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“Place the apple behind the burger” “Replace the cat with the dog”

“Place the toy behind the bucket and in front of the box”“Place the backpack to the left of the vase”

Identity Preserved Inpainting Identity Transfer

Figure 1: Bifröst results on various personalized image compositing tasks. Top: Bifröst is adept
at precise, arbitrary object placement and replacement in a background image with a reference object
and a language instruction, and achieves 3D-aware high-fidelity harmonized compositing results;
Bottom Left: Given a coarse mask, Bifröst can change the pose of the object to follow the shape of
the mask; Bottom Right: Our model adapts the identity of the reference image to the target image
without changing the pose.

Abstract

This paper introduces Bifröst, a novel 3D-aware framework that is built upon diffu-
sion models to perform instruction-based image composition. Previous methods
concentrate on image compositing at the 2D level, which fall short in handling
complex spatial relationships (e.g., occlusion). Bifröst addresses these issues by
training MLLM as a 2.5D location predictor and integrating depth maps as an
extra condition during the generation process to bridge the gap between 2D and
3D, which enhances spatial comprehension and supports sophisticated spatial inter-
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actions. Our method begins by fine-tuning MLLM with a custom counterfactual
dataset to predict 2.5D object locations in complex backgrounds from language
instructions. Then, the image-compositing model is uniquely designed to process
multiple types of input features, enabling it to perform high-fidelity image compo-
sitions that consider occlusion, depth blur, and image harmonization. Extensive
qualitative and quantitative evaluations demonstrate that Bifröst significantly out-
performs existing methods, providing a robust solution for generating realistically
composited images in scenarios demanding intricate spatial understanding. This
work not only pushes the boundaries of generative image compositing but also
reduces reliance on expensive annotated datasets by effectively utilizing existing
resources in innovative ways.

1 Introduction

Image generation has flourished alongside the advancement of diffusion models (Song et al., 2021;
Ho et al., 2020; Rombach et al., 2022; Ramesh et al., 2022). Recent works (Saharia et al., 2022;
Liu et al., 2023b; Brooks et al., 2023; Zhang et al., 2023b; Huang et al., 2023; Li et al., 2023; Chen
et al., 2024; He et al., 2024) add conditional controls, e.g., text prompts, scribbles, skeleton maps
to the diffusion models, offering significant potentials for controllable image editing. Among these
methods for image editing, generative object-level image compositing (Yang et al., 2023; Song et al.,
2023; Chen et al., 2024; Song et al., 2024) is a novel yet challenging task that aims to seamlessly
inject an outside reference object into a given background image with a specific location, creating a
cohesive and realistic image. This ability is significantly required in practical applications including
E-commerce, effect-image rendering, poster-making, professional editing, etc.

Achieving arbitrary personalized object-level image compositing necessitates a deep understanding
of the visual concept inherent to both the identity of the reference object and spatial relations of
the background image. To date, this task has not been well addressed. Paint-by-Example (Yang
et al., 2023) and Objectstitch (Song et al., 2023) use a target image as the template to edit a specific
region of the background image, but they could not generate ID-consistent contents, especially for
untrained categories. On the other hand, (Chen et al., 2024; Song et al., 2024) generate objects with
ID (identity) preserved in the target scene, but they fall short in processing complicated 3D geometry
relations (e.g., the occlusion) as they only consider 2D-level composition. To sum up, previous
methods mainly either 1) fail to achieve both ID preservation and background harmony, or 2) do not
explicitly take into account the geometry behind the background and fail to accurately composite
objects and backgrounds in complex spatial relations.

We conclude that the root cause of aforementioned issues is that image composition is conducted at a
2D level. Ideally, the composition operation should be done in a 3D space for precise 3D geometry
relationships. However, accurately modeling a 3D scene with any given image, especially with only
one view, is non-trivial and time-consuming (Liu et al., 2023b). To address these challenges, we
introduce Bifröst, which offers a 3D-aware framework for image composition without explicit 3D
modeling. We achieve this by leveraging depth to indicate the 3D geometry relationship between
the object and the background. In detail, our approach leverages a multi-modal large language
model (MLLM) as a 2.5D location predictor (i.e., bounding box and depth for the object in the
given background image). With the predicted bounding box and depth, our method yields a depth
map for the composited image, which is fed into a diffusion model as guidance. This enables our
method to achieve good ID preservation and background harmony simultaneously, as it is now aware
of the spatial relations between them, and the conflict at the dimension of depth is eliminated. In
addition, MLLM enables our method to composite images with text instructions, which enlarges the
application scenario of Bifröst. Bifröst achieves significantly better visual results than the previous
method, which in turn validates our conclusion.

We divide the training procedure into two stages. In the first stage, we finetune an MLLM (e.g.,
LLaVA (Liu et al., 2023a, 2024)) for 2.5D predictions of objects in complex scenes with language
instructions. In the second stage, we train the image composition model. To composite images with
complicated spatial relationships, we introduce depth maps as conditions for image generation. In
addition, we leverage an ID extractor to generate discriminative ID tokens and a frequency-aware
detail extractor to extract the high-frequency 2D shape information (detail maps) for ID preservation.
We unify the depth maps, ID tokens, and detail maps to guide a pre-trained text-to-image diffusion
model to generate desired image composition results. This two-stage training paradigm allows

In Norse mythology, a burning rainbow bridge that transports anything between Earth and Asgard.
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us to utilize a number of existing 2D datasets for common visual tasks e.g., visual segmentation,
and detection, avoiding collecting large-volume text-image data specially designed for arbitrary
object-level image compositing.

Our main contributions can be summarized as follows: 1) We are the first to embed depth into
the image composition pipeline, which improves the ID preservation and background harmony
simultaneously. 2) We delicately build a counterfactual dataset and fine-tuned MLLM as a powerful
tool to predict 2.5D location of the object in a given background image. Further, the fine-tuned
MLLM enables our approach to understand language instructions for image composition. 3) Our
approach has demonstrated exceptional performance through comprehensive qualitative assessments
and quantitative analyses on image compositing and outperforms other methods, Bifröst allows us to
generate images with better control of occlusion, depth blur, and image harmonization.

2 Related Work

2.1 Image compositing with Diffusion Models

Image compositing, an essential technique in image editing, seamlessly integrates a reference object
into a background image, aiming for realism and high fidelity. Traditional methods, such as image
harmonization (Jiang et al., 2021; Xue et al., 2022; Guerreiro et al., 2023; Ke et al., 2022) and
blending (Pérez et al., 2003; Zhang et al., 2020, 2021; Wu et al., 2019) primarily ensure color and
lighting consistency but inadequately address geometric discrepancies. The introduction of diffusion
models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021; Rombach et al., 2022)
has shifted focus towards comprehensive frameworks that address all facets of image compositing.
Methods like (Yang et al., 2023; Song et al., 2023) often use CLIP-based adapters to utilize pretrained
models, yet they compromise the object’s identity preservation, focusing mainly on high-level
semantic representations.More recent studies prioritize maintaining the appearance in generative
object compositing. Notable developments in this field include AnyDoor (Chen et al., 2024) and
ControlCom (Zhang et al., 2023a). AnyDoor integrates DINOv2 (Oquab et al., 2023) with a
high-frequency filter, while ControlCom introduces a local enhancement module, both improving
appearance retention. However, these approaches still face challenges in spatial correction capabilities.
Most recent work IMPRINT (Song et al., 2024) trains an ID-preserving encoder that enhances the
visual consistency of the object while maintaining geometry and color harmonization. However, none
of the work can deal with composition with occlusion and more complex spatial relations. In contrast,
our models novelly propose a 3D-aware generative model that allows more accuracy and complex
image compositing while maintaining geometry and color harmonization.

2.2 LLM with Diffusion Models

The open-sourced LlaMA (Touvron et al., 2023; Chiang et al., 2023) substantially enhances vision
tasks by leveraging Large Language Models (LLMs). Innovations such as LLaVA and MiniGPT-
4 (Liu et al., 2023a; Zhu et al., 2024) have advanced image-text alignment through instruction-tuning.
While many MLLM-based studies have demonstrated effectiveness in text-generation tasks like
human-robot interaction, complex reasoning, and science question answering, GILL (Koh et al.,
2023) acts as a conduit between MLLMs and diffusion models by enabling LLMs to process and
generate coherent images from textual inputs. SEED (Ge et al., 2023b) introduces a novel image
tokenizer that allows LLMs to handle and concurrently generate images and text, with SEED-
2 (Ge et al., 2023a) enhancing this process by better aligning generation embeddings with image
embeddings from unCLIP-SD, thus improving the preservation of visual semantics and realistic
image reconstruction. Emu (Sun et al., 2024), a multimodal generalist, is trained on a next-token-
prediction model. CM3Leon (Yu et al., 2023a), utilizing the CM3 multimodal architecture and
adapted training methods from text-only models, excels in both text-to-image and image-to-text
generations. Finally, SmartEdit (Huang et al., 2024) proposes a Bidirectional Interaction Module
that enables comprehensive bidirectional information interactions between images and the MLLM
output, allowing it for complex instruction-based image editing. Nevertheless, these methods requires
text-image pairs data to train and do not support accurate spatial location prediction and subject-driven
image compositing.
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Figure 2: Overview of the inference pipeline of Bifröst. Given background image Ibg, and text
instruction cT that indicates the location for object compositing to the background, the MLLM first
predicts the 2.5D location consists of a bounding box and the depth of the object. Then a pre-trained
depth predictor is applied to estimate the given images’ depth. After that. The depth of the reference
object is scaled to the depth value predicted by MLLM and fused in the predicted location of the
background depth. Finally, the masked background image, fused depth, and reference object image
are used as the input of the compositing model and generate an output image Iout that satisfies spatial
relations in the text instruction cT and appears visually coherent and natural (e.g., with light and
shadow that are consistent with the background image).

3 Method

The overall pipeline of our Bifröst is elaborated in Fig. 2. Our method consists of two stages: 1)
in stage 1, given the input image of object and background, and text instruction that indicates the
location for object compositing to the background, the MLLMs are finetuned on our customized
dataset for predicting a 2.5D location, which provides the bounding box and a depth value of the
object in the background; 2) in stage 2, our Bifröst performs 3D-aware image compositing according
to the generated 2.5D location, images of object and background and their depth maps estimated by a
depth predictor. As we divide the pipeline into two stages, we can adopt the existing benchmarks
that have been collected for common vision problems and avoid the demand of collected new and
task-specific paired data.

We detail our pipeline in the following section. In Sec. 3.1 we discuss building our customized
counterfactual dataset and fine-tuning multi-modal large language models to predict 2.5D locations
given a background image. Following this, in Sec. 3.2, we introduce the 3D-aware image compositing
pipeline that uses the spatial location predicted by MLLM to seamlessly integrate the reference object
into the background image. Finally, we discuss combining two stages in Sec. 3.3 and show more
application scenarios of our proposed method.

3.1 Finetuning MLLM to Predict 2.5D Location

Given a background image Ibg and text instruction cT , which is tokenized as HT , our goal is to obtain
the 2.5D coordinate of the reference object we want to place in. We indicate the 2.5D coordinate as
l which consists of a 2D bounding box b = [x1, y1, x2, y2] and an estimated depth value d ∈ [0, 1].
During the training stage, the majority of parameters θ in the LLM are kept frozen, and we utilize
LoRA (Hu et al., 2022) to carry out efficient fine-tuning. Subsequently, for a sequence of length L,
we minimize the negative log-likelihood of generated text tokens XA, which can be formulated as:

LLLM(Ibg, cT ) = −
L∑

i=1

log p{θ} (xi | Ibg, cT,<i, XA,<i) (1)

Dataset Generation. However, there is a lack of dataset containing image-text data pairs to teach
the MLLM to predict the reasonable location to place in the background image Ibg following the
instruction cT and it is crucial to create such dataset. Since the model needs to predict both a 2D
bounding box and depth value in Z axis, this requires the model to be capable of understanding both
the spatial relationship between objects and the size relationship between objects (e.g., the bounding
box of a dog should be smaller than the car if the user wants to place a dog near the car) and the
physical laws in the image (e.g., a bottle should be placed on the table rather than floating in the air).
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Inpaint Model Depth PredictorSAM

Instruction: Place the laptop to the left of the keyboard, 

 output the bounding box and the depth value of the center point.

Answer:

BBox: [0.00, 0.42, 0.39, 0.98]

Depth: 0.57

Counterfactual Image Given Image Predicted DepthMasked Image

Figure 3: Overview of the 2.5D counterfactual dataset generation for fine-tuning MLLM. Given
a scene image I , one object o was randomly selected as the object we want to predict (e.g., the laptop
in this figure). The depth of the object is predicted by a pre-trained depth predictor. The selected
object is then removed from the given image using the SAM (i.e. mask the object) followed by an
SD-based inpainting model (i.e., inpaint the masked hole). The final data pair consists of a text
instruction, a counterfactual image, and a 2.5D location of the selected object o.

Instruction: Place the person in front of the car and to the

right of the person, output the bounding box and the depth 

value of the center point.

Answer: [0.32, 0.19, 0.56, 0.87], 0.89.

Instruction: Place the cat on top of the refrigerator, output 

the bounding box and the depth value of the center point.

Answer: [0.53, 0.36, 0.65, 0.70], 0.30.

Original Image Depth Map Counterfactual Image

Figure 4: Examples of 2.5D counterfactual dataset for fine-tuning MLLM.

Furthermore, the image should not contain the object we want to place (i.e., the MLLM should learn
to predict the location). To this end, we build a novel counterfactual dataset based on MS COCO
dataset (Lin et al., 2014). For a background image x and annotation a, we use a pre-trained depth
predictor DPT (Ranftl et al., 2021) to estimate the depth map d. We randomly select k objects and
choose one as the target (os), defining spatial relations with the other k−1 objects (e.g., left of, above,
in front of). GPT-3 (Brown et al., 2020) generates text descriptions D mentioning all objects and their
relative positions, as shown in Fig. 3. The ground truth includes the bounding box and depth value of
os. Using diffusion-based inpainting (Yu et al., 2023b), we remove os from Ibg. We collect 30,080
image-instruction-answer pairs for training and 855 for testing, with examples in Fig. 4. Further
details are in Appendix B.1.

3.2 3D-Aware Image compositing

The training pipeline of Bifröst’s 3D-aware image compositing module is shown in Fig. 5. Given the
reference object, background, and estimated 2.5D location, Bifröst extracts ID Token, detail map, and
depth maps to generate high-fidelity, diverse object-scene compositions that respect spatial relations.
Unlike previous works using only 2D backgrounds and objects, our key contribution is incorporating
depth maps to account for spatial relationships. Additionally, we use large-scale data, including
videos and images, to train the model to learn the appearance changes, ensuring high fidelity in
generated images. Details of different components are as follows.

ID Extractor. We leverage pre-trained DINO-V2 (Oquab et al., 2023) to encode images into visual
tokens to preserve more information. We use a single linear layer to bridge the embedding space of
DINOV2 and the pre-trained text-to-image UNet. The final projected ID tokens can be gotten by:

ci = Ei (Iobj) , (2)

where Ei indicates the ID extractor.

Detail Extractor. The ID tokens inevitably lose the fine details of the reference object due to the
information bottleneck. Thus, we need extra guidance for the complementary detail generation. We
apply a high-frequency map to represent fine-grained details of the object. We further applied mask
shape augmentation to provide more practical guidance of the pose and view of the generated object,
which mimics the casual user brush used in practical editing. The results are shown at the bottom of
Fig. 1. After obtaining the high-frequency map, we stitch it onto the scene image at the specified
locations and pass the collage to the detail extractor:

ch = Eh (Ih) , (3)
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Figure 5: Overview of training pipeline of Bifröst on image compositing stage. A segmentation
module is first adopted to get the masked image and object without background, followed by an ID
extractor to obtain its identity information. The high-frequency filter is then applied to extract the
detail of the object, stitch the result with the scene at the predicted location, and employ a detail
extractor to complement the ID extractor with texture details. We then use a depth predictor to
estimate the depth of the image and apply a depth extractor to capture the spatial information of the
scene. Finally, the ID tokens, detail maps, and depth maps are integrated into a pre-trained diffusion
model, enabling the target object to seamlessly blend with its surroundings while preserving complex
spatial relationships.

Table 1: Statistics of the datasets used in the image compositing stage.

YouTubeVOS MOSE VIPSeg VitonHD MSRA-10K DUT HFlickr LVIS SAM (subset)

Type Video Video Video Image Image Image Image Image Image
# Samples 4453 1507 3110 11647 10000 15572 4833 118287 178976
Variation ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

where Eh is the detail extractor and ch is the extracted high-frequency condition. More details can be
found in Appendix B.2

Depth Extractor. As we mentioned in Sec. 1, all existing image compositing works can only insert
objects as foreground. As Fig. 7 shows, the generated images look wired when the inserted object
has some overlap with objects in the background. We tackle this problem by proposing a simple
yet effective method by adding depth control to the model. By utilizing pre-trained depth predictor
DPT (Ranftl et al., 2021), we could generate depth-image pairs without demanding extra annotation.
Formally, given a target image Itar, we have

cd = Ed (DPT(Itar)) , (4)

where Ed is the depth extractor and cd is the extracted depth condition. In our experiment, the detail
and depth extractors utilize ControlNet-style UNet encoders, generating hierarchical detail maps at
multiple resolutions.

Feature Injection. Given an image z0, image diffusion algorithms progressively add noise to the
image and produce a noisy image zt, where t represents the number of times noise is added. Given a
set of conditions including time step t, object ID condition ci, high-frequency detail condition ch, as
well as a depth condition cd, image diffusion algorithms learn a UNet ϵθ to predict the noise added to
the noisy image zt with

Lcomposite = Ez0,t,ci,cf ,ϵ∼N (0,1) [∥ϵ− ϵθ (zt, t, ci, cf)) ∥22
]
, (5)

where cf = ch + λ · cd and λ is a hyper parameter weight between two controls. Specifically,
the ID tokens are injected into each UNet layer via cross-attention. The high-frequency detail and
depth maps are first added together and then concatenated with the UNet decoder features at each
resolution. During training, the pre-trained UNet encoder parameters are frozen to retain priors, while
the decoder is fine-tuned to adapt to the new task.

Classifier-free Guidance. To achieve the trade-off between identity preservation and image harmo-
nization, we find that classifier-free sampling strategy (Ho and Salimans, 2022) is a powerful tool.
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Figure 6: Data preparation pipeline of leveraging videos. Given a clip, we first sample two frames,
selecting an instance from one frame as the reference object and using the corresponding instance
from the other frame as the training supervision.

Table 2: Quantitative evaluation results on the accuracy of the MLLM’s prediction of Bifröst. Note:
MiniGPTv2 and LLaVA (baseline) do not support depth prediction.

MiniGPTv2 LLaVA (baseline) Ours

BBox(MSE) (↓) 0.2694 0.0653 0.0496
BBox(IoU) (↑) 0.0175 0.7567 0.8515

Depth (MSE) (↓) ✗ ✗ 0.0658

Previous work (Tang et al., 2022) found that the classifier-free guidance is actually the combination
of both prior and posterior constraints.

log p (yt | c) + (s− 1) log p (c | yt) ∝ log p (yt) + s (log p (yt | c)− log p (yt)) , (6)

where s denotes the classifier-free guidance scale. In our experiments, we follow the settings in (Zhang
et al., 2023b).

ϵprd = ϵuc + s (ϵc − ϵuc) , (7)

where ϵprd, ϵuc, ϵc, s are the model’s final output, unconditional output, conditional output, and
a user-specified weight respectively. In the training process, we randomly replace 50% object ID
condition ci with empty strings. This approach increases Bifröst’s ability to directly recognize
semantics in the input conditions as a replacement for the ID tokens. We further replace 30% of the
depth map or detail map as blank to increase the robustness of our model. (i.e., our model could
generate high-quality images with only one condition, either from detail or depth control).

Dataset Generation. The ideal training data consists of image pairs capturing the same object in
different scenes and poses, which existing datasets lack. Previous works (Yang et al., 2023; Song
et al., 2023) use single images with augmentations like rotation and flip, which are insufficient for
realistic pose and view variants. To address this, we use video datasets to capture frames of the same
object as complementary following (Chen et al., 2024; Song et al., 2024). As illustrated in Fig. 6, our
data preparation pipeline selects two frames from a video and extracts foreground masks. One frame
is masked and cropped around the object to serve as the reference, while the other frame—with an
augmented mask shape—acts as the background. The unmasked version of this second frame serves
as the training ground truth. The dataset quality is another key to better identity preservation and
pose variation. The full data used is listed in Tab. 1, which covers a large variety of domains such as
nature scenes (SAM (Kirillov et al., 2023), LVIS (Gupta et al., 2019), HFlickr (Cong et al., 2020),
DUT (Wang et al., 2017), and MSRA-10K (Borji et al., 2015)), panoptic video segmentation datasets
(YoutubeVOS (Xu et al., 2018), VIPSeg (Miao et al., 2022), and MOSE (Ding et al., 2023)), and
virtual try-on dataset (VitonHD (Choi et al., 2021)).

3.3 Inference

The overall inference pipeline is shown in Fig. 2. Given background image Ibg, and text instruction
cT , our fine-tuned MLLM predicts the 2.5D location of object formulated as bounding box b =
[x1, y1, x2, y2] and an estimated depth value d ∈ [0, 1]. Then, we first scale the depth map of the
reference image to the predicted depth and fuse it into the bounding box location of the background
depth map. The background image is masked following the bounding box. Finally, one can generate
the composited image following the pipeline in Fig. 2. We also support various formats of input
(e.g., user-specified mask and depth), which allows more application scenarios as Fig. 1 shows. More
details can be found in the Appendix B.

4 Experiment

4.1 Implementation Details

Hyperparameters. We choose LLaVA (Liu et al., 2023a, 2024) as our method to fine-tune multi-
modal large language models and Vicuna (Chiang et al., 2023) as the LLM. The learning rate is
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Table 3: Quantitive evaluation results on the performance of image compositing. Bifröst outper-
forms all other methods across all metrics.

Paint-by-Example Object-Stitch TF-ICON AnyDoor Ours

DINO-score (↑) 72.225 73.108 74.743 76.807 77.746
CLIP-score (↑) 84.584 84.836 85.627 88.735 89.722

FID (↓) 22.286 19.489 18.945 15.858 15.025

Object Background Fused Depth PbE AnyDoorObjectStitchOurs
Figure 7: Qualitative comparison with reference-based image generation methods, including
Paint-by-Example (Yang et al., 2023), ObjectStitch (Song et al., 2023), and AnyDoor (Chen et al.,
2024), where our Bifröst better preserves the geometry consistency. Note that all approaches do not
fine-tune the model on the test samples.

set as 2e−5 and train 15 epochs. We choose Stable Diffusion V2.1 (Rombach et al., 2022) as the
base generator for the image compositing model. During training, we set the image resolution to
512× 512. We choose Adam (Kingma and Ba, 2014) optimizer with an initial learning rate of 1e−5.
More details can be found in the Appendix A.

Zoom-in Strategy. During inference, given a scene image and a location box, we expand the box
into a square using an amplification ratio of 2.0. The square is then cropped and resized to 512× 512
for input into the diffusion model. This approach enables handling scenes with arbitrary aspect ratios
and location boxes covering extremely small or large areas.

Benchmarks. To evaluate the performance of our Fine-tuned MLLM, we collect 855 image-
instruction-answer pairs for testing as we mentioned in Sec. 3.1. For quantitative results of spatial
aware image compositing, we follow the settings in (Chen et al., 2024) that contain 30 new concepts
from DreamBooth (Ruiz et al., 2023) for the reference images. We manually pick 30 images with
boxes in COCO-Val (Lin et al., 2014) for the scene image. Thus, we generate 900 images for the
object-scene combinations.

Evaluation metrics. We test the IoU and MSE loss to evaluate the accuracy of the predicted bounding
box and depth of our MLLM. For the image compositing model, we evaluate performance on our
constructed DreamBooth dataset by following DreamBooth (Ruiz et al., 2023) to calculate the CLIP-
Score and DINO-Score, which measure the similarity between the generated region and the target
object. We also compute the FID (Heusel et al., 2017) to assess realism and compositing quality.
Additionally, we conduct user studies with 30 annotators to rate the results based on fidelity, quality,
diversity, and 3D awareness.

Table 4: User study on the comparison between our Bifröst and existing alternatives. “Quality”,
“Fidelity”, “Diversity”, and “3D Awareness” measure synthesis quality, object identity preservation,
object local variation (i.e., across four proposals), and spatial relation awareness (i.e., occlusion)
respectively. Each metric is rated from 1 (worst) to 5 (best).

Paint-by-Example Object-Stitch TF-ICON AnyDoor Ours (w/o depth) Ours (w/ depth)

Quality (↑) 2.24 2.66 2.75 3.57 3.64 3.96
Fidelity (↑) 2.05 2.56 2.63 3.58 3.89 4.03

Diversity (↑) 3.87 2.42 2.36 3.57 3.61 3.07
3D Awareness (↑) 3.56 3.37 3.42 2.51 2.56 4.21
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Figure 8: Results of other application scenarios of Bifröst.

Target DepthObject Background Baseline + CFG + HF Filter + Depth

Figure 9: Qualitative ablation study on the core components of Bifröst, where the last column is the
result of our full model, “HF-Filter” stands for the high-frequency filter in the detail extractor.

4.2 Quantitative Evaluation

MLLM Evaluation. To evaluate the effectiveness of our fine-tuned MLLM, we compare our model
with two vison-language LLMs: LLaVA (Liu et al., 2023a) and miniGPTv2 (Zhu et al., 2024).
However, to our knowledge, none of the MLLM support accurate depth prediction. The results are
shown in Tab. 2, which indicates that our fine-tuned MLLM outperforms other models significantly
on the spatial bounding box prediction task.

Spatial-Aware Image compositing Evaluation. To demonstrate the effectiveness of our model, we
test our model and four existing methods (Paint-by-Example (Yang et al., 2023), ObjectStitch (Song
et al., 2023), TF-ICON (Lu et al., 2023)), and AnyDoor (Chen et al., 2024) on the dreambooth (Ruiz
et al., 2023) test sets. The same inputs (a mask and a reference object) are used in all models. As
shown in Tab. 3, Bifröst consistently outperforms baselines across all metrics, indicating that our
model generates images with both realism and fidelity.

4.3 Qualitative Evaluation

To better evaluate the performance of our spatial-aware image compositing model, we qualitatively
compare our method against prior methods as shown in Fig. 7. PbE and ObjectStitch show natural
compositing effects, but they fail to preserve the object’s ID when the object has a complex texture
or structure. Although AnyDoor maintains a fine-grained texture of the object, it can not handle
occlusion with other objects in the scene. In contrast, our model achieves better ID preservation and
demonstrates flexibility in adapting to the background even in complex scenes with occlusion(i.e., the
poop emoji in the third row is seamlessly injected between the bowl and flowerpot with no artifact).
We also provide more results of other application scenarios in Fig. 8.

User Study. We organize user study to compare Paint-by-Example, ObjectStitch, TF-ICON, AnyDoor,
and our model. The user-study results are listed in Tab. 4. It shows that our model owns evident
superiorities for fidelity, quantity, and 3D awareness, especially for 3D awareness. Without depth
control, our model can generate more diverse objects adjusted for the background. Nevertheless, the
quality fidelity, and 3D awareness degrade significantly if the depth control is removed. However,
as (Yang et al., 2023) only keeps the semantic consistency but our methods preserve the instance
identity, they naturally have larger space for the diversity. In this case, Bifröst still gets higher rates
than (Song et al., 2023; Lu et al., 2023) and competitive results with (Chen et al., 2024), which
verifies the effectiveness of our method. This results indicate that introducing the depth information
is the key for Bifröst to achieve both high fidelity and 3D-aware image compositing. More details are
in the Appendix F.
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Object Background Depth: 0.35 Depth: 0.65Depth: 0.50 Depth: 0.80

Figure 10: Ablation study of different depth control from deep to shallow.

Object Background Fused Depth Ours AnyDoor

Instruction: Place the backpack behind the bed.

Figure 11: Failure case from the out-of-distribution dataset and comparison with AnyDoor.

4.4 Ablation Study

Tab. 5 shows the effect of components in Bifröst. Performance drops significantly without video data
during training, as it cannot adjust poses and views to adapt to unseen scenes with only image data.
Fig. 9 visualizes results of removing different components. CFG achieves a trade-off between identity
preservation and image harmonization, significantly boosting performance. Setting the collage region
from the high-frequency map to an all-zero map evaluates the HF Filter’s contribution, showing it
effectively guides the generation of fine structural details. Adding depth control further improves
the fidelity and quality of generated images, as visualized in Fig. 10, where the red vase moves from
behind the table to the front of the white vase as depth increases.

Table 5: Quantitative ablation studies on the core components of the image compositing model of
Bifröst. Note that: + indicates adding one component based on the previous model.

Baseline +Video Data +CFG +HF Filter +Depth

DINO-score (↑) 68.693 71.573 75.578 76.372 77.746
CLIP-score (↑) 80.458 83.536 86.394 88.634 89.722

FID (↓) 20.465 17.168 15.837 15.342 15.025

4.5 Limitations and Future Work

Our Bifröst achieves high-quality, instruction-based image compositing but has limitations. 1) While
our fine-tuned MLLM performs well on in-domain test datasets, it struggles with OOD datasets
containing untrained objects and more complex scenes. A failure case is illustrated in Fig. 11, where
the model intends to position the backpack behind the bed. While MLLM predicts the correct
location, it overlaps with the chair in the background. Nonetheless, our approach still outperforms
prior work (Chen et al., 2024), which fails to handle occlusions between the bed and chair due
to insufficient understanding of spatial and depth relationships. This issue can be addressed by
increasing the size of the training dataset (e.g., utilizing large-scale, OpenImages (Kuznetsova et al.,
2018). 2) The use of depth maps significantly enhances our model’s generation capabilities, enabling
precise control over object placement and complex spatial relationships. However, this reliance on
depth maps restricts the diversity of generated objects, particularly in terms of novel poses and views.
Although we employ classifier-free guidance during inference to provide some flexibility, it represents
a trade-off between spatial control and object diversity. This can potentially be solved by robust depth
control during the training stage. We leave this for future work.

5 Conclusion

In conclusion, Bifröst represents a significant advancement in object-level image compositing. Lever-
aging the capabilities of powerful MLLM, our framework successfully addresses the limitations of
existing SD-based image compositing methods, facilitating their transition from research to practical
applications. Our experimental results demonstrate that Bifröst not only achieves state-of-the-art
quality and fidelity in instruction-based, object-level image compositing but also provides a control-
lable generation process that accommodates complex spatial relationships. Future research endeavors
encompass the refinement of the MLLM through the utilization of more extensive datasets and
extending our framework to support 3D and video-based personalized object compositing tasks,
further broadening its applicability and enhancing its performance.
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Supplementary Material
Overview

This appendix is organized as follows:

Appendix A gives more implementation details of Bifröst. Sec 4.1

Appendix B provides more technical details and mathematical formulae used in Sec 3.1 & Sec 3.2

Appendix C explains more details of our evaluation details in experiments. Sec 4.1

Appendix D provides more details of creating counterfactual dataset and gives more examples from
the constructed dataset. Sec 3.1

Appendix E shows more visual results and comparison with prior methods. Sec 4.3

Appendix F shows more details of the user study we conducted. Sec 4.3

Appendix G discusses the ethic problems might be caused by Bifröst and potential positive societal
impacts and negative societal impacts.

A Implementation Details

For fine-tuning MLLM, following the base setting in (Liu et al., 2023a), we choose Vicuna (Chiang
et al., 2023) as our LLM. We use pre-trained CLIP-ViT-large (Radford et al., 2021) as the visual
encoder. The learning rate is set at 4e−5 to avoid over-fitting. The batch size is set as 16, we train 15
epochs with 4 A800 GPUs, which takes about 5 hours to finish the fine-tuning.

For 3D-aware image compositing model. We use Stable Diffusion 2.1 as the pre-trained diffusion
model. The model can also be initialized from the pre-trained weights of (Chen et al., 2024) to
better utilize the prior knowledge. We choose Adam (Kingma and Ba, 2014) optimizer with an initial
learning rate of 1e−5. The DINO-V2 (Oquab et al., 2023) ID extractor and the encoder of the U-net
are frozen during the training. The decoder of the U-net, detail extractor, and depth extractor are
fine-tuned during this process. The batch size is set as 16, we train 20k steps on 4 A800 GPUs, which
takes 1 day to finish the training.

Although training our model requires considerable computing resources as mentioned in Appendix
Section A, the runtime cost and resources required for the inference stage are affordable. Our model
can run on a single NVIDIA RTX 4090 GPU (24GB) thanks to our two-stage training/inference
since one does not need to load all models simultaneously. The total inference time for one image
composition can be finished in 30 seconds on an RTX 4090 (these include predicting the depth map,
running the SAM model to remove the background of the reference image, using MLLM to predict
the 2.5D location, depth fusion, and image composition, the DDIM sampler is set as 50 steps).

B Method

B.1 MLLM Fine Tuning

Given a background image Ibg and text instruction cT , which is tokenized as HT , our goal is to
obtain the 2.5D coordinate of the reference object we want to place in, indicates l consists of a 2D
bounding box b = [x1, y1, x2, y2] and an estimated depth value d ∈ [0, 1]. following the base setting
in (Liu et al., 2023a), we choose Vicuna (Chiang et al., 2023) as our LLM fθ(·) parameterized by θ,
As shown in Fig. 3. For an input background image Ibg, we first use the pre-trained visual encoder
to encode the image, which provides the visual feature ZV = g(Ibg). Then, we use a simple linear
layer to connect image features into the word embedding space. Specifically, we apply a trainable
projection matrix W to convert ZV into language embedding tokens HV , which have the same
dimensionality as the word embedding space in the language model:

HV = W · ZV ,with ZV = g(Ibg) (8)

Thus, we have a sequence of visual tokens HV , which will be sent to the LLM with text tokens HT .

Counterfactual Dataset Generation In practice, we choose the depth value of the central points of
the selected object bounding box as the target depth value for MLLM to predict. The reason we do
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(a) (b) (c)

Figure 12: The distribution of differences between center value and three other choices of the
depth values, where (a) is the differences between the max value of depth and center depth value; (b)
is the differences between the mean value of depth and center depth value; and (c) is the differences
between the median value of depth and center depth value

not use the entire depth value is that the goal of predicting the depth value of the reference object
is to estimate the location (in depth dimension) of the object in the background image for the final
image composition. To this end, it does not have to be very accurate as long as it is in a reasonable
range and a single depth value for the object is shown to be sufficient. Though it is possible to
estimate the depth value for the entire object (e.g., via DPT), it is more costly and challenging to
construct the dataset (pixel-wise depth annotation) and train the MLLM to predict the depth value
for the entire object. We will explore more sufficient strategies for this in the future. However, there
are other choices for points to represent the 2.5D location of the selected object besides the center
point. There are various options for estimating the depth value, such as the depth value at the center
point of the bbox, the maximum, average, and median depth value of the object within the bbox, etc.
They all have their pros and cons and result in similar performance. For instance, the median value
varies significantly along with the size of the object in the bounding box. The average value may be
influenced by extreme values in the bounding box. Furthermore, the maximum value might also be
influenced by the extreme value in the bounding box. We conducted an extra experiment in Fig. 12 to
compare the differences between different choices. We calculate the differences between different
choices of the depth value we want to predict on 5000 examples in the evaluation dataset. The results
show that the difference between the maximum depth value and the center point value is small. Most
of the differences are less than 0.2. While the differences between the average value and the center
point value basically follow a Gaussian distribution with a mean value of -0.05. However, the median
value is not reliable compared with other choices. In this work, as we focus on general settings where
reference objects are from common categories, we use the depth value of the bbox center point, which
works well in our experiments. Optimizing the location for depth value estimation may be helpful for
objects from specific categories, which are rare, and we leave this in future work.

B.2 3D-Aware Image Compositing

ID Extractor
We employ pre-trained visual encoders to extract the target object’s identity. Rather than using
CLIP (Radford et al., 2021) for object embedding (Yang et al., 2023; Song et al., 2023), prior
work (Chen et al., 2024; Song et al., 2024) demonstrates that DINO-V2 (Oquab et al., 2023) better
captures discriminative features, projecting objects into an augmentation-invariant feature space. Thus,
we use DINO-V2 to encode the image into a global token Tg1×1536 and patch tokens Tp256×1536.
These tokens are concatenated to retain more information. Following (Chen et al., 2024), a linear
layer bridges the DINO-V2 and pre-trained text-to-image UNet embedding spaces, yielding final ID
tokens T257×1024

ID .

Collage Representation. Unlike prior methods (Casanova et al., 2023; Sarukkai et al., 2024; Chen
et al., 2024) that use full-color images or high-frequency maps as complementary information, we
found that these approaches often produce objects that resemble the reference image too closely,
creating a "copy-paste" effect. To address this, we remove color information from the HF-map
in (Chen et al., 2024), enhancing fine-grained details and improving the visual coherence of the
generated objects.

Mask Shape Augmentation. To provide greater user control, we define five levels of coarse masks,
including a bounding box mask, as shown in Fig. 14. As the mask level increases (from 1 to 5), the
model gains more flexibility in object generation.
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Instruction: Place the laptop to the left of the keyboard, output the
bounding box and the depth value of the center point.

 

Projection W 

Vision Encoder 

LLMLoRA BBox: [0.00, 0.42, 0.39, 0.98]
Depth: 0.57

Trainable

Frozen

Hv Hq

Xv Xq

Figure 13: Overview of the MLLM fine-tuning.

Object Target Mask 1 Mask 2 Mask 3 Mask 4 Mask 5

Figure 14: Different types of mask used in the image compositing stage. The generation is
constrained in the masked area, so the user-provided mask is able to modify the pose, view, and shape
of the subject.

The Detail Extract process is formulated as:

Ih = (Iobj ⊗Kh + Iobj ⊗Kv)⊙Maug, (9)

where Kh and Kv are horizontal and vertical Sobel kernels (Kanopoulos et al., 1988) serving as
high-pass filters. Here, ⊗ and ⊙ represent convolution and Hadamard product, respectively. Given an
object image Iobj , high-frequency regions are extracted through these filters, and a shape-augmented
mask Maug is applied to remove information near the outer contour of the object.

B.3 Inference

As discussed in Sec. 3, Bifröst supports multiple types of inference modes. We illustrate different
inference modes in Fig. 15.

ID Transfer. To transfer the identity of an object in the background, we first employ a segmentor to
accurately mask the target object while maintaining the original depth of the background image. The
model then generates a new image using the reference object, background depth map, and masked
background.

ID Preserved Inpainting. To alter the pose or view of the reference object, we keep the back-
ground image’s depth unchanged and use the reference object, background depth map, and masked
background as inputs to generate a new image.

Place. To place an object into the background, we use the fine-tuned MLLM to predict the precise
bounding box and depth value for the desired location. The reference object’s depth map is scaled
accordingly and fused into the background depth map at the specified location, with the mask shape
adjusted to reflect this fusion, as shown in the third row of Fig. 15. The model then generates a new
image using the reference object, background depth map, and masked background.

Replace. To replace an object in the background with a reference object, we first scale the reference
object’s depth map to match the depth value predicted by the MLLM and fuse the depth maps. The
entire bounding box is masked, setting the value to 0 outside the object to ensure it is fully masked.
The background image is also fully masked within the bounding box. The model then generates a
new image using the reference object, background depth map, and masked background.
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ID Transfer

ID Preserved
Inpainting

Place

Replace

Object Background Depth Mask Generated

Figure 15: Comparison of different inference modes

C Evaluation Details

To fairly compare the quality of the generated images between different methods, we cropped the
generated images to the given bounding box area and compared the similarity with the reference
objects.

D Counterfactual Dataset

In this section, we provide more details on building the counterfactual dataset using a COCO (Lin
et al., 2014) dataset. We take Fig. 16 as an example. For a given image with multiple bounding
boxes. We randomly select an object as the object we want to predict (i.e., bowl with grape in the
red bounding box). Then we randomly select multiple objects as the objects we want to describe
relative location with (i.e., carrot and spoon with green bounding boxes in this picture). Then we
define the relative relations between the selected object and other objects based on their spatial
relation. In Fig. 16, the grape bowl is to the left of the spoon and underneath the carrot. The relation
definition process also considers the depth information; if the depth values are different between two
objects, we will define the relations as “behind” or “in front of” based on the real situation. Then we
prompt GPT3 (Brown et al., 2020) to generate the instruction text. However, the usage of GPT is
not mandatory. The usage of GPT3 is only for sample text instructions given spatial relations and
object names, which will not use the “reasoning” ability of GPT. This simple task can even be done
by a naive approach by setting pre-defined instruction templates and filling the blanket with spatial
relations and object names. The ground truth answer consists of the bounding box of the selected
object and the depth value for the center of the object. Finally, we remove the selected object as the
right image in Fig. 16 shows. We show more examples of our counterfactual dataset in Fig. 17.

E More Qualitative Results

We show more qualitative comparison with Paint-by-Example (Yang et al., 2023), ObjectStitch (Song
et al., 2023), and AnyDoor (Chen et al., 2024) in Fig. 18. PbE and ObjectStitch show natural
compositing effects, but they fail to preserve the object’s ID when the object as lines 2-4 show.
Although AnyDoor maintains a fine-grained texture of the object, it can not handle occlusion
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Instruction: Place the bowl to the left of the spoon and underneath the 
carrot, output the bounding box and the depth value of the center point.
Answer: [0.60, 0.38, 0.93, 0.91], 0.78.

Figure 16: More examples of 2.5D counterfactual dataset building process

Instruction: Place the sheep in front of the person, output the 
bounding box and the depth value of the center point.
Answer: [0.08, 0.64, 1.00, 1.00], 0.71.

Original Image Depth Map Counterfactual Image

Instruction: Place the dining table to the left of the bed, output the 
bounding box and the depth value of the center point.
Answer: [0.00, 0.60, 0.24, 1.00], 0.46.

Instruction: Place the refrigerator under the cat, output the bounding 
box and the depth value of the center point.
Answer: [0.47, 0.60, 0.92, 0.99], 0.73.

Instruction: Place the motorcycle in front of the person, output the 
bounding box and the depth value of the center point.
Answer: [0.00, 0.18, 0.27, 0.94], 0.94.

Instruction: Place the bowl to the left of the spoon and underneath the 
carrot, output the bounding box and the depth value of the center point.
Answer: [0.60, 0.38, 0.93, 0.91], 0.78.

Instruction: Place the person in front of the chair, output the bounding 
box and the depth value of the center point.
Answer: [0.09, 0.06, 0.33, 0.90], 0.80.

Figure 17: More examples of 2.5D counterfactual dataset for Fine-tuning MLLM.

with other objects in the scene. In contrast, our model perfectly handles occlusion in complex
environments(i.e., the dogs in lines 1 and 4 behind the hydrant).

We further provide more examples of images generated by Bifröst given text instructions. The results
show that it seamlessly injects the object into the backgrounds while satisfying the instructions. For
instance, the lights and shallows change with the environment. It also perfectly handles the occlusion
with other objects.

Following the same setup in prior works (Ruiz et al., 2023; Chen et al., 2024; Song et al., 2024), the
training and testing data are exclusive for image composition. This has evaluated the OOD ability of
the image composition of our method, indicating the good generalization ability of our method. As
mentioned in the limitation section in our paper, the OOD ability for the MLLM in stage 1 can be
affected by the number of object and scene categories in the dataset in stage 1 for predicting 2.5D
location (the estimated depth may not be very accurate but still in a reasonable range for OOD objects
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or scenes). However, as we only require a rough depth value for image composition, the effects of the
OOD issue for image composition in stage 2 are relatively minor.

To further verify this, we report the results of OOD objects and scenes in Fig. 19, though both objects
and scenes have not been seen in stage 1 (e.g., piano and church are not included in MS-COCO), the
MLLM can still predict reasonable depth values for image composition.

Object Background Fused Depth PbE AnyDoorObjectStitchOurs

Figure 18: More qualitative comparison with reference-based image generation methods, in-
cluding Paint-by-Example (Yang et al., 2023), ObjectStitch (Song et al., 2023), and AnyDoor (Chen
et al., 2024).

F Human Evaluation Interface

As mentioned, we conducted an extensive user study with a fully randomized survey. Results
are shown in the main text. Specifically, we compared Bifröst with four other models Paint-by-
Example (Yang et al., 2023), ObjectStitch (Song et al., 2023), TF-ICON (Lu et al., 2023), Any-
Door (Chen et al., 2024):

1. We chose 30 images from DreamBooth (Ruiz et al., 2023) test set, and for each image,
we then generated 3 variants with different backgrounds using each model, respectively.
Overall, there were 30 original images and 90 generated variants in total.

2. For each sample of each model, we present one masked background image, a reference
object, and the generated image to annotators. We then shuffled the orders for all images.

3. We recruited 30 volunteers from diverse backgrounds and provided detailed guidelines
and templates for evaluation. Annotators rated the images on a scale of 1 to 5 across
four criteria: “Fidelity”, “Quality”, “Diversity”, and “3D Awareness”. “Fidelity” evaluates
identity preservation, while “Quality” assesses visual harmony, independent of fidelity.
“Diversity” measures variation among generated proposals to discourage “copy-paste” style
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Instruction: Place the dog

to the right of the piano.

Instruction: Place the horse

in front of the church.

Object Background Fused Depth Ours

Figure 19: Examples that both object and background are from the out-of-distribution dataset.

INPUT

OUTPUT

Background Object

You are given a masked background and a reference object.

We inject the reference object into the background image with 

the location indicated by the mask.

Your task is to rate the generated image from 1 (worst) to 5 (best) 

concerning

1) Fidelity: If the injected object preserves its original input identity

2) Quality: If the injected object is harmonized in the background

3) Diversity: If the injected object has novel views or poses

4) 3D Awareness: If the injected object handles spatial relationships

Problem 1: Input the score for Fidelity

Problem 2: Input the score for Quality

Problem 3: Input the score for Diversity

Problem 4: Input the score for 3D Awareness

0

0

0

0

Figure 20: The illustration of the user study interface.

outputs. “3D Awareness” evaluates the object’s ability to handle spatial relationships (e.g.,
occlusion) seamlessly.

The user-study interface is shown in Fig. 20.

G Ethics Discussion

The advancements in image generation (Ruiz et al., 2023; Rombach et al., 2022) and composit-
ing (Chen et al., 2024; Song et al., 2023, 2024) through our proposed method offer significant
positive societal impacts. Our approach enhances practical applications in fields such as e-commerce,
professional editing, and digital art creation. By enabling precise and realistic image compositing,
our method can improve user experience, facilitate creative expression, and streamline workflows
in various industries. Additionally, the ability to use text instructions for image compositing makes
technology more accessible to non-experts, promoting inclusivity in digital content creation. However,
there are potential negative societal impacts to consider. The misuse of realistic image compositing
technology could lead to the creation of deceptive or harmful content, such as deepfakes or mislead-
ing advertisements. This raises ethical concerns regarding privacy, consent, and the potential for
misinformation. To mitigate these risks, it is crucial to establish guidelines and ethical standards
for the use of such technology. Furthermore, transparency in the development and deployment of
these models is necessary to build trust and ensure responsible usage. In summary, while our method
presents valuable advancements in image compositing, careful consideration and proactive measures
are essential to address the ethical implications and prevent potential misuse.
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“Place the backpack to the right of the laptop”

“Replace the bus with the bus”

“Place the dog in front of the truck”

“Place the vase in front of the vase”

“Place the telephone booth to the left of the train”

“Place the sneaker to the right of the horse”

“Replace the plant with the toy”

Figure 21: More results generated by Bifröst with language instructions
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This can be found in the abstract and Sec. 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Can be found in Sec. 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Can be found in Sec. 3 and Appendix B
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Can be found in Sec. 4, Appendix A, Appendix F, and Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code and dataset with instructions on GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Can be found in Sec. 4, Appendix F, Appendix A, and Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Can be found in Sec. 4, Appendix F, Appendix A, and Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Can be found in Sec. 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] ,
Justification: We follows the Code of Ethics as required. Can be found in Appendix G and
Sec. 4, Appendix C, and Appendix A.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss concerns and societal impacts in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Can be found in Appendix G.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we follow the rules.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The details and screenshots are provided in Appendix F.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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