 + α‖U‖2‖x− y‖2 ·
k−1∑
i=0

(L[T ])i (unrolling k times)

= α‖U‖2‖x− y‖2 ·
k−1∑
i=0

(L[T ])i (since f0(x) = f0(y) = 0)

Since the above inequality holds for all k, we can take the limit on both sides as k →∞, keeping α
fixed. But notice that since the forward-backward iterations converge to the true f (which does not
depend on α), we have that limk→∞ fk = f . That is, the dependence on α disappears on the LHS
once we take the limit on k. Thus, by using the continuity of the l2 norm, we have

‖f(x)− f(y)‖2 =

∥∥∥∥ lim
k→∞

fk(x)− lim
k→∞

fk(y)

∥∥∥∥
2

≤ α‖U‖2‖x− y‖2 ·
∞∑
i=0

(L[T ])i

=
α‖U‖2

1− L[T ]
‖x− y‖2 (since L[T ] < 1)

≤ α‖U‖2
1−

√
1− 2αm+ α2L[I −W ]2

‖x− y‖2 (from Proposition 1)

Now, since the above result holds for any α in the range considered, taking α→ 0, we have that

L[f ] ≤ lim
α→0

α‖U‖2
1−

√
1− 2αm+ α2L[I −W ]2

=
‖U‖2
m

(applying L’Hopital’s rule)

We observe here that the Lipschitz constant of the monDEQ with respect to its inputs indeed depends
on only two quantities, namely ‖U‖2 and m, and doesn’t depend at all on the weight matrix W .
Furthermore, because m is a hyperparameter chosen by the user, this illustrates that monDEQs have
the notable property that one can essentially control the Lipschitz parameter of the network (insofar
as the influence of W is concerned) by appropriately choosing m, and not require any additional
structure or regularization on W . This is in stark contrast to most existing DNN architectures,
where enforcing Lipschitz bounds requires substantial additional effort.
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3.2 LIPSCHITZ CONSTANTS WITH RESPECT TO WEIGHTS

We now turn to the question of bounding the change in the output of the monDEQ when the weights
are perturbed but the input remains fixed. This calculation has several important use cases, one of
which is in the derivation of generalization bounds for the monDEQ. Given a bound on the change
in the output on perturbing the weights of the monDEQ, we can derive bounds on the generalization
error in a straight-forward manner, as detailed in Section 4 below. The following theorem establishes
a perturbation bound for the monDEQ.
Theorem 2 (Perturbation bound for monDEQ). Let I−W � mI and I− W̄ � m̄I . The change in
the output of the monDEQ on perturbing the weights and biases from W,U, b to W̄ , Ū , b̄ is bounded
as follows:

‖f(W̄ , Ū , b̄)− f(W,U, b)‖2 ≤
‖W̄ −W‖2‖Ux+ b‖2

mm̄
+
‖(Ū − U)x‖2 + ‖b̄− b‖2

m̄

The proof steps for Theorem 2 parallel closely those involved in the derivation of the Lipschitz
constant with respect to the inputs, and are outlined in Appendix B. We highlight here again that
the bound depends inversely on m, a design parameter in our control. Further, when compared
to a similar perturbation bound derived in Neyshabur et al. (2018), we note that our perturbation
bound for the monDEQ does not involve a depth-dependent product of spectral norms of weights.
In addition, although we state the theorem in terms of a perturbation of W (which can thus lead to a
different strong monotonicity parameter m̄), the bound can also be adapted to perturbations onA and
B in the typical monDEQ parameterization, which leads to a perturbed network that will necessarily
still have the same monotonicity parameter m as the original (indeed, we take this approach in the
next section, when deriving the generalization bound).

4 GENERALIZATION BOUND FOR MONDEQ

In this section, we demonstrate how the perturbation bound derived in Section 3.2 leads directly
to a deterministic PAC-Bayes, margin-based bound on the monDEQ generalization error, following
the analysis for DNNs of Neyshabur et al. (2018). A key difference from our work, however, is
that the perturbation bound they derive involves the product of spectral norms of all the weight
matrices in the DNN. Thus, as the network gets deeper, their bound grows exponentially looser. As
in Neyshabur et al. (2018), our generalization bound is based on two key ingredients. The first is
their deterministic PAC-Bayes margin bound (Lemma 1 in the Appendix C), which adapts traditional
PAC-Bayes bounds to bound the the expected risk of a parameterized, deterministic classifier in
terms of its empirical margin loss. The second is the perturbation bound on monDEQ with respect to
weights as derived in Section 3.2 above. Crucially, since our perturbation bound does not explicitly
involve a product of spectral norms of weights (which in the case of the monDEQ, would be an
infinite product), our final generalization bound does not either.

The monDEQ model we consider here consists of a fully connected layer at the end that maps f
to the output, so that fo(x) = Wof(x) + bo, where Wo and bo are the weights and bias in the
output layer; these parameters are important to include here since they contribute directly to the
perturbation bound. We also restrict the input x to the monDEQ to lie in an l2 norm ball of radiusB.
Let h denote the hidden dimension of the monDEQ, and M the size of the training set, and define
β := max{‖U‖2, ‖A‖2, ‖b‖2, ‖Wo‖2}. Let Lγ(fo) denote the expected margin loss at margin γ of
the monDEQ on the data distribution D, where

Lγ (fo) = P(x,y)∼D

[
fo(x)y ≤ γ + max

j 6=y
fo(x)j

]
and L̂γ(fo) denote the corresponding empirical margin loss on the training dataset. We are now
ready to state our generalization bound for the monDEQ:
Theorem 3 (Generalization bound for monDEQ). Let∑

‖W·‖2F = ‖A‖2F + ‖B‖2F + ‖U‖2F + ‖b‖2F + ‖Wo‖2F + ‖bo‖2F
For any δ, γ > 0, with probability at least 1− δ over the training set of size M , we have that

L0(fo) ≤ L̂γ(fo) +O

√h ln(h)[β2B(γ + β) +mβB +m2]2

γ2m4M

∑
‖W·‖2F +

ln(M
√
M
δ )

M


5



Published as a conference paper at ICLR 2021

4 6 8 10 12 14
depth

102

104

106

Li
ps

ch
itz

 c
on

st
an

t

LipSDP-neuron
naive upper bound
empirical lower bound

(a) DNN Lipschitz bounds vs Depth

0 5 10 15 20
strong-monotonicity param m

101

102

Li
ps

ch
itz

 c
on

st
an

t

width=60, our ub
width=60, empirical lb
width=40 our ub
width=40, empirical lb

(b) monDEQ Lipschitz bounds vs m

4 6 8 10
depth

102

103

104

105

106

Li
ps

ch
itz

 c
on

st
an

t

CNN greedy SeqLip ub
CNN annealing lb
single-conv monDEQ, m=20
multi-conv monDEQ, m=1

(c) CNN bounds vs Depth

0 5 10 15 20
strong-monotonicity param m

100

200

300

400

Li
ps

ch
itz

 c
on

st
an

t

single-conv monDEQ
multi-conv monDEQ

(d) Convolutional monDEQ bounds vs m

Figure 1: MNIST results: Lipschitz bounds as a function of depth and strong monotonicity parame-
ter. lb: lower bound; ub: upper bound.

Note that our bound above does not involve any depth-like term that scales exponentially, like the
term that involves the product of spectral norms of the weight matrices in Neyshabur et al. (2018)
(while still having the same dependence on h, which is

√
h lnh). To the best of our knowledge, this

is the first generalization bound for an implicit-layer model having effectively infinite depth. The
proof of Theorem 3 is given in Appendix C.

5 EXPERIMENTAL RESULTS1

5.1 LIPSCHITZ CONSTANTS

In this section, we empirically verify the tightness of the Lipschitz constant of the monDEQ with re-
spect to inputs. We conduct all our experiments on MNIST and CIFAR-10, for which several bench-
marks exist for computing the Lipschitz constant. We conduct experiments for different monDEQ ar-
chitectures (fully connected/convolutional) with varying parameters (strong-monotonicity parameter
m and width h), which we compare to DNNs with different depths and widths. We compute empir-
ical lower bounds by maximizing the norm of the gradient at 10k randomly sampled points. A naive
upper bound can be computed as

∏d
i=1 ‖Wi‖2. We include these bounds wherever applicable.

MNIST Here, we train DNNs for various depths from d = 3, 4, . . . , 14 for a fixed hidden layer
width h = 40, and plot (Figure 1a) the bound on the Lipschitz constant given by the SDP-based
method of Fazlyab et al. (2019) on these DNNs. We can observe that all estimates of the Lipschitz
constant increase exponentially with depth. For comparison, in Figure 1b we plot our Lipschitz
constant bounds for monDEQs with fixed h = 40, 60, for a range of strong-monotonicity parameters
m. We note that the DNNs all have test error of around 3%, while the monDEQ test error ranges from

1Experimental code available at https://github.com/locuslab/lipschitz_mondeq.
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Figure 2: CIFAR-10 results: Lipschitz bounds and test accuracy for monDEQs as a function of
strong monotonicity parameter and for CNNs. See text for description of models.

2.4%-4.3%, increasing with m (see Figure 5 in Appendix F for details). We see that the Lipschitz
constant of the monDEQ is much smaller, and that on increasing m, the Lipschitz constant of the
monDEQ decreases, outlining how we can exercise control on the Lipschitz constant.

We also compare the Lipschitz constants of monDEQs and DNNs having the same width, for a fixed
depth d = 5. The results are shown in Figure 6 in Appendix F. The DNN numbers are derived from
Figure 2(a) in (Fazlyab et al., 2019). We observe that the Lipschitz constant of the monDEQ for the
same width (and essentially infinite depth) is much lower than the bounds for regular DNNs.

Next, using the bound derived in Section 3.1, we compute the Lipschitz constant of convolutional
monDEQ architectures, namely single convolutional and multi-tier convolutional monDEQs. We
compare to the numbers in Figure 5 in Virmaux & Scaman (2018), which reports the Lipschitz con-
stants computed by various methods for different CNNs with increasing depth. For our estimate on
the single convolutional monDEQ, we use a single convolutional layer with 128 channels, whereas
for the multi-tier convolutional monDEQ, we use 3 convolutional layers with 32, 64 and 128 chan-
nels. In Figure 1c, we can observe that as for DNNs, the CNN Lipschitz constants estimated by
existing methods also suffer with depth. However, we can observe in Figure 1d that the Lipschitz
bounds for convolutional monDEQs are much smaller. Also, on increasing m, we can control the
Lipschitz constant of both single as well as multi-tier convolutional monDEQs. The test error for
the convolutional monDEQs is 0.65%-3.22%, increasing with m (see Figure 5 in Appendix F), but
is not reported for the CNNs in Virmaux & Scaman (2018).

CIFAR-10 To demonstrate that the Lipschitz bounds scale to larger datasets, we run similar ex-
periments on CIFAR-10. Figure 2a shows our bound (solid blue lines) for single-convolutional
monDEQs (128 channels) with a range of m values, together with empirical lower bounds (dashed
blue lines). Also shown are upper bounds (solid lines) and empirical lower bounds (dashed lines)
for three standard CNN models (CNN sm, med, and lg, having 2, 4, and 6 convolutions respectively,
detailed in Appendix F). The upper bounds are computed using the Greedy SeqLip method of Vir-
maux & Scaman (2018). We see that a) the monDEQ Lipschitz bounds decrease with m, and b) the
upper bounds (and gap between upper and lower bounds) for the medium and large CNNs are large
by comparison. In Figure 2b we see that test error of the monDEQ increases with m from 26% to
33%, and that, despite their much higher Lipschitz bounds, the three CNNs have similar test error.

Finally, on CIFAR-10 with data augmentation, we also trained a larger multi-tier convolutional mon-
DEQ with three convolutional layers with 64, 128, and 128 channels. This model obtains 10.25%
test error and has a Lipschitz upper bound of 1996.86, which is on par with the upper bound of the
medium CNN (plotted in brown; with L =1554.01, test error =30.6%).

Unrolling monDEQs In this experiment, we study if unrolling the monDEQ with m = 1, h = 40
up to a finite depth and constructing an equivalent DNN with this depth leads to a tight estimate of
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Figure 3: Generalization bounds for DNNs and monDEQs as a function of depth and m.

the Lipschitz constant of the monDEQ. Concretely, we do this for two operator splitting methods in
the monDEQ: Forward-backward (FB) iterations and Peaceman-Rachford (PR) iterations. For each
value of α in a range, we calculate the number of iterations (FB or PR) required to converge within
a tolerance 1e-3, and construct the equivalent DNN with this depth. Note that these unrolled DNNs
compute the same function as the monDEQ (up to tolerance), and therefore, must have the same
Lipschitz constant (which is around 10). We compute naive upper bounds on the Lipschitz constants
of these DNNs (we cannot use the SDP-based bound of Fazlyab et al. (2019) due to technicalities in
the construction of the unrolled DNN; refer to Appendix D). We can observe (Figure 7 in Appendix
F) that the upper bounds corresponding to both PR and FB iterations are in the range 105 to 1013,
suggesting that unrolling the monDEQ and employing standard techniques on the unrolled monDEQ
is not a viable way to bound the Lipschitz constant. More details about the construction of these
equivalent DNNs for both FB and PR iterations are provided in Appendix D.

5.2 GENERALIZATION BOUNDS

A key advantage of the monDEQ generalization bounds derived in Section 4 is the lack of any depth
analog that can cause the bounds to grow exponentially. To assess this aspect experimentally, we
first compute the DNN generalization bound following the protocol of Nagarajan & Kolter (2018).
We train DNNs (width = 40) of varying depth of 3 to 14 layers, and compare to similar monDEQs
with various m values. Each model is trained on a sample of 4096 MNIST examples until the
margin error at margin γ = 10 reaches below 10% which serves to standardize the experiments
across choice of batch size and learning rate. As widely reported, we see that DNN bounds increase
exponentially with depth, ranging numerically from 104 for depth 3 networks to 108 (see Figure 3a).
For monDEQs of width = 40, the bound decreases monotonically with m, and is confined to the
range 104 to 106, as seen in Figure 3b (note the difference in scale). In contrast, the true test error of
the DNNs increases only slightly with depth, and that of the monDEQs increases only slightly with
m. Note that the DNNs and monDEQ s have comparable test error (see Figure 8 in Appendix G).

Finally, as done for Lipschitz bounds above, we compare our generalization bound to what we obtain
by unrolling the monDEQ into a DNN, and then computing the Neyshabur et al. (2018) bound more-
or-less directly (see Appendix E). We do this only for FB iterations, as the inverted operators of PR
iterations complicate the analysis. As seen in Figure 8c, the resulting bounds are quite high, though
the difference with our bound is not as great as was seen for the unrolled Lipschitz bounds above.
We attribute this to the fact that our generalization bound technique is a minimal modification to that
of Neyshabur et al. (2018); we expect that it can be tightened with more refined analysis.

5.3 ADVERSARIAL ROBUSTNESS OF MONDEQS

In this section, we empirically demonstrate an important use case for the tight Lipschitz constants of
the monDEQ: robustness to adversarial examples. We experiment with both certified adversarial `2
robustness as well as empirical robustness to adversarial PGD `2-bounded attacks. Here we describe
our results on MNIST, and report similar experiments on CIFAR-10 in Appendix H.
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Figure 4: Superior adversarial robustness of monDEQs as compared to DNNs

Certified adversarial robustness Consider any point x′ within an l2 ball of radius ε around x.
Then, we have that

‖f(x)− f(x′)‖∞ ≤ ‖f(x)− f(x′)‖2 ≤ L‖x− x′‖2 ≤ Lε

Define margin(x) = f(x)y −maxi 6=y f(x)i, where f(x)y is the logit corresponding to the label y
of the input x. Then if Lε ≤ 1

2 margin(x), we are certified robust to any perturbed input x′ within an
l2-ball of radius ε around x. Thus, we can empirically compare DNNs and monDEQs with regards
to this certificate on MNIST. For a range of ε values, we compute the (certified) robust test accuracy
(fraction of points in test set for which the aforementioned condition holds) for trained DNNs as
well as monDEQs. We note here that our choice of ε values corresponds to inputs normalized in
the range [0, 1]. For DNNs, just as in Figure 1a, we vary the depth for fixed h = 40, and use the
L values computed by using the method in Fazlyab et al. (2019). For monDEQs, we set width
h = 40,m = 0.1, 20 and substitute our upper bound for L. Note that since the L values for
monDEQs observed in Section 5.1 were significantly smaller than those for the DNNs, one would
expect the condition for the certificate to hold more easily for monDEQs. Indeed, we verify this
in our experiments. In Figure 4a, we can observe that the robust test accuracy for the monDEQ
with m = 20 at ε = 0.2 is 51%, while that for the best DNN (d = 3), is just 4%. This illustrates
that monDEQs allow for better certificates to adversarial robustness, owing to their small Lipschitz
constants, and the ability to control it by setting m.

Empirical robustness We also assess the empirical robustness of monDEQs to l2-bounded Pro-
jected Gradient Descent attacks (implemented as part of the Foolbox toolbox (Rauber et al., 2017;
2020)) on both, trained monDEQs and DNNs on MNIST, and compute the accuracy on these adver-
sarially perturbed test examples. Figure 4b shows the results: in general, over a range of ε values,
the robust test accuracy of the monDEQ with m = 20 is larger than that of the DNNs.

6 CONCLUSION

In this paper, we derived Lipschitz bounds for monotone DEQs, a recently proposed class of impicit-
layer networks, and showed that they depend in a straighforward manner on the strong monotonicity
parameter m of these networks. Having derived a Lipschitz bound with respect to perturbation in
the weights, we were able to derive a PAC-Bayesian generalization bound for the monotone DEQ,
which does not depend exponentially on depth. We showed empirically that our bounds are sensible,
can be controlled by choosing m suitably, and do not suffer with increasing depth of the network.
As future work, we aim to analyze the vacuousness of the derived generalization bound. As such,
since our bound does not suffer exponentially with depth, we hope to be able to make the analysis
tighter and derive a non-vacuous generalization bound.
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A PROOF OF PROPOSITION 1

Proof.

‖Tx− Ty‖22 = ‖((1− α)I + αW )x− ((1− α)I + αW )y‖22
= ‖x− y − α(I −W )(x− y)‖22
= ‖x− y‖22 − 2α(x− y)T (I −W )(x− y) + α2‖(I −W )(x− y)‖22
≤ ‖x− y‖22 − 2α(x− y)T (I −W )(x− y) + α2L[I −W ]2‖x− y‖22

Now, note that by the strong monotonicity of the monDEQ,

I −W � mI,

which implies that (x− y)T (I −W )(x− y) ≥ m‖x− y‖22. Substituting this bound above, we have
that

‖Tx− Ty‖22 ≤ ‖x− y‖22 − 2αm‖x− y‖22 + α2L[I −W ]2‖x− y‖22
= (1− 2αm+ α2L[I −W ]2)‖x− y‖22

Thus, we have that L[T ] ≤
√

1− 2αm+ α2L[I −W ]2

B PROOF OF THEOREM 2

In order to derive the perturbation bound in Theorem 2, we first state the following proposition,
which bounds the norm of the output after k forward-backward iterations.
Proposition 2. Let fk(W,U, b) denote the kth iterate of the forward-backward iterations of the
monDEQ parameterized by W,U, b on a fixed arbitrary input x. Further, let T (W ) = (1 − α)I +
αW . Then, we have that

‖fk(W,U, b)‖2 ≤
α‖Ux+ b‖2
1− L[T (W )]

Proof of Proposition 2.

‖fk(W,U, b)‖2 = ‖σ(Tfk−1(W,U, b) + α(Ux+ b))‖2
≤ ‖Tfk−1(W,U, b) + α(Ux+ b)‖2 (ReLU is 1-Lipschitz)

≤ ‖T‖2‖fk−1(W,U, b)‖2 + α‖Ux+ b‖2
= L[T ]‖fk−1(W,U, b)‖2 + α‖Ux+ b‖2

≤ L[T ]k‖f0(W,U, b)‖2 + α‖Ux+ b‖2
k−1∑
i=0

L[T ]i

= α‖Ux+ b‖2
k−1∑
i=0

L[T ]i (since f0(W,U, b) = 0)

≤ α‖Ux+ b‖2
∞∑
i=0

L[T ]i

=
α‖Ux+ b‖2

1− L[T ]
(since L[T ] < 1)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Denote f̄k = fk(W̄ , Ū , b̄) and fk = fk(W,U, b). Further, denote ∆k =

‖f̄k − fk‖2. For α ∈
(

0,min
(

2m
L[I−W ]2 ,

2m̄
L[I−W̄ ]2

))
, we have from Proposition 1 that both

12
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‖T (W )‖2, ‖T (W̄ )‖2 < 1. Thus,

∆k = ‖σ[T (W̄ )f̄k−1 + α(Ūx+ b̄)]− σ[T (W )fk−1 + α(Ux+ b)]‖2
≤ ‖T (W̄ )f̄k−1 − T (W )fk−1 + α(Ū − U)x+ α(b̄− b)‖2
≤ ‖T (W̄ )(f̄k−1 − fk−1) + (T (W̄ )− T (W ))fk−1 + α(Ū − U)x+ α(b̄− b)‖2
≤ ‖T (W̄ )(f̄k−1 − fk−1) + α(W̄ −W )fk−1 + α(Ū − U)x+ α(b̄− b)‖2
≤ ‖T (W̄ )‖2∆k−1 + α‖W̄ −W )‖2‖fk−1‖2 + α‖(Ū − U)x‖2 + α‖b̄− b‖2

≤ ‖T (W̄ )‖2∆k−1 +
α2‖W̄ −W )‖2‖Ux+ b‖2

1− ‖T (W )‖2
+ α‖(Ū − U)x‖2 + α‖b̄− b‖2 (Proposition 2)

≤
(
α2‖W̄ −W )‖2‖Ux+ b‖2

1− ‖T (W )‖2
+ α‖(Ū − U)x‖2 + α‖b̄− b‖2

) k−1∑
i=0

‖T (W̄ )‖i2

Notice here again that the above inequality holds for all k. Taking the limit as k →∞ similar to the
step in the proof of Theorem 1, we have

‖f(W̄ , Ū , b̄)− f(W,U, b)‖2 = lim
k→∞

∆k

≤
(
α2‖W̄ −W )‖2‖Ux+ b‖2

1− ‖T (W )‖2
+ α‖(Ū − U)x‖2 + α‖b̄− b‖2

) ∞∑
i=0

‖T (W̄ )‖i2

=
α2‖W̄ −W )‖2‖Ux+ b‖2

(1− ‖T (W )‖2)(1− ‖T (W̄ )‖2)
+ α
‖(Ū − U)x‖2 + ‖b̄− b‖2

1− ‖T (W̄ )‖2
Finally, taking α→ 0, we have that

‖f(W̄ , Ū , b̄)− f(W,U, b)‖2 ≤ lim
α→0

(
α2‖W̄ −W )‖2‖Ux+ b‖2

(1− ‖T (W )‖2)(1− ‖T (W̄ )‖2)
+

α
‖(Ū − U)x‖2 + ‖b̄− b‖2

1− ‖T (W̄ )‖2

)
= ‖W̄ −W )‖2‖Ux+ b‖2 lim

α→0

α

1− ‖T (W )‖2
· lim
α→0

α

1− ‖T (W̄ )‖2
+ (‖(Ū − U)x‖2 + ‖b̄− b‖2) lim

α→0

α

1− ‖T (W̄ )‖2

=
‖W̄ −W‖2‖Ux+ b‖2

mm̄
+
‖(Ū − U)x‖2 + ‖b̄− b‖2

m̄
(applying L’Hopital’s rule)

C PROOF OF THEOREM 3

Proof. We first state Lemma 1 from Neyshabur et al. (2018).

Lemma 1 (Lemma 1 from Neyshabur et al. (2018)). Let fw be any predictor with parameters w,
and let P denote any distribution on the parameters that is independent of the training data. Then,
for any δ, γ > 0, with probability ≥ 1 − δ over the training data of size M , for any w, and any
random perturbation u such that P[maxx ‖fw+u(x)− fw(x)‖∞ < γ

4 ] ≥ 1
2 , we have

L0(fw) ≤ L̂γ(fw) + 4

√
KL(w + u||P ) + ln 6M

δ

M − 1

Now, we derive a perturbation bound for the monDEQ when we incorporate the a fully connected
layer at the end, as mentioned in Section 4. That is, we consider fo(x) = Wof(x) + b0 where
f is the output of the fixed-point iterations of the monDEQ. Next, we consider perturbations
∆A,∆B ,∆U ,∆b,∆Wo

,∆bo for A,B,U, b,Wo, bo respectively. The entries in the perturbation ma-
trices are each drawn independently from a Gaussian N (0, σ2). Let f̄o to denote the function at the
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perturbed values of the weights. Then, we have that
‖f̄o(x)− fo(x)‖2 = ‖W̄of̄(x) + b̄o −Wof(x)− bo‖2

≤ ‖Wo(f̄(x)− f(x)) + (W̄o −Wo)f̄(x)‖2 + ‖b̄o − bo‖2

≤ ‖Wo‖2∆ +
‖W̄o −Wo‖2‖Ux+ b‖2

m̄
+ ‖b̄o − bo‖2

where ∆ is the bound from Theorem 2.

Now, let β = max(‖U‖2, ‖A‖2, ‖Wo‖2, ‖b‖2). Just as in (Neyshabur et al., 2018), since we cannot
use β in determining the parameters of the prior distribution P in Lemma 1, we will consider pre-
determined values β̃ on a grid, and then do a union bound. For now, we fix β̃, and consider all the
values β such that |β − β̃| < c1β for some constant c1 < 1.

Since the entries in the perturbations are drawn fromN (0, σ2), we have the following bound on the
l2 norms of these perturbations:

P∆·∼N (0,σ2I)[‖∆·‖2 > t] ≤ 2he−t
2/2hσ2

where ∆· is a placeholder for each of the perturbation matrices. Thus, we have that with probability
≥ 1/2, all of the ‖∆·‖2 are bounded above by σ

√
2h ln(24h) := ω.

Now, we bound the perturbation in ‖W‖2 when A and B are perturbed. We have that

‖∆W ‖2 = ‖AT∆A + ∆T
AA+ ∆T

A∆A + ∆B −∆T
B‖2

≤ 2‖A‖2‖∆A‖2 + ‖∆A‖22
≤ 2ω(β + ω) (with probability 1/2)

Substituting this above, we have that for all x, with probability at least 1/2,

‖f̄o(x)− fo(x)‖2 ≤
2β2ω(β + ω)(B + 1)

m2
+

2ωβ(B + 1)

m
+ ω

Here, let c2 > 0 be some constant such that ω ≤ c2β. Thus, we have that

‖f̄o(x)− fo(x)‖2 ≤ ω
(

2β3(1 + c2)(B + 1)

m2
+

2β(B + 1)

m
+ 1

)
≤ ω

(
2β̃3(1 + c2)(B + 1)

m2(1− c1)3
+

2β̃(B + 1)

m(1− c1)
+ 1

)

= σ
√

2h ln(24h)

(
2β̃3(1 + c2)(B + 1) + 2mβ̃(B + 1)(1− c1)2 +m2(1− c1)3

m2(1− c1)3

)
Setting σ = γm2(1−c1)3

4
√

2h ln(24h)(2β̃3(1+c2)(B+1)+2mβ̃(B+1)(1−c1)2+m2(1−c1)3)
makes this ≤ γ

4 . Since we

need ω ≤ c2β we can take the smallest c2 such that

c2 ≥
(1 + c1)σ

√
2h ln(24h)

β̃
≥
σ
√

2h ln(24h)

β
=
ω

β

Taking c2 = (1+c1)γ

4β̃
suffices. We will later plug in the value

c3 :=
(1 + c1)γ

4(1− c1)β
≥ c2

to bound c2.

Then,

KL(W· + ∆W· |P ) ≤
∑
‖W·‖2F
2σ2

=
16h ln(24h)(2β̃3(1 + c2)(B + 1) + 2mβ̃(B + 1)(1− c1)2 +m2(1− c1)3)2

γ2m4(1− c1)6

∑
‖W·‖2F

≤ 16h ln(24h)(2β3(1 + c1)3(1 + c3)(B + 1) + 2mβ(1 + c1)(B + 1)(1− c1)2 +m2(1− c1)3)2

γ2m4(1− c1)6

∑
‖W·‖2F
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Then, by Lemma 1, we have that with probability 1− δ,

L0(f0) ≤ L̂γ(fo)+

4

√
16h ln(24h)(2β3(1 + c1)3(1 + c3)(B + 1) + 2mβ(1 + c1)(B + 1)(1− c1)2 +m2(1− c1)3)2

γ2m4(1− c1)6(M − 1)

∑
‖W·‖2F +

ln( 6M
δ )

M − 1

Now we need to take a union bound over β̃ so that the above result holds for all β. Observe that we
only need to consider β in the range

γm

2(B + 1)
≤ β ≤ γm

√
M

2(B + 1)
.

If β ≤ γm
2(B+1) then |f(x)| ≤ β(B+1)

m ≤ γ
2 so L̂γ(f) > 1. If β ≥ γm

√
M

2(B+1) then the second term in
the first term in the numerator is greater than 1 so the theorem holds trivially.

So |β − β̃| ≤ c1
γm

2(B+1) guarantees |β − β̃| ≤ c1β in this range. So we can use a cover of size
√
M/2c1: This amounts to replacing ln 6M/δ with ln 3M3/2/c1δ.

Finally, substituting c3 = (1+c1)γ
4(1−c1)β , we get the theorem statement. We can also effectively optimize

over c1 to remove it from the final bound.

D UNROLLING FORWARD-BACKWARD AND PEACEMAN-RACHFORD
ITERATIONS

In this section, we derive the form of the equivalent feedforward DNN that computes the same quan-
tity as running k iterations of either Forward-Backward or Peaceman-Rachford iterations, which are
operator-splitting methods for computing the fixed point of equation 1 (refer Winston & Kolter
(2020)).

D.1 UNROLLING FORWARD-BACKWARD ITERATIONS

One step in the Forward-Backward iterations computes

z(i+1) = σ((1− α)I + αW )z(i) + α(Ux+ b))

To simulate k steps of these computations as a depth k-feedforward network, let us construct the
following weight matrices:

W1 =

[
αU
I

]
Wu =

[
(1− α)I + αW αU

0 I

]
Wf = [Wo 0]

Then, we can observe that

z(1) = σ

(
W1x+

[
αb
0

])
z(i+1) = σ

(
Wu

[
z(i)

x

]
+

[
αb
0

])
Here, σ applies only to the top h coordinates corresponding to z(i). Finally, we multiply the output
of the monDEQ after k iterations with the output weights, to obtain fo(x) as

fo(x) = Wf

[
z(k)

x

]
+ bo

Thus, the equivalent depth-k DNN which we construct would have weight matrices
W1, [Wu]k−1

i=1 ,Wf . In this DNN, the ReLUs in the intermediate layers would only apply to the
top coordinates corresponding to z (this is the technical reason why we can’t use the SDP bound
given by (Fazlyab et al., 2019) for computing the Lipschitz constants of these unrolled networks,
since they require the same nonlinearity to apply pointwise at all coordinates).
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D.2 UNROLLING PEACEMAN-RACHFORD ITERATIONS

Define V = (I + α(I −W ))−1. One step in the Peaceman-Rachford iterations computes

u(i+1) = u(i) − 2z(i) + 4V z(i) − 2V u(i) + 2αV Ux+ 2αV b

z(i+1) = σ(ui+1)

To simulate k steps of these computations as a depth k-feedforward network, let us construct the
following weight matrices:

W1 =

[
2αV U
2αV U
I

]

Wu =

[
I − 2V 4V − 2I 2αV U
I − 2V 4V − 2I 2αV U

0 0 I

]
Wf = [0 Wo 0]

Then, we can observe that

z(1) = σ

(
W1x+

[
2αV b
2αV b

0

])

z(i+1) = σ

Wu

u(i)

z(i)

x

+

[
2αV b
2αV b

0

]
Here, σ applies only to the top h coordinates corresponding to z(i). Finally, we multiply the output
of the monDEQ after k iterations with the output weights, to obtain fo(x) as

f0(x) = Wf

u(k)

z(k)

x

+ bo

Thus, the equivalent depth-k DNN which we construct would have weight matrices
W1, [Wu]k−1

i=1 ,Wf , and the ReLUs in the intermediate layers would only apply to the top coordi-
nates corresponding to z.

E GENERALIZATION BOUND FOR UNROLLED MONDEQ

In this section, we derive a generalization bound for an unrolled monDEQ after unrolling the
forward-backward iterations d times and constructing the equivalent depth-d network. The anal-
ysis follows the derivation of the generalization bound for DNNs by (Neyshabur et al., 2018), but
we have to be careful since the weight matrices across the hidden layers are all the same and are of
a certain parameterized form. Since the analysis in (Neyshabur et al., 2018) does not include biases
in the DNNs, here, we consider unrolling monDEQs which do not have the bias term b.

Take each layer weights to be

Wu =

[
I − α(I −W ) αU

0 I

]
where the network is now a function of

z̄i :=

[
z(i)

x

]
and the ReLU applies only to the z(i) component. And

Wf =

[
Wo

0

]
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Our prior distribution will now be over ∆Wo
,∆A,∆B ,∆U ∼ N (0, σ2I). Similar to the corre-

sponding step in C above, we have that with probability ≥ 1
2 , the perturbations are each bounded by

ω := σ
√

2h ln(16h). Also

‖∆W ‖2 = ‖ĀT Ā−ATA+ B̄ −B − B̄T +BT ‖2
≤ ‖∆A‖22 + 2‖∆A‖2‖A‖2 + 2‖∆B‖2

And so

‖∆Wu
‖2 =

∥∥∥∥[ α∆W α∆U

0 0

]∥∥∥∥
2

≤ α
(
‖∆A‖22 + 2‖∆A‖2‖A‖2 + 2‖∆B‖2 + ‖∆U‖2

)
We take β = max{‖A‖2, ‖B‖2, ‖Wu‖2, ‖Wo‖2}. We assume that |β̃ − β| ≤ 1

dβ and d ≥ 2, so we
have β < eβ̃. Then applying Lemma 2 in (Neyshabur et al., 2018), we have

|fWu+∆Wu
− fWu

|2 ≤ eBβd−1((d− 1)‖∆Wu
‖2 + ‖∆Wo

‖2)

≤ eBβd−1((d− 1)α
(
‖∆A‖22 + 2‖∆A‖2‖A‖2 + 2‖∆B‖2 + ‖∆U‖2

)
+ ‖∆Wo

‖2)

≤ eBβd−1((d− 1)α(ω2 + 2ωβ + 3ω) + ω)

≤ eBβd−1((d− 1)α(
1

d
β + 2β + 3) + 1)ω

≤ e2Bβ̃d−1((d− 1)α(
e

d
β̃ + 2eβ̃ + 3) + 1)σ

√
2h ln(16h) ≤ γ

4

if we choose
σ =

γ

4e2Bβ̃d−1((d− 1)α( ed β̃ + 2eβ̃ + 3) + 1)
√

2h ln(16h)
.

Let ∑
‖W·‖2F = ‖A‖2F + ‖B‖2F + ‖U‖2F + ‖Wo‖2F

Then

KL(A+ ∆A, B + ∆B , U+∆U ,Wo + ∆Wo
)‖P ) ≤

∑
|A,B,U,Wo|2F

2σ2

=
16e4B2β̃2d−2((d− 1)α( ed β̃ + 2eβ̃ + 3) + 1)22h ln(16h)

γ2

∑
‖W·‖2F

≤
16e2B2β2d−2((d− 1)α( 1

dβ + 2β + 3) + 1)22h ln(16h)

γ2

∑
‖W·‖2F

Now, instantiating Lemma 1 above, we have that with probability at least 1− δ,

L0(f) ≤ L̂γ(f) + 4

√
16e2B2β2d−2((d− 1)α( 1

dβ + 2β + 3) + 1)22h ln(16h)
∑
‖W·‖2F

γ2(M − 1)
+

ln( 6M
δ )

M − 1

Following Neyshabur et al. (2018), we need to take a union bound over β̃ so that the above result
holds for all β. Observe that we only need to consider β in the range

( γ

2B

)1/d

≤ β ≤

(
γ
√
M

2B

)1/d

.

If βd ≤ γm
2B then |f(x)| ≤ βdB ≤ γ

2 so L̂γ(f) > 1. If βd ≥ γ
√
M

2B then the second term in the

first term in the numerator is greater than 1 so the result holds trivially. So |β − β̃| ≤ 1
d

(
γ

2B

)1/d
guarantees |β − β̃| ≤ 1

dβ in this range. So we can use a cover of size dM1/2d, just as in Neyshabur
et al. (2018).
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F ADDITIONAL MONDEQ LIPSCHITZ BOUND RESULTS

0 5 10 15 20
strong-monotonicity param. m

2.5

3.0

3.5

4.0

%
 te

st
 e

rr
or

(a) Width 40 monDEQs shown in Figure 1b
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(b) Convolutional monDEQs shown in Figure 1d

Figure 5: Test error for the monDEQs from Section 5.1
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(b) monDEQ bounds vs Width

Figure 6: Evaluating Lipschitz bounds as a function of width. lb: lower bound; ub: upper bound.
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(a) Forward-Backward unrolled Lipschitz bounds
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(b) Peaceman-Rachford unrolled Lipschitz bounds

Figure 7: Lipschitz bounds for monDEQ by unrolling forward-backward or Peaceman-Rachford,
for a range of α.
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MNIST test error In Figure 5 we plot the test error of the width 40 monDEQs for which the
Lipschitz bounds are given in Figure 1b. We see that it increases from 2.4% for m = 0.5 to 4.2%
for m = 20. For comparison, the DNNs shown in Figure 1a have test error between 2.8% and 3.2%,
with no trend w.r.t. depth.

MNIST width experiments Figure 6 shows the lower and upper bounds for DNNs and monDEQs
of varying widths, as described in Section 5.1. Figure 6a is transcribed from Fazlyab et al. (2019)
figure 2(a).

CIFAR-10 CNN models The details of the CNN sm, CNN med, and CNN lg models used in
Section 5.1 are as follows:

CNN sm:

Layer # Layer # channels out stride
1 Conv2D 32 1
2 Conv2D 32 2
3 Linear 100
4 Linear 10

CNN med:

Layer # Layer # channels out stride
1 Conv2D 32 1
2 Conv2D 32 2
3 Conv2D 64 1
4 Conv2D 64 2
5 Linear 100
6 Linear 10

CNN lg:

Layer # Layer # channels out stride
1 Conv2D 32 1
2 Conv2D 32 2
3 Conv2D 64 1
4 Conv2D 64 2
5 Conv2D 128 1
6 Conv2D 128 2
7 Linear 100
8 Linear 10

All models use ReLU activations and kernels of size 3.

Unrolling monDEQs The approximate upper bounds on monDEQ Lipschitz constants obtained
by unrolling the operator splitting methods are shown in Figure 7.
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G ADDITIONAL MONDEQ GENERALIZATION BOUND RESULTS

We validate that both the monDEQ and DNN models considered in Section 5.2 for generalization
bound comparisons indeed achieve comparable accuracy as well. Figures 8a, 8b illustrate this: we
can observe that the various models considered all achieve test error in the same range.

Next, we compute generalization bounds for unrolled monDEQs (Section E) for a variety of α
values, to get a sense of the quality of our generalization bound for the monDEQ. In Figure 8c, we
can observe that the generalization bounds for these unrolled networks are larger (on the order of
106) as compared to the generalization bound for the monDEQ (on the order 105). This shows that
our bound is tighter.
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(a) DNN Test error vs Depth
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(c) Forward-Backward unrolled generalization bound

Figure 8: Test error for DNNs and monDEQs, and monDEQ generalization bounds by unrolling
forward-backward iterations.
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H ADDITIONAL ADVERSARIAL ROBUSTNESS RESULTS
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(b) Adversarial robustness to attacks

Figure 9: Adversarial robustness of monDEQs as compared to CNNs

We run the same experiments that we ran in Section 5.3 on the CIFAR-10 dataset. We train single
convolution monDEQs (128 channels) with a range of m values, as well as 3 CNN models: CNN
sm, CNN med and CNN lg whose architectures are described in Appendix F above.

As in the case of the MNIST experiments, we see that varying m gives a range of trade offs between
clean accuracy and adversarial robustness. In terms of certified robustness, we see in Figure 9a that
all of the monDEQ s besides m = 20 have both better clean and better robust accuracy than all the
CNNs (with the exception of the CNN with d = 2, which has much lower clean accuracy). In Figure
9b, in terms of empirical robustness, we see that m parameterizes a similar trade-off between robust
and clean accuracy. In fact, it is possible to choose m (e.g. m = 1 here), such that the monDEQ
outperforms all CNNs in terms of clean accuracy and at all attack sizes.
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