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Abstract. Developing algorithms using control structures and under-
standing their building blocks are essential skills in mastering program-
ming.In this work, we applied a formal model and reasoning rules for
Jena reasoner to build execution trace for the given algorithm and find
fault reasons if the student provides an incorrect answer. Using formal
reasoner to check domain constraints allowed us to provide explanatory
feedback for every type of error students can make.
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1 Introduction

Ontology models and formal logic reasoning are used for knowledge representa-
tion and processing in different domains for a wide range of tasks. E.g., Ontology
Driven Software Engineering (ODSE) approach [3] implies using ontology models
for various aspects of software engineering: modeling different parts of software
systems, products, modules, and algorithms. Most of these aspects are important
in introductory programming courses as well.

One of the efficient approaches to introducing new learners to algorithms
analysis and synthesis is the trace-based teaching approach that allows to de-
crease the dropout and grade failures by 25.49% and 8.51% respectively [1,2,4].
According to the structured programming approach, any algorithm can be repre-
sented as a tree of control structures. In the introductory programming teaching
on the Problem Formulation step [2] the algorithmic reasoning skills (”a pool
of abilities that are connected to constructing and understanding algorithms: to
analyze given problems; to specify a problem precisely; to find basic actions that
are adequate to the given problem; to construct a correct algorithm to a given
problem using the basic actions” [5]) improvement is important. On the Solution
Expression step, when the problem is formulated, and students should express
a solution through programming structures, selecting the appropriate structures
for solving the task is the main difficulty [6]. Finally, on the Solution Execution
and Evaluation step, students should test and analyse the code to identify and
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correct problems, and code tracing activities is an appropriate task on this step
[1].

So, automated algorithm-trace generation and analysis with explanatory
feedback providing is an important task in introductory programming learning
that can be solved using ontology domain models and formal logic reasoning.
The reasoning rules allow to set the domain constraints and use it not only for
the execution trace check for correctness but for the particular errors detection
and corresponding explanation providing as well at the same time.

2 Intelligent Application to Teach Algorithms

We developed an online tutoring tool
How It Works: Algorithms®' using
ontology reasoning to grade students’
answers and generate explanatory
feedback about their errors. Its input
consists of an algorithm, represented
as a tree of basic control structures
— sequences, alternatives, and loops
(see Fig. 2) — and the values of con-
trol conditions. For grading purposes,
the reasoner also receives the student-
built trace as a sequence of control-
statement execution acts. For com-
plex control structures, the beginning
and the end of their execution con-
stitute separate act to represent the
nesting of control statements in the
trace.

To generate explanatory feedback,
we classified all the possible errors in
execution-trace building creating 33

\\,, I concepts to represent them (Fig. 1).
o The reasoning engine determines the
Fig. 1. Concepts for classifying errors error class and the additional informa-

tion about the individuals related to
the error for feedback generation. We performed a study of software reasoners to
find the best one for our domain, comparing Pellet, Apache Jena, Apache Jena
SPARQL query processor, SWI-Prolog with semweb package, and ASP (Answer
Set Programming) solvers Clingo and DLV. The results show that Apache Jena
performs inference quicker than other reasoners on most of the domain-specific
tasks.
In particular, Apache Jena infers the correct trace and student’s errors 2.4—
2.9 times quicker than SWRL Pellet reasoner. Jena rules also more expressive
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Fig. 2. Fragment of algorithm represented as an abstract syntax tree

than SWRL, having full CRUD operations support (e.g., creation of concepts
and individuals), negation support, and relation retraction.
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Fig. 3. Execution trace processing example

So, the developed ontol-
ogy contains about 30 con-
cepts for algorithm elements,
7 trace acts, 29 kinds of
errors, and 27 explanations
for correct acts; 30 roles,
and about 100 positive, neg-
ative, and helper rules. Us-
ing these rules, the execu-
tion trace can be generated
based given the algorithm,
determine the domain con-
straints violated by the stu-
dent, and provide all the nec-
essary information about er-
rors to generate explanatory
feedback (Fig. 3).

The implemented software
tool allows students to input
the user execution trace for
the teacher-defined algorithm
(stored as an URL for easy ac-
cess) by clicking buttons in-

side the algorithm and show detailed explanatory feedback for errors made using
the ontology reasoning described above (Fig. 4).

3 Conclusion and Future Work

In this study, we present an ontology with a set of reasoning rules that is able
to build execution traces for a given algorithm, find errors in students’ traces,
and provide the necessary information to generate explanatory feedback about
the violated constraints representing subject domain laws. The approach was
implemented in a software tool, using Apache Jena inference engine for ontol-
ogy reasoning. The usage of forward chaining RETE algorithm and Jena rules
and reasoning allowed us implementing domain-specific rules with adequate per-
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orogram began
loop work began 1st time

condition not_enough evaluated 1st time - true

iteration 1 of loop work began

alternative choose began 1st time

condition ready evaluated 1st time - true
branch of condition (ready) began 1st time

stmt some stuff() executed 1st time

stmt print("the stuff performed!") executed 1st time

branch of condition (ready) ended 1st time

u iteration 1 of loop work ended

You should pay attention

# SequenceFinishedTooEarly: A sequence performs all its actions from the first through the last, so it's too early tofinish the
sequence of the body of the loop 'work, because not all the actions of the sequence have completed (ex. ative 'choose').

» NoAlternativeEndAfterBranch: Each alternative performs no more than one alternative action and terminates. The
alternative ‘choose’ has executed the 'if-ready’ branch and should finish.

ly when all its nested acts have ended, so the act of the body of the loop 'work' cannot
of the alternative ‘choose’ (the alternative 'choose’ isincluded in the body of the loop "work’).

® EndedDeeper: Every
end until the end of i

Fig. 4. Explanatory feedback provided by the develop tool for an error in the trace

formance to grade students’ traces in real time step-by-step, showing feedback
messages right after adding an erroneous line.

The software tool can be used as a basis for developing intelligent tutoring
systems for improvement of algorithmic reasoning skills and developing under-
standing of program execution during introductory programming courses. The
future work includes expanding the set of supported programming languages,
supporting recursive functions in the algorithms, and developing a constraint-
based intelligent tutoring system based on the proposed approach for complex
exercises implementation by adding learner’s model and intelligent exercise se-
lection.
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