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Hierarchical Perceptual and Predictive Analogy-Inference
Network for Abstract Visual Reasoning
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ABSTRACT
Advances in computer vision research enable human-like high-
dimensional perceptual induction over analogical visual reasoning
problems, such as Raven’s Progressive Matrices (RPMs). In this pa-
per, we propose a Hierarchical Perception and Predictive Analogy-
Inference network (HP2AI), consisting of three major components
that tackle key challenges of RPM problems. Firstly, in view of the
limited receptive fields of shallow networks in most existing RPM
solvers, a perceptual encoder is proposed, consisting of a series of
hierarchically coupled Patch Attention and Local Context (PALC)
blocks, which could capture local attributes at early stages and cap-
ture the global panel layout at deep stages. Secondly, most methods
seek for object-level similarities to map the context images directly
to the answer image, while failing to extract the underlying analo-
gies. The proposed reasoning module, Predictive Analogy-Inference
(PredAI), consists of a set of Analogy-Inference Blocks (AIBs) to
model and exploit the inherent analogical reasoning rules instead of
object similarity. Lastly, the Squeeze-and-Excitation Channel-wise
Attention (SECA) in the proposed PredAI discriminates essential at-
tributes and analogies from irrelevant ones. Extensive experiments
over four benchmark RPM datasets show that the proposed HP2AI
achieves significant performance gains over all the state-of-the-art
methods consistently on all four datasets.

CCS CONCEPTS
• Computing methodologies→ Cognitive science; Image rep-
resentations; Scene understanding.

KEYWORDS
Analogical Visual Reasoning, Raven’s Progressive Matrix, Intelli-
gence Quotient Test, Transformer, Predicting-and-Verifying

1 INTRODUCTION
Analogical reasoning over abstract concepts has been researched
for decades [23], because of its significance in human cognition
and potential applications in children assessment [4], zero-shot
learning [33, 34], multimedia content understanding [28, 32, 42],
etc. The recent emergence of multimodal large language models has
revolutionized all aspects of daily human tasks, but due to the lack
of human-like fluid reasoning capabilities, their performance in
abstract thinking is far from humans [15, 34]. Analogical reasoning
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Figure 1: Overview of the proposed HP2AI framework. The
proposed PredAI reasoner solves RPMs by predicting the 3rd
entity in each row and verifying it against the truth, and
enhancing important reasoning attributes in channel wise
from multi-level perceptual features. This is done for the
output of each of the 𝐽 PALC modules, which form HPALC.

extracts high-level abstractions rationally from existing complex
high-dimensional information, which enables abstract thinking be-
yond appearance details and comprehending unfamiliar scenarios
in terms of objects, relationships and higher-order patterns [25].
It provides an effective means to assess a machine’s capacity for
abstraction, i.e., identify common higher-order rationales by ab-
stracting from superficial features, similar to how human reasons.
Analogical reasoning can be broadly categorized based on the na-
ture of the relations being compared, e.g., categorical analogy [23],
visual analogy [9] and linguistic analogy [27].

Raven’s Progressive Matrices (RPM) are typical visual analogy
problems whose solutions rely on an analogy over visually per-
ceived contents [40]. RPM problems have historically been studied
in cognitive science to assess human intelligence, while recently
studied in computer science to improve the reasoning ability of
computers [8, 36]. To minimize the impact of language barrier and
culture bias, the pictorial matrices are designed with images of
regular-shaped polygons, e.g., triangles, circles, etc. Given a 3 × 3
pictorial matrix with the last one left blank, the objective is to iden-
tify the missing entry from eight candidate answers based on the
visual context and inductive rules.

Solving RPM problems usually involves two main steps: visual
perception and analogical reasoning. For visual perception, most
RPM solvers [14, 30, 41, 43] utilize shallow neural networks to
extract local visual attributes such as polygon shape, size and color,
as RPM images are often constructed using simple 2D polygons
or lines [1, 40]. But these shallow networks may not capture the
global image layout well. Solving RPM problem requires the ability
to reason about a set of relational rules inherent to global and
local attributes. Deficiencies in extracting global attributes will
lead to the loss of key reasoning clues, thus limit the performance

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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of the model. To bridge the gap, a set of hierarchically coupled
Patch Attention and Local Context (PALC) blocks are proposed
to extract features from multiple receptive fields. Each block in
turn combines a couple of Local Context blocks built using residual
blocks to capture relatively lower-level visual attributes, and a set
of Patch Attention blocks to capture relatively higher-level spatial
dependencies. Additionally, different from the methods that reason
over object detection results [35], the proposed perceptual encoder
is integrated into an end-to-end visual reasoning model without
extra supervision effort in object detection.

Most existing methods often utilize object-level feature similar-
ities to solve RPMs [2, 8, 43], e.g., MRNet [2] and HCV-ARR [8]
examine the pair-wise feature similarity over three rows1 to detect
recurrent object attributes. While the shared concrete object prop-
erties can be measured by similarity, the shared abstract relational
structures can only be handled by analogy [6, 9]. Those models
[2, 8, 43] may neglect the core nature of analogical reasoning, i.e., to
align relational analogies from the base and apply them to predict
the target [6]. Inspired by the prediction and matching paradigm in
cognitive science [6, 36], a Predictive Analogy-Inference (PredAI)
framework is developed in this paper to conduct more robust ana-
logical reasoning, in which the Analogy-Inference Blocks (AIBs)
first model the abstract analogies from the base and then apply
them to the target, rather than object-level similarities across differ-
ent RPM images in most approaches [2, 8, 43]. As depicted in Fig. 1,
the proposed AIB explicitly models the analogy by first predicting
the third feature set using the first two feature sets of each row
through a Shared-weight Prediction Network (SPN), and then veri-
fying the prediction against the ground-truth. Such a formulation
well emulates the human’s analogical reasoning process [6], and
overcomes the dilemma about “analogy” and “similarity” in RPMs.

In the proposed framework, multi-level perceptual features from
different hierarchies of the perceptual encoder are jointly utilized
in the reasoning module PredAI, resulting in countless potential
analogical inferences embedded in these features. To discriminate
essential attributes and relations from irrelevant ones, a Squeeze-
and-Excitation Channel-wise Attention (SECA) is designed in the
proposed PredAI, where the less relevant features and relations are
suppressed at the squeeze stage and the more dominant ones are
amplified with large weights at the excitation stage.

Our contributions can be summarized as follows. 1) To tackle
the limited receptive fields of shallow networks in existing RPM
solvers, a hierarchically coupled perceptual encoder is proposed to
perceive both the local visual attributes and the global panel layout
at multiple receptive fields. 2) Instead of seeking for feature similar-
ity in existing RPM solvers, a predicting-and-verifying paradigm is
designed in the proposed AIB to directly model the reasoning rules
embedded in RPM questions. 3) The proposed SECA highlights
the most relevant attributes and rules for solving the problem and
suppresses the irrelevant ones. 4) The proposed HP2AI significantly
outperforms the state-of-the-art methods over 4 datasets, improv-
ing the previous best results from 98.2% to 99.3% on PGM [1], from
95.8% to 98.8% on RAVEN [40], from 96.5% to 99.4% on I-RAVEN [14]
and from 97.1% to 98.6% on RAVEN-FAIR [2], respectively.

1Without losing generality, only row-wise relations are illustrated but column-wise
relations are used in experiments whenever necessary.

2 RELATEDWORK
2.1 Visual Reasoning
Solutions of visual reasoning can be categorized into various groups
[24], including analogical (abstract) visual reasoning [1, 2, 8, 14, 24,
40], visual question answering [16, 21, 29, 37], visual commonsense
reasoning [17, 19, 38, 39], mathematical visual reasoning [5, 10, 18]
and many others [11, 12]. They all address the problem of reasoning
for the abstract concepts present in images or the hidden patterns
that govern visual entities. Visual question answering (VQA) is one
of the most adapted assessments for the general reasoning ability
of linking vision and language modalities, where the goal is to
answer a question by referring to an associated image [21]. Ana-
logical visual reasoning spans a variety of tasks, e.g., RPMs [1, 40],
visual abductive reasoning (VAR) [20], CLEVR-Matrices [25] and
Bongard-LOGO problems [26]. RPMs are a typical category of ana-
logical visual reasoning tasks, where the questions are designed in
an abstract formulation using only 2D lines or shapes to minimize
the impact of language barrier or culture bias. VAR [20] examines
abductive reasoning ability of machine intelligence in everyday
real-world situation by completing sets of visual events and infer-
ring the hypothesis that can best explain the visual premise. Mondal
et al. [25] developed an RPM-like problem dataset, CLEVR-Matrices,
using realistically rendered 3D shapes based on the VQA dataset
CLEVR [16]. The Bongard-LOGO problem [26] was developed to
evaluate human-like analogy-making by interpreting a LOGO ob-
ject in terms of another, with the target of discovering the concept
that the positive images obey while negative images violate.

2.2 Solution Models for RPMs
Visual reasoning models for solving RPMs often consist of two
modules: visual perception and relational reasoning. For visual
perception, most solution models utilize consecutive convolution
layers to extract visual features, e.g., CoPINet [41] and Rel-AIR
[30], and the latest PredRNet [36] all utilize residual networks [7].
Recently, MRNet [2] applies multi-scale convolutional encoders
and HCV-ARR [8] adapts a mixed model of convolution blocks and
transformer blocks to extract visual features from RPM images. For
analogical reasoning over RPMs, early models often compare and
contrast answer sets directly, e.g., CoPINet [41] explicitly contrasts
candidate answers and highlights the difference between options
while DCNet [43] contrasts both row features and candidate op-
tions. Research shows that different levels of inductive bias are
incorporated into these network structures, and thereby improve
the classification performance [24, 25]. Recently, MRNet [2] deducts
the correct answer by minimizing the squared Euclidean distance
between row features, to identify recurring patterns. In [8], a rea-
soning module is designed based on the attention mechanism to
dynamically learn the feature weights and highlight the important
features to encode the rule representations. Most recently, PredR-
Net [36] applies the neural prediction errors between the selected
option and the predicted answer for reasoning.

3 PROPOSED METHOD
3.1 Overview of Proposed Method
As shown in Fig. 2, the proposed HP2AI consists of two modules.
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Figure 2: Block diagram of the proposed HP2AI network. It mainly consists of: 1) HPALC perceptual module to visually perceive
the local features at shallow stages and extract global features at deeper stages; 2) PredAI reasoning module to extract the
abstract analogies by prediction/verification and to highlight critical ones for the answer.

Visual Perception Module. The proposed hierarchical perceptual
encoder contains a set of PALC blocks to extract the local and global
image attributes at multiple receptive fields, because solving an
RPM problem often requires reasoning over a set of relational rules
embedded in both global high-level image semantics such as Number
and Position and low-level image details such as Type, Size and
Color. Each block incorporates a Local Context block modeling
lower-level features through a residual network and a Patch Atten-
tion block capturing higher-level spatial layout features through a
transformer network. The proposed visual encoder concurrently
captures the visual cues from different receptive fields, and feeds
them into the analogical reasoning modules at each receptive field
for logical reasoning. As a result, the proposed method captures
the image attributes of different scales and reasons over them at
various receptive fields.
Analogical Reasoning Module. The analogical reasoner exploits
the abstract analogies among features to model the underlying
relations embedded in visual attributes. The analogies among visual
features in RPMs are specifically designed row-wisely [1, 40]. The
proposed reasoner hence divides the original 3 × 3 matrix along
rows, and induces analogies row-wisely. At each receptive field,
after extracting the visual features, a series of consecutive Predictive
Analogy-Inference (PredAI) blocks are designed to capture the
underlying analogies. Each PredAI block incorporates human-like
analogical reasoning in two-fold: 1) Analogy Inference Block (AIB)
infers the row-wise analogies embedded in the attributes of the
3 × 3 matrix. Specifically for the analogy on RPMs, features of the
first two images are used as the input to predict the features of
the third image, and the prediction function serves as the analogy.
2) Squeeze-and-Excitation Channel-wise Attention (SECA) that
suppresses the irrelevant attributes and relations and highlights

the essential ones, to concentrate on the most relevant features and
analogies to solve the RPM problems.

3.2 Visual Perception Module
Both low-level image details such as Type, Size and Color and
high-level image semantics such as Number and Position are use-
ful cues to solve RPMs [2, 8]. To extract both local context and
global dependencies, a Hierarchical encoder focusing on both Local
Context and Patch Attention (HPALC) is proposed. It consists of
𝐽 hierarchically organized PALC blocks, where features extracted
from the early blocks generally focus on image fine details, whilst
the latter stages are specialized to higher level features and the
features become gradually sparse across channels. In traditional
image encoders, features from early stages are considered too noisy
for visual recognition and are usually passed into deeper stages
for high-level abstraction [36]. But for RPM problems, small entity
details are as important as high-level image semantics. We hence
hierarchically extract features from multiple receptive fields and
build PredAI block for each set of features at their respective re-
ceptive field. Furthermore, each PALC block forms a dual-branch
structure to extract both local and global features, where the Lo-
cal Context block perceives low-level image details of objects, and
the Patch Attention block extracts global spatial semantics on im-
ages by modelling long-range dependencies through cross-patch
multi-head self-attention [3, 22].

Formally, an RPM sample ⟨Q,A⟩ is composed of a 3 × 3 picto-
rial image matrix of size 𝐻 ×𝑊 with the last one missing, Q =

{𝑸1,𝑸2, . . . ,𝑸8} as the question set, and A = {𝑨1,𝑨2, . . . ,𝑨8} as
the answer set. Each answer image is appended to eight question
images to form one complete 3 × 3 RPM panel. The goal is to deter-
mine the missing image from the eight candidate answers through
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visually perceiving eight panels and reasoning over the derived
visual features. For example, given an RPM image 𝑰 ∈ R𝐻×𝑊 from
the 3×3 panel, the Patch Attention block firstly splits 𝑰 into patches
of size 𝑘 × 𝑘 to obtain the token matrix P ∈ R

𝐻
𝑘
·𝑊
𝑘
×𝑘2 , where each

row represents a token vector of size 𝑘2 and 𝑛𝑇 = 𝐻
𝑘
× 𝑊

𝑘
is the

number of rows. Each token vector is embedded into 𝑑𝑇 dimen-
sions through the same linear layers to obtain 𝑬𝐹 ∈ R𝑛𝑇 ×𝑑𝑇 , and
a positional embedding 𝑬𝑃 ∈ R𝑛𝑇 ×𝑑𝑇 is added to 𝑬𝐹 to form the
input into cross-patch multi-head self-attention as 𝑭 0 = 𝑬𝐹 + 𝑬𝑃 .
Next, multiple Patch Attention blocks are sequentially applied to
extract the attentional features, with 𝑭 𝑗−1 and 𝑭 𝑗 as the input and
the output of the 𝑗-th block respectively. The local self-attention
(LSA) computes the self-attention relations of local patches within
non-overlapped regions, whilst regional self-attention (RSA) com-
putes the global self-attention relations between different regions
of patches. As shown in Fig. 2, the extracted features for all 9 panel
images are collectively denoted as F𝑗 . Partitioning images into
patch tokens and investigating patches with shifting windows is
advantageous for understanding rich combinatorial relationships
such as global spatial semantics, for solving challenging problem
settings such as 2x2G, 3x3G and O-IG in RAVEN datasets [8, 25, 36].

Meanwhile, the Local Context block is designed for perceiving
local details of entities in RPMs. Specifically, given an image 𝑰 ∈
R𝐻×𝑊 , each stage contains three successive 3×3 convolution layers
with a stride of 𝑆 to obtain multi-scale features. The input 𝒁 𝑗−1 of
each block is down-sampled and added to the output of the block
through a shortcut to form a residual structure [7], and produce
𝒁 𝑗 as the output of the 𝑗-th block. Collectively, the features for the
3× 3 RPM panel for the 𝑗-th Local Context block can be denoted as
Z𝑗 . The output of the 𝑗-th PALC block is obtained by fusing both
the output of 𝑗-th Local Context block and Patch Attention block,

X𝑗 = F𝑗 + Z𝑗 , X𝑗 ∈ R9×𝐷
𝑗

, (1)

where 𝐷 𝑗 is the number of feature channels. Hierarchical features
{X1, . . . ,X𝐽 } serve as multi-view cues for analogical reasoning.

3.3 Analogical Reasoning Module
For a 3×3 RPM panel, the analogies are designed row-wisely [1, 40],
i.e., the underlying rules can be derived from each of the first two
base rows and then the same rules are applied to the third target row
to infer the missing image from the options. However, it is difficult
to explicitly model the rules embedded in three images of each row.
As shown in Fig. 3, the proposed Analogical-Inference Block (AIB)
transforms this complex and challenging problem into a predicting-
and-verifying paradigm, which takes the reasoning features of the
first two columns as the input, predicts those of the third column,
and verifies the prediction against the features of the third column.
The Shared-weight Prediction Network (SPN) is expected to capture
the underlying reasoning rules across three rows. Furthermore,
to suppress the irrelevant attributes and rules, and highlight the
important ones, a Squeeze-and-Excitation Channel-wise Attention
(SECA) mechanism is proposed to adaptively weigh the features.
Finally, multiple PredAI blocks are stacked to refine rules, especially
the complicated ones.
Analogy Inference.Most methods [2, 8, 43] attempt to refine in-
herent rules by maximizing the similarity over visually perceived
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Figure 3: Overview of the proposed PredAI reasoningmodule,
which consists of Analogical-Inference blocks (AIBs) and
Squeeze-and-Excitation Channel-wise Attention (SECA).

row features. However, feature-level similarities do not necessarily
assure similar relation-level analogies, e.g., two rows of images sat-
isfying an Arithmetic rule for Number may have different visual
layouts of objects in images (Fig. 2). In contrast, the analogy infer-
ence aims at extracting analogies that fulfill relations for all three
row attributes, which emulates the process of human-like high-
level perceptual induction rather than purely focuses on similar
visual features. In this paper, we attempt to take row-wise features
perceived from the HPALC as the input, and outputs the high-level
relation abstractions.
Predicting-and-verifying Paradigm. It is difficult to explicitly
derive the underlying rules, as the perceived visual features contain
multiple object attributes and hence the reasoning rules over these
visual features vary significantly. Taking the feature tensors X𝑗 of
the 𝑗-th PALC block as an example, we map X𝑗 to 3 × 3 layout as
Y𝑗 ∈ R3×3×𝐷 𝑗 and use Y𝑗 as the reasoning features. For the 𝑖-th
row, a naive implementation to derive the reasoning rule R𝑖 is,

R𝑖 = Fˆ (Y𝑗𝑖,:,:), (2)

where Fˆ is the reasoning network and Y𝑗
𝑖,:,: represent the rea-

soning features for the three images of the 𝑖-th row. To ensure
that the rules are consistent across three rows, it is preferred to
maxF𝑆 (R1,R2,R3), where F𝑆 measures the similarity of three
rules. Note that it is difficult to directly deduce the consistent rules
across three rows as in Eqn. (2), as the analogy extraction func-
tion Fˆ in Eqn. (2) contains huge complexity and non-linearity. To
tackle this challenge, we transform the complex analogy inference
problem defined in Eqn. (2) into a predicting-and-verifying problem,

Ŷ𝑗:,3,: = F
𝚽
(Y𝑗:,1,:,Y

𝑗

:,2,:), (3)

Ỹ𝑗:,3,: = Y𝑗:,3,: − Ŷ𝑗:,3,:, (4)

where F
𝚽
is a Shared-weight Prediction Network (SPN). For each

row, the third entity is first predicted using the first two entities by
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F
𝚽
as in Eqn. (3), and it is verified against the ground-truth third

entity as in Eqn. (4). By explicitly minimizing the prediction error
Ỹ𝑗:,3,: in Eqn. (4), we have F

𝚽
(Y𝑗:,1,:,Y

𝑗

:,2,:) → Y𝑗:,3,:, so that F
𝚽
well

models the underlying rules. In such a way, the Analogy Inference
Block (AIB) extracts the analogy and applies it to predict the third
entity in each row. Unlike the way in Eqn. (2) that the analogies
are difficult to extract, the network parameters 𝚽 of AIB can be
explicitly refined to capture the analogies.
Shared-weighted Prediction Network.Many techniques have
been attempted in literature to align the abstract analogies derived
from visual features across all three rows, e.g., Euclidean similarity
[2] or attention mechanism [8]. However, these methods focus
on feature-level consistency, which does not necessarily align the
underlying relations. In this paper, following the predicting-and-
verifying paradigm, we propose a simple but genius mechanism
to restrict that the AIBs for different rows share the same weights
𝚽. Consequently, the predicted features are derived using same
weights embedded in AIBs for different rows, to ensure that the
same reasoning analogy is applied across three rows.
Squeeze-and-Excitation Channel-wise Attention. Analogical
inference through the proposed predicting-and-verifying paradigm
offers an effective way to refine the network model and capture
the underlying analogy, but it also poses a practical challenge, i.e.,
between any two nonidentical features there may be countless po-
tential inferences [6]. The high-dimensional multi-scale features
implicitly represent different visual attributes perceived from the
RPM images. Given one attribute dominated by one potential re-
lation, there might be countless potential relations between three
entities if derived by neural layer computations.

To tackle the challenge, a Squeeze-and-Excitation Channel-wise
Attention (SECA) mechanism is integrated into the PredAI block
to dynamically weigh the attributes across channels with different
importance. Squeeze-and-Excitation [13] was originally designed to
learn channel-wise feature dependencies to improve the network’s
ability to discriminate important features from less relevant ones. In
this paper, the proposed SECA mechanism is designed to suppress
the irrelevant features and rules that may be harmful for deriving
the underlying analogies by squeezing the input feature map to
a vector through global average pooling, and then the squeezed
vector is excited with a set of channel-wise scaling factors that
signify the importance of each channel.

Specifically, the SECA is represented by the down-sampling op-
eration with network parametersW𝑗

𝑑
∈ R

𝐷𝑗

𝑟
×𝐷 𝑗 over Ŷ𝑗:,3,: derived

from Eqn. (3) and the up-sampling operation with network param-
eters W𝑗

𝑢 ∈ R𝐷 𝑗× 𝐷𝑗

𝑟 to obtain scalars for each row 𝑺 𝑗 ∈ R3×𝐷 𝑗 ,

𝑺 𝑗 = 𝜎 (W𝑗
𝑢𝛿 (W

𝑗

𝑑
Y𝑗:,3,:)), (5)

where 𝛿 denotes ReLU activation and 𝜎 stands for the Sigmoid
function. Next, the scalars 𝑺 𝑗 are multiplied along the channel
dimension to weigh the reasoning features as,

Ỹ𝑗:,1,𝑑 = 𝑺 𝑗:,𝑑 · Y𝑗:,1,𝑑 , Ỹ𝑗:,2,𝑑 = 𝑺 𝑗:,𝑑 · Y𝑗:,2,𝑑 . (6)

In such a way, the irrelevant features are suppressed and the
important ones are highlighted. The enhanced features from Eqn. (6)
and predictive differences from Eqn. (4) are combined to form Ỹ𝑗

and added to the original input features, and passed through multi-
layer perceptrons FMLP for high-level abstraction,

Y′𝑗 = FMLP (Y𝑗 + Ỹ𝑗 ). (7)

Intuitively, if the prediction error is small, Y′𝑗 contains the en-
hanced features of the first two entities and the original features
of the third entity for next stage optimization. In practice, in or-
der to capture the complex rules, PredAI blocks F 𝑘P are stacked as
Y𝑗
𝑘
= F 𝑘P (Y𝑗

𝑘−1), where the output from the (𝑘−1)-th PredAI block
is the input to the 𝑘-th PredAI block. Finally, the one-hot vector
�̂� ∈ {0, 1}8 is derived through MLPs over all the reasoning features
to determine which option is the correct answer,

�̂� = FMLP ( [Y1
𝐾 ; . . . ;Y

𝐽

𝐾
]). (8)

Discussion. The proposed HP2AI is significantly different from
previous reasoners [2, 8, 43]. Its superior performance as shown in
the next section is achieved mainly because: 1) We make higher-
level analogy abstraction based on the perceived visual features
instead of seeking object-level similarity in most previous methods
[2, 8, 43]. 2) To explicitly model the underlying rules embedded
in various visual attributes, we transform the problem of analogy-
inference into a predicting-and-verifying problem. 3) To ensure
the embedded rules are identical across rows, a Shared-weight
Prediction Network is designed in the analogy-inference blocks. 4)
To effectively discriminate essentials from countless possible rules
associated with various attributes, the proposed SECA mechanism
assigns different weights to different feature channels to signify
important attributes and weaken irrelevant ones.

4 EXPERIMENTS
4.1 Experimental Settings
The proposed HP2AI is systematically compared with nine state-
of-the-art methods, WReN [1], CoPINet [41], DCNet [43], SRAN
[14], MRNet [2], AlgebraicMR [35], HCV-ARR [8], STSN [25] and
PredRNet [36] on four publicly available RPM benchmark datasets,
PGM (PGM) [1], original RAVEN (O-RVN) [40], Impartial-RAVEN (I-
RVN) [14] and RAVEN-FAIR (RVN-F) [2]. The key dataset statistics
are summarized in Table 1. Further details of the compared methods
and datasets are provided in the supplementary material.

Table 1: RPM datasets for analogical visual reasoning.

Datasets Samples Images Attributes Relations

O-RVN [40] 70K 1.12M 6 4
I-RVN [14] 70K 1.12M 6 4
RVN-F [2] 70K 1.12M 6 4
PGM [1] 1.42M 22.72M 5 5

We strictly follow the standard evaluation protocol in [1, 40].
The input image size is set to 80 × 80 for RAVENs and PGM. The
datasets are split into training, validation, and test sets, where the
validation set is utilized to determine the hyper-parameters of the
model. No other forms of auxiliary supervision (e.g., metadata [1])
are incorporated during training. We report the results on Neu-
tral, Interpolation and Extrapolation regimes for the PGM dataset,
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Table 2: Comparison with state-of-the-art on the original RAVEN dataset [40]. † indicates that the original method is based
on contrasting over candidate answers. The proposed method significantly outperforms all the compared methods over 7
configurations consistently.

Methods Accuracy (%) on Different Configurations

Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG

†CoPINet (NIPS’19) [41] 91.4 95.1 77.5 78.9 99.1 99.7 98.5 91.4
†DCNet (ICLR’21) [43] 93.6 97.8 81.7 86.7 99.8 99.8 99.0 91.5
†HCV-ARR (AAAI’23) [8] 96.0 99.4 86.9 89.1 99.9 99.9 99.8 96.8
†MRNet (CVPR’21) [2] 96.6 99.9 97.8 91.2 99.7 99.7 99.6 87.7
SRAN (AAAI’21) [14] 46.2 49.0 45.4 52.8 42.4 36.0 49.1 48.8
MRNet (CVPR’21) [2] 84.0 98.7 72.5 52.3 99.4 99.2 99.6 66.3
HCV-ARR (AAAI’23) [8] 87.3 99.8 71.4 65.9 99.9 99.8 98.0 76.2
AlgebraicMR (CVPR’23) [35] 92.9 98.8 91.9 93.1 99.2 99.1 98.2 70.1
PredRNet (ICML’23) [36] 95.8 99.8 95.1 87.6 99.2 99.4 99.9 89.4
HP2AI (Ours) 98.8 100.0 98.8 95.3 99.9 99.8 99.9 98.0

Table 3: Comparison with state-of-the-art models on the I-RAVEN/RAVEN-FAIR datasets [2, 14]. The proposed method
significantly outperforms all the compared methods over all configurations consistently on both datasets.

Methods Accuracy (%) on Different Configurations

Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG

DCNet (ICLR’21) [43] 46.6/57.0 56.2/57.2 32.7/48.4 32.9/58.2 54.7/57.5 53.9/59.4 55.9/62.0 39.8/56.2
SRAN (AAAI’21) [14] 60.8/76.7 78.2/87.4 50.1/60.4 42.4/62.8 70.1/86.5 70.3/86.7 68.2/77.5 46.3/75.9
MRNet (CVPR’21) [2] 81.0/86.8 99.6/97.0 63.4/72.7 59.2/69.5 98.7/98.7 98.3/98.9 95.7/97.6 51.9/73.3
AlgebraicMR (CVPR’23) [35] 93.2/94.3 99.5/99.8 89.6/93.2 89.7/88.0 99.7/99.8 99.5/99.8 99.6/99.9 74.7/79.6
HCV-ARR (AAAI’23) [8] 93.9/95.4 99.9/99.8 96.2/92.9 75.5/87.9 99.4/99.8 99.6/99.6 99.5/99.7 87.3/88.5
STSN (ICLR’23) [25] 95.7/95.4 98.6/98.4 96.2/95.8 88.8/87.3 98.0/98.3 98.8/98.1 97.8/98.2 92.0/92.2
PredRNet (ICML’23) [36] 96.5/97.1 99.9/99.8 97.8/97.3 91.2/92.6 99.7/99.7 99.7/99.5 99.6/99.7 87.7/91.2
HP2AI (Ours) 99.4/98.6 100.0/100.0 99.9/99.4 97.4/96.9 99.9/99.9 100.0/99.9 100.0/99.7 98.8/94.2

similar to many previous models [2, 25, 36, 43]. For RAVENs, we
adhere to the settings described in their original papers for a fair
comparison. Adam optimizer is used with a learning rate of 1e-3
and a batch size of 128. For the RAVENs, the weight decay is set at
1e-5, while for the PGM, it is 1e-7 due to their larger quantity.

4.2 Comparisons with State-of-the-Art Models
Original RAVENDataset [40] contains a loophole that the correct
answer can be derived by simply aggregating the most common
properties from the answer options, without examining the ques-
tion at all, as identified in [2, 14]. We hence conduct evaluations
without contrasting over options, following most previous mod-
els [2, 8, 36], and the results are summarized in Table 2. From Table 2,
we can see that some methods utilizing the contrast information
achieve high accuracy, while their performance drops if the contrast
information is not utilized, e.g., MRNet [2] and HCV-ARR [8]. In
contrast, the proposed method reaches the mean accuracy of 98.8%
without any auxiliary contrast information over options, which
outperforms the second-best method, PredRNet, by 3.0%, and it
is even superior to the methods using the contrast information.
The proposed method significantly outperforms all the compared

methods for all configurations consistently. Specifically, it achieves
significant improvements on complicated configurations where
high-level spatial positions are considered, e.g., 2x2G, 3x3G and
O-IG, which demonstrates the effectiveness of the Patch Attention
blocks in visual perception for global feature extraction. The pro-
posed PredAI module effectively models the underlying relations
following the designed analogy inference mechanism, which yields
one shared rationale for each attribute across rows, and discovers a
wide range of reasoning rationales for better reasoning.
I-RAVEN Dataset [14] has been developed to eliminate the loop-
hole in the original RAVEN dataset [40]. Table 3 summarizes the
reasoning accuracy on the I-RAVEN dataset [14]. The proposed
HP2AI significantly outperforms the state-of-the-art methods on
the I-RAVEN dataset, achieving an average reasoning accuracy of
99.4%, with 100.0% perfect or 99.9% near-perfect over five out of
the seven problem configurations. Compared with the second best
method, PredRNet [36], the superiority is 2.9% on average, with
massive improvements on those complicated configurations, e.g.,
6.2% on 3x3G and 11.1% on O-IG. All these results are achieved by
hierarchically perceiving RPM images in multiple receptive fields
and the effectiveness of the proposed PredAI blocks in discovering
high-level abstractions of embedded analogies.
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RAVEN-FAIR Dataset [2] has been developed to avoid the loop-
hole in the original RAVEN dataset by generating option images
with more randomness. The results of comparison to state-of-the-
artmethods are summarized in Table 3. The proposedHP2AI achieves
an average reasoning accuracy of 98.6% on the RAVEN-FAIR dataset
[2], which consistently outperforms all the compared methods, ex-
cept that for O-IC configuration it achieves the same accuracy of
99.7% as the second best method. Compared with the second best
method PredRNet [36], the performance gains on challenging con-
figurations are most significant, e.g., 2.1% on 2x2G, 4.3% on 3x3G
and 3.0% on O-IG.

In summary, the proposed method shows significant perfor-
mance gains on all three RAVEN datasets consistently, particularly
on complex 2x2G, 3x3G and O-IG configurations involving spatial
relations, which confirm the positive contribution of the proposed
HPALC and PredAI modules.

Table 4: Test accuracy (%) of three different regimes on PGM.

Methods Accuracy (%) on Different Regimes

Neutral Interpolation Extrapolation
CoPINet [41] 56.4 51.2 16.4
WReN [1] 62.6 64.4 17.2
DCNet [43] 68.6 59.7 17.8
SRAN [14] 71.3 60.1 18.4
MRNet [2] 93.4 68.1 19.2
PredRNet [36] 97.4 70.5 19.7
STSN [25] 98.2 78.5 20.4
HP2AI (Ours) 99.3 80.0 22.6

PGMDataset [1] has beenwidely used for evaluating the capability
of abstract reasoning [2, 14, 25, 36, 43]. The proposedmethod is com-
pared with state-of-the-art models on the PGM dataset in Table 4.
Some methods such as CoPINet [41] and DCNet [43] that perform
satisfactorily on the RAVENs may not perform well on the PGM
dataset. This is mainly because these models adopt RAVEN-specific
inductive biases rather than investigate the core of analogical rea-
soning, and hence have poor generalization abilities. The proposed
method achieves 99.3% reasoning accuracy, which significantly out-
performs the 98.2% accuracy of the previous best method STSN [25]
and the 97.4% accuracy of the second best method PredRNet [36] on
the Neutral regime. On the other two OOD regimes, the proposed
method also demonstrates good generalization ability by improving
the previous best method STSN [25] by 1.5% and 2.2%, respectively.
The PGM dataset is 20 times larger than RAVENs, and the rules
are applied either in rows or in columns. Despite these additional
constraints, our method is able to obtain a significant gain over a
rather high accuracy of 98.2%, thanks to the hierarchical design in
HPALC for visual perception from multiple receptive fields and the
predicting-and-verifying design in the PredAI reasoning blocks.

4.3 Ablation Studies
Ablation Studies ofMajor Components.We ablate the two main
modules of the proposed HP2AI on three RAVEN-style datasets [2,

14, 40]. We select three representative models such as MRNet [2],
HCV-ARR [8] and PredRNet [36] as the baselines. We disentangle
the perception module and reasoning module for the baselines,
and substitute the respective module by the proposed one. Specif-
ically, we ablate the proposed HP2AI using perception modules
Multi-Scale Encoder (MSE) from MRNet [2], Hierarchical ConViT
(HCV) from HCV-ARR [8] and 4-Block ResNet (RN-4B) from Pre-
dRNet [36]. We also ablate the proposed HP2AI using reasoning
modules Relation Module with Pattern Module (RM+PM) from
MRNet [2], Attention-based Relation Reasoner (ARR) from HCV-
ARR [8] and Predictive Reasoning Block (PRB) from PredRNet [36].
The results are summarized in Table 5. We can observe the con-
sistent performance gain brought by the two proposed modules
over the baselines. The average gains over three datasets brought
by the proposed HPALC and the proposed PredAI are 1.3% and
1.4% compared with RN-4B and PRB from PredRNet [36], 1.0% and
2.4% compared with HCV and ARR from HCV-ARR [8], and 1.0%
and 2.5% compared with MSE and PM+RM from MRNet [2], respec-
tively. Furthermore, the SECA block of the PredAI module brings a
substantial average gain of 0.4%. The ablation results demonstrate
the effectiveness of the proposed HPALC in visual perception and
the proposed PredAI in analogical reasoning.

Table 5: Ablation studies of the two major components of the
proposed HP2AI on three RAVEN-style datasets [2, 14, 40].

Major Module Accuracy (%) on Datasets

Visual Reasoning O-RVN I-RVN RVN-F Avg.

MSE [2] RM+PM [2] 84.0 81.0 86.8 83.9
HCV [8] ARR [8] 87.3 93.9 95.4 92.2
RN-4B [36] PRB [36] 95.8 96.5 97.1 96.5
MSE [2] AIB+SECA 86.2 84.0 88.9 86.4
HCV [8] AIB+SECA 90.9 95.8 97.1 94.6
RN-4B [36] AIB+SECA 97.7 98.1 97.8 97.9
HPALC RM+PM [2] 85.1 81.8 87.7 84.9
HPALC ARR [8] 88.5 95.2 96.0 93.2
HPALC PRB [36] 97.2 98.3 98.0 97.8
HPALC AIB 98.6 98.6 98.3 98.5
HPALC AIB+SECA 98.8 99.4 98.6 98.9

Visualization of HPALC Features. The design of hierarchical
visual perception in the proposed PredAI is essential and funda-
mental for achieving high reasoning performance, where shallower
layers focus more on local features and deeper layers focus more
on global features. We conduct the t-SNE analysis [31] for HPALC
features extracted at different depths, as shown in Fig. 4a. It can
be observed that in shallower layers, problem configurations that
contain higher-level ‘Out-In’ spatial combinations are unable to
discriminate, i.e., O-IC and O-IG. When the network goes deeper as
shown in Fig. 4b, clear improvements can be noticed about discrim-
ination power over O-IC and O-IG. Finally, the perception module
can perfectly distinguish all 7 configurations with clear boundaries
in Fig. 4c. The t-SNE plots validate our analysis that shallower lay-
ers mainly focus on capturing local attributes while deeper layers
mainly focus on capturing global attributes.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

C
2x2G
3x3G
O-IC
O-IG
L-R
U-D

(a) Features from the 1st stage of HPALC.
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(b) Features from the 2nd stage of HPALC.
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(c) Features from the 3rd stage of HPALC.

Figure 4: The t-SNE analysis for the features extracted from different stages of HPALC.

Table 6: Ablation studies of different hierarchical stages 𝐽
in HP2AI and different number of PredAI blocks for the
proposed HP2AI on all three RAVEN datasets [2, 14, 40].

O-RVN I-RVN RVN-F Avg.

Number of hierarchical stages 𝐽 in HP2AI
𝐽 = 1 87.1 88.9 91.4 89.1
𝐽 = 2 92.4 93.6 96.4 94.1
𝐽 = 3 98.8 99.4 98.6 98.9
𝐽 = 4 98.6 99.1 98.5 98.7

Number of PredAI blocks 𝐾
𝐾 = 1 98.1 98.6 98.3 98.3
𝐾 = 2 98.4 99.1 98.3 98.6
𝐾 = 3 98.8 99.4 98.6 98.9
𝐾 = 4 98.0 99.0 98.2 98.4

Impact of Number of ReST Blocks. At different depths of the
proposed method, the features encoded by ReST is fed into a set
of PredAI blocks for analogical reasoning. This design not only
perceives multi-scale visual features, but also conducts multi-level
reasoning in a hierarchical manner. We ablate the number of hi-
erarchical stages 𝐽 on three RAVEN-style datasets [2, 14, 40] and
summarize the results in Table. 6. At shallower stages, the model
captures low-level feature attributes and reasons over these local
attributes only using abstract analogies, but rarely captures high-
level spatial information at shallow stages. The accuracy for 𝐽 = 1 is
hence low for all three datasets. When 𝐽 increases, the network goes
deeper and the reasoning accuracy improves with deeper stages,
e.g., the overall accuracy improves by 5.0% when 𝐽 increases from
1 to 2, and further improves by 4.8% when 𝐽 increases from 2 to 3.
However when 𝐽 = 4, the feature maps at Stage 4 are too small to
capture discriminative visual information for analogical reasoning,
which imposes a slight negative impact on the reasoning accuracy.
Impact of Number of PredAI Blocks. To evaluate the impact
of the number of PredAI blocks, an ablation study is carried out
on three RAVEN-style datasets and the results are summarized in
Table. 6. It can be observed that the reasoning accuracy increases
with the increasing 𝐾 on all three datasets, and reaches the maxi-
mum at 𝐾 = 3. Our hypothesis is that the early PredAI blocks may
not well capture the underlying rules due to the light model of SPN,

and hence result in some inaccurate predictions. As 𝐾 increases,
a deeper network can better capture the complicated rules. When
𝐾 = 4, the performance drops slightly, probably due to over-fitting.
Visualization of Verification Errors. Fig. 5 plots verification
errors shown in Eqn. (4) between the prediction and ground-truth
on the train and validation sets for different number of PredAI
blocks 𝐾 and hierarchical stages 𝐽 . It shows that the verification
error decreases as training proceeds, though it is not explicitly used
as a loss term.

0 20 40 60 80 100
Epochs

1e3

2e3

3e3

Ve
rif

ica
tio

n 
Er

ro
rs

K=1, Train
K=2, Train
K=3, Train
K=1, Val
K=2, Val
K=3, Val

(a) Errors for different 𝐾 at 𝐽 = 3.
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(b) Errors for different 𝐽 at 𝐾 = 3.

Figure 5: Visualization of verification errors on I-RVN [14].

5 CONCLUSION
In this work, a novel HP2AI network is proposed to solve Raven’s
Progressive Matrices, one of the most frequently-used assessments
for human’s reasoning capabilities. The proposed HPALC module
simultaneously extracts the fine image details and global image
semantics through the hierarchical Patch Attention and Local Con-
text blocks across multi-level receptive fields. Instead of detecting
object similarity, the proposed PredAI module models and exploits
the inherent analogical reasoning rules embedded in RPM ques-
tions. We also propose the Squeeze-and-Excitation Channel-wise
Attention to discriminate the importance of feature channels and
hence to control their contribution to the final decision. Extensive
comparisons with nine state-of-the-art models on four benchmark
datasets demonstrate that the proposed HP2AI significantly outper-
forms all state-of-the-art models consistently in all configurations
and on all four datasets.
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