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ABSTRACT

Deep neural networks (DNNs) have achieved amazing success on a wide range of
high-level computer vision tasks. However, it is proved that DNNs are vulnerable
to adversarial samples. The threat of adversarial samples comes from the large dis-
tribution gap between adversarial samples and clean samples in the feature spaces
of the target DNNs. To this, we utilize deep generative networks with a novel
training scheme to eliminate the distribution gap. Our training strategy introduces
constraints in both pixel level as well as feature level, and the trained network
can effectively align the distribution of adversarial samples with clean samples for
target DNNs through translating their pixel values. Specifically, compared with
previous methods, we propose a more efficient pixel-level training constraint to
weaken the hardness of aligning adversarial samples to clean samples, which can
thus obviously enhance the robustness on adversarial samples. Besides, a class-
aware feature-level constraint is formulated for integrated distribution alignment.
Our approach is general and suitable for multiple tasks like image classification,
semantic segmentation and object detection. We conduct extensive experiments
on these three tasks and different datasets, on which the superiority of our strategy
over existing methods demonstrates its effectiveness and generality.

1 INTRODUCTION

Deep neural networks (DNNs) have shown impressive performance on many computer vision tasks,
e.g., image classification (He et al., 2016), semantic segmentation (Zhao et al., 2017) and object
detection (Liu et al., 2016a). However, recently many works have revealed that deep learning models
are commonly vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014b;
Arnab et al., 2018; Xie et al., 2017b), which are maliciously generated to fool the target model by
applying adversarial perturbations on original clean inputs. Such perturbations are imperceptible to
the human vision system, while cause a great threat to practical deep learning applications, such as
face recognition (Dong et al., 2019; Joshi et al., 2019), autonomous driving (Jia et al., 2019; Kong
et al., 2020), etc.

An efficient method to eliminate adversarial perturbations is applying input transformation to the
input samples before they are processed by the target DNNs. One primitive strategy is adopting
traditional image processing (e.g., image compression (Guo et al., 2017)) to implement such trans-
formation. However, many researchers have noticed the limitations of such strategy, and they reveal
the effectiveness of deep generative networks (DGNs) to accomplish such transformation: train a
network with adversarial/clean samples as inputs and synthesize outputs on which the target model
works well. The essence of these methods is weakening the differences between adversarial sam-
ples and the corresponding clean samples, through translating their pixel values with the network.
Current approaches to train such DGNs can be divided into three categories: 1) set pixel-level con-
straints for the reduction of the distance between adversarial and clean samples (Shen et al., 2017;
Mustafa et al., 2019); 2) adopt the constraints in the feature level of target models (Liao et al., 2018);
3) employ the constraints in pixel level as well as feature level (Naseer et al., 2020; Li et al., 2020).
Nevertheless, all of them ignore the overall distribution alignment in the feature spaces of target
models. Thus, there still exist spaces to improve their defense quality.

In this paper, we train DGNs that defend for target models via aligning the distribution of clean and
adversarial samples in their feature spaces. Compared with existing methods, novel training con-
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(a) xc in O (b) xa in O (c) x̂a in O (d) x̂c in O

Figure 1: t-SNE visualizations in feature space of target model on CIFAR10 (Krizhevsky et al.,
2009). Target model O has admirable distributions for clean samples xc while disordered distribu-
tions for adversarial samples xa. Our G can turn xc/xa into x̂c/x̂a with corrected distrubutions.

straints are set in both pixel level and feature level. In pixel level, we propose to match adversarial
samples with the clean samples in the output spaces of the DGNs, and this boosts the alignment in
feature level indirectly. In feature level, we design a class-aware constraint by aligning the central
feature of clean and adversarial samples within each class, as well as maximizing the inter-class
distance and minimizing the intra-class distance for all categories. Our strategy is suitable for nu-
merous high-level computer vision tasks and massive experiments are conducted on classification,
semantic segmentation and object detection as examples. Further, these experiments are executed
with diverse datasets, models and attacks. DGNs trained with our approach can excellently align
the distribution of adversarial samples to clean samples in the feature space of the target model as
exhibited in Fig. 1. In summary, our contributions include:

• We are the first to train DGNs to achieve adversarial defense by viewing this task as inte-
grated distribution alignment for clean and adversarial samples.

• We propose novel training constraints in both pixel level and feature level of target models,
and the trained DGNs can defend against miscellaneous adversarial samples.

• Extensive experiments are conducted on various tasks and datasets, on which the superior-
ity of our scheme over existing methods demonstrates its effectiveness and generality.

2 RELATED WORK

Adversarial Attack Adversarial attack can be divided into two categories: white-box attack (Atha-
lye & Carlini, 2018; Goodfellow et al., 2014b), where attackers have complete knowledge of the
target model; black-box attack (Papernot et al., 2017), where attackers have almost no knowledge of
the target model. Existing attacks focus on the classification task and they are normally achieved by
computing or simulating gradient informations of target models (Goodfellow et al., 2014b; Kurakin
et al., 2016). Meanwhile, as indicated by recent papers, semantic segmentation networks (Xie et al.,
2017b; Metzen et al., 2017; Arnab et al., 2018) and object detection networks (Xie et al., 2017b; Li
et al., 2018; Song et al., 2018) are also vulnerable to adversarial attacks.

Adversarial Defense To eliminate the threat of adversarial perturbations, there have been several
kinds of strategies for defenses and a major class of defenses processes the input images with in-
put transformations to achieve robustness (Guo et al., 2017; Xie et al., 2017a). Such approaches
translate the pixel values of adversarial/clean samples to remove the influence of adversarial pertur-
bations, and almost all existing methods treat such transformation as the task of denoise. Moreover,
recently, some works have noticed the efficacy of input transformations which are implemented
through DGNs. Current strategies that employ DGNs can be divided into three categories, accord-
ing to the constraints they utilized in the training. 1) Using pixel-level constraints to reduce the
differences of pixel values between clean and adversarial samples. (Shen et al., 2017; Mustafa et al.,
2019; Samangouei et al., 2018; Prakash et al., 2018; Song et al., 2017); 2) applying feature-level con-
straints to unify representations of clean and adversarial samples in the feature space of the target
model (Liao et al., 2018); 3) simultaneously setting pixel-level and feature-level constraints, which
is proved to be more advantageous (Naseer et al., 2020; Li et al., 2020). Especially, in feature level,
existing approaches only set the distance between clean and adversarial samples as the constraint to
optimize, while have not considered the alignment of integrated distribution in the feature space.
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Figure 2: Our overall framework for the training of the deep generative network G. To align the dis-
tribution of clean samples xc and adversarial samples xa for the target model, the training constraints
are set in the pixel level as well as the feature level of the target model O.

3 METHOD

Generally speaking, we can train a network O for one target task S, e.g., image classification,
semantic segmentation and object detection. The network O is usually trained with clean samples
xc and we suppose xc ∼ C, where C is the distribution of clean samples. Normally, the trained
network O behaves brilliantly on xc ∼ C for the task S, while its performance will be remarkably
decreased after adding adversarial perturbations ϵ to xc. Specially, adversarial samples are denoted
as xa (xa = xc + ϵ), and we represent the distribution of adversarial samples as A. As shown in
Fig. 1 (a) and (b), although the diversity of pixel values between xc and xa is imperceptible, there
is a large gap between C and A in the feature space of the target model O which leads to the terrible
performance of O on adversarial samples. Therefore, to eliminate the negative threat of adversarial
samples, it is rational to align C and A for a target model O as exhibited in Fig. 1 (c) and (d). Based
on this observation and motivation, we propose to train a deep generative network G which could
align C and A in the feature space of the target model via modifying the pixel values of xc and xa.
As a result, G can translate xc/xa into x̂c/x̂a, and O achieves great results on x̂c/x̂a. To train G, we
set the constraints for alignment in both pixel level and feature level as shown in Fig. 2, and push
the distribution of x̂c/x̂a to approach C since O performs well on xc ∼ C.

3.1 PIXEL-LEVEL ALIGNMENT

The pixel-level training constraints are employed to weaken the difference in pixel values between
clean and adversarial samples (specially, the pixel values refer to the RGB space in this paper),
and can help the alignment in the feature space of the target model O indirectly. Previous works
have validated that “distance metric between clean and adversarial samples” and “adversarial learn-
ing” (Goodfellow et al., 2014a) are two effective pixel-level training constraints. And traditional
pixel-level constraints (Shen et al., 2017; Mustafa et al., 2019; Samangouei et al., 2018; Prakash
et al., 2018; Song et al., 2017) mainly adopt xc to guide the formulation of x̂c and x̂a through the
generator G, as displayed in Fig. 3 (a). i.e., they compute the distance metric between x̂c/x̂a and
xc, and set xc as real samples, x̂c/x̂a as fake samples to conduct adversarial learning. However,
although such setting could result in admirable performance on clean samples for O, it might lead
to outcomes on adversarial samples which are not satisfactory enough. This primarily dues to the
ill-posed discrepancy between C and A that causes the hardness of directly matching x̂a to xc.

To this, we propose a novel scheme for pixel-level training constraints, where we use xc to guide
the formulation of x̂c and utilize x̂c to help the match of xa, as shown in Fig. 3 (b). In this set-
ting, x̂c would actually act as an intermediate to shorten the discrepancy between x̂a and xc more
efficiently. Comprehensive experiments illustrate that our novel setting can results in conspicuous
improvements for the performances on adversarial samples, compared to the traditional scheme.
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Figure 3: The illustration for differences between traditional and proposed pixel-level constraints.

Specifically speaking, our pixel-level training constraints also include the distance metric as well
as adversarial learning. Given clean samples xc, adversarial samples xa are obtained by applying
adversarial perturbations ϵ on xc, and the generator G synthesizes the outputs x̂c/x̂a with the inputs
of xc/xa. Based on such inputs and outputs, we can define a reconstruction loss term Lr as

x̂a = G(xa), x̂c = G(xc), Lr = E(∥x̂c − xc∥) + E(∥x̂a − x̂c∥), (1)

where E is the operation to compute the mean value. Moreover, to help synthesize images with high
resolution and complex texture, we also compute a perceptual loss term Lp as

Lp =

5∑
i=1

E(||Φi(x̂
c)− Φi(x

c)||) +
5∑

i=1

E(||Φi(x̂
a)− Φi(x̂

c)||), (2)

where Φ1(·) to Φ5(·) are outputs from the ReLU1 2, ReLU2 2, ReLU3 3, ReLU4 3, ReLU5 3 lay-
ers of an ImageNet-pretrained VGG-16 network (Simonyan & Zisserman, 2014). Further, we need
the training constraint to match the global pattern for C and A in pixel level, which can be imple-
mented as loss terms in adversarial learning with sampling. Therefore, we employ a discriminator
D, and the loss terms are set as the form of LSGAN (Mao et al., 2017):

LGANd = Exc∼C((D(x̂c)− 1)2) + Exa∼A((D(x̂a)− 0)2), LGANg = Exa∼A((D(x̂a)− 1)2), (3)

where LGANd
is set for the discriminator, and LGANg

is adopted for the generator. Additionally,
the feature match loss is adopted as an auxiliary part of the adversarial loss (Wang et al., 2018): we
obtain intermediate features from D for fake and real samples, and compute their distances as

Lm = E(∥F(x̂c)−F(x̂a)∥), (4)

where F(x) are the intermediate features obtained from the discriminator for real/fake samples x.

3.2 FEATURE-LEVEL ALIGNMENT

Besides the pixel-level training constraints, recent works have revealed the necessity of feature-
level training constraints for the target model O (Liao et al., 2018; Naseer et al., 2020) to enhance
defense effects. Existing methods formulate feature-level training constraints as the distances in
the feature space of O between synthesized samples and clean samples to optimize. However, they
ignore the constraint for the alignment of overall C and A in the feature level. To this, we propose
a novel class-aware feature-level training constraint, besides the distance metric in the feature space
of O. Our class-aware constraint aims to align the integrated distribution of clean and adversarial
samples within each category for the target model, and minimizing the intra-class distance as well
as maximizing the inter-class distance for the distribution of adversarial samples.

Suppose O is trained with the paired data as (xc, yc) where yc is the ground truths for xc. And
the loss term to train O can be represented as Lo(x

c, yc). To align behaviors of clean samples and
adversarial samples in the feature space of O, we adopt a feature-level loss term as

LFtask = Lo(x̂
c, yc) + Lo(x̂

a, yc). (5)
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Algorithm 1 Our strategy to train the generator G for the target model O on the target task S
Parameter: Training data (xc, yc), initialized generator G and discriminator D

1: while not converged do
2: Read a minibatch of data Db = {xc

1, ..., x
c
b}, Yb = {yc1, ..., ycb}.

3: Use the chosen attack algorithm and O to generate adversarial examples Ab = {xa
1 , ..., x

a
b}.

4: Compute Lr, Lp, LGANg
and Lm, by using Db, Ab and the discriminator D.

5: Forward Db and Ab through O to obtain features of K classes, according to Yb.
6: Compute the clustering center of each class according to the obtained features in this batch.
7: Compute LFclass

by using features of K classes and the corresponding clustering centers.
8: Compute Lg to update the generator G, compute LGANd

to update the discriminator D.
9: end while

Meanwhile, similar to the reconstruction loss in pixel level, we minimize the distances between
adversarial samples and clean samples in the feature space of O and set a loss term LFrec

as:
ẑa = O(x̂a), ẑc = O(x̂c), zc = O(xc), LFrec = E(∥ẑc − zc∥) + E(∥ẑa − zc∥), (6)

where ẑa, ẑc and zc are the intermediate features of x̂a, x̂c and xc in the feature space of O.

On the other hand, previous methods have not considered aligning the overall distribution of C and
A in the feature space of O, which is however beneficial to the defense quality of G. To this, we
formulate our class-aware training constraint for the overall distribution alignment. Suppose there
are K classes within the distribution of C and A, and we represent zc(k) and ẑa(k) as the features
for xc and x̂a of k-th class that are extracted from O. Moreover, the clustering centers of zc(k) and
ẑa(k) can be denoted as mc(k) and m̂a(k), in the distribution of C and A respectively. The class-
aware constraint consists of three terms. Firstly, we compute a loss term as the distance between
mc(k) and m̂a(k) to align the distribution of adversarial samples to clean samples:

LFalign =
∑

k=1:K

E(∥mc(k) − m̂a(k)∥). (7)

Further, favourable distributions in the feature spaces of the target models for high-level tasks should
have wide distance between the features from different classes, and narrow separation among the
features from the same class. Thus we propose to set intra-class and inter-class loss as

LFintra =
∑

k=1:K

E(∥ẑa(k) − m̂a(k)∥), LFinter =
∑

k=1:K

∑
i=1:K,i ̸=k

E(M − ∥m̂a(k) − m̂a(i)∥), (8)

where M is a pre-defined hyper-parameter for controlling the inter-class distance. And the overall
class-aware training constraint can be written as

LFclass = λ1LFalign + λ2LFinter + λ3LFintra , (9)

where λ1, λ2, λ3 are loss weights. Furthermore, the overall training constraint for the generator G
can be formulated as

Lg = λ4Lr + λ5Lp + λ6LGANg + λ7Lm + λ8LFtask + λ9LFrec + LFclass , (10)

where λ4 to λ9 are weights of loss terms. Our training algorithm for G is summarized in Alg. 1.

4 EXPERIMENTS

Our framework is applicative for the defense of numerous tasks. In the following, we conduct ade-
quate experimental evaluations on image classification, semantic segmentation and object detection,
acrossing different datasets.

4.1 DATASETS

To show the performance of our method on our chosen three tasks, we select representative datasets
in each task. For image classification, we choose CIFAR10 (Krizhevsky et al., 2009), CIFAR100
(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009); in the semantic segmentation task, we
employ Cityscapes (Cordts et al., 2016) and VOC2012 (Everingham et al., 2012); for the experi-
ments of object detection, VOC07+12 (Everingham et al., 2012) setting is adopted.
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Table 1: Results of ablation study on the classification task.
CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)

clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 95.1 0.0 0.0 0.0 78.1 0.1 0.1 0.1 64.5 0.2 0.1 0.2
LI 90.4 62.9 85.6 86.9 67.9 36.2 63.7 65.0 63.4 6.4 56.1 59.8
LF (w/o c) 87.2 84.0 86.8 87.2 61.8 50.5 61.3 61.6 62.7 31.1 57.7 61.5
LI+F (w/o c) 90.7 81.9 89.0 89.4 68.1 50.1 65.3 66.1 63.2 32.4 57.3 60.4
LT 92.9 29.5 84.0 85.9 71.2 15.8 61.2 63.7 63.4 0.7 54.0 58.8
LT+F (w/o c) 92.5 76.2 86.6 87.1 70.3 45.8 63.7 64.7 63.4 30.8 54.4 58.6
Full 90.7 85.1 90.3 90.6 68.7 51.6 66.9 67.7 62.9 34.6 59.1 62.1

Table 2: Results of ablation study on the segmentation and detection tasks.
Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)

clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.5 3.7 37.4 6.6 76.4 8.2 41.5 2.6 72.5 5.4 2.8 1.1
LI 61.5 50.3 51.6 55.9 73.1 48.8 60.5 67.7 63.4 37.4 48.4 38.3
LF (w/o c) 60.4 57.5 59.6 62.6 47.4 48.2 53.3 57.3 34.5 33.1 33.4 33.0
LI+F (w/o c) 64.9 56.5 59.7 63.3 70.3 60.1 63.4 67.2 58.7 41.6 50.4 42.3
LT 63.8 43.6 50.5 53.4 74.1 34.8 51.9 55.6 65.1 26.9 38.9 27.8
LT+F (w/o c) 65.0 53.2 57.5 61.5 71.2 56.8 62.9 66.6 60.0 32.4 44.7 33.7
Full 67.6 58.5 60.9 64.4 71.2 61.3 64.5 68.7 60.5 44.0 52.0 44.7

4.2 TRAINING AND EVALUATION

In the classification task, O is adopted as the structure of WideResNet (Zhang et al., 2019) and
ResNet50 (He et al., 2016); as for semantic segmentation, we employ O with the architecture of
PSPNet (Zhao et al., 2017) and DeepLabv3 (Chen et al., 2017); in object detection, O is set as the
framework of SSD (Liu et al., 2016a) and RFBNet (Liu et al., 2018) (due to page limitations, we
only provide the results with WideResNet, PSPNet and SSD here, and the outcomes with ResNet50,
DeepLabv3 and RFBNet are given in the appendix). We use O (which is trained with no defense) to
train G in input transformation strategies (including ours), and the processed clean/adversarial sam-
ples x̂c/x̂a are finally evaluated by O. Moreover, to implement the experiments within classification,
the adversarial perturbations ϵ during training are generated by PGD (Madry et al., 2017) with KL
criterion, and obtained by PGD with cross-entropy criterion, DeepFool attack (Moosavi-Dezfooli
et al., 2016) and C&W attack (Carlini & Wagner, 2017) during testing; for semantic segmentation,
we employ BIM (Kurakin et al., 2016) for training, and adopt BIM, DeepFool and C&W for evalua-
tion; in object detection, classification attack (“cls”) and localization attack (“loc”) (Zhang & Wang,
2019) are utilized during training and “cls”, “loc” and “cls+loc” (simultaneously conduct classifi-
cation and localization attacks) are adopted for testing. The parameters of attacks in three tasks are
detailedly described in the appendix. In addition, we execute the experiments with white-box attack
for O here, and the consequences with black-box attack is reported in the appendix.

4.3 ABLATION STUDY

In experiments of each task, we conduct ablation studies to analyze the impact of each loss term
and verify the superiority of our novelty on the pixel-level and feature-level constraints. Especially,
we denote LI as the results with only pixel-level constraints in our approach, LF (w/o c) as the
outcomes with sole feature-level constraints (except LFclass

), and LI+F (w/o c) as the effects with
our full constraints apart from LFclass

. And LT represents the consequences with traditional pixel-
level constraints merely and LT+F (w/o c) refers to the results with traditional pixel-level constraints
as well as feature-level constraints other than LFclass

.

The results in Table 1 and 2 illustrate that, the scheme with only pixel-level constraint (LI ) per-
forms poorly on adversarial samples, while the setting with sole feature-level constraint (LF (w/o c))
leads to unsatisfactory consequences on the clean samples (especially, in experiments of detection,
such setting will also largely reduce the defense quality on adversarial samples). Moreover, com-
pared with traditional pixel-level constraints, our novel pixel-level alignment strategy achieves much
stronger robustness on adversarial samples with a negligible degradation on clean samples as cost.
Such superiority is prominent within the comparison between LI and LT , as well as LI+F (w/o c)

and LT+F (w/o c). Further, as compared to LI+F (w/o c), our full setting exhibits stable improve-
ments for the performance on clean/adversarial samples and this indicates the effect of LFclass

.
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Table 3: Comparison between our approach and other methods on the classification task.

Method CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 95.1 0.0 0.0 0.1 78.1 0.1 0.1 0.1 64.5 0.2 0.1 0.2
No Defense (finetune) 95.6 0.3 0.5 0.4 79.5 0.3 0.3 0.3 63.9 0.1 0.3 0.4
TRADES (Zhang et al., 2019) 87.3 51.3 52.3 86.8 62.8 27.3 17.5 59.5 58.5 19.8 13.8 55.9
TRADES (finetune) (Zhang et al., 2019) 85.4 52.7 56.5 84.8 78.1 0.1 26.5 55.1 43.3 16.8 15.0 42.5
Free-adv (Shafahi et al., 2019) 77.1 29.4 31.8 75.2 49.2 15.0 14.4 47.6 55.5 20.2 19.1 54.6
Free-adv (finetune) (Shafahi et al., 2019) 88.5 45.9 52.4 87.4 63.7 22.5 24.6 61.7 42.2 8.3 12.5 48.1
Quilting (Guo et al., 2017) 87.2 83.4 83.2 82.8 64.9 42.1 43.2 42.6 58.4 24.5 25.1 25.9
Quilting + TVM (Guo et al., 2017) 89.2 83.7 84.2 83.7 66.2 43.5 44.1 44.5 56.1 25.2 25.6 26.1
JPEG (Liu et al., 2019) 89.1 38.6 65.4 84.5 67.1 21.5 35.3 42.1 56.3 12.1 20.4 25.2
Randomization (Xie et al., 2017a) 88.2 56.8 76.2 77.4 66.4 35.8 41.7 42.7 57.4 20.3 26.5 25.3
NRP (Naseer et al., 2020) 91.8 82.7 88.6 88.8 70.3 47.2 65.0 65.9 59.4 33.4 57.3 59.7
Denoise (Liao et al., 2018) 89.8 80.3 87.8 87.8 67.2 46.3 64.0 64.3 59.8 33.5 56.1 60.3
APE (Shen et al., 2017) 90.2 19.5 83.2 82.5 73.2 10.7 60.8 62.6 62.4 0.5 57.9 60.4
FPD (Li et al., 2020) 48.5 47.8 48.4 48.5 52.5 41.8 53.5 52.8 39.7 32.1 39.2 39.7
Defense (Samangouei et al., 2018) 39.9 40.0 43.1 44.4 31.1 31.0 32.0 32.1 20.4 22.6 21.5 22.3
SR (Mustafa et al., 2019) 48.0 47.4 47.9 48.0 33.5 33.1 34.5 34.5 31.1 29.7 32.5 33.2
Ours 90.7 85.1 90.3 90.6 68.7 51.6 66.9 67.7 62.9 34.6 59.1 62.1

Table 4: Comparison between our approach and other methods on segmentation and detection tasks.

Method Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.5 3.7 37.4 6.6 76.4 8.2 41.5 2.6 72.5 5.4 2.8 1.1
No Defense (finetune) 73.3 7.0 36.2 7.0 76.3 8.8 40.9 2.6 73.6 7.3 5.2 2.2
SAT (Xu et al., 2020) 65.7 28.2 52.7 44.3 73.9 45.7 60.9 66.5 – – – –
SAT (finetune) (Xu et al., 2020) 66.3 21.4 47.5 37.4 74.2 20.0 56.1 42.3 – – – –
DDCAT (Xu et al., 2020) 67.7 30.2 54.1 45.7 75.1 47.9 62.8 68.4 – – – –
DDCAT (finetune) (Xu et al., 2020) 68.3 23.6 49.2 38.7 76.0 22.6 57.3 44.4 – – – –
CLS (Zhang & Wang, 2019) – – – – – – – – 47.8 22.3 31.5 30.4
LOC (Zhang & Wang, 2019) – – – – – – – – 52.9 24.2 27.2 26.0
CON (Zhang & Wang, 2019) – – – – – – – – 40.7 18.8 27.8 26.6
MTD (Zhang & Wang, 2019) – – – – – – – – 49.1 29.5 32.6 31.8
NRP (Naseer et al., 2020) 65.0 52.2 48.4 63.4 70.5 54.9 51.6 66.5 60.4 40.7 53.2 42.1
Denoise (Liao et al., 2018) 64.4 51.5 52.8 63.3 70.4 52.8 54.5 65.5 61.6 38.9 50.4 39.1
APE (Shen et al., 2017) 54.5 31.7 33.3 44.8 74.3 27.2 49.4 48.6 62.3 24.4 36.0 25.4
FPD (Li et al., 2020) 55.9 52.6 53.2 54.8 61.5 56.5 58.2 60.0 57.2 40.6 43.7 40.9
Defense (Samangouei et al., 2018) 22.2 21.2 25.2 26.1 23.5 25.6 28.1 30.9 34.6 32.5 34.0 33.8
SR (Mustafa et al., 2019) 60.7 49.0 50.1 52.0 71.2 53.0 58.3 66.1 54.6 34.6 36.6 35.7
Ours 67.6 58.5 60.9 64.4 71.2 61.3 64.5 68.7 60.5 44.0 52.0 44.7

4.4 COMPARISON WITH EXISTING METHODS

We choose current approaches of input transformation and adversarial training for the comparison.
Most existing adversarial training works focus on image classification, and we adopt two recent
methods, Zhang et al. (2019) and Shafahi et al. (2019), to compare. For the semantic segmentation
task, Xu et al. (2020) firstly conducted a comprehensive exploration on the impact of adversarial
training for semantic segmentation, and we employ two strategies proposed by Xu et al. (2020)
that are SAT and DDC-AT. As for object detection, Zhang & Wang (2019) proposed four variants of
adversarial training, which can be utilized. All these adversarial training approaches are trained with
their original configurations and “finetune” means finetuning pre-trained models (with no defense)
via adversarial training. As for the input transformation strategies, they can be divided into two
categories: learning-based and non-learning-based. For non-learning-based methods, their effects
are only validated on classification networks and we select Guo et al. (2017), Liu et al. (2019) and
Xie et al. (2017a) to compare in the classification task. For learning-based schemes, we use six
representative works including Naseer et al. (2020); Liao et al. (2018); Shen et al. (2017); Li et al.
(2020); Samangouei et al. (2018); Mustafa et al. (2019). Moreover, we adopt their original generator
structures, and re-train them with the same epochs, batch size and target models as us.

The results in classification task are summarized in Table 3. Although a few approaches have com-
parable effects on clean samples with us, our full setting results in the strongest robustness on ad-
versarial samples which illustrates the superiority of our method. Further, as exhibited in Table 4, in
semantic segmentation and object detection, our results also outperforms all the competing methods
on adversarial samples. At the same time, only a fraction of approaches have greater outcomes on
clean samples than ours while they exhibit weak robustness on adversarial samples (e.g., APE). In
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xc result of xc xa result of xa x̂a result of x̂a

Figure 4: The visual illustrations for the results of clean samples xc, adversarial samples xa and
processed adversarial samples x̂a with our trained generator G, in image classification on ImageNet,
semantic segmentation on Cityscapes, object detection on VOC07+12.

Table 5: Results with no-differentiable operation in our framework on three tasks.
CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)

clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 95.1 0.0 0.0 0.1 78.1 0.1 0.1 0.1 64.5 0.2 0.1 0.2
Full 90.7 85.1 90.3 90.6 68.7 51.6 66.9 67.7 62.9 34.6 59.19 62.1
Full with jpeg 90.4 84.3 89.9 90.3 66.6 51.4 65.4 66.1 62.8 32.0 57.4 60.1

Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.5 3.7 37.4 6.6 76.4 8.2 41.5 2.6 72.5 5.4 2.8 1.1
Full 67.6 58.5 60.9 64.4 71.2 61.3 64.5 68.7 60.5 44.0 52.0 44.7
Full with jpeg 66.5 57.1 61.1 63.0 70.9 60.7 63.3 68.1 60.3 43.9 51.9 44.6

addition, we provide visual illustrations to show the effectiveness of our method. As shown in Fig.
4, our trained G leads to satisfactory defense effects on adversarial samples in all three tasks.

4.5 NO-DIFFERENTIABLE OPERATIONS

In the worst situation, attackers have access to the weights and structure of G, and they then utilize
the gradients of G for generating more threatening adversarial examples. To this, recent works
have illustrated the function of no-differentiable operations to avoid such attack (Gupta & Rahtu,
2019; Guo et al., 2017): no-differentiable operations (e.g., JPEG compression) can be applied on
the synthesized images from the generator, and then the processed images would be sent to the target
model. In this way, the gradients of the generator are truncated by no-differentiable operations and
can not be obtained by attackers. Though desired effects of no-differentiable operations, we need to
consider whether such operations will harm the performance of our method.

To this, we choose JPEG compression as such no-differentiable operation and explore the effect of
our framework when the synthesized images from G will be processed by JPEG compression before
they are sent to the target model. The results are displayed in Table 5 with name of “Full with jpeg”,
and it is obvious that even we add such no-differentiable operation into our method, the performance
is reduced less than 3% on the classification task, 2% in the segmentation and detection experiments.

5 CONCLUSION

In this paper, we propose a novel training scheme for DGNs which can help to align the distribution
of adversarial samples to clean samples for a given target model. The effectiveness of our strategy
is derived from the novelty on the pixel-level as well as feature-level constraints. As a general ap-
proach, our framework is suitable for various computer vision tasks, including image classification,
semantic segmentation and object detection. Extensive experiments reveal the effect of our novel
constraints and illustrate the advantage of our method compared with existing defense strategies.
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A APPENDIX

A.1 DETAILS

Details of Training Constraints There are obvious distinctions among the networks of image
classification, semantic segmentation and object detection. Thus, for these three tasks, there are also
differences in extracting features to implement feature-level training constraints.

For the classification task, we adopt WideResNet and ResNet50 for experiments, and implement
feature-level training constraints by extracting the feature of the fully connected layer before the
final layer. Especially, each image x ∈ RH×W×3 (H and W are the height and width of the image)
has one class label y ∈ RK and one feature vector z ∈ RL (L is the length of the vector). And we
group features into K classes according to y.

As for semantic segmentation, we use PSPNet and DeepLabv3 with ResNet50 as the backbone
and complete feature-level constraints by using the feature of the convolution layer before the final
layer. Different with the classification task, each image in semantic segmentation task has multiple
feature vectors with multiple class labels: for an image x ∈ RH×W×3, it has the corresponding
segmentation map y ∈ RH×W×K . And the feature of this image can be denoted as z′ ∈ Rh×w×L

(h and w are the height and width of the feature) with a resized segmentation map y′ ∈ Rh×w×K .
Then we can obtain a set of feature vectors {z1, ..., zh×w}(zi ∈ RL, i ∈ {1, ..., h × w}) with their
labels as {y1, ..., yh×w}(yi ∈ RK , i ∈ {1, ..., h × w}), which are reshaped from z′ as well as y′.
Such set of feature vectors can be divided into K classes and utilized in feature-level constraints.

Furthermore, SSD and RFBNet with VGG16 as the backbone are employed for experiments within
the object detection task. And the features for feature-level constraints are obtained as the outputs of
the backbone. In this task, an image has one class label for each bounding box and thus has multiple
feature vectors with multiple bounding boxes: an image x ∈ RH×W×3 can have B bounding boxes
and the feature of this image can be represented as z′ ∈ Rh×w×L. The feature of each bounding box
can be cropped from this feature map with its coordinate as well as the corresponding class label, as
{z1, ..., zB}(zi ∈ RL, i ∈ {1, ..., B}) and {y1, ..., yB}(yi ∈ RK , i ∈ {1, ..., B}). We separate such
features into K classes to implement feature-level constraints.

Details of Generator For the classification task, images from CIFAR10/CIFAR100 have size of
32 × 32 and images from ImageNet have size of 64 × 64 for the input of the target models as well
as the generators, and the generators have encoder-decoder structures with two down-sample/up-
sample layers; in the semantic segmentation task, the images from Cityscapes and VOC2012 are
shaped as 512× 512 for the generators with four down-sample/up-sample layers, and are shaped as
425× 425 and 417× 417 for the target models respectively; as for object detection, the input size of
the generators, which have four down-sample/up-sample layers, is 256×256 for VOC07+12, and the
input size of the target models is 300×300. In addition, we employ the structure for the generator as
the “Global Generator” in pix2pixHD (https://github.com/NVIDIA/pix2pixHD) for our
experiments. Besides, our training constraints are indeed suitable for various generative structures.

Details of Attacks In this paper, all attacks are conducted with L∞ constraint and untargeted
form. For the classification task, we utilize PGD attack with KL criterion during training, and
the perturbation range ε = 0.031 × 255, the step size α = 0.0175 × 255, the number of attack
iteration n = 4. During testing, we adopt PGD with cross-entropy criterion (ε = 0.031 × 255,
α = 0.0075 × 255, n = 8), DeepFool attack (ε = 0.031 × 255), C&W attack (ε = 0.031 × 255,
the step size is 0.0075 × 255). In the semantic segmentation task, we use BIM (ε = 0.03 × 255,
α = 0.01 × 255, n = 3) during training, and BIM (ε = 0.03 × 255, α = 0.01 × 255, n = 4),
DeepFool attack (ε = 0.03 × 255), C&W attack (ε = 0.03 × 255, the step size is 0.01 × 255) for
evaluation. Moreover, the attacks for classification loss and location loss are employed within the
object detection task, and the perturbation range is 8 for pixel values within [0, 255].
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Table 6: Results of ablation study on the classification task with the structure of target model O as
ResNet50 (He et al., 2016).

CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 94.3 0.0 0.0 0.0 76.1 0.1 0.1 0.2 62.1 0.2 0.1 0.2
LI 90.6 53.2 85.1 85.9 65.9 41.4 64.0 65.1 61.0 7.2 56.7 59.0
LF (w/o c) 88.9 81.0 88.6 88.8 58.8 54.4 58.4 58.7 60.4 31.9 56.5 59.5
LI+F (w/o c) 90.3 80.4 87.7 88.1 68.3 53.9 65.3 66.0 60.7 32.4 57.1 59.5
LT 91.0 23.8 83.4 84.9 69.9 24.5 60.7 62.5 61.5 1.2 54.1 57.4
LT+F (w/o c) 91.7 75.2 85.6 86.2 69.9 48.2 63.5 64.5 61.3 30.5 55.8 57.1
Full 90.0 82.7 89.1 89.5 67.3 55.5 66.6 67.3 61.0 33.7 57.6 60.2

Table 7: Results of ablation study on the semantic segmentation and object detection tasks, with
the structure of target model O as DeepLabv3 (Chen et al., 2017) and RFBNet (Liu et al., 2018)
respectively.

Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.2 3.1 32.4 8.0 76.9 8.2 38.0 2.9 80.6 4.5 4.0 2.0
LI 64.0 50.9 51.2 56.9 72.6 54.8 59.2 66.5 73.2 53.2 62.3 54.2
LF (w/o c) 61.5 59.9 61.0 63.9 42.7 42.7 52.5 54.5 36.5 35.7 36.4 35.9
LI+F (w/o c) 65.1 57.9 60.1 63.4 68.1 59.8 62.3 67.2 68.4 57.1 63.2 58.3
LT 64.5 44.1 50.4 54.2 74.8 33.4 50.4 53.8 75.1 44.3 56.2 45.6
LT+F (w/o c) 64.9 55.1 57.6 60.5 70.5 55.9 61.5 66.1 62.3 51.0 56.1 53.1
Full 67.3 59.0 61.7 64.8 69.1 61.3 63.9 68.3 70.2 59.2 65.0 60.3

A.2 EXPERIMENTS

Experiments under White-box Attack Evaluation We execute experiments of evaluation under
white-box attack with different model structures for classification, semantic segmentation and object
detection tasks, and the results for the model structure of WideResNet (Zhang et al., 2019), PSPNet
(Zhao et al., 2017) and SSD (Liu et al., 2016a) have been reported in the manuscript. Here, we
summarize the outcomes under white-box attack for ResNet50 (He et al., 2016), DeepLabv3 (Chen
et al., 2017) and RFBNet (Liu et al., 2018). The consequences of the ablation study are listed in
Table 6 and 7 and it is obvious that the models trained with only pixel-level constraints exhibit
weak robustness on adversarial samples, while the models trained with sole feature-level constraints
have poor performance on clean samples. Moreover, it is illustrated again that the models trained
with our pixel-level constraints achieve better generalization on adversarial samples than traditional
pixel-level constraints, and our class-aware feature-level constraint can stably enhance the effects on
clean/adversarial samples. The results of the comparison with existing methods are summarized in
Table 8 and 9, which support the superiority of our approach over them.

The visual illustration for injecting the no-differentiable operation into our framework is shown in
Fig. 5. We have reported the results of our framework with no-differentiable operations in the
manuscript, with target model structures as WideResNet (Zhang et al., 2019), PSPNet (Zhao et al.,
2017) and SSD (Liu et al., 2016a). Here, we show the outcomes with target model architectures as
ResNet50 (He et al., 2016), DeepLabv3 (Chen et al., 2017) and RFBNet (Liu et al., 2018). The out-
comes are summarized in Table 10 as well as Table 11, and it is validated again that no-differentiable
operations in our framework will only lead to an insignificant reduction of performance.

Adversarial Sample
𝑥" = 𝑥$ + 𝜖

Clean Sample 𝑥$

Output 𝑥'"

Output 𝑥'$

Adversarial
Perturbation 𝜖

JPEGCompression:
encode and decode

（discretize pixel values）
Generator 𝒢 for DistributionAlignment

Figure 5: The visual illustration for injecting the no-differentiable operation into our framework.
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Table 8: Comparison between our approach and existing methods on the classification task, with the
structure of target model O as ResNet50 (He et al., 2016).

Method CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 94.3 0.0 0.0 0.0 76.1 0.1 0.1 0.2 62.1 0.2 0.1 0.2
No Defense (finetune) 94.7 0.0 0.0 0.0 77.8 0.0 0.2 0.3 61.3 0.1 0.3 0.4
TRADES (Zhang et al., 2019) 85.3 51.7 47.1 83.2 59.8 26.7 21.2 56.6 44.3 19.3 16.1 43.6
TRADES (finetune) (Zhang et al., 2019) 83.2 52.6 53.9 82.4 56.3 28.5 26.7 55.4 43.3 16.5 15.0 42.3
Free-adv (Shafahi et al., 2019) 86.3 46.2 48.1 85.5 64.0 24.7 24.2 47.6 53.4 18.8 17.3 52.6
Free-adv (finetune) (Shafahi et al., 2019) 88.3 43.5 49.2 87.1 63.4 20.6 30.1 61.8 39.9 6.5 7.1 39.5
Quilting (Guo et al., 2017) 86.3 81.9 82.5 82.1 63.3 41.3 42.6 40.9 56.2 23.8 24.1 24.2
Quilting + TVM (Guo et al., 2017) 88.4 80.1 83.3 82.6 65.5 42.5 44.2 42.1 54.1 25.1 25.8 26.1
JPEG (Liu et al., 2019) 88.0 36.6 64.3 82.7 66.3 20.6 36.5 40.8 55.2 11.6 20.0 24.9
Randomization (Xie et al., 2017a) 87.5 55.2 74.3 75.5 65.0 34.3 40.5 41.5 56.3 20.0 25.8 26.1
NRP (Naseer et al., 2020) 90.3 80.5 87.0 87.3 66.7 47.2 65.5 66.5 56.5 31.7 56.2 56.8
Denoise (Liao et al., 2018) 88.3 79.0 87.1 87.2 66.7 46.8 64.7 64.9 56.6 32.8 57.8 57.3
APE (Shen et al., 2017) 89.1 12.2 80.1 81.3 71.7 17.4 60.2 61.4 60.2 0.96 56.5 59.3
FPD (Li et al., 2020) 53.0 52.4 53.0 53.0 50.0 43.6 49.2 49.8 34.5 27.8 33.7 34.4
Defense (Samangouei et al., 2018) 40.1 40.0 40.2 40.1 31.1 31.1 33.3 32.6 21.5 20.7 23.1 22.9
SR (Mustafa et al., 2019) 45.3 44.8 45.2 45.3 35.6 34.8 35.5 34.5 30.6 29.4 34.6 34.2
Ours 90.0 82.7 89.1 89.5 67.3 55.5 66.6 67.3 61.0 33.7 57.6 60.2

Table 9: Comparison between our approach and existing methods on the semantic segmentation and
object detection tasks, with the structure of target model O as DeepLabv3 (Chen et al., 2017) and
RFBNet (Liu et al., 2018) respectively.

Method Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.2 3.1 32.4 8.0 76.9 8.2 38.0 2.9 80.6 4.5 4.0 2.0
No Defense (finetune) 73.5 3.6 32.3 8.3 75.7 26.4 40.4 2.7 80.8 8.1 7.6 5.5
SAT (Xu et al., 2020) 64.3 28.9 50.2 43.8 72.8 44.5 57.8 64.9 – – – –
SAT (finetune) (Xu et al., 2020) 65.4 23.4 47.5 37.1 74.8 9.3 61.8 46.7 – – – –
DDCAT (Xu et al., 2020) 67.7 30.4 52.9 45.3 74.2 46.8 61.1 66.8 – – – –
DDCAT (finetune) (Xu et al., 2020) 68.2 25.6 49.7 39.3 76.2 12.5 63.8 48.5 – – – –
CLS (Zhang & Wang, 2019) – – – – – – – – 52.0 27.2 37.1 35.3
LOC (Zhang & Wang, 2019) – – – – – – – – 57.6 29.2 31.2 30.5
CON (Zhang & Wang, 2019) – – – – – – – – 43.5 22.8 32.1 30.4
MTD (Zhang & Wang, 2019) – – – – – – – – 53.7 34.5 36.5 35.1
NRP (Naseer et al., 2020) 65.6 55.1 47.9 61.8 68.1 54.8 52.6 66.9 68.5 53.7 63.9 55.0
Denoise (Liao et al., 2018) 64.6 56.5 52.3 62.0 67.2 58.6 53.6 67.6 68.5 51.3 54.4 51.7
APE (Shen et al., 2017) 54.2 28.5 21.2 33.4 75.5 25.1 47.0 41.6 72.2 42.2 53.9 43.8
FPD (Li et al., 2020) 49.5 49.0 49.7 50.8 62.1 58.4 60.0 61.3 58.7 49.5 52.2 50.2
Defense (Samangouei et al., 2018) 23.3 20.6 25.3 26.1 22.5 24.7 26.5 27.4 42.2 40.6 41.4 40.7
SR (Mustafa et al., 2019) 62.8 48.2 50.2 51.6 70.1 52.2 57.0 67.0 56.2 45.8 47.6 46.8
Ours 67.3 59.0 61.7 64.8 69.1 61.3 63.9 68.3 70.2 59.2 65.0 60.3

Table 10: Results with the no-differentiable operation in our framework on the classification task,
with the structure of target model O as ResNet50 (He et al., 2016).

CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 94.3 0.0 0.0 0.0 76.1 0.1 0.1 0.2 62.1 0.2 0.1 0.2
Full 90.0 82.7 89.1 89.5 67.3 55.5 66.6 67.3 61.0 33.7 57.6 60.2
Full with jpeg 89.3 81.1 88.6 89.1 66.4 53.6 65.4 66.2 60.9 32.0 57.4 60.1

Table 11: Results with the no-differentiable operation in our framework on the semantic segmen-
tation and object detection tasks, with the structure of target model O as DeepLabv3 (Chen et al.,
2017) and RFBNet (Liu et al., 2018) respectively.

Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.2 3.1 32.4 8.0 76.9 8.2 38.0 2.9 80.6 4.5 4.0 2.0
Full 67.3 59.0 61.7 64.8 69.1 61.3 63.9 68.3 70.2 59.2 65.0 60.3
Full with jpeg 65.7 57.3 59.6 62.3 68.2 60.8 64.1 67.1 70.2 59.1 58.6 64.2
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Table 12: Results of ablation study on the classification, semantic segmentation and object detec-
tion tasks under the evaluation of black-box attack. “WideResNet → ResNet50” means attacking
WideResNet while generating adversarial perturbations from ResNet50; “PSPNet → DeepLabv3”
means attacking PSPNet while generating adversarial perturbations from DeepLabv3; “SSD → RF-
BNet” means attacking SSD while generating adversarial perturbations from RFBNet.

WideResNet →
ResNet50

CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 95.1 2.1 5.3 6.4 78.1 7.5 9.3 10.4 64.5 19.2 20.4 21.2
LI 90.4 66.4 85.3 86.1 67.9 46.4 66.6 67.5 63.4 34.3 60.7 61.7
LF (w/o c) 87.2 51.8 86.7 87.1 61.8 51.9 60.9 61.6 62.7 45.6 61.8 62.6
LI+F (w/o c) 90.7 78.2 89.0 89.5 68.1 53.4 67.0 67.8 63.2 46.1 61.5 62.4
LT 92.9 49.5 84.4 85.5 71.2 39.3 65.1 66.6 63.4 32.0 58.3 59.2
LT+F (w/o c) 92.5 74.1 87.6 88.3 70.3 50.4 65.9 66.8 63.4 44.4 60.2 61.1
Full 90.7 81.4 90.4 90.6 68.7 54.0 67.5 68.4 62.9 46.4 62.2 63.2
PSPNet → DeepLabv3 /
SSD → RFBNet

Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.5 3.6 38.6 12.5 76.4 11.1 46.1 16.6 72.5 17.9 14.5 15.0
LI 61.5 50.8 52.4 56.1 73.1 59.8 63.0 68.3 63.4 59.4 54.4 58.2
LF (w/o c) 60.4 58.1 59.5 62.6 47.4 47.3 47.3 47.4 34.5 34.6 33.8 33.9
LI+F (w/o c) 64.9 58.7 60.7 63.4 70.3 62.9 64.7 68.6 58.7 60.7 57.4 60.1
LT 63.8 46.3 50.9 54.6 74.1 45.0 57.2 63.1 65.1 58.3 53.7 56.3
LT+F (w/o c) 65.0 55.6 59.1 61.3 71.2 61.3 62.4 66.1 60.0 59.6 55.0 58.2
Full 67.6 59.5 62.0 64.7 71.2 63.6 66.0 69.5 60.5 61.2 58.3 60.9

Table 13: Comparison between our approach and existing methods on the classification task under
the evaluation of black-box attack. “WideResNet → ResNet50” means attacking WideResNet while
generating adversarial perturbations from ResNet50.

WideResNet → ResNet50 CIFAR10 (Accuracy %) CIFAR100 (Accuracy %) ImageNet (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W clean PGD DeepFool C&W

No Defense 95.1 2.1 5.3 6.4 78.1 7.5 9.3 10.4 64.5 19.2 20.4 21.2
No Defense (finetune) 95.6 3.8 7.5 8.7 79.5 8.0 9.7 10.9 63.9 22.1 23.2 23.6
TRADES (Zhang et al., 2019) 87.3 79.7 87.1 87.2 62.8 53.9 62.6 62.7 58.5 45.3 58.3 58.5
TRADES (finetune) (Zhang et al., 2019) 85.4 78.5 85.3 85.4 78.1 53.9 55.8 44.2 43.3 42.2 43.2 43.3
Free-adv (Shafahi et al., 2019) 77.1 73.1 76.7 77.0 49.2 46.6 49.0 49.2 55.5 45.8 55.4 55.5
Free-adv (finetune) (Shafahi et al., 2019) 88.5 79.8 88.4 88.5 63.7 54.1 63.5 63.7 42.2 40.9 48.6 48.7
NRP (Naseer et al., 2020) 91.8 79.0 89.2 89.8 70.3 52.8 66.6 67.2 59.4 45.5 59.0 59.4
Denoise (Liao et al., 2018) 89.8 80.0 90.1 90.0 67.2 53.1 66.7 66.1 59.8 45.5 59.4 59.9
APE (Shen et al., 2017) 90.2 41.9 89.1 89.8 73.2 37.2 65.7 67.7 62.4 30.5 61.6 62.3
FPD (Li et al., 2020) 48.5 47.6 48.4 48.5 52.5 41.2 42.4 42.5 39.7 33.7 39.5 39.8
Defense (Samangouei et al., 2018) 39.9 38.7 38.1 39.3 31.1 30.5 30.9 31.0 20.4 18.5 19.7 19.9
SR (Mustafa et al., 2019) 48.0 47.2 48.0 48.1 33.6 33.1 33.5 33.8 31.1 30.5 30.9 31.1
Ours 90.7 81.4 90.4 90.6 68.7 54.0 67.5 68.4 62.9 46.4 62.2 63.2

Experiments under Black-box Attack Evaluation In the evaluation of black-box attack, attack-
ers cannot utilize the exact gradient information of the target model. Instead, they normally obtain
gradient information from a substitute network, which is trained on the same dataset (Papernot et al.,
2017; 2016; Liu et al., 2016b) with different model structures. Thus, in the black-box evaluation of
the classification task, we can use the perturbations computed from ResNet50 to attack the defense
framework trained with WideResNet; for the semantic segmentation task, the adversarial samples
obtained from DeepLabv3 can be adopted to achieve black-box attacks for PSPNet; as for object
detection, the black-box attacks for SSD can be implemented by employing the adversarial pertur-
bations generated from RFBNet. The results of these black-box experiments are reported in Table
12, 13, 14, and we can obtain the same conclusions as that in the experiments of white-box attack.

Experiments under Model Transfer Evaluation For defenses via input transformation with deep
generative models, we shall use a target model O for the feature-level training and it has been verified
that the trained generator G has great defense quality for O. On the other hand, we indeed require
G to defend for different target models that have not been employed during the training. Thus, the
evaluations with model transfer are conducted: in the classification task, we can defend for ResNet50
under white-box attack while the generator G is trained with the target model of WideResNet; as for
semantic segmentation, the generator G is trained with PSPNet while utilized for the defense of
DeepLabv3. The results are summarized in Table 15 and 16. These outcomes provide empirical
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Table 14: Comparison between our approach and existing methods on the semantic segmentation
and object detection tasks under the evaluation of black-box attack. “PSPNet → DeepLabv3” means
attacking PSPNet while generating adversarial perturbations from DeepLabv3; “SSD → RFBNet”
means attacking SSD while generating adversarial perturbations from RFBNet.

PSPNet → DeepLabv3 /
SSD → RFBNet

Cityscapes (mIoU %) VOC2012 (mIoU %) VOC07+12 (mAP %)
clean BIM DeepFool C&W clean BIM DeepFool C&W clean cls loc cls+loc

No Defense 73.5 3.6 38.6 12.5 76.4 11.1 46.1 16.6 72.5 17.9 14.5 15.0
No Defense (finetune) 73.3 3.6 37.1 12.5 76.3 11.2 45.2 15.4 73.6 19.6 16.8 16.1
SAT (Xu et al., 2020) 65.7 50.5 52.5 51.0 73.9 57.1 64.3 69.3 – – – –
SAT (finetune) (Xu et al., 2020) 66.3 42.1 47.7 42.4 74.2 60.5 60.1 63.4 – – – –
DDCAT (Xu et al., 2020) 67.7 51.4 54.4 51.8 75.1 58.8 65.1 69.3 – – – –
DDCAT (finetune) (Xu et al., 2020) 68.3 43.3 49.4 43.1 76.0 62.4 62.4 64.8 – – – –
CLS (Zhang & Wang, 2019) – – – – – – – – 47.8 34.5 43.3 44.1
LOC (Zhang & Wang, 2019) – – – – – – – – 52.9 36.7 38.8 39.9
CON (Zhang & Wang, 2019) – – – – – – – – 40.7 31.3 39.5 40.3
MTD (Zhang & Wang, 2019) – – – – – – – – 49.1 42.0 44.3 44.1
NRP (Naseer et al., 2020) 65.0 55.2 49.3 64.1 70.5 62.6 59.3 68.5 60.4 59.9 55.4 58.9
Denoise (Liao et al., 2018) 64.4 55.1 53.8 64.0 70.4 61.9 61.5 67.8 61.6 52.2 50.9 51.8
APE (Shen et al., 2017) 54.5 34.7 33.3 45.4 74.3 37.8 54.3 59.9 62.3 57.9 58.0 55.8
FPD (Li et al., 2020) 55.9 53.0 53.2 55.0 61.5 57.5 58.6 59.9 57.2 58.1 55.8 57.8
Defense (Samangouei et al., 2018) 22.2 20.2 19.9 21.2 23.5 21.9 22.6 23.3 34.6 30.2 30.8 29.7
SR (Mustafa et al., 2019) 60.7 52.0 50.6 51.5 71.2 58.1 60.3 67.2 54.6 36.2 37.5 34.5
Ours 67.6 59.5 62.0 64.7 71.2 63.6 66.0 69.5 60.5 61.2 58.3 60.9

evidence that even the trained generator G is applied for the defense of the target model which is not
adopted during training, our trained G can still have great defense effects and outperforms most of
the existing methods as well as ablation settings.

A.3 ANALYSIS

Theoretical Analysis–Superiority of Our Pixel-level Constraint Using a network G to weaken
the discrepancy between adversarial samples with the corresponding clean samples, ∥x̂a − xc∥ can
not be zero unless over-fitting, since the output space of G is smaller than the value space of real
images. In the traditional setting, given xc, ∥x̂a − xc∥ is set as the objective to optimize and there
exist multiple solutions x̂a that have the same value for ∥x̂a − xc∥. Thus, the traditional setting is
highly ill-posed and is very likely to result in local optimum (i.e., x̂a generated from G could not
approach xc enough). On the other hand, in our pixel-level constraint, we set ∥x̂a − x̂c∥ as the
objective and the distance between x̂a and x̂c is relatively narrower than the distance between x̂a

and xc since x̂a as well as x̂c locate in the same output space of G. Thus, our setting has a smaller
solution space and is relatively less ill-posed to avoid local optimum (i.e., it is simpler to train G
so that x̂a is very close to x̂c). Moreover, the target model O can perform well on both xc and x̂c

which has been validated by experiments, and x̂a obtained from our setting is close to x̂c (in fact, x̂c

is very close to xc, and x̂a is very close to x̂c, thus x̂a is also close to xc). Therefore, O can behave
better on x̂a with our setting compared with the traditional setting.

Visual Analysis–Visualizations for Distribution Alignment Besides the t-SNE visualizations
for the classification task in the manuscript, we provide the t-SNE visualizations for the semantic
segmentation and object detection tasks as shown in Fig. 6. It is obvious that the distributions of x̂c

and x̂a are close to the distribution of xc, which remedies the distribution gap between clean samples
and adversarial samples. The adversarial samples in the semantic segmentation task are obtained by
BIM with hyper-parameters as ε = 0.03 × 255, α = 0.01 × 255 and n = 3 and the adversarial
samples in the object detection task are obtained by “cls+loc” attack with perturbation as 8.

Visual Analysis–Illustrations for Three Tasks As exhibited in Fig. 7, 8 and 9, we provide visual
illustrations which support the conclusion that our trained generator G can lead to satisfactory results
on adversarial samples in different tasks.
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Table 15: Comparison among our approach, existing methods and ablation settings on the classifi-
cation task, under the evaluation of model transfer setting. “WideResNet ⇒ ResNet50” means the
generator is trained with the target model of WideResNet, while we evaluate its defense effect for
ResNet50.

WideResNet ⇒ ResNet50 CIFAR10 (Accuracy %) CIFAR100 (Accuracy %)
clean PGD DeepFool C&W clean PGD DeepFool C&W

LI 90.4 44.5 87.6 87.7 67.9 29.6 63.4 64.2
LF (w/o c) 87.2 17.2 17.7 17.9 61.8 23.8 28.2 28.7
LI+F (w/o c) 90.6 67.1 88.0 88.6 68.1 40.1 64.1 65.5
LT 92.8 18.1 87.0 86.7 71.2 14.9 62.6 63.4
LT+F (w/o c) 92.5 59.9 87.0 87.0 70.3 36.6 63.4 65.2
NRP (Naseer et al., 2020) 91.9 60.4 87.3 88.0 70.3 36.2 63.5 64.6
Denoise (Liao et al., 2018) 89.8 73.0 87.7 87.1 67.3 35.7 63.7 64.2
APE (Shen et al., 2017) 90.2 10.1 86.2 86.4 73.3 11.4 64.8 65.4
FPD (Li et al., 2020) 48.6 44.3 44.4 44.4 52.6 30.5 31.1 31.2
Defense (Samangouei et al., 2018) 39.9 38.5 39.8 39.9 31.2 21.5 22.8 22.5
SR (Mustafa et al., 2019) 48.0 44.8 45.2 45.3 33.6 24.8 25.5 25.5
Ours 90.7 73.3 88.4 89.1 68.7 42.0 64.9 65.8

Table 16: Comparison among our approach, existing methods and ablation settings on the semantic
segmentation task, under the evaluation of model transfer setting. “PSPNet ⇒ DeepLabv3” means
the generator is trained with the target model of PSPNet, while we evaluate its defense effect for
DeepLabv3.

PSPNet ⇒ DeepLabv3 Cityscapes (mIoU %) VOC2012 (mIoU %)
clean BIM DeepFool C&W clean BIM DeepFool C&W

LI 61.5 48.5 49.9 55.0 73.1 54.9 59.8 68.1
LF (w/o c) 60.4 57.1 58.5 62.9 47.4 45.0 45.2 45.4
LI+F (w/o c) 64.9 57.8 61.3 64.2 70.3 59.9 63.2 68.2
LT 63.8 43.0 48.9 54.7 74.1 33.2 49.9 53.7
LT+F (w/o c) 65.0 53.8 59.9 63.0 71.2 55.1 60.3 66.8
NRP (Naseer et al., 2020) 65.0 53.4 47.8 64.1 70.6 53.1 51.2 67.4
Denoise (Liao et al., 2018) 64.4 52.7 51.1 64.4 70.4 60.1 53.7 67.8
APE (Shen et al., 2017) 54.5 28.5 26.8 40.0 74.3 25.7 46.9 44.5
FPD (Li et al., 2020) 55.9 51.5 51.7 53.6 61.5 57.7 59.3 60.6
Defense (Samangouei et al., 2018) 22.2 20.1 19.7 21.7 23.5 21.6 21.2 23.1
SR (Mustafa et al., 2019) 60.7 41.6 40.5 42.5 71.1 52.1 56.9 66.8
Ours 67.6 59.0 61.7 65.3 71.3 60.5 64.6 68.9

t-SNE visualizations in feature space of PSPNet for segmentation task on Cityscapes (Cordts et al., 2016)

t-SNE visualizations in feature space of SSD for detection task on VOC07+12 (Everingham et al., 2010)

(a) xc in O (b) xa in O (c) x̂a in O (d) x̂c in O
Figure 6: Target model O has admirable distributions for clean samples xc while disordered distri-
butions for adversarial samples xa. Our G can turn xc/xa into x̂c/x̂a with corrected distrubutions.
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√
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√
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√
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√

score: 1.000 score: 1.000 score: 0.9856 score: 0.9999 score: 1.000 score: 0.8609
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√
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√
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√

score: 0.9985 score: 1.000 score: 0.9076 score: 0.9999 score: 1.000 score: 0.9899

results of xc results of xa results of x̂a results of xc results of xa results of x̂a

Figure 7: The visual illustration for the results of xc, xa and x̂a with our trained generator G,
in image classification on ImageNet. The adversarial samples are obtained by PGD with hyper-
parameters as ϵ = 0.031× 255, α = 0.0075× 255 and n = 8.
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xc results of xc xa results of xa x̂a results of x̂a

Figure 8: The visual illustration for the results of xc, xa and x̂a with our trained generator G, in
semantic segmentation on Cityscapes. The adversarial samples are obtained by BIM with hyper-
parameters as ϵ = 0.03× 255, α = 0.01× 255 and n = 3.
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xc results of xc xa results of xa x̂a results of x̂a

Figure 9: The visual illustration for the results of xc, xa and x̂a with our trained generator G, in
object detection on VOC07+12. The adversarial samples are obtained by “cls+loc” attack with
perturbation as 8.
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