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ABSTRACT

Large language models (LLMs) often exhibit undesirable behaviors, such as hal-
lucinations and sequence repetitions. We propose to view these behaviors as fall-
backs that models exhibit under epistemic uncertainty, and investigate the con-
nection between them. We categorize fallback behaviors — sequence repetitions,
degenerate text, and hallucinations — and extensively analyze them in models
from the same family that differ by the amount of pretraining tokens, parameter
count, or the inclusion of instruction-following training. Our experiments reveal
a clear and consistent ordering of fallback behaviors, across all these axes: the
more advanced an LLM is (i.e., trained on more tokens, has more parameters, or
instruction-tuned), its fallback behavior shifts from sequence repetitions, to de-
generate text, and then to hallucinations. Moreover, the same ordering is observed
during the generation of a single sequence, even for the best-performing models;
as uncertainty increases, models shift from generating hallucinations to producing
degenerate text and finally sequence repetitions. Lastly, we demonstrate that while
common decoding techniques, such as random sampling, alleviate unwanted be-
haviors like sequence repetitions, they increase harder-to-detect hallucinations.

1 INTRODUCTION

While large language models (LLMs) have been known to generate human-like language remark-
ably well (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023; OpenAI et al., 2024),
there are growing concerns about their propensity for undesirable behaviors, such as degenerate1 or
repetitive text (Holtzman et al., 2020), hallucinations (Ji et al., 2022; Zhang et al., 2023), and verba-
tim recollection of training samples when processing out-of-distribution inputs (Nasr et al., 2023a).
Previous work (Kim et al., 2024; Snyder et al., 2023) has studied these phenomena, and suggested
solutions, but has done so for each in isolation, without considering the interactions between them.

In this work, we propose that the undesired behaviors illustrated in Figure 1 can be viewed col-
lectively as fallback behaviors, which emerge when the model faces epistemic uncertainty, namely
uncertainty due to lack of knowledge (Hou et al., 2023). We aim to categorize and analyze the re-
lationship between these behaviors across a range of LLMs. To this end, we create controlled yet
natural settings, which force the generation of factual information while introducing varying lev-
els of model uncertainty by construction. We then test three model families—Pythia (Biderman
et al., 2023), Llama 2 (Touvron et al., 2023), Llama 3 (Meta AI, 2024), and OLMo (Groeneveld
et al., 2024)—considering various factors that could influence the emergence of different fallbacks:
(a) number of parameters, (b) number of pretraining tokens, (c) instruction-following training, and
(d) decoding algorithms. We observe a clear ordering in the appearances of different fallbacks, as
demonstrated in Figure 2 and persisting across all the above factors: repetitions are the simplest
fallback, followed by degenerate text, and finally hallucinations as the most complex behavior.

We present evidence that increasing the strength of a model tends to shift its fallback behavior to
more complex forms, whereas weaker models rely on simpler behaviors like repetitive text. We
demonstrate that the so-called strength of a model can be the result of increasing the model’s param-
eter count, additional pretraining, or the addition of an instruction-following training phase.

1Degenerate text includes repetitive textual patterns and/or rephrasing of previously generated text.
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The following is a bio of Elsa Pataky:

Elsa Pataky is a Spanish actress who has appeared in a 

number of films and television shows. She is best known 

for her roles in the Fast and Furious franchise [...] Elsa 

Pataky was born on July 18, 1976, in Madrid, Spain. She is 

the daughter of actors José Luis Pataky and Cristina Pons. 

Her father is of Spanish and Hungarian descent, while her 

mother is of Spanish and Italian descent [...] Pataky began 

her acting career in 1998, with a role in the film The 

Almond Tree. She has since appeared in a number of films 

and television shows, including the Fast and Furious 

franchise. Pataky is a Spanish actress who has appeared 

in a number of films and television shows. She is best 

known for her roles in the Fast and Furious franchise [...]
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Figure 1: When language models face uncertainty,
they exhibit fallback behaviors, shifting from hal-
lucinations to degenerate text generation (repeat-
ing previous facts in different phrasing) and fi-
nally verbatim repetitions.

Moreover, we show that as generation length
grows and the model struggles to generate fac-
tually correct responses or convincing halluci-
nations, it shifts back in the fallback behaviors
spectrum from hallucinations to repetitions.

We further examine the effect of the decoding
scheme, demonstrating that while random sam-
pling may alleviate degenerate text (Holtzman
et al., 2020), it increases the rate of hallucina-
tions, which are harder to detect and potentially
more damaging to the user. Despite evidence
suggesting models may be partially aware of
their knowledge gaps (Kadavath et al., 2022),
they are not easily steered away from non-
factual generations. Even when shown how to
abstain rather than hallucinate, models continue
to produce hallucinations.

Our study shows that although increasing
model size reduces epistemic uncertainty (by
enhancing parametric knowledge) and im-
proves accuracy (Kaplan et al., 2020), when un-
certainty arises, fallback behaviors persist even

in the largest, best-trained models. Cases of uncertainty inevitably occur in natural interactions with
LLMs, due to knowledge cutoffs, false premises in prompts, or questions about factual information
not present in the training data. Ad-hoc fixes, like decoding schemes, fail to address the core issue,
often replacing easily detectable degenerate text with subtler and potentially harmful hallucinations.
The shift from degenerate text to hallucinations is particularly concerning in the context of scalable
oversight (Bowman et al., 2022; Kenton et al., 2024) making model uncertainty harder to detect.

To summarize, our main contributions are: (a) A controlled analysis of LLM behaviors under
uncertainty, showing that strengthening models increases hallucinations over degenerate text and
repetitions, (b) demonstrating that during generation, models undergo a phase shift from cor-
rect answers to hallucinations and then repetitions, (c) evidence that methods to reduce text de-
generation, like sampling, increase errors and hallucinations. Our code and data is available at
https://github.com/Mivg/fallbacks.

2 FALLBACK BEHAVIORS

Since LLMs emerged as powerful generative tools (Radford et al., 2019; Brown et al., 2020), nu-
merous reports have documented their unwanted behaviors. Holtzman et al. (2020) showed that
greedy decoding methods can cause degenerate generations, such as incoherent text or repetitions.
They propose the use of nucleus sampling to mitigate this problem. In another study, Nasr et al.
(2023b) demonstrate that when given out-of-distribution inputs, models might output their training
data verbatim. More recently, growing evidence (Zhu et al., 2024; Zhang et al., 2023; Aichberger
et al., 2024) suggests that even the best models often generate convincing yet factually incorrect
text, typically referred to as “hallucinations” or “confabulations” (Ji et al., 2022; Bang et al., 2023).
Xiao & Wang (2021b) investigate model uncertainty, defining it as the probabilistic uncertainty in
predicting the next token, which is influenced by the model’s training and knowledge, and identify
it as a cause of hallucinations.2

In this paper, we propose to view these seemingly independent phenomena as fallback behaviors
that models exhibit under uncertainty and investigate the relationships between them. Specifically,
we focus on epistemic uncertainty, which refers to uncertainty due to a lack of knowledge (Hou
et al., 2023). We hypothesize that the strength of an LLM influences its fallback behaviors, and aim
to understand what factors determine how a model would behave in cases of uncertainty.

2While the model may experience internal uncertainty when predicting the next token, this might not show
in the logits. Once a fallback behavior is selected, it may elevate the token, leading to a high logit value.
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Figure 2: Larger models resort to more com-
plex fallback behaviors. Pythia Models with
larger parameter counts produce more correct
facts (green) and hallucinations (orange) while
less repeating facts (blue). The green line indi-
cates the number of ground truth answers.

Our study considers the following phenom-
ena: 1. Sequence repetition When models
face an inability to produce plausible contin-
uations, they tend to repeat previously gener-
ated sequences, which are known to be plau-
sible within the current context. 2. Degener-
ate text As shown by Holtzman et al. (2020),
models can generate degenerate text that is not
strictly repetitive but follows a consistent pat-
tern, such as enumerating or repeating sen-
tences with variations in subject entities or at-
tributes. 3. Hallucinations We follow prior
work in considering hallucinations as untruth-
ful facts relative to the knowledge the model
was exposed to during pretraining and the given
context (Liu et al., 2022; Huang et al., 2023;
Adlakha et al., 2023; Min et al., 2023a; Zhang
et al., 2023). In cases that require the recollection of facts which the model cannot produce, it may
fabricate coherent and seemingly plausible yet factually incorrect content.

We additionally looked for cases of verbatim recollection of training samples (Nasr et al., 2023a),
but found no evidence of such fallback behavior in our setting (see further discussion in Section 6.1).

3 EXPERIMENTAL SETTING

To directly investigate the relation between fallback behaviors and their contributing factors, our
setup exposes models to naturally-occurring controlled cases of epistemic uncertainty. Specifically,
we consider tasks that require recalling multiple facts about common topics, without engaging in
complex reasoning. The tasks cover both structured outputs in the form of lists and open-ended
generation, with queries spanning various difficulty levels, as explained next.

Datasets We use the following datasets:

1. TRIVIAFACTS (TRIV): We manually curate 95 high-quality domain-diverse questions with a list
of answers (list questions) that (a) contains multiple elements, but no more than 15, (b) requires
only knowledge that appears very frequently in the web, and (c) includes short elements without
multiple correct phrasings. Due to its high-quality and highly controllable setup, we base the
bulk of our experiments on this dataset, with minor modifications as relevant to each experiment.

2. BIOGENERATION (BIO): To investigate fallback behaviors in unstructured natural text, we fol-
low Min et al. (2023a) and prompt the model to create biographies of entities from five popularity
levels, analyzing the resulting facts. We sample 25 entities from each popularity level.

3. QAMPARI (QAMP): We sample 100 questions from the dataset introduced by Amouyal et al.
(2023), which contains naturally occurring list questions with answers from Wikipedia.3

4. FAKEQAMPARI (FQAMP): We replace the subjects from QAMPARI with made-up names, veri-
fying they do not exist, forcing uncertainty.

Table 1 provides example questions, and additional details on the datasets are in Appendix B. No-
tably, unlike prior works that study model uncertainty by quantifying it (Xiao & Wang, 2021a; Lin
et al., 2023; Zhang et al., 2024), here we introduce model uncertainty by construction. Namely, the
above tasks require extensive recall of factual knowledge that is unambiguous and easy to evaluate,
such that incorrect answers from the model must be attributed to this uncertainty.

Generating predictions To remove behaviors caused by different decoding schemes, we perform
our analyses with greedy decoding unless stated otherwise (Section 5.1 investigates the effects of
temperature sampling). When requiring models to provide answers to the TRIV data, we prompt

3Though similar to our TRIVIAFACTS dataset, this dataset has non-exhaustive answer sets and varying
phrasings for the same answers, which can lead to correct answers being flagged as hallucinations.
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the model to produce a list of up to 25 answers (see Table 1 for example), thus forcefully pushing
the models to recall facts, even when there are none. We ablate this behavior by removing the pre-
defined length of the answer list and including specific demonstrations to complete the list while
abstaining instead of generating incorrect facts (Section 5.2).

Notably, in some cases, we prompt the model to generate more facts than actually exist to observe its
behavior. While seemingly synthetic, this setup mirrors common scenarios in natural LLM usage,
where users prompt models to recall multiple facts, often on topics where the model may have
knowledge gaps. These gaps arise from factors like knowledge cutoffs (Kadavath et al., 2022; Hou
et al., 2023), false premises in prompts (Brahman et al., 2024), or queries about data not present in
the pretraining set, such as proprietary or copyrighted material. We design our testbed to be diverse
and representative, while remaining highly controllable, ensuring that epistemic uncertainty is the
main cause of any incorrect answers produced by the model. This setup allows us to accurately
classify each recalled fact into one of the possible fallback categories.

Evaluation metrics Given a generated output, we parse it into a set of facts and evaluate each one
as correct, repeated, or hallucinated. To avoid overestimating the model’s factuality or hallucination
rate, we classify only the first appearance of each fact as correct/hallucination, with all subsequent
appearances treated as repetitions. For the list questions datasets (TRIV, QAMP and FQAMP), this
parsing is mostly straightforward as the generations are structured as lists and the ground truth is
given as a set of answers. For open-ended generation, we use FactScore Min et al. (2023a) to extract
atomic facts and verify them against the entities’ Wikipedia entries. As models frequently continue
generating tokens after the completion of the instruction prompt, we further detect what the model
did at that point. Namely, we consider the following options: 1) generating EOS token, 2) changing
the topic, for example, by creating a new list/biography which we refer to as topic change or
3) continuing to predict tokens indefinitely (until the token budget is exhausted) within the same
sentence/paragraph of the answer which we note by bad format. For additional information on
the parsing process and example generations and endings, see Appendix C.

Models We perform our experiments on a variety of model families, sizes, pretraining corpora
sizes and finetuning stages. We evaluate both the base and chat-specific checkpoints of Llama
2 and Llama 3 which were finetuned on instruction and dialogue data Touvron et al. (2023);
Meta AI (2024). Secondly, we use OLMo Groeneveld et al. (2024), which comes in multiple model
sizes, includes intermediate checkpoints throughout the pretraining phase and also offers instruction-
tuned variants. Finally, we make use of the Pythia model family Biderman et al. (2023) which
comes in 8 different scales, each with 154 intermediate pretraining checkpoints. We also include
Dolly models which are instruction-tuned Pythia checkpoints (Conover et al., 2023). This suite
of models allows us to control for different factors, such as pretraining data, model scale and training
procedure, examining the effect of each factor on the emergence of fallback behaviors.

4 FALLBACK BEHAVIORS OF DIFFERENT LLMS

Takeaway: Increasing model strength through extra pretraining, more parameters, or instruction-
tuning shifts fallback behaviors from simple to complex, i.e., from repetitions to hallucinations.

Scaling up models and training data improves performance and reduces undesired artifacts (Brown
et al., 2020). Incorporating instruction-following phases aligns LLMs’ outputs with human pref-
erences (Ouyang et al., 2022). In this section, we investigate how these improvements influence
model behavior under uncertainty. We first focus on the trade-off between sequence repetitions and
hallucinations, measured as discrete shifts in fallback behaviors. Due to the various forms and broad
definition of degenerate text, measuring its appearance is not straightforward. We revisit this in
depth in Section 6, demonstrating that the fallback shift is a continuous rather than discrete process.

4.1 MODEL SCALE DICTATES THE FALLBACK BEHAVIOR

To minimize confounding factors and understand the direct effect of model scale on fallback behav-
iors, we generate predictions with greedy decoding over our TRIVIAFACTS data, and analyze the
results by model family and scale. Since Pythia models were all trained on the same data in the

4
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Table 1: Example questions and answers for our main datasets.
∗ Taken from Wikipedia at https://en.wikipedia.org/wiki/Harrison_Ford.
♯ While not listed in Amouyal et al. (2023), Ryoichi Ikegami also wrote and drew Spider-Man: The Manga,
according to https://en.wikipedia.org/wiki/Ryoichi_Ikegami.

Dataset Question Example Answer

TRIV The following 25 colors are in the Olympic rings\n 1. Blue, Yellow, Black, Green, Red
BIO The following is a bio of Harrison Ford:\n Harrison Ford Harrison Ford (born July 13, 1942) is an American

actor. He has been a leading man in . . . ∗

QAMP The following 25 manga were drawn by Ryoichi Ikegami:\n
1.

Heat, Mai, the Psychic Girl, Wounded Man, Sanc-
tuary, Crying Freeman, Strain♯

FQAMP The following 25 manga were drawn by Haru Tanemura:\n 1. N/A (Haru Tanemura is not a known manga creator)

same manner, they are the most comparable. Figure 2 shows that larger models recall more correct
answers on average (green bar) and have lower failure rates in understanding task formats (red bar),
as expected. However, a clear trend emerges: while smaller models struggle to recall many facts
and resort to repeating the same ones (blue bar), as the number of parameters increases, repetitions
are replaced with hallucinations (orange bar). This trend is consistent across the OLMo and Llama
2 model families (Figure 17). We also tested naturally occurring list questions from our QAMPARI
subset, confirming the same trends (Figure 18).

Finally, we test what happens when we push uncertainty to the limit using our FAKEQAMPARI
dataset, which has no correct answers. One might expect models to abstain, indicating they do not
know the entity. However, as Figure 3 shows, not only do the models fail to abstain, but we also
observe that larger and more advanced models are more likely to fabricate facts compared to their
smaller counterparts. Specifically, the proportion of hallucinated answers more than doubles from
approximately 15% in models with fewer than one billion parameters to over 30% in larger models,
while the proportion of repetition decreases.

4.2 MODELS SHIFT FALLBACKS DURING PRETRAINING

Most LLMs are trained with autoregressive language modeling objective, maximizing the log prob-
ability of the next token given some context. Increasing the number of tokens seen during training
lowers perplexity and improves language understanding (Kaplan et al., 2020). Using intermediate
checkpoints from the OLMo and Pythia model families, we study fallback behavior during pre-
training. Figure 4 depicts the fallbacks breakdown of Pythia-6.9B across training, showing that
initially, after seeing only 2-4 billion tokens, it mainly repeats facts (blue). As training continues, it
produces more correct answers (green) and more incorrect unique facts, i.e., hallucinations (orange),
while repeating facts less. Similar trends were observed for Pythia-12B checkpoints, as well as
for OLMo models (see Figures 19 and 20).

4.3 INSTRUCTION FINETUNING SHIFTS BEHAVIORS

Recently, instruction finetuning (Ouyang et al., 2022) has been adopted as a valuable method to
improve model performance and align its generation with human preferences. Although one might
assume such training reduces hallucinations, OpenAI et al. (2024) suggest it increases model mis-
calibration, resulting in hallucinations associated with high logit values.

Repeating the experiments from Section 4.1 and comparing models to their instruction-tuned coun-
terparts, we see a similar shift in fallback behavior; instruction-tuned models generate fewer repeated
sequences and more hallucinations on average (Figures 21 and 22 in Appendix E). For the OLMo
and Llama 2 family which had undergone more finetuning than Dolly checkpoints, the results are
much more pronounced, with the hallucinations portion almost doubling between scales. While pre-
trained LLMs are generally unable to generate sequences shorter than what they encountered during
training, instruction-tuned models are more likely to produce an EOS token, preempting the gen-
eration early and resulting in fewer facts. However, we also note that while instruction finetuning
can improve alignment with human preferences, it can sometimes cause finetuned models to diverge
more frequently, resulting in some bad format generations.
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Figure 3: Larger models hallucinate in-
stead of abstaining. When completing a
list of facts about fictitious entities, larger
Pythia models hallucinate more, while
smaller models repeat facts. Models never
abstain from giving incorrect facts.
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Figure 4: Models that train longer shift
to complex fallbacks. As Pythia-6.9B
checkpoints see more training tokens (in bil-
lions), they produce more hallucinations and
fewer repetitions. The green line shows cor-
rect answers upper bound.

4.4 SIMILAR TRENDS IN OPEN-ENDED GENERATION

To mimic real-world user requests, we use the BIOGENERATION dataset, sampling completions
from a subset of the Pythia model scales with a temperature of τ = 0.5. We use FactScore (Min
et al., 2023b) to parse each generated biography into atomic facts and let ChatGPT 3.5 (Ouyang
et al., 2022) verify them against Wikipedia entries.4 Without the limitation on number of facts to
produce, we observe that the larger models also generate more facts. Interestingly, when averaging
over the very-rare entities (Figure 5) we see that even in this natural scenario, when models are
required to elaborate on topics they know little about, they fall back to the same behaviors, with
shifts occurring as predictably as in the controlled settings. Similar trends emerge over the rest of
the popularity levels, though the more frequent an entity is, the more likely the models are to be able
to recall facts for them and less uncertainty they face, thus making the results less useful for our
analysis (Figures 27 to 31). This aligns only partially with Min et al. (2023b), who found stronger
models generate more atomic facts and struggle more with rare entities. However, they observed that
within a model family, larger models are generally more precise (i.e., hallucinate less). In contrast,
Lin et al. (2022) found the largest models are the least truthful, which aligns with our findings.

5 FACTORS INFLUENCING THE FALLBACK BEHAVIORS OF AN LLM

Takeaway: While LLMs have some internal capability to avoid hallucinations, this fallback behavior
is inherent to their generation scheme and is likely unavoidable with current decoding methods.
Mitigating degenerate text through random sampling often comes at the cost of more hallucinations.

In this section, we shift our focus from comparing different models to understanding the factors
influencing the fallback behaviors of a frozen prertained model used for inference.

5.1 EFFECT OF SAMPLING METHODS

So far we mostly used greedy decoding to obtain responses from the models. However, in real-world
applications, decoding often includes sampling from the model’s output distribution and including
repetition/frequency penalties (e.g., Holtzman et al., 2020; Keskar et al., 2019; Kumar et al., 2022).
We analyze the effect of temperature sampling on fallback behaviors by repeating our experiment
on TRIVIAFACTS, while generating five sequences per model for each input with an increasing tem-
perature. Figure 6 shows the results for Pythia-12B, surprisingly revealing that while a higher
temperature mitigates some repetitiveness, it causes a shift towards hallucinations. Moreover, in-
troducing randomness reduces the number of correct facts, which could be attributed to the random
skipping of correct facts that have low confidence in the model.

To assess whether our findings in Section 4.1 hold in realistic setups that involve random sampling,
we repeat them with τ = 0.5. This choice of temperature sets a good balance between the model’s

4While FactScore, which relies on ChatGPT 3.5, can miss some atomic facts or incorrectly label them, we
assume such errors occur at similar rates across generations, resulting in reliable trend analysis.
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Figure 5: Larger models hallucinate more
when generating biographies of rare enti-
ties. Larger Pythia models produce more
atomic facts and more hallucinations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

5

10

15

20

25

Av
er

ag
e 

an
sw

er
 c

ou
nt

s

4.1

8.0

12.2

4.0

8.3

12.0

4.1

8.5

11.7

4.0

9.0

11.3

4.0

9.4

10.6

4.0

9.8

10.4

4.0

10.8

9.4

3.9

12.4

7.4

3.6

14.1

5.6

3.2

16.2

3.3

2.7

17.2

2.0

correct
hallucinations

repetitions
bad_format

topic_change
EOS

Figure 6: Increasing the sampling tempera-
ture shifts fallback behavior. An average of
5 completions from Pythia-12B on TRIVI-
AFACTS for varying temperatures.

performance on the task and the amount of degenerate text it outputs (Figure 6). Figure 23 con-
firms that even with additional randomness, all fallback behaviors emerge, with shifts occurring as
predictably as in the greedy-decoding case.

5.2 MODELS “VOLUNTEER” HALLUCINATIONS

In many previous experiments, we deliberately placed the model in high-uncertainty scenarios,
prompting it to produce additional facts when none existed. To lift this restriction, we modify
the base prompt in the TRIVIAFACTS data by removing the requirement for a specific number of
answers (25). For example, the modification to the example in the first row of Table 1 would result
in the prompt ‘‘The following colors are in the Olympic rings:’’, allowing
the model to stop generating additional answers once it exhausted its knowledge. The same trends
persist: larger Pythia models reduce repetitions from 16.4 to 9.7 but increase hallucinations from
2.9 to 6.2 (Figure 24). This shows that even in natural scenarios without synthetic uncertainty, LLMs
still rely on the same behaviors, failing to use better “exit strategies” like topic changes or abstention.

5.3 CAN FALLBACKS BE PREVENTED BY PROMPTING?

Kadavath et al. (2022) find encouraging evidence that LLMs may be calibrated (i.e. their confidence
approximates the true probability of the output) and able to assess what they don’t know, especially
when they are larger. However, Kapoor et al. (2024a) recently showed that this observation does
not hold for some popular open-source models, and Yona et al. (2024) showed that LLMs struggle
to express their uncertainty in words. We aim to understand whether LLMs are internally aware of
their uncertainty, and if this awareness can reduce unwanted behaviors.

We modify the prompts as follows: For instruction-tuned models, we add the following pre-
fix to each prompt ‘‘Complete the following list with facts you are sure
of, and stop when you cannot recall additional facts’’. For pretrained
models, we add a prefix with three demonstrations for in-context learning, each consists of an easy
list question and its corresponding answers followed by a topic-change to a new list (Figure 25 gives
the full prefix). While for Pythia and OLMo we observe a minor increase in abstaining behavior at
the expense of hallucinations, the overall trend remains the same, with hallucinated facts emerging
abundantly (over 7 on average, Figure 26). In comparison, both Llama 2 and more pronouncedly
Llama 3 manage to abstain by changing topics often (up to 20 facts on average), but the portion of
hallucinated facts still increases with model size. We conclude that fallback behaviors are inherent
to current pretrained LLMs and emerge “unintentionally” and unavoidably under uncertainty.

6 FALLBACK BEHAVIORS IN ONE GENERATION

Takeaway: As models generate longer texts, they shift in their fallback behavior, first generating
hallucinations and eventually producing degenerate text.

While we established that both model strength and the decoding method impact the fallback behav-
iors of a model, these parameters are decided ahead of time. In this section, we focus on a single
model at a time and investigate the effect of generation length on emergence of fallback behaviors.
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Figure 7: Models shift fallback behavior
during generation. Order of fallbacks per
generation for a Pythia-12B model—each
row shows a prompt with 25 facts. Green
marks correct answers, orange hallucina-
tions, blue repetitions and red bad format.
Rows are sorted by consecutive repetitions.
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Figure 8: Model output gradually degen-
erates with increased generation length.
When generating biographies for rare enti-
ties, output degenerates as completion length
increases compared to the human baseline
(respective Wikipedia entries). Stronger
models deteriorate more slowly.

6.1 EMERGENCE OF FALLBACKS DURING GENERATION

We view the facts generated by the model for a query as an ordered list of labels (correct, hallu-
cination, repetition). For example, each row in Figure 7 shows the 25 labels of facts produced by
Pythia-12B for each of the 95 samples in TRIVIAFACTS. Surprisingly, the model almost always
first generates correct facts (green), then shifts to hallucinations (orange), and finally to repeating
facts (blue). Notably, this fallback behavior isn’t determined by the question and follows the same
order as when increasing model strength. This trend holds regardless of the model, the dataset, or
the decoding method (see Figures 32 to 39 for further results).

To quantify this phenomenon, we denote a label of 1 for repetition, 2 for hallucination, and 3 for
correct, and define

ShiftScore(f1, . . . , fn) :=
1

n− 1

n−1∑
i=1

1fi+1≥fi

Where f1, . . . , fn is an ordered list of fact-labels (fi ∈ {1, 2, 3}), and 1 is the indicator func-
tion. For each pair of dataset and model, we measure the ShiftScore for each generation. We
then run a Mann-Whitney U-test (McKnight & Najab, 2010) to compare the results to the expected
ShiftScore if the list of facts was produced in a random order (more details in Appendix E.2).
We find that for all tested pairs, the p-value is < 10−8 (see Table 2 for full analysis), and the
U-statistic is always positive. We thus conclude that the ordering is not random, and follows the
aforementioned hierarchy of fallback behaviors.

When investigating the fallback behaviors in a single generation, one may expect to observe occur-
rences of verbatim recollection of training samples, as suggested by Nasr et al. (2023a). To address
this, we analyzed the generations from our experiments both qualitatively and quantitatively, and
found no evidence of such behavior. We therefore hypothesize that verbatim generation of train-
ing samples stems from other factors than uncertainty regarding factual information, and is more
prevalent in the presence of out-of-distribution inputs. For further details, see Appendix D.

6.2 FALLBACK SHIFTS IS A CONTINUOUS PROCESS

So far, we have analyzed model generations as discrete lists of facts, and correspondingly ob-
served discrete shifts in fallback behaviors. In this section, we consider a softer measure of de-
generate text generation. For example, producing a list of URLs such as https://page.domain/xyz,
https://page.domain/xyq, https://page.domain/wyz is not strictly a repetition nor necessarily a hallu-
cination, but it is clear that some form of conditional repetitiveness is occurring. Figure 12 shows
another example as the model starts repeating previous facts (such as the shows Elsa Pataky appeared
in) with a slightly different phrasing, before it begins repeating previous sequences verbatim.

To measure such phenomena, we introduce a DiversityScore. Given a sequence of gener-
ated tokens x = t1, . . . , tn from the model’s vocabulary V , we define DiversityScore(x) :=
1
n

∑
v∈V 1v∈x, i.e. the number of unique tokens in the sequence divided by the sequence length.

8
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When n ≪ |V| we expect DiversityScore ≈ 1 while a repetitive sequence will have a score
that diminishes rapidly towards 0.

Experimenting with human-written texts of ≤ 512 tokens from Wikipedia, we observe they have a
typical DiversityScore of 0.7− 0.8 that almost never exceeds 0.6 (see Figure 8). Specifically,
we use the subset of frequent entities in BIOGENERATION Min et al. (2023b), for which we expect
models to be the least uncertain and generate full and diverse outputs, as discussed in Section 4.4. We
compare the Wikipedia paragraphs for these entities with the model-generated biographies. For all
models’ outputs, the DiversityScore diminishes much faster, with weaker models crossing the
0.5 threshold at around 150 tokens (i.e., after only 150 tokens, every other token appeared before).
We observe a similar trend for the stronger model Llama 3 8B (Meta AI, 2024).

We conclude that the shift in fallback behaviors towards the degenerate end does not occur in a
discrete phase shift, but is a continuous process that exacerbates as the generation length grows.

7 RELATED WORK

Repetitions and degenerate text Holtzman et al. (2020) first attributed the tendency of LMs to
generate highly repetitive and degenerate text to greedy sampling and suggested nucleus sampling as
a possible mitigation. Follow-up work demonstrated the role of uncertainty in generating degenerate
text and proposes various solutions using random, controlled, or constrained generation techniques
Keskar et al. (2019); Kumar et al. (2022); Zhang et al. (2022); Finlayson et al. (2023); Su et al.
(2022); Li et al. (2023a). In a parallel approach, Olsson et al. (2022) focused on understanding the
intrinsic mechanisms that cause models to copy previous inputs.

Hallucinations As random sampling techniques became ubiquitous and LLMs grew in size and
capability, the main focus shifted toward understanding the causes and proposing solutions to the
generation of non-factual text, commonly referred to as hallucinations Ji et al. (2022); Huang et al.
(2023). Recent work has focused on understanding how and why hallucinations emerge during gen-
eration Rashkin et al. (2023); Zhang et al. (2023); Adlakha et al. (2023); Kim et al. (2024), reduc-
ing hallucinations (e.g., by retrieval-augmentation or prompting) Roller et al. (2021); Shuster et al.
(2021); Dhuliawala et al. (2023), and detecting hallucinations Zhou et al. (2021); Liu et al. (2022);
Honovich et al. (2022); Min et al. (2023b); Mishra et al. (2024); Gottesman & Geva (2024); Hron
et al. (2024). Recently, Denison et al. (2024) demonstrated how models generalize during training
and learn to shift from simple dishonest strategies such as sycophancy to generating false facts with
premeditation. Similarly, Band et al. (2024) suggest that hallucinating rather than abstaining is an
issue with the calibration of the model, as was also hypothesized by OpenAI et al. (2024).

Uncertainty in language modeling The phenomenon where LMs abstain or hallucinate when un-
certain is well-known Xiao & Wang (2021b); Lin et al. (2022); Snyder et al. (2023); Baan et al.
(2023); Kang et al. (2024). Recent studies have examined if the generation probability of LLMs
is calibrated Kadavath et al. (2022) and whether they can express their uncertainty in natural lan-
guage Li et al. (2023b); Yona et al. (2024). A parallel line of work focuses on defining notions of
uncertainty and designing method to quantify it in various setups (Xiao & Wang, 2021a; Hou et al.,
2023; Lin et al., 2023; Liu et al., 2024b; Ling et al., 2024). Unlike previous research, we focus on
understanding model behaviors under epistemic uncertainty, rather on quantifying such uncertainty.

8 CONCLUSION

This work links the notorious unwanted behaviors of LLMs, such as degenerate and repetitive text
and hallucinations, showing that they are all fallback behaviors models exhibit under uncertainty.
We provide abundant evidence that these behaviors emerge with a clear ordering between their
appearances, when comparing similar models of different strength, different decoding strategies and
even in a single generation. Our experiments suggest that these fallback behaviors are inherent
to current LLMs and that existing methods to alleviate them may simply replace one fallback by
another. Moreover, longer training and additional parameters enhance performance and shift model
fallbacks towards more complex range. However, as generation length grows, even the strongest
models will resort to hallucinations and may eventually produce degenerate text.
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able extraction of training data from (production) language models. arXiv:2311.17035, 2023b.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wo-
jciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. arXiv:2303.08774,
2024.

14



2nd Workshop on Attributing Model Behavior at Scale, NeurIPS 2024

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
arXiv:2203.02155, 2022.

USVSN Sai Prashanth, Alvin Deng, Kyle O’Brien, Jyothir S V au2, Mohammad Aflah Khan, Jay-
deep Borkar, Christopher A. Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke,
Katherine Lee, and Naomi Saphra. Recite, reconstruct, recollect: Memorization in lms as a mul-
tifaceted phenomenon, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Preprint, 2019. https://d4mucfpksywv.clo
udfront.net/better-language-models/language_models_are_unsuperv
ised_multitask_learners.pdf.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael Collins, Dipanjan Das,
Slav Petrov, Gaurav Singh Tomar, Iulia Turc, and David Reitter. Measuring attribution in natural
language generation models. Computational Linguistics, 49(4):777–840, December 2023. doi:
10.1162/coli a 00486. URL https://aclanthology.org/2023.cl-4.2.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle
Ott, Eric Michael Smith, Y-Lan Boureau, and Jason Weston. Recipes for building an open-
domain chatbot. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 300–325, Online, April 2021. Association for Computational Linguistics. doi: 10.186
53/v1/2021.eacl-main.24. URL https://aclanthology.org/2021.eacl-main.24.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmenta-
tion reduces hallucination in conversation. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational Linguis-
tics: EMNLP 2021, pp. 3784–3803, Punta Cana, Dominican Republic, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.320. URL
https://aclanthology.org/2021.findings-emnlp.320.

Ben Snyder, Marius Moisescu, and Muhammad Bilal Zafar. On early detection of hallucinations in
factual question answering. arXiv:2312.14183, 2023.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang, and Owen Lewis. Localizing paragraph memo-
rization in language models. arXiv preprint arXiv:2403.19851, 2024.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. arXiv:2202.06417, 2022.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. arXiv:2307.09288, 2023.

Yijun Xiao and William Yang Wang. On hallucination and predictive uncertainty in conditional
language generation. ArXiv, abs/2103.15025, 2021a. URL https://api.semanticscho
lar.org/CorpusID:232404053.

15

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/2023.cl-4.2
https://aclanthology.org/2021.eacl-main.24
https://aclanthology.org/2021.findings-emnlp.320
https://api.semanticscholar.org/CorpusID:232404053
https://api.semanticscholar.org/CorpusID:232404053


2nd Workshop on Attributing Model Behavior at Scale, NeurIPS 2024

Yijun Xiao and William Yang Wang. On hallucination and predictive uncertainty in conditional
language generation. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of
the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, pp. 2734–2744, Online, April 2021b. Association for Computational Linguistics.
doi: 10.18653/v1/2021.eacl-main.236. URL https://aclanthology.org/2021.eacl
-main.236.

G. Yona, Roee Aharoni, and Mor Geva. Can large language models faithfully express their intrinsic
uncertainty in words? arXiv:2405.16908, 2024.

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. Luq: Long-text uncertainty quan-
tification for llms. ArXiv, abs/2403.20279, 2024. URL https://api.semanticscholar.
org/CorpusID:268793903.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable
text generation using transformer-based pre-trained language models. ACM Computing Surveys,
56:1 – 37, 2022.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How language model
hallucinations can snowball. arXiv:2305.13534, 2023.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, Francisco Guzmán, Luke Zettlemoyer, and
Marjan Ghazvininejad. Detecting hallucinated content in conditional neural sequence generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP 2021, pp. 1393–1404, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.120. URL
https://aclanthology.org/2021.findings-acl.120.

Zhiying Zhu, Zhiqing Sun, and Yiming Yang. Halueval-wild: Evaluating hallucinations of language
models in the wild. arXiv:2403.04307, 2024.

APPENDIX

A LIMITATIONS

In this work we study different fallback behaviors of language models when faced with uncertainty.
While we conduct multiple experiments trying to mimic real-world usage of such models as much
as possible, there are several confounders that may still differentiate our controlled experiments than
behavior in the wild. First, many of the commodity products are wrapped in additional levels of
verification layers to reduce the effect of such behaviors, and it is possible that when observed as
a whole, the behaviors of these products could differ significantly than their underlying language
models.

Second, while we study the effect of random sampling, it becomes more common to apply even
stricter modifiers to the language model next-word prediction distribution by using methods such
as nucleus sampling, top-k decoding, repetition penalty and more (Holtzman et al., 2020; Keskar
et al., 2019; Finlayson et al., 2023). We leave to future work to examine such decoding strategies on
fallback behaviors.

Third, we study the effect of instruction-following finetuning on fallback behaviors, but it remains
possible that additional preference alignment may allow models to be instructed not to hallucinate.
While recent work (Kapoor et al., 2024b; Yona et al., 2024) has showed these models are not well
calibrated and cannot tell whether they hallucinate or not, it is an open research and it is possible
that eventually it will be a viable solution.

Finally, this work focuses on producing factually correct facts in natural language, and it remains
for future work to investigate similar phenomena in producing faithful text to in-context information
(such as entities position and attributes with a story), as well as when the task involves synthetic
language such as when producing code.
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REPRODUCIBILITY

We have made every effort to ensure the reproducibility of our work. All code, datasets, hyper-
parameters, and recipes required to reproduce our results and plots are available in our https:
//github.com/Mivg/fallbacks. This repository also contains all model generations and
the complete set of plots, some of which are presented in the paper. None of the models or data
used are proprietary; all experiments rely on open-source frameworks, including HuggingFace and
PyTorch, and publicly available datasets. Detailed descriptions of the experimental setup and data
processing steps can be found in the supplementary materials. Specifically, Section 3 outlines the
experimental setup and the process for generating answers from various models. Appendix B de-
scribes the collection and processing procedures for each dataset used in the study. Additionally,
Appendix C provides implementation details on the parsing process, including fact extraction and
classification for each type of generated output.

B DATASETS

As discussed in Section 3, we make use of multiple datasets for our experiments. In this section, we
provide further details on the construction of each of them. We release all the datasets used in our
experiments at https://github.com/Mivg/fallbacks.

B.1 TRIVIAFACTS

When creating this dataset, we set the following desiderata:

1. Exhaustiveness: In order to label all correct answers as such, we verify that our ground-
truth answer set is exhaustive.

2. Non-ambiguity: To avoid incorrectly labeling a correct answer as a hallucination, we avoid
questions where the answers may be phrased in many ways and focus on short answers with
a single common way to refer to them.

3. Easiness: To be sure models are able to recall correct facts, we choose only questions
where the answer list contains at least some answers that any graduate student can produce,
as a proxy to the knowledge contained in language models that are trained on web data and
Wikipedia.

4. Diversity: To avoid biases in evaluations, we set out to create a diverse set of questions
that relates to as many domains as possible, spanning science, sports, culture, politics,
geography, and more.

5. Uncertainty: To ensure questions induce uncertainty, we restrict the size of the ground-
truth answer set to 10. As we ask models to produce 25 answers, we thus ensure they will
become uncertain even when recalling all the correct answers.

We collect a set of nearly 300 candidate questions through a mix of manual suggestions and inter-
actions with ChatGPT. We then manually annotate each of the questions according to the desiderata
above, verifying the correctness and completeness of the answer set. After aggressive filtering, we
are left with 95 high-quality questions that meet all of our requirements.

Table 1 shows the format of questions in TRIVIAFACTS. In contrast to the other list questions
datasets (QAMPARI and FAKEQAMPARI), here the prompts do not end with a “:”. To verify that
this has no significant effect on the results, we append a colon to each question and repeat the
experiments from Section 4.1. As depicted in Figure 9, the same trend repeat here, and the results
are very similar to those in Figure 2.

B.2 BIOGENERATION

Min et al. (2023b) introduce FactScore, which uses an LLM (e.g., ChatGPT) to parse an un-
structured passage into atomic facts and verify them independently against a knowledge base. Min
et al. (2023b) use topics from Wikipedia and divide them into five popularity levels based on their
frequency in the knowledge base, from very rare to very frequent. They then require a model to
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Figure 9: Larger Pythia models’ fallback behaviors on TRIVIAFACTS when adding a colon
at the end of a questions. Models with larger parameters count produce more correct facts (green)
and hallucinations (orange) while less repeating facts (blue). The green line indicates the number of
ground truth answers.

generate an open-ended biography for each topic (entity) and use the respective Wikipedia page as
the ground-truth knowledge source to verify facts. We randomly sample 25 topics from each of the
five popularity levels and use them throughout our experiments.

B.3 QAMPARI

We use the dataset as introduced by Amouyal et al. (2023). We filter the questions to those where the
answer is a set of size ≥ 3 and sample 100 random questions. Then, we rephrase each question to be
in the format depicted in Table 1. Where appropriate, some of the questions follow a slightly differ-
ent template. For example, one of the questions is “Larry Cohen wrote and directed the following
25 works of art:”.

B.4 FAKEQAMPARI

We take the questions from QAMPARI (see Appendix B.3) and employ ChatGPT to replace the
subject entity in each question with an alternative entity name which sounds plausible but does
not exist (for example, choosing a Japanese name for an anime creator). We manually verified the
generated questions, while checking that all new subjects feel plausible in the context and that they
refer to entities that do not exist.

C PARSING ANSWERS

In this section, we provide further implementation details on the process used to parse the answers
from each generation. We make our code and the model generations available in https://gith
ub.com/Mivg/fallbacks.

C.1 LIST QUESTIONS

Extracting answers In Table 1, we show examples of inputs given to the model for completion.
To steer models to complete the answers in a specified format, we append to each question the
suffix ‘‘\n 1.’’. In almost all cases, the models indeed generate completions in the format of
‘‘\n 1. <answer 1>\n 2. <answer 2> ...’’, which allows us to easily extract the
answers (Figure 10). In some cases, the generations include no \n or extra newline characters, but
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those cases are easily dealt with by a simple regex. The next most common case is a given answer as
a comma-separated list. We identify those cases when none of the above options were detected and
at least five commas appeared in the first sentence of the generation (no newlines or periods). Finally,
if none of the above was detected but newline characters are identified (one or more) between short
lines, we treat each new non-empty line as an answer. If none of the cases were identified, or a
detected structured format is violated without new line characters, we collect the answers until that
point and mark the difference from the expected 25 answers as missing due to Bad Format. All
answers are normalized by removing extra white spaces to evaluate for repetitions.

Identifying end of lists Since pretrained language models are often trained with sequences of a
predetermined length, they do not produce end-of-sequence (EOS) tokens and continue to generate
tokens until their budget is exhausted. As such, to avoid false-positive hallucination detection, we
have to be able to identify when the model stopped producing answers for the given prompt and
started generating completions for other topics. The easiest to identify and most common case is
when the models generate the completion in the structured format as described above. In such cases,
we can simply identify when the structure is violated (e.g., after the 10th answer the model stops
enumerating answers and changes the topic), or take the first 25 answers given. Another common
pattern used by many models is a Topic change by including the prefix “The following . . . ”
(which we use as the prefix in our prompts), followed by a new list of items. Finally, some models
(especially instruction-tuned ones) explicitly output an EOS token to mark the end of the generation,
in which case we mark the missing answers to complete the expected 25 as missing due to EOS.

Evaluating correctness To avoid labeling answers as hallucinations when they are correct but
phrased differently, we perform a relaxed evaluation for correct answers. Namely, each given an-
swer is normalized by removing redundant white spaces, articles, and punctuation, removing any
parentheses, and making all characters lowercase. When multiple synonyms for the correct name
exist (such as Southern Ocean, which is another name for Antarctic Ocean), we attempt to include
both as possible correct answers. We then consider a produced answer correct if it has an f1 score
of at least 0.55 with an answer in the ground-truth set.

We verify our methods manually by sampling generations from multiple models and experiments
and find that the extraction, end-of-generation identification, and evaluation are correct in over 95%
of the cases.

C.2 BIOGRAPHIES GENERATIONS

As we rely on FactScore (Min et al., 2023b) to extract atomic facts and evaluate them, our task here
is mainly identifying topic changes to avoid false detection of hallucinations. To do so, we look for
a prefix indicating a new biography is being generated, for special keywords such as References,
Discography, etc., if multiple newline characters appear, or if a title-like line is encountered. We
also consider any new line that starts with the subject name or a pronoun as a continuation of the
biography.

After extracting only the part of the generation we consider as the biography and indicating the
strategy to change the topic, we split the biography into sentences and delegate to FactScore (using
ChatGPT 3.5 (Brown et al., 2020; Ouyang et al., 2022)) to extract atomic facts and validate them
against the entity’s Wikipedia page. An example of a full generation is given in Figure 12 and the
list of extracted atomic facts and their labeling is given in Figure 13.

D HOW MODELS CHANGE TOPICS

Throughout our experiments, we analyze the classification of atomic facts in models’ generations,
up until a point where they change the topic. Nasr et al. (2023a); Geiping et al. (2024) demonstrate
how extremely out-of-distribution inputs can cause models to fall back into recalling training sam-
ples verbatim, and Haviv et al. (2023); Stoehr et al. (2024) showed that generation of memorized
sequences has a distinct internal “profile” from generation of non-memorized sequences. In con-
trast, Prashanth et al. (2024, inter alia) investigate memorization and find that it can be caused by
different factors such as duplicated training data, repeating common and predictable patterns, and
the recollection of sequences that are neither.
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The following 25 planets are in our solar system:
1.Mercury
2. Venus
3. Earth
4. Mars
5. Jupiter
6. Saturn
7. Uranus
8. Neptune
9. Pluto
10. Ceres
11. Pallas
12. Vesta
13. Juno
14. Vesta
15. Ceres
16. Pallas
17. Juno
18. Pallas
19. Vesta
20. Ceres
21. Pallas
22. Juno
23. Vesta
24. Ceres
25. Pallas

The following 25 planets are in our solar system
1. Mercury
2. Venus
3. Earth
4. Mars
5. Jupiter
6. Saturn
7. Uranus
8. Neptune
9. Pluto
10. Ceres
[... We omit the rest of the generation which continues to repeat the previous content indefinitely]

Figure 10: An example of a generation where the output followed the structured format precisely.
For the extracted and labeled answer set, refer to Figure 11.

Inspired by this line of work, we analyzed how models change topics, and in particular, if memorized
sequences emerge in these cases. We manually inspect such generations from multiple models, for
both our TRIVIAFACTS and BIOGENERATION datasets, using both greedy and temperature sam-
pling. Using Infini-gram (Liu et al., 2024a), we iterate over sliding windows of lengths 8 and
16 tokens to look for possible occurrences of verbatim recollection, which we manually inspect.
We found no cases where a sequence longer than a few tokens repeats verbatim, and even then it
comprises of common patterns, such as ‘‘public static void main’’.

Upon manual inspection, we have found that in almost all cases, the “topic change” included a
repetition of the exact same content as before, additional data in some template format (e.g. listing
references for BIOGENERATION samples), or another generation in the same format as the question
(e.g. another list about another topic for TRIVIAFACTS and another biography for a different entity
for BIOGENERATION). The only notable behavior observed was models attempting to provide some
code snippets to support the answer-list generated, as seen in Figure 14.

Overall, we did not observe any evidence of verbatim generation of training samples in the models’
generations. We therefore hypothesize that this behavior stems from other factors than uncertainty
regarding factual information, and is more prevalent in the presence of out-of-distribution inputs.

E ADDITIONAL RESULTS

In this section, we provide additional results to support the results discussed in Sections 4 to 6.
As discussed in Section 3, we evaluate three model families over multiple datasets and in various
settings. For the sake of brevity, we include here a representative set of results and share the code
and results to produce all plots for the rest of the experiments.

Figures 17 and 18 depict the scaling behavior of larger models on the TRIVIAFACTS and QAMPARI
datasets respectively. Figures 19 and 20 shows fallback trends during pretraining for Pythia-6.9B
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Mars (C)
Uranus (C)
Venus (C)
Saturn (C)
Jupiter (C)
Mercury (C)
Neptune (C)
Earth (C)
Pluto (H)
Ceres (H)
Pallas (H)
Vesta (H)
Juno (H)
Vesta (R)
Ceres (R)
Pallas (R)
Juno (R)
Pallas (R)
Vesta (R)
Ceres (R)
Pallas (R)
Juno (R)
Vesta (R)
Ceres (R)
Pallas (R)"

Figure 11: Figure 10 shows an example of a generation where the output followed the structured
format precisely. We display the extracted set of answers and their labeling according to our evalua-
tion. An example breakdown of a generated biography into atomic facts and their labels is provided.
Correct facts are noted by (C), hallucinated ones by (H), and repeated ones as (R).

The following is a bio of Elsa Pataky:

Elsa Pataky is a Spanish actress who has appeared in a number of films and television shows. She is best known 

for her roles in the Fast and Furious franchise, as well as in the films Snakes on a Plane and Giallo. Pataky has 

also appeared in several Spanish-language films, including the 2008 film The Orphanage. In 2017, she starred in 

the Netflix series The OA. Pataky is married to actor Chris Hemsworth, with whom she has three children.

Elsa Pataky was born on July 18, 1976, in Madrid, Spain. She is the daughter of actors José Luis Pataky and 

Cristina Pons. Her father is of Spanish and Hungarian descent, while her mother is of Spanish and Italian descent. 

Pataky has two older brothers, Javier and Ignacio.

Pataky began her acting career in 1998, with a role in the film The Almond Tree. She has since appeared in a 

number of films and television shows, including the Fast and Furious franchise, Snakes on a Plane, Giallo, The 

Orphanage, and The OA. Pataky is married to actor Chris Hemsworth, with whom she has three children.

Pataky is a Spanish actress who has appeared in a number of films and television shows. She is best known for 

her roles in the Fast and Furious franchise, as well as in the films Snakes on a Plane and Giallo. Pataky has also 

appeared in several Spanish-language films, including the 2008 film The Orphanage. In 2017, she starred in the 

Netflix series The OA. Pataky is married to actor Chris Hemsworth, with whom she has three children.

Elsa Pataky is a Spanish actress who has appeared in a number of films and television shows. She is best known 

for her roles in the Fast and Furious franchise, as well as in the films Snakes on a Plane and Giallo. Pataky has 

also appeared in several Spanish-language films, including the 2008 film The Orphanage. In 2017, she starred in 

the Netflix series The OA. Pataky is married to actor Chris Hemsworth, with whom she has three children.
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Figure 12: An example generated biography by Llama 3 8B, illustrating the different fallback
behaviors of LLMs, gradually shifting from factually correct claims, through hallucinations and
degenerate text, to sequence repetitions. The breakdown into atomic facts and their labels can be
found in Figure 13

and 12B models in the former and OLMo-1B and 7B models in the latter. Figures 21 and 22 gives
similar results when adding instruction finetuning to models on the TRIVIAFACTS and QAMPARI
datasets. In Figure 25 we ablate the prompt for instruction finetuned models to nudge them into
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Elsa Pataky is a Spanish actress. (C)
Elsa Pataky has appeared in a number of films. (C)
Elsa Pataky has appeared in a number of television shows. (C)
She is best known for her roles in the Fast and Furious franchise. (C)
She is best known for her roles in the films Snakes on a Plane. (C)
She is best known for her roles in the film Giallo. (C)
Pataky has appeared in several Spanish-language films. (C)
The Orphanage is a film. (C)
The Orphanage was released in 2008. (H)
In 2017, she starred in The OA. (H)
The OA is a Netflix series. (H)
Pataky is married to Chris Hemsworth. (C)
Pataky has three children. (C)
Pataky and Chris Hemsworth have three children together. (C)
Elsa Pataky was born on July 18, 1976. (C)
Elsa Pataky was born in Madrid. (C)
Elsa Pataky was born in Spain. (C)
She is the daughter of actors. (H)
Her father is José Luis Pataky. (H)
Her mother is Cristina Pons. (H)
Her father is of Spanish descent. (C)
Her father is of Hungarian descent. (H)
Her mother is of Spanish descent. (H)
Her mother is of Italian descent. (H)
Pataky has two older brothers. (H)
Pataky's older brothers are named Javier and Ignacio. (H)
Pataky began her acting career in 1998. (H)
Pataky's first role was in The Almond Tree. (H)
The Almond Tree is a film. (H)
She has appeared in a number of films. (C)
She has appeared in a number of television shows. (C)
The Fast and Furious franchise is a film. (C)
She has appeared in the Fast and Furious franchise. (C)
Snakes on a Plane is a film. (C)
She has appeared in Snakes on a Plane. (C)
Giallo is a film. (C)
She has appeared in Giallo. (C)
The Orphanage is a film. (H)
She has appeared in The Orphanage. (H)
The OA is a television show. (H)
She has appeared in The OA. (H)
Pataky is married to Chris Hemsworth. (R)
Pataky has three children. (R)
Pataky and Chris Hemsworth have three children together. (R)
Pataky is a Spanish actress. (C)
Pataky has appeared in films. (C)
Pataky has appeared in television shows. (C)
She is best known for her roles in the Fast and Furious franchise. (R)
She is best known for her roles in the films Snakes on a Plane. (R)
She is best known for her roles in the film Giallo. (R)
Pataky has appeared in several Spanish-language films. (R)
The Orphanage is a film. (R)
The Orphanage was released in 2008. (R)
In 2017, she starred in The OA. (R)
The OA is a Netflix series. (R)
Pataky is married to Chris Hemsworth. (R)
Pataky has three children. (R)
Pataky and Chris Hemsworth have three children together. (R)
Elsa Pataky is a Spanish actress. (R)
Elsa Pataky has appeared in a number of films. (R)
Elsa Pataky has appeared in a number of television shows. (R)
She is best known for her roles in the Fast and Furious franchise. (R)
She is best known for her roles in the films Snakes on a Plane. (R)
She is best known for her roles in the film Giallo. (R)
Pataky has appeared in several Spanish-language films. (R)
The Orphanage is a film. (R)
The Orphanage was released in 2008. (R)
In 2017, she starred in The OA. (R)
The OA is a Netflix series. (R)
Pataky is married to Chris Hemsworth. (R)
Pataky has three children. (R)
Pataky and Chris Hemsworth have three children together. (R)
(EOS)

Figure 13: An example breakdown of a generated biography into atomic facts and their labels.
Correct facts are noted by (C), hallucinated ones by (H), and repeated ones as (R). (EOS) marks that
the generation was preempted by the model, with no additional unrelated content generated. For the
original generation as produced by the model, see Figure 12.

abstaining rather than producing hallucinations, and Figure 26 uses in-context examples to do the
same for pretrained models. Finally, Figures 27 to 31 bring a breakdown of the results on the
BIOGENERATION datasets with different levels of popularity.
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<OLMo 1B>
The following 25 are halogens in the periodic table\n1. Cesium\n2. Neon\n3. Fluorine\n4. Bromine\n5.

Iodine\n6. Sulfur\n7. Phosphorus\n8. Chlorine\n9. Arsenic\n10. Mercury\n11. Cadmium\n12. Lead\n13.
Tin\n14. Antimony\n15. Bismuth\n16. Tellurium\n17. Germanium\n18. Gallium\n19. Germanium\n20.
Silicon\n21. Gallium\n22. Germanium\n23. Gallium\n24. Germanium\n25. Gallium\n\n## How to
run\n\n```\n$ git clone https://github.com/julian-k/periodic-table.git\n$ cd periodic-table\n$
python3 main.py\n```\n\n## License\n\nThis project is licensed under the MIT License - see the
[LICENSE.md](LICENSE.md) file for details\n\n## Contributing\n\nPlease see
[CONTRIBUTING.md](CONTRIBUTING.md)\n\n## Acknowledgments\n\nThis project is based on the
[periodic-table](https://github.com/julian-k/periodic-table) project.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

<Pythia 1B>
The following 25 are the cardinal directions on the compass rose\n1. North\n2. East\n3. South\n4.

West\n5. Up\n6. Down\n7. Left\n8. Right\n9. Up\n10. Down\n11. Left\n12. Right\n13. Up\n14. Down\n15.
Left\n16. Right\n17. Up\n18. Down\n19. Left\n20. Right\n21. Up\n22. Down\n23. Left\n24. Right\n25.
Up\n\nA:\n\nI think you can use the following formula:\n\nNorth = (East + South) / 2\nEast = (West +
South) / 2\nSouth = (North + West) / 2\n\nThe formula is:\n\nNorth = (East + South) / 2\nEast = (West
+ South) / 2\nSouth = (North + West) / 2\n\nThe formula is:\n\nNorth = (East + South) / 2...

↪→
↪→
↪→
↪→
↪→

<Pythia 6.9B>
The following 25 are phases of human sleep\n1. REM sleep\n2. NREM sleep\n3. Wakefulness\n4. Light

sleep\n5. Deep sleep\n6. REM sleep\n7. NREM sleep\n8. Wakefulness\n9. Light sleep\n10. Deep
sleep\n11. REM sleep\n12. NREM sleep\n13. Wakefulness\n14. Light sleep\n15. Deep sleep\n16. REM
sleep\n17. NREM sleep\n18. Wakefulness\n19. Light sleep\n20. Deep sleep\n21. REM sleep\n22. NREM
sleep\n23. Wakefulness\n24. Light sleep\n25. Deep sleep\n\nA:\n\nI think you are looking for
this:\nimport java.util.Arrays;\nimport java.util.List;\n\npublic class Main {\n public static
void main(String[] args) {\n List<String> list = Arrays.asList(\"1\", \"2\", \"3\", \"4\",
\"5\", \"6\", \"7\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\", \"16\", \"17\",
\"18\", \"19\", \"20\", \"21\", \"22\", \"23\", \"24\", \"25\");\n System.out.println(list);\n
}\n}\n\nOutput:\n[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25]\n\nA:\n\nYou can use a List<String> and use the index to get the value.\nList<String> list =
new ArrayList<String>();\nlist.add(\"1\");\nlist.add(\"2\");
\nlist.add(\"3\");\nlist.add(\"4\");...

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
}

Figure 14: A few examples of generation with greedy decoding. < · > indicate the generating
model, and \n indicate line breaks in the generation. We use ‘‘...’’ when the sequence becomes
repetitive.

The following 25 fingers are part of the human hand:
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. <this continues indefinitely>

The following 25 are signs of the Zodiac:
1. *The* *Sword* *of* *the* *Lictor*
2. *The* *Sword* *of* *the* *Lictor*
3. *The* *Sword* *of* *the* *Lictor* <this list continues indefinitely>

The following 25 are athletic events in the Decathlon for men:
1. *

*
* <this empty itemized lise continues indefinitely>

The following 25 are seasons of the year:
1. *The History of the Decline and Fall of the Roman Empire*
1. Volume 1
2. Volume 2
3. Volume 3 <this list continues indefinitely>

Figure 15: A few examples of generation with greedy decoding from the
meta-llama/Llama-2-13b-hf checkpoint. Bold text indicates the prompt. Boldface
text in <> indicates authors’ notes. This model often produces incoherent text, leading us to
conclude there is a bug in the uploaded weights.

E.1 EXCLUSION OF LLAMA 2 13B CHECKPOINT

We find that Llama 2 13b as released in meta-llama/Llama-2-13b-hf almost always produces ex-
tremely poor results. Upon manual inspection of its outputs, we conclude that there is likely a bug
in the uploaded weights of this specific model, and thus we exclude it. We provide a few examples
in Figure 15. We note that for the other checkpoints, as well as the chat variants of all three sizes,
the generation are considerably of higher quality, further supporting this decision.
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The following 25 are known moons of Mars
1. Phobos
2. Deimos

The following 25 are the species of the main characters with a dialogue in the movie The Lion King
1. Lion
2. Warthog
3. Meerkat
4. Mandrill
5. Hyena
6. Hornbill

The following 25 are the vegetables common in traditional greek salads
1. Tomato
2. Cucumber
3. Onion
4. Pepper
5. Kalamata olive

Figure 16: Prefix given to pretrained language model before each sample of the TRIVIAFACTS
dataset to encourage in-context learning and demonstrate how topic-change can be done, half-way
through a list, when the full answer set is exhausted, for the experiments mentioned in Section 5.2

Table 2: The results (p-values) of running Mann-Whitney U-test on the ordering of facts with respect
to the predicted hierarchy introduced in this paper, for each model-dataset pair. In all cases, the p-
value is less than 10−8 while the U-statistic is strictly positive suggesting the order of facts is far
from being random.

Model QAMPARI TRIV TRIV (τ = 0.5)

Pythia-70M 1.7× 10−12 2.2× 10−13 7.8× 10−11

Pythia-160M 1.4× 10−18 2.0× 10−12 2.3× 10−15

Pythia-410M 4.8× 10−22 3.2× 10−20 1.6× 10−12

Pythia-1B 1.3× 10−18 7.8× 10−23 1.5× 10−16

Pythia-1.4B 1.5× 10−17 1.0× 10−25 1.4× 10−17

Pythia-2.8B 8.4× 10−16 2.1× 10−22 1.7× 10−19

Pythia-6.9B 3.3× 10−14 3.8× 10−28 1.1× 10−17

Pythia-12B 8.0× 10−19 9.8× 10−28 1.1× 10−22

OLMo-1B 4.9× 10−15 8.3× 10−22 2.4× 10−21

OLMo-7B 7.4× 10−20 3.8× 10−21 9.2× 10−24

Llama2-7B 8.7× 10−11 9.2× 10−26 6.2× 10−18

Llama2-70B 5.1× 10−09 4.3× 10−18 1.4× 10−12

Llama3-8B 2.2× 10−13 2.1× 10−11 1.4× 10−12

Llama3-70B 8.2× 10−10 3.6× 10−11 7.8× 10−11

E.2 ORDER OF FACTS IN A SINGLE GENERATION

Section 6.1 introduces the ShiftScore, which measures how predictable the order of facts is with
respect to the hierarchy between fallback behaviors as introduced in this work. To perform the Mann-
Whitney U-test, we consider only answer sets with at least five unique answers and model-dataset
pairs with at least 30 such answer sets. For each such set, we compute the expected ShiftScore of
a random ordering of the answers by taking 1000 random permutations of their order and averaging
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Figure 17: Larger models resort to more sophisticated fallback behaviors on the TRIVIAFACTS
dataset. Here, models of increasing size produce more correct facts (green) and hallucinations (or-
ange) while producing fewer repeated facts (blue). The horizontal green line indicates the maximum
number of correct answers possible.
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Figure 18: Larger models resort to more sophisticated fallback behaviors on the QAMPARI
dataset. Here, models of increasing size produce more correct facts (green) and hallucinations (or-
ange) while producing fewer repeated facts (blue). The horizontal green line indicates the maximum
number of correct answers possible.

their ShiftScore.5 We then perform the statistical test on the list of ShiftScore values from
the original ordering of the model against the scores of the random orders. Table 2 shows the p-
value of the two lists of scores coming from the same distribution. In all cases, the U-statistic was
strictly positive, allowing us to conclude that the original ordering follows the expected order in a
statistically significant way.

Additionally, in Section 6.1 we discuss the ordering of fact-labels within a single generation, as
presented in Figure 7 for Pythia-12B model on TRIVIAFACTS. Figures 32 to 41 give similar plots
for other models.

5For TRIVIAFACTS with temperature sampling, we use the ordering of the first of the five generations
sampled for each question.
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Figure 19: Pythiamodels that train longer shift to complex fallbacks. The more training tokens
Pythia models see (in billions), the more hallucinations they produce and the fewer repetitions
they generate (on TRIVIAFACTS). The left group depicts the trend for Pythia-6.9B pretraining
while the right group is for Pythia-12B. The horizontal green line indicates the maximum number
of correct answers possible.
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Figure 20: OLMo models that train longer shift to complex fallbacks. The more training tokens
Pythia models see (in billions), the more hallucinations they produce and the fewer repetitions
they generate (on TRIVIAFACTS). The left group depicts the trend for OLMo-1B pretraining while
the right group is for OLMo-7B. The horizontal green line indicates the maximum number of correct
answers possible.
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Figure 21: Instruction-tuned models resort to more complex fallback behaviors, on the TRIV-
IAFACTS dataset. The Dolly models (instruction-tuned variants of Pythia) hallucinate more and
repeat facts less, while also breaking out of loops more often and abstaining from producing addi-
tional facts (increase in red and pink bars). For the OLMo and Llama 2 families, which had a more
robust phase of instruction-following training, the results are much more pronounced. The horizon-
tal green line indicates the maximum number of correct answers possible.
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Figure 22: Instruction-tuned models resort to more complex fallback behaviors, on the QAM-
PARI dataset. The Dolly models (instruction-tuned variants of Pythia) hallucinate more and
repeat facts less, while also breaking out of loops more often and abstaining from producing addi-
tional facts (increase in red and pink bars). For the OLMo and Llama 2 families, which had a more
robust phase of instruction-following training, the results are much more pronounced.
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Figure 23: Larger models use more sophisticated fallbacks even with random decoding. Results
of different models on the TRIVIAFACTS dataset with temperature sampling, setting the sampling
temperature (τ ) to 0.5. Each completion was sampled five times. The horizontal green line indicates
the maximum number of correct answers possible. The horizontal green line indicates the maximum
number of correct answers possible.
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Figure 24: Larger models volunteer hallucinations, even when not asked for additional facts.
When given prompts from TRIVIAFACTS without specifying the number of items in advance (see
Section 5.2), larger models continue to produce more hallucinations than their smaller counterparts
and barely exhibit abstaining strategies (e.g., changing the topic). The horizontal green line indicates
the maximum number of correct answers possible.
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Figure 25: Instruction tuned models continue to hallucinate, even when told to prefer ab-
staining over non-factual responses. When given the prefix ‘‘Complete the following
list with facts you are sure of, and stop when you cannot recall
additional facts’’ to encourage abstaining instead of hallucinating, all instruction tuned
models fail to utilize internal uncertainty estimations if exists and continue to hallucinate. The
models are only slightly more inclined to abstain (by changing topics or producing EOS tokens).
The results are given for the TRIVIAFACTS dataset, with “(IDK)” marking the model with the
modified prompt. The horizontal green line indicates the maximum number of correct answers
possible.
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Figure 26: Larger models hallucinate more, even when shown how to abstain. When given
the prefix from Figure 16 to encourage abstaining instead of hallucinating, larger Pythia and
OLMo models continue to exhibit the same fallback behavior trends, with repetitions decreasing and
hallucinations increasing as model size grows. The models are only slightly more inclined to abstain
(by changing topics). Notably, while Llama 2 and Llama 3 models exhibit the predicted trends
in the proportion of hallucinations, they are considerably more capable of abstaining when given
the opportunity. Interestingly, Pythia-410M is able to change topics remarkably well, though
when manually inspecting its outputs, we find that in almost all cases it produces a list of five facts,
often with repetitions, and then continues to repeat this list indefinitely. The results are given for
the TRIVIAFACTS dataset, and the horizontal green line indicates the maximum number of correct
answers possible.
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Figure 27: Larger Pythia models hallucinate more when generating open-ended biographies
on very rare entities. When producing biographies of entities with very low frequency of appear-
ance in Wikipedia, larger models generate more atomic facts, with an increasing rate of hallucina-
tions.
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Figure 28: Larger Pythia models hallucinate more when generating open-ended biographies
on rare entities. When producing biographies of entities with low frequency of appearance in
Wikipedia, larger models generate more atomic facts, with an increasing rate of hallucinations.
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Figure 29: Larger Pythia models hallucinate more when generating open-ended biographies
on medium-popularity entities. When producing biographies of entities with medium frequency
of appearance in Wikipedia, larger models generate more atomic facts, with an increasing rate of
hallucinations.
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Figure 30: Larger Pythia models hallucinate more when generating open-ended biographies
on popular entities. When producing biographies of entities with high frequency of appearance in
Wikipedia, larger models generate more atomic facts, with an increasing rate of hallucinations.
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Figure 31: Larger Pythia models hallucinate more when generating open-ended biographies
on very popular entities. When producing biographies of entities with very high frequency of
appearance in Wikipedia, larger models generate more atomic facts, with an increasing rate of hal-
lucinations.

Figure 32: Pyhtia-1.4B model shift fall-
back behavior during a single completion.
Order of fallbacks per generation on TRIV-
IAFACTS for a Pythia-1.4B model—each
row represents a specific prompt with the
25 produced facts. Green marks correct an-
swers, orange hallucinations and blue re-
peated facts. Purple sequences indicate a
topic change. Questions are sorted by the
number of consecutive repetitions.

Figure 33: Pyhtia-2.8B model shift fallback
behavior during a single completion. Order of
fallbacks per generation on TRIVIAFACTS for
a Pythia-2.8B model—each row represents
a specific prompt with the 25 produced facts.
Green marks correct answers, orange hallucina-
tions and blue repeated facts. Purple sequences
indicate a topic change, and red ones indicate a
divergence to bad-format. Questions are sorted
by the number of consecutive repetitions.
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Figure 34: Pyhtia-6.9B model shift fall-
back behavior during a single completion.
Order of fallbacks per generation on TRIV-
IAFACTS for a Pythia-6.9B model—each
row represents a specific prompt with the
25 produced facts. Green marks correct an-
swers, orange hallucinations and blue re-
peated facts. Purple sequences indicate a
topic change, and red ones indicate a diver-
gence to bad-format. Questions are sorted by
the number of consecutive repetitions.

Figure 35: Pyhtia-12B model shift fallback
behavior during a single completion. Order
of fallbacks per generation on TRIVIAFACTS
for a Pythia-12B model—each row represents
a specific prompt with the 25 produced facts.
Green marks correct answers, orange hallucina-
tions and blue repeated facts. Purple sequences
indicate a topic change, and red ones indicate a
divergence to bad-format. Questions are sorted
by the number of consecutive repetitions.

Figure 36: OLMo-1B model shift fallback
behavior during a single completion. Or-
der of fallbacks per generation on TRIVI-
AFACTS for a OLMo-1B model—each row
represents a specific prompt with the 25
produced facts. Green marks correct an-
swers, orange hallucinations and blue re-
peated facts. Purple sequences indicate a
topic change, and red ones indicate a diver-
gence to bad-format. Questions are sorted by
the number of consecutive repetitions.

Figure 37: OLMo-7B model shift fallback be-
havior during a single completion. Order of
fallbacks per generation on TRIVIAFACTS for
a OLMo-7B model—each row represents a spe-
cific prompt with the 25 produced facts. Green
marks correct answers, orange hallucinations
and blue repeated facts. Purple sequences in-
dicate a topic change, and red ones indicate a
divergence to bad-format. Questions are sorted
by the number of consecutive repetitions.
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Figure 38: Llama 2 7B model shift fall-
back behavior during a single completion.
Order of fallbacks per generation on TRIV-
IAFACTS for a Llama 2 7B model—each
row represents a specific prompt with the
25 produced facts. Green marks correct an-
swers, orange hallucinations and blue re-
peated facts. Purple sequences indicate a
topic change, and red ones indicate a diver-
gence to bad-format. Questions are sorted by
the number of consecutive repetitions.

Figure 39: Llama 2 70B model shift fallback
behavior during a single completion. Order of
fallbacks per generation on TRIVIAFACTS for
a Llama 2 70B model—each row represents
a specific prompt with the 25 produced facts.
Green marks correct answers, orange hallucina-
tions and blue repeated facts. Purple sequences
indicate a topic change, and red ones indicate a
divergence to bad-format. Questions are sorted
by the number of consecutive repetitions.

Figure 40: Llama 3 8B model shift fall-
back behavior during a single completion.
Order of fallbacks per generation on TRIV-
IAFACTS for a Llama 3 8B model—each
row represents a specific prompt with the
25 produced facts. Green marks correct an-
swers, orange hallucinations and blue re-
peated facts. Purple sequences indicate a
topic change, and red ones indicate a diver-
gence to bad-format. Questions are sorted by
the number of consecutive repetitions.

Figure 41: Llama 3 70B model shift fallback
behavior during a single completion. Order of
fallbacks per generation on TRIVIAFACTS for
a Llama 3 70B model—each row represents
a specific prompt with the 25 produced facts.
Green marks correct answers, orange hallucina-
tions and blue repeated facts. Purple sequences
indicate a topic change, and red ones indicate a
divergence to bad-format. Questions are sorted
by the number of consecutive repetitions.
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