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Abstract

Biomedical vision-language models (VLMs) struggle with performance deteriora-1

tion on earlier domains after fine-tuning and limited generalization under domain2

diversity and dataset imbalance. We propose an adapter-level framework combin-3

ing Low-Rank Adaptation (LoRA) for efficient domain-specific tuning with model4

souping for cross-domain adaptability in microscopy images. Using BioMedCLIP5

and organ-specific domains from µ-Bench, adapter soups mitigate low general-6

ization and improve robustness, achieving gains of up to 15% on fine-grained7

and 38% on coarse-grained tasks over baseline BioMedCLIP. The process is data-8

and resource-efficient, and hyperparameter analysis reveals sensitivities to domain9

similarity and dataset imbalance. Adapter merging offers a lightweight scalable10

approach for organ-specific accuracy and cross-domain stability in biomedical11

VLMs.12

1 Introduction13

Medical imaging is central to clinical practice, but automated analysis faces challenges such as anno-14

tation cost, [1], organ variability, [2], and poor model generalization, [3]. Vision-language models15

(VLMs) show promise but degrade in biomedical microscopy due to domain shifts and specialized16

reasoning needs, [4]. The µ-Bench benchmark highlights these issues, showing even biomedical foun-17

dation models like BioMedCLIP struggle with organ-specific tasks and suffer catastrophic forgetting,18

[5]. To address this, parameter-efficient methods like LoRA, [6] and model souping have emerged,19

[7; 8], enabling specialization with minimal parameters and improved generalization via weight20

merging. This work systematically evaluates LoRA-based model soups in biomedical microscopy21

across four organ datasets, testing five merging strategies. Results show hybrid generalist–specialist22

approaches, particularly SLERP, effectively balance specialization and generalization, improving23

µ-Bench performance by up to 38%, while divergence-driven methods often fail. Overall, we provide24

the first comprehensive evidence of how souping and LoRA interact in biomedical VLMs, offering25

scalable, lightweight, and robust solutions across organ systems.26

2 Related Works27

2.1 Vision–Language Models in Biomedical Imaging28

General-purpose VLMs like CLIP [9], BLIP [10], and Flamingo [11] inspire biomedical variants29

such as BioMedCLIP [12]. Yet, evaluation on µ-Bench [5] shows organ-specific degradation and30

reduction in a model’s generalization ability under fine-tuning [4]. We address the specialization and31

generalization tradeoff through adapter-level merging.32
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2.2 Parameter-Efficient Fine-Tuning with LoRA33

LoRA was introduced as a PEFT enabling specialization with 1% parameters in general NLP tasks34

[6]. Recent studies have extended to multi-task merging in NLP and vision [7; 8]. LoRA Soups [7]35

average adapters to combine skills without retraining, while Multi-LoRA Meets Vision [8] shows36

adapter merging for multi-task vision backbones. Unlike previous studies, our study extends LoRA’s37

application to biomedical microscopy by systematically evaluating adapter-level merging strategies38

to address organ-specific variability, data imbalance, and cross-domain generalization challenges.39

2.3 Model Merging and Weight Interpolation40

Model soups improve generalization by merging fine-tuned models [13], with extensions like SLERP41

[14] and TIES merging [15]. Unlike prior work, we merge LoRA adapters instead of full weights. This42

provides the first systematic evidence of how merging strategies behave in imbalanced, structurally43

similar biomedical domains.44

3 Methodology45

3.1 Dataset Curation Prcoess from µ-Bench46

µ-Bench [5] collected licensed biomedical microscopy data, reviewed by pathologists for quality. It47

evaluates VLMs via VQA across cardiovascular, gastrointestinal, hematopathology, and neuropathol-48

ogy. Each image yields 5 coarse-grained (domain, modality, stain, subdomain, submodality) and 149

fine-grained (pathology classification) questions. Each image–question pair was treated as a training50

instance. Data was split 70/15/15 using stratified sampling. Dataset sizes: cardiovascular 2,400;51

gastrointestinal 24,844; hematopathology 15,600; neuropathology 7,746. For a detailed breakdown52

of data refer to Appendix A.53

3.2 Fine-Tuning via LoRA54

We fine-tuned BioMedCLIP [12] with LoRA [6], a parameter-efficient fine-tuning method. In LoRA,55

a pre-trained weight matrix W ∈ Rd×k is updated by adding a low-rank perturbation ∆W = BA,56

where A ∈ Rr×k and B ∈ Rd×r are trainable matrices, and the rank r is chosen to be much smaller57

than min(d, k). LoRA adapters were placed on all layers, reducing the parameters used in training58

by 99.47%, as the base weights remain frozen, and only small adapter matrices are updated, enabling59

single-GPU training. For a detailed description of LoRA refer to Appendix D.60

3.3 Model Souping Strategies61

We merged LoRA adapters instead of full weights. Best organ checkpoints were selected by validation62

accuracy. Two families were explored:63

Organ–Base Hybrids (WiSE-FT) [13]: Interpolating BioMedCLIP with one organ adapter using64

scale τ .65

Multi-Organ Soups:We merged four organ adapters–Cardiovascular, Gastrointestinal, Hematopathol-66

ogy, and Neuropathology, using five strategies - (1) Linear Average [13], (2) SLERP [14], (3) Task67

Arithmetic [15], (4) TIES [15], (5) WiSE-FT after averaging68

These methods span uniform averaging, geometry-aware interpolation, sparsity-based merging, and69

generalist–specialist balancing. Full derivations appear in Appendix C.70

4 Results71

4.1 Cross Domain Evaluation Results72

Models were fine-tuned on organs fine-, coarse- and combined- tasks and were evaluated against73

the complete dataset of each organ alongside the complete pathology to evaluate cross-domain74

generalization. Combined-task fine-tuning yields a more balanced trade-off, demonstrating sub-75

stantially higher robustness across domains and mitigating over-specialization, offering a promising76
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strategy for more transferable medical foundation models. Based on these results from Figure 5,77

the LoRA-tuned model shows clear gains across all pathology subdomains, achieving substantially78

higher fine-grained, coarse-grained, and combined accuracies compared to the base BioMedCLIP.79

Detailed results exploring cross-domain evaluation can be found in Tables 1, 2, 3 in Appendix F.80

After evaluating the organ-specific models - models fine-tuned on an organs complete dataset - across81

other domains (Appendix F) we provide an objective metric to compare our models. Using the82

evaluation metrics of arithmetic average and harmonic mean (as discussed in Appendix B), these83

were the results of each fine tuned model across each task type. Fine-tuning BioMedCLIP with LoRA84

yields clear improvements within target pathology domains while maintaining robustness across other85

organ-specific tasks, by restricting updates to only the low-rank adapters.86
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Figure 1: Cross-domain evaluation of organ-specific BioMedCLIP fine-tuned models compared to
the baseline model using average (Avg) and harmonic mean (HM) accuracies. A detailed overview
can be found in Table 4 in Appendix F. Accuracy is reported across fine-grained tasks, coarse-grained
tasks, and combined tasks (fine- and coarse- grained tasks). Results are shown for cardiovascular,
gastrointestinal, neuropathology, and hematopathology fine-tuned models, alongside the untuned
base BioMedCLIP baseline.

As shown in Figure 1, almost every organ-specific models outperform the untuned BioMedCLIP87

baseline on fine- and coarse-grained tasks across all domains. The improvements are the most88

pronounced in coarse-grained accuracies, while the fine-grained accuracies of our fine tuned models89

outperform the base BioMedClip. This demonstrates not only improved specialization within90

pathology but also consistent robustness across diverse organ systems, indicating that LoRA provides91

a lightweight mechanism enhancing generalization. Overall, the table demonstrates a consistent trend:92

LoRA systematically boosts performance across all evaluation regimes, underscoring its value for93

domain adaptation in pathology-focused vision-language modeling.94

4.2 Model Souping Results95

Before evaluating soups, we fine-tuned BioMedCLIP with LoRA adapters on each organ dataset96

(Cardiovascular, Gastrointestinal, Hematopathology, Neuropathology). This produced strong organ-97

specialized models, which we then merged into soups for comparison. As shown in Table 5 and98

Figure 2, almost every organ-specific BioMedCLIP hybrid substantially outperforms the untuned99

BioMedCLIP baseline across fine-, coarse-, and combined-pathology tasks. For example, the Gas-100

trointestinal + BioMedCLIP hybrid achieves an average coarse accuracy of 87.9% and combined101

accuracy of 82.1%, far exceeding the baseline BioMedCLIP’s 55.9% coarse and 51.8% combined.102

Hematopathology + BioMedCLIP likewise improves combined accuracy to 69.2%, while Cardiovas-103

cular + BioMedCLIP delivers strong coarse accuracy (85.5%) despite limited training data. These104

results demonstrate that two-way hybridization between the generalist BioMedCLIP model and a105
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single specialized adapter effectively balances broad coverage with targeted discriminative power.106

By contrast, the All-Organ Linear Average soup achieves only 67.3% average combined accuracy,107

trailing the best organ-specific hybrids, reflecting the negative effect of dataset imbalance. This108

degradation highlights the effect of dataset imbalance: high-signal domains such as Gastrointestinal109

(≈4k samples) are diluted when merged with weaker ones such as Cardiovascular (≈400 samples). In110

other words, N -way averaging across structurally similar but uneven domains introduces interference111

without yielding the diversity-driven benefits reported in more heterogeneous benchmarks.112
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Figure 2: Performance of organ-specific BioMedCLIP hybrids (Base + Organ) compared to the base
BioMedCLIP baseline and an all-organ average soup. Accuracy is reported across fine-grained tasks,
coarse-grained tasks, and combined tasks (coarse- and fine-grained tasks) for all organ datasets using
average (Avg) and harmonic mean (HM). Detailed results can be found in Table 5 in Appendix G.

4.3 Multi-Organ Souping Results113

Turning to multi-organ soups in Figure 3, we observe that more sophisticated interpolation methods114

yield modest but consistent gains over uniform averaging.115

Weight Interpolation Performance Across Avg and HM for Specifc Tasks Types
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Figure 3: Performance of multi-organ models weight interpolated through methods such as the linear
average soup, slerp soup, task arithmetic soup, TIES top 25, WiSE-FT avg, and WiSE-FT slerp.
Accuracy is reported using average and harmonic mean across fine-grained tasks, coarse-grained
tasks, and combined tasks (coarse- and fine-grained tasks).
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SLERP achieves the strongest results, with 91.2% coarse accuracy and 84.8% combined accuracy,116

outperforming Linear Average by nearly 17 percentage points on coarse and 18 points on combined117

tasks. WiSE-FT, when applied post-SLERP, performs comparably, confirming that angular-aware118

interpolation avoids some of the dilution effects of uniform averaging. By contrast, Task Arithmetic119

remains weak even at high β, achieving only 55.9% combined accuracy, while TIES collapses almost120

entirely, falling to 32.6% combined accuracy due to excessive trimming of shared biomedical features.121

These outcomes reinforce that organ-specific adapters are not highly divergent: their embeddings122

cluster in overlapping representational subspaces, limiting the utility of divergence-driven strategies.123

Methods such as Task Arithmetic and TIES fail in this setting - the high structural similarity across124

organ pathology images leaves little complementary signal to exploit, undermining approaches125

designed to leverage divergence. In aggregate, results establish two families of behavior: (1) hybrid126

soups (Base + Organ) consistently outperform both baselines and multi-way merges, showing that127

combining a generalist with a single specialist yields the best tradeoff between generalization and128

fine-grained sensitivity; and (2) multi-organ soups provide limited improvements beyond Linear129

Average, with SLERP offering the only robust gains.130

4.3.1 Comparative Analysis of Various Hyperparameters and Souping Strategies131

Task Arithmetic degraded accuracy at low β (0.1–0.3) and only partially recovered at higher132

values (0.7–0.9), never matching SLERP or Linear Average. Lower thresholds favored TIES133

(keep_top_p=0.25) for stability; high thresholds (keep_top_p=0.9) briefly improved fine-grained134

accuracy but collapsed coarse tasks. WiSE-FT was stable across τ ∈ {0.3, 0.5, 0.7}, with stronger135

effects in two-way merges than multi-way soups. These sensitivities underscore that biomedical136

souping is less about extracting complementary expertise and more about carefully preserving shared137

structure. Small hyperparameter changes can suppress critical biological signals or exaggerate dataset138

imbalance, particularly when one domain dominates (e.g., Gastrointestinal). SLERP consistently out-139

performed Linear Average by preserving angular geometry, while WiSE-FT contributed little beyond140

averaging in multi-way settings. Collectively, these results confirm that hybridization (generalist +141

specialist) offers the most stable tradeoff between fine-grained accuracy and broad generalization.142

Multi-organ soups remain fragile under biomedical constraints, and future work should probe adapter143

geometry and gradient conflicts directly to better explain the collapse of divergence-driven strategies.144

5 Limitations and Future Work145

Our results reveal broader limitations and opportunities for extension. Potential negative impacts146

include biased performance across different demographic groups. While organ-specific hybrids147

consistently outperformed the baseline, N -way soups struggled to preserve these gains. In particular,148

dataset imbalance allowed large domains to dominate smaller ones, leading hybrids like Gastrointesti-149

nal + BioMedCLIP to outperform multi-organ merges. Future work should address these constraints150

through adaptive weighting (e.g., Fisher-weighted or dynamically scaled soups) and progressive merg-151

ing pipelines that preserve both specialist and generalist strengths. Moreover, real-world pathology152

datasets such as TCGA, CAMELYON, and PANDA are noisier than µ-Bench, making them critical153

testbeds to evaluate robustness under realistic conditions. Although divergence-driven strategies such154

as Task Arithmetic and TIES struggled in our setting due to the high structural similarity across organ155

pathology images, they may prove more successful in these noisier, less structurally aligned datasets.156

Our current experiments focus on a one foundation model (BioMedCLIP), but extending evaluation157

to other biomedical VLMs like PLIP or QuiltCLIP [5], and even general-purpose VLMs, would better158

establish the framework’s generalizability. Prior work has shown that biomedical VLMs sometimes159

underperform compared to generalist models [5]; testing whether our strategies narrow or reverse this160

gap would provide stronger evidence for scalability and broader applicability.161

6 Conclusion162

We introduced a two-stage framework for biomedical VLMs using LoRA adapters and adapter-level163

soups, achieving consistent gains over BioMedCLIP on µ-Bench, with SLERP soups showing the164

strongest generalization. This is the first systematic study of LoRA-based merging in biomedical165

microscopy, demonstrating adapter soups as a lightweight alternative to full retraining and a general166

recipe for balancing specialization and transferability in domain-adapted foundation models.167
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7 Appendix168

A Data Processing169

To facilitate supervised VQA training, each question–image pair was treated as an independent170

training instance. Each instance was annotated with its corresponding task type (coarse or fine) and171

subsequently partitioned to support evaluation of both task-specific and overall performance. The172

datasets were divided into training, validation, and test splits in a 70/15/15 ratio using stratified173

sampling by question type to maintain representation across all categories.174

All data used in this project was taken from the benchmark created in the µ-Bench dataset [5].The175

study used only pre-existing, publicly available biomedical microscopy datasets from repositories176

such as Zenodo, Dataverse, Dryad, and BBBC. All data were shared under permissive licenses177

(CC-BY-SA-4.0) that allow derivatives and redistribution. The µ-Bench dataset comprises 2,400178

cardiovascular samples (2,000 coarse-grained, 400 fine-grained), 24,844 gastrointestinal samples179

(20,730 coarse-grained, 4,114 fine-grained), 15,600 hematopathology samples (13,000 coarse-grained,180

2,600 fine-grained), and 7,746 neuropathology samples (6,455 coarse-grained, 1,291 fine-grained).181

The coarse-grained perception tasks tests basic image properties which are visually distinct and182

relatively straightforward even for non-biologists, but are important to assess whether VLMs have183

intuitive knowledge of biology and microscopy. Fine-grained perception include the identification184

of cell type, and disease classifications that are visually distinct and important for reasoning about185

biological images. Solving fine-grained perception relies on finer-grained visual features and is more186

challenging for humans [5].187

B Evaluation Metrics188

To summarize the performance of the model in multiple organ-specific tasks, we report both the arith-189

metic average and the harmonic mean (HM) of precision. The average provides a straightforward190

measure of overall performance, while the harmonic mean emphasizes consistent performance across191

all tasks, penalizing models that perform poorly in any single domain. Together, these metrics give a192

balanced view of both overall accuracy and robustness across domains.193

1. Arithmetic Average:194

Avg Accuracy =
1

n

n∑
i=1

Ai

2. Harmonic Mean (HM):195

HM Accuracy =
n∑n

i=1
1
Ai

C Additional Details on Model Souping Strategies196

For completeness, we provide the full mathematical formulations of the five model souping strategies197

described in Section 3.3. These details are omitted from the main text for brevity.198

C.1 Linear Average Soup199

The simplest approach averages parameters across organ adapters:200

θsoup =

n∑
i=1

wiθi,
∑
i

wi = 1,

where θi are the LoRA parameters for each organ. In our experiments, equal weights (wi = 0.25)201

were used for the four organs, [13].202
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C.2 SLERP Soup203

Spherical linear interpolation (SLERP) interpolates in angular space rather than Euclidean space,204

[14]. For two adapters θa, θb:205

SLERP(θa, θb;α) =
sin((1− α)θ)

sin θ
θa +

sin(αθ)

sin θ
θb.

Pairwise reduction was applied to extend SLERP across all four organ adapters.206

C.3 Task Arithmetic Soup207

Following vector arithmetic in representation space, [15], we first center each adapter’s deltas:208

θ′i = θi − θ, θ = 1
n

n∑
i=1

θi,

then recombine:209

θsoup =
∑
i

wiθ
′
i + βθ,

where β is a shared-knowledge coefficient (default β = 0.5).210

C.4 TIES Merging211

TIES (Trim–Intersect–Expand–Sign), [15] resolves conflicts between adapters by enforcing sparsity212

and sign consistency:213

• Trim: keep only the top-p fraction of parameters by magnitude per adapter.214

• Intersect: retain entries where all contributing adapters agree in sign.215

• Resolve: in cases of disagreement, select the dominant contributor.216

C.5 WiSE-FT Soup217

WiSE-FT, [13] merges a general base model with a fine-tuned model by interpolation:218

θWiSE = (1− τ)θbase + τθfine,

where τ balances generalization (θbase) and specialization (θfine). For LoRA adapters, we scaled the219

low-rank matrices A,B by
√
τ to ensure that the effective update220

∆W = α
r (
√
τB)(

√
τA)

is correctly scaled.221

D LoRA Architecture222

In LoRA, a pre-trained weight matrix W ∈ Rd×k is updated by adding a low-rank perturbation223

∆W = BA, where A ∈ Rr×k and B ∈ Rd×r are trainable matrices, and the rank r is chosen to be224

much smaller than min(d, k). Here, d and k denote the output and input dimensions of the layer,225

respectively. Notably, in the original method, matrix A is initialized using random values drawn from226

a normal distribution A ∼ N (0, σ2), as indicated in Figure 4. During adaptation, only A and B are227

learned, while the original weight matrix W remains frozen. This drastically reduces the number228

of trainable parameters from d× k (full matrix) to r × (d+ k), and all symbols and initialization229

choices are captured in the schematic illustration. LoRA thus enables efficient adaptation to new230

tasks while retaining the pre-trained model’s representations and knowledge.231
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Figure 4: Redrawn from (author?) [6]. Illustration of the LoRA architecture.

E LoRA Fine-tuning Configuration232

We fine-tuned BioMedCLIP (microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224)233

using Low-Rank Adaptation (LoRA). The base model parameters were frozen, and LoRA adapters234

were applied to the text encoder’s attention and feed-forward layers, as well as embedding projections.235

Below we summarize the key hyperparameters:236

LoRA configuration: LoRA ranks were set to r = 16 for the text encoder and alignment modules,237

and r = 32 for the vision encoder. Corresponding scaling factors were α = 32 (text/alignment) and238

α = 64 (vision). A dropout rate of 0.1 was applied, with no bias terms trained.239

Training setup: Models were trained with AdamW (learning rate 1× 10−4, weight decay 0.01)240

for 10 epochs, using cosine learning rate scheduling with 100 warmup steps. Batch size was 32241

with gradient accumulation of 1. Mixed-precision training (AMP) was enabled. Early stopping was242

applied with patience of 3 epochs and ∆ = 0.001.243

Data: Training used the µ-Bench datasets across cardiovascular, neuropathology, hematopathology,244

and gastrointestinal domains, with splits of 0.1, 0.25, 0.5, and 0.75 for ablation. Each experiment245

tracked coarse-, fine-, and combined-question VQA tasks. A random seed of 42 was used246

Evaluation: Performance was assessed with accuracy and confidence metrics, both overall and per247

question type. Predictions were saved for downstream analysis, using a confidence threshold of 0.5.248

Hardware and Compute: All experiments were run on NVIDIA GPU RTX 6000 Ada with CUDA249

support on Runpod as the cloud provider. A network volume of 125 GB was used for memory.Fine-250

tuning a single organ-specific LoRA adapter took approximately 5-20 min depending on selected251

datasets size. Adapter soup merging required roughly 1-5 minutes per soup. Across all experiments,252

the total compute is estimated at 20 GPU-hours.253

F Detailed Results from Cross Domain Analysis of LoRA Fine-Tuning254

Cross-domain evaluation highlights the trade-offs between specialization and generalization in organ-255

specific fine-tuning. Each model fine-tuned on fine-grained tasks achieves its highest accuracy within256

its own domain, but performance degrades when transferred to other domains, sometimes matching257

or underperforming the Base BioMedCLIP model, which maintains more consistent cross-domain258

accuracy (Table 1 in Appendix F). This drop illustrates the limited robustness of organ-specialized259

models. At the coarse- and combined-task levels (Tables 2 and 3 in Appendix F), accuracies are higher260

overall, particularly within-domain. Combined-task fine-tuning yields a more balanced trade-off,261

demonstrating substantially higher robustness across domains and mitigating over-specialization,262
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offering a promising strategy for more transferable medical foundation models. Based on these results263

from Figure 5, the LoRA-tuned model shows clear gains across all pathology subdomains, achieving264

substantially higher fine-grained, coarse-grained, and combined accuracies compared to the base265

BioMedCLIP.266

Models Fine-Tuned on Organ Data and BioMedClip
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Figure 5: Cross-domain evaluation of organ-specific fine-tuned models compared to the BioMedCLIP
baseline. Models were fine-tuned across an organs dataset and evaluated across the complete
pathology dataset and the results are shown above. Accuracy is reported across fine-grained tasks,
coarse-grained tasks, and combined tasks (fine- and coarse- grained tasks).

267

268

Tables 4–6 report fine-grained, coarse-grained, and combined-task accuracies (±95% CI) for organ-269

specific models and the baseline BioMedCLIP. Each table corresponds to the task granularity used270

during fine-tuning (fine, coarse, or combined). Rows indicate the organ on which a model was271

fine-tuned, while columns show evaluation performance across all organ-specific datasets. The272

final row in each table reports the performance of the unmodified BioMedCLIP model, serving as a273

baseline for comparison.274

As expected, models achieve their highest accuracy within their training domain, with substantial275

improvements over BioMedCLIP. However, performance drops markedly when transferred across276

domains, in some cases approaching or falling below baseline. This highlights the trade-off between277

specialization and generalization: while organ-specific fine-tuning enhances in-domain sensitivity, it278

limits robustness across tasks.279

Table 1: Fine-grained accuracy ± CI for each organ-specific task and complete pathology across
models fine tuned on combined tasks.

Model Cardiovascular GastroIntestinal Neuropathology Hematopathology Complete Pathology

Cardiovascular 76.67% (60.05–81.04) 44.17% (40.03–47.84) 40.72% (33.26–46.96) 29.23% (24.65–33.64) 39.97% (37.18–42.58)
GastroIntestinal 46.67% (31.81–56.29) 95.31% (92.75–96.13) 39.69% (32.30–45.94) 25.38% (21.07–29.68) 63.20% (60.31–65.63)
Neuropathology 50.00% (34.73–59.26) 51.13% (46.88–54.74) 74.74% (66.75–78.89) 22.05% (18.00–26.21) 47.98% (45.08–50.59)
Hematopathology 43.33% (28.94–53.26) 35.76% (31.86–39.40) 34.02% (27.06–40.27) 96.15% (92.82–96.72) 55.35% (52.43–57.91)
Base BioMedCLIP 38.33% (24.74–48.63) 52.27% (48.00–55.85) 35.05% (28.00–41.31) 23.08% (18.94–27.28) 37.51% (34.84–40.18)

Table 2: Coarse-grained accuracy ± CI for each organ-specific task and complete pathology across
models fine tuned on combined tasks.

Model Cardiovascular GastroIntestinal Neuropathology Hematopathology Complete Pathology

Cardiovascular 100.00% (98.74–100.00) 74.73% (73.08–76.13) 93.29% (91.17–94.33) 81.23% (79.28–82.74) 80.91% (79.87–81.81)
GastroIntestinal 96.00% (91.93–96.49) 100.00% (99.88–100.00) 82.25% (79.39–84.20) 70.56% (68.36–72.41) 87.55% (86.66–88.29)
Neuropathology 63.33% (56.95–67.79) 61.41% (59.62–63.03) 100.00% (99.61–100.00) 64.97% (62.70–66.93) 68.96% (67.77–70.05)
Hematopathology 74.00% (67.82–77.71) 60.64% (58.84–62.27) 53.46% (50.10–56.37) 100.00% (99.80–100.00) 72.42% (71.27–73.47)
Base BioMedCLIP 66.33% (59.97–70.61) 47.01% (45.20–48.71) 70.38% (67.15–72.89) 40.05% (37.82–42.16) 49.48% (48.25–50.71)
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Table 3: Combined accuracy ± CI for each organ-specific task and complete pathology across models
fine tuned on combined tasks.

Model Cardiovascular GastroIntestinal Neuropathology Hematopathology Complete Pathology

Cardiovascular 96.11% (92.57–96.66) 69.66% (68.09–71.05) 84.52% (82.05–86.21) 72.56% (70.60–74.21) 74.11% (73.07–75.04)
GastroIntestinal 87.78% (83.07–89.85) 99.22% (98.78–99.36) 75.15% (72.34–77.30) 63.03% (60.96–64.86) 83.50% (82.61–84.28)
Neuropathology 50.00% (34.73–59.26) 59.71% (58.07–61.21) 95.79% (94.16–96.48) 57.82% (55.71–59.71) 65.48% (64.37–66.50)
Hematopathology 68.89% (63.20–72.73) 56.52% (54.86–58.04) 50.21% (47.18–52.92) 99.36% (98.78–99.45) 69.59% (68.51–70.58)
Base BioMedCLIP 61.67% (55.90–65.89) 47.88% (46.23–49.44) 64.49% (61.48–66.97) 37.22% (35.23–39.14) 47.49% (46.34–48.59)

Table 4: Average (Avg) and harmonic mean (HM) accuracies for organ-specific models - models fine-
tuned on an organs complete dataset - evaluated across different task types of all organs. The average
provides a straightforward measure of overall performance, while the harmonic mean emphasizes
consistent performance across all tasks

Model Avg Fine (%) HM Fine (%) Avg Coarse (%) HM Coarse (%) Avg Combined (%) HM Combined (%)

Cardiovascular 47.20 44.73 87.31 86.02 80.21 78.11
GastroIntestinal 51.76 42.80 87.20 85.97 81.30 79.24
Neuropathology 49.48 44.09 72.43 71.12 65.33 63.73
Hematopathology 52.82 46.26 72.53 71.54 68.75 65.94
Base BioMedCLIP 37.68 37.16 55.94 54.73 52.82 50.69

G Detailed Model Souping Results280

Table 5: Average (Avg) and harmonic mean (HM) accuracies across fine-, coarse-, and combined-
pathology tasks for organ-specific BioMedCLIP (BMC) hybrids (Base + Organ), the all-organ average
soup, and the baseline BioMedCLIP model.

Model Avg Fine (%) HM Fine (%) Avg Coarse (%) HM Coarse (%) Avg Combined (%) HM Combined (%)

Cardiovascular + BMC 44.83 40.74 85.52 84.47 78.74 77.60
GastroIntestinal + BMC 53.34 44.35 87.89 86.72 82.14 80.43
Neuropathology + BMC 48.19 42.23 71.95 69.72 67.99 65.85
Hematopathology + BMC 52.91 46.55 72.48 69.56 69.22 65.93
All Organ Average Soup 41.50 38.28 72.46 71.66 67.30 66.59
Base BioMedCLIP 37.68 37.16 55.94 54.73 52.82 50.69

Table 6: Average (Avg) and harmonic mean (HM) accuracies across fine-, coarse-, and combined-
pathology tasks for different weight interpolation techniques as described in Section 3.3

Model Avg Fine (%) HM Fine (%) Avg Coarse (%) HM Coarse (%) Avg Combined (%) HM Combined (%)

Linear Average Soup 41.50 38.28 72.46 71.66 67.30 66.59
SLERP Soup 53.95 49.46 91.20 90.92 84.99 84.63
Task Arithmetic Soup 37.55 34.99 59.66 57.89 55.97 54.49
TIES Top 25 33.16 30.84 32.27 30.95 32.60 31.15
WiSE-FT Avg 40.51 37.39 71.28 70.49 66.15 65.47
WiSE-FT SLERP 51.75 47.24 90.50 90.25 84.04 83.75

H Results of Training with Varied Percentages of the Organ - Specific Dataset281

on the Remaining Organ Domain-Specific Models282

We created multiple training subsets (10%, 25%, 50%, 70% of available data) to enable ablation283

studies on data efficiency and model scalability. Data from each organ category was processed284

independently to support domain-specific analysis while maintaining consistent evaluation protocols.285
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Table 7: Fine-grained, coarse-grained & combined dataset-tuned hematopathology model perception
accuracy for the hematopathology dataset, measured under varying training dataset proportions from
10% to 70%.

Model & Data Dataset Percentage (%) Accuracy ± CI (%)
Coarse Grained Tuned Model 0.10 100.00% (99.80, 100.00)
x Coarse-grained data 0.25 100.00% (99.80, 100.00)

0.50 100.00% (99.80, 100.00)
0.70 100.00% (99.80, 100.00)

Fine Grained Tuned Model 0.10 71.28% (65.91, 74.85)
x Fine-grained data 0.25 86.67% (82.09, 88.84)

0.50 93.08% (89.21, 94.29)
0.70 94.62% (90.99, 95.53)

Combined Dataset Tuned Model 0.10 97.31% (96.41, 97.73)
x Combined data 0.25 98.85% (98.16, 99.04)

0.50 99.53% (98.99, 99.57)
0.70 99.36% (98.78, 99.45)

Table 8: Fine-grained, coarse-grained & combined dataset-tuned neuropathology model perception
accuracy for the neuropathology dataset, measured under varying training dataset proportions from
10% to 70%.

Model & Data Dataset Percentage (%) Accuracy ± CI (%)
Coarse Grained Tuned Model 0.10 100.00% (99.61, 100.00)
x Coarse-grained data 0.25 100.00% (99.61, 100.00)

0.50 100.00% (99.61, 100.00)
0.70 100.00% (99.61, 100.00)

Fine Grained Tuned Model 0.10 60.82% (52.63, 66.24)
x Fine-grained data 0.25 67.53% (59.35, 72.42)

0.50 70.10% (61.97, 74.75)
0.70 74.74% (66.75, 78.89)

Combined Dataset Tuned Model 0.10 93.55% (91.68, 94.52)
x Combined data 0.25 94.75% (93.01, 95.58)

0.50 95.79% (94.16, 96.48)
0.70 95.79% (94.16, 96.48)

Table 9: Fine-grained, coarse-grained & combined dataset-tuned model perception accuracy for the
Cardiovascular Dataset, measured under varying training data proportions from 10% to 70%

Model & Data Dataset Percentage (%) Accuracy ± CI (%)
Coarse Grained Tuned Model 0.10 100.00% (98.74, 100.00)
x Coarse-grained data 0.25 100.00% (98.74, 100.00)

0.50 100.00% (98.74, 100.00)
0.70 100.00% (98.74, 100.00)

Fine Grained Tuned Model 0.10 58.33% (42.25, 66.46)
x Fine-grained data 0.25 68.33% (51.72, 74.65)

0.50 75.00% (58.35, 79.80)
0.70 66.67% (50.11, 73.32)

Combined Dataset Tuned Model 0.10 91.67% (87.39, 93.14)
Combined data 0.25 95.28% (91.57, 96.03)

0.50 94.44% (90.58, 95.38)
0.70 96.11% (92.57, 96.66)

This study shows that training with additional data yields only marginal gains with significant286

improvements achieved with only 10%of the available data. This suggests that our models exhibit287

strong data efficiency, maintaining high performance with limited data which is a key advantage in288

biomedical domains where labeled samples are scarce and costly.289
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Table 10: Fine-grained, coarse-grained & combined dataset-tuned gastrointestinal model perception
accuracy for the gastrointestinal dataset, measured under varying training dataset proportions from
10% to 70%.

Model & Data Dataset Percentage (%) Accuracy ± CI (%)
Coarse Grained Tuned Model 0.10 99.97% (99.88, 100.00)
x Coarse-grained data 0.25 100.00% (99.88, 100.00)

0.50 100.00% (99.88, 100.00)
0.70 100.00% (99.88, 100.00)

Fine Grained Tuned Model 0.10 88.19% (84.86, 89.96)
x Fine-grained data 0.25 92.07% (89.10, 93.38)

0.50 93.69% (90.91, 94.77)
0.70 95.15% (92.57, 95.99)

Combined Dataset Tuned Model 0.10 98.47% (97.92, 98.72)
x Combined data 0.25 98.98% (98.50, 99.15)

0.50 99.06% (98.60, 99.22)
0.70 99.22% (98.78, 99.36)

Individual Performance of the Models on the Different Datasets: Overall, both coarse-grained290

dataset tuned and combined dataset tuned models performed best with coarse-grained data, seconded291

by combined data. They both performed the least on the fine grained data.292

The fine-grained dataset tuned model performed the best on the fine-grained dataset, followed by the293

coarse grained data and the least on the combined data.294

295

Model Performance Across Data Ratios: Across all combined, fine-grained and coarse-grained296

data sets, the coarse-grained data set tuned and the models tuned to the combined dataset, the highest297

precision was achieved while training on 70% of the entire data set, while the fine-grained dataset298

tuned model achieved its highest accuracy at 50% of the entire dataset.299

300

Highest and Lowest Model Accuracy: The combined dataset tuned model had the highest accuracy301

across all the kinds of dataset with the fine-grained dataset tuned model recorded the least accuracy.302

303

I Detailed Results from Model Souping304

To provide a more granular view of performance, Appendix E reports detailed results from both305

organ-specific hybrids (Base + Organ) and multi-organ soups across cardiovascular, gastrointestinal,306

neuropathology, hematopathology, and complete pathology settings.307

I.1 Organ-Specific Hybrids (Base + Organ) and Baseline308

For organ-specific hybrids, BioMedCLIP was interpolated with a single organ adapter and compared309

against the baseline BioMedCLIP and an all-organ average soup. The tables report fine-, coarse-, and310

combined-pathology accuracies with 95% confidence intervals, highlighting organ-specific gains and311

the variability introduced by dataset imbalance.312

Table 11: Cardiovascular results - fine, coarse, and combined-pathology accuracy (± CI) for BioMed-
CLIP hybrids with cardiovascular tuning, compared against all-organ average soup and the base
BioMedCLIP model.

Model Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Cardiovascular + BioMedCLIP 73.33% (60.99%, 82.87%) 100.00% (98.74%, 100.00%) 95.56% (92.90%, 97.25%)
Neuropathology + BioMedCLIP 48.33% (36.18%, 60.69%) 63.33% (57.74%, 68.59%) 60.83% (55.70%, 65.74%)
GastroIntestinal + BioMedCLIP 45.00% (33.09%, 57.51%) 95.67% (92.73%, 97.45%) 87.22% (83.38%, 90.41%)
Hematopathology + BioMedCLIP 40.00% (28.57%, 52.63%) 73.33% (68.02%, 78.02%) 67.78% (62.78%, 72.40%)
All Organ Avg Soup 50.00% (37.34%, 62.65%) 84.33% (80.28%, 88.45%) 78.61% (73.26%, 82.81%)
Base BioMedCLIP 38.33% (26.03%, 50.64%) 66.33% (60.99%, 71.68%) 61.67% (55.90%, 65.89%)
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Table 12: Gastrointestinal results - fine-, coarse-, and combined-pathology accuracy (± CI) for
BioMedCLIP hybrids with gastrointestinal tuning, compared against all-organ average soup and the
base BioMedCLIP model.

Model Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Cardiovascular + BioMedCLIP 44.17% (40.03%, 47.84%) 73.92% (72.35%, 75.44%) 68.99% (67.49%, 70.46%)
Neuropathology + BioMedCLIP 51.31% (48.65%, 56.50%) 60.00% (58.48%, 61.82%) 59.82% (58.43%, 61.62%)
GastroIntestinal + BioMedCLIP 93.85% (91.67%, 95.49%) 100.00% (99.88%, 100.00%) 98.98% (98.60%, 99.26%)
Hematopathology + BioMedCLIP 41.42% (37.60%, 45.35%) 61.25% (59.53%, 62.95%) 57.97% (56.37%, 59.54%)
All Organ Avg Soup 55.99% (51.70%, 59.51%) 65.05% (63.27%, 66.62%) 63.55% (61.92%, 65.01%)
Base BioMedCLIP 52.27% (48.23%, 56.20%) 47.01% (45.23%, 48.76%) 49.44% (46.23%, 52.50%)

Table 13: Neuropathology results - fine-, coarse-, and combined-pathology accuracy (± CI) for
BioMedCLIP hybrids with neuropathology tuning, compared against all-organ average soup and the
base BioMedCLIP model.

Model Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Cardiovascular + BioMedCLIP 39.18% (32.58%, 46.19%) 93.29% (91.54%, 94.70%) 84.26% (82.06%, 86.24%)
Neuropathology + BioMedCLIP 69.07% (62.25%, 75.15%) 100.00% (99.61%, 100.00%) 94.84% (93.42%, 95.97%)
GastroIntestinal + BioMedCLIP 39.69% (33.07%, 46.71%) 84.00% (81.56%, 86.18%) 76.61% (74.09%, 78.95%)
Hematopathology + BioMedCLIP 33.51% (27.24%, 40.41%) 55.01% (51.86%, 58.11%) 51.42% (48.55%, 54.28%)
All Organ Avg Soup 36.60% (29.82%, 43.38%) 79.05% (76.49%, 81.61%) 71.97% (69.08%, 74.24%)
Base BioMedCLIP 35.05% (28.34%, 41.77%) 70.38% (67.51%, 73.26%) 64.49% (61.48%, 66.97%)

Table 14: Hematopathology results - fine-, coarse-, and combined-pathology accuracy (± CI) for
BioMedCLIP hybrids with hematopathology tuning, compared against all-organ average soup and
the base BioMedCLIP model.

Model Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Cardiovascular + BioMedCLIP 28.21% (23.97%, 32.87%) 80.46% (78.64%, 82.16%) 71.75% (69.89%, 73.54%)
Neuropathology + BioMedCLIP 62.25% (56.71%, 67.92%) 85.22% (83.71%, 86.65%) 80.70% (78.86%, 82.44%)
GastroIntestinal + BioMedCLIP 25.90% (21.80%, 30.47%) 71.69% (69.65%, 73.65%) 64.06% (62.09%, 65.98%)
Hematopathology + BioMedCLIP 93.08% (90.11%, 95.20%) 100.00% (99.80%, 100.00%) 98.85% (98.33%, 99.21%)
All Organ Avg Soup 24.62% (20.36%, 28.88%) 65.69% (63.43%, 67.64%) 58.85% (56.74%, 60.73%)
Base BioMedCLIP 23.08% (18.90%, 27.26%) 40.05% (37.87%, 42.26%) 37.22% (35.23%, 39.14%)

Table 15: Complete pathology results - fine-, coarse-, and combined-pathology accuracy (± CI) across
all four organ domains, comparing organ-specific BioMedCLIP hybrids, the all-organ average soup,
and the baseline BioMedCLIP model.

Model Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Cardiovascular + BioMedCLIP 39.25% (36.60%, 41.98%) 79.91% (78.91%, 80.88%) 73.16% (72.15%, 74.14%)
Neuropathology + BioMedCLIP 47.90% (45.15%, 50.66%) 69.02% (67.86%, 70.14%) 65.50% (64.43%, 66.56%)
GastroIntestinal + BioMedCLIP 62.25% (59.54%, 64.89%) 88.10% (87.28%, 88.88%) 83.81% (82.96%, 84.62%)
Hematopathology + BioMedCLIP 56.54% (53.79%, 59.25%) 72.79% (71.68%, 73.87%) 70.09% (69.05%, 71.11%)
All Organ Avg Soup 40.29% (37.49%, 42.90%) 68.16% (67.01%, 69.30%) 63.53% (62.40%, 64.57%)
Base BioMedCLIP 37.51% (34.84%, 40.18%) 49.48% (48.25%, 50.71%) 47.49% (46.34%, 48.59%)

I.2 Multi-Organ Soup Accuracy313

For multi-organ soups, four organ adapters (Cardiovascular, Gastrointestinal, Neuropathology,314

Hematopathology) were merged using strategies such as Linear Average, SLERP, Task Arithmetic,315

TIES, and WiSE-FT. The tables summarize fine-, coarse-, and combined-pathology accuracies with316

95% confidence intervals, providing a detailed view of how merging strategies influence cross-organ317

generalization.318
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Table 16: Fine-, coarse-, and combined-pathology accuracy (± CI) when evaluated on the cardiovas-
cular dataset across all multi-organ soup strategies: Linear Average, SLERP, Task Arithmetic, TIES,
WiSE-FT (Avg), and WiSE-FT (SLERP).

Model Soup Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Linear Average Soup 50.00% (37.34%, 62.65%) 87.31% (80.22%, 88.45%) 78.61% (73.26%, 81.71%)
SLERP Soup 61.67% (45.45%, 86.42%) 99.00% (98.84%, 99.24%) 92.78% (88.65%, 94.05%)
Task Arithmetic Soup β=0.5 38.33% (24.74%, 48.63%) 66.67% (57.49%, 68.63%) 64.44% (58.18%, 68.53%)
TIES Top 25 50.00% (34.73%, 59.28%) 42.33% (37.49%, 47.45%) 42.11% (38.63%, 43.21%)
WiSE-FT Avg 73.33% (57.89%, 82.63%) 100.00% (99.61%, 100.00%) 92.22% (88.09%, 93.71%)
WiSE-FT SLERP 58.33% (42.25%, 66.48%) 98.67% (98.24%, 99.00%) 91.49% (87.70%, 93.37%)

Table 17: Fine-, coarse-, and combined-pathology accuracy (± CI) when evaluated on the gastroin-
testinal dataset across all multi-organ soup strategies: Linear Average, SLERP, Task Arithmetic,
TIES, WiSE-FT (Avg), and WiSE-FT (SLERP).

Model Soup Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Linear Average Soup 55.99% (51.70%, 59.51%) 65.05% (63.27%, 66.62%) 63.55% (61.92%, 65.01%)
SLERP Soup 65.05% (59.51%, 68.93%) 90.80% (89.63%, 91.67%) 88.44% (87.28%, 89.33%)
Task Arithmetic Soup β=0.5 52.67% (51.05%, 54.35%) 52.71% (50.45%, 54.59%) 50.35% (48.12%, 52.41%)
TIES Top 25 28.24% (20.48%, 29.26%) 32.67% (29.25%, 31.43%) 32.21% (30.59%, 32.59%)
WiSE-FT Avg 65.59% (61.28%, 68.91%) 82.05% (80.94%, 83.16%) 80.84% (80.28%, 81.23%)
WiSE-FT SLERP 74.44% (70.30%, 77.28%) 88.40% (85.17%, 89.73%) 87.47% (83.74%, 89.33%)

Table 18: Fine-, coarse-, and combined-pathology accuracy (± CI) when evaluated on the neuropathol-
ogy dataset across all multi-organ soup strategies: Linear Average, SLERP, Task Arithmetic, TIES,
WiSE-FT (Avg), and WiSE-FT (SLERP).

Model Soup Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Linear Average Soup 36.60% (29.82%, 43.38%) 79.05% (76.49%, 81.61%) 71.97% (69.08%, 74.24%)
SLERP Soup 49.54% (43.24%, 54.24%) 83.29% (80.47%, 85.17%) 82.28% (79.47%, 83.46%)
Task Arithmetic Soup β=0.5 36.55% (30.58%, 39.75%) 38.47% (35.39%, 39.47%) 37.71% (36.23%, 38.97%)
TIES Top 25 23.29% (20.58%, 25.67%) 26.73% (25.67%, 28.57%) 24.62% (23.67%, 25.04%)
WiSE-FT Avg 52.03% (48.11%, 54.99%) 81.31% (79.03%, 83.26%) 80.05% (78.34%, 81.44%)
WiSE-FT SLERP 74.44% (70.39%, 77.03%) 85.94% (81.83%, 89.34%) 84.33% (81.67%, 85.95%)

Table 19: Fine-, coarse-, and combined-pathology accuracy (± CI) when evaluated on the
hematopathology dataset across all multi-organ soup strategies: Linear Average, SLERP, Task
Arithmetic, TIES, WiSE-FT (Avg), and WiSE-FT (SLERP).

Model Soup Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Linear Average Soup 24.62% (20.36%, 28.88%) 65.69% (63.43%, 67.64%) 58.85% (56.74%, 60.73%)
SLERP Soup 50.36% (42.27%, 55.24%) 92.59% (88.27%, 93.57%) 82.65% (80.39%, 83.94%)
Task Arithmetic Soup β=0.5 23.08% (18.93%, 25.67%) 46.82% (43.95%, 48.95%) 42.86% (40.91%, 44.81%)
TIES Top 25 21.54% (17.55%, 25.67%) 25.06% (23.57%, 26.45%) 24.01% (23.14%, 25.34%)
WiSE-FT Avg 40.62% (36.55%, 44.43%) 63.77% (62.47%, 65.02%) 59.92% (58.23%, 61.34%)
WiSE-FT SLERP 52.44% (48.95%, 55.38%) 81.18% (80.13%, 82.35%) 83.25% (81.09%, 84.32%)

Table 20: Fine-, coarse-, and combined-pathology accuracy (± CI) when evaluated on the complete
pathology dataset across all multi-organ soup strategies: Linear Average, SLERP, Task Arithmetic,
TIES, WiSE-FT (Avg), and WiSE-FT (SLERP).

Model Soup Fine Grained ± CI Coarse Grained ± CI Combined ± CI

Linear Average Soup 40.29% (37.49%, 42.90%) 68.16% (67.01%, 69.30%) 63.53% (62.40%, 64.57%)
SLERP Soup 50.70% (45.15%, 53.79%) 90.34% (89.54%, 90.95%) 84.75% (84.20%, 85.50%)
Task Arithmetic Soup β=0.5 38.33% (33.44%, 40.99%) 54.85% (52.73%, 56.79%) 52.19% (50.91%, 53.29%)
TIES Top 25 25.67% (21.36%, 28.99%) 30.61% (28.96%, 31.85%) 30.75% (29.89%, 31.63%)
WiSE-FT Avg 44.23% (40.65%, 46.97%) 65.75% (64.43%, 67.01%) 61.44% (60.12%, 62.24%)
WiSE-FT SLERP 58.58% (51.08%, 61.72%) 89.53% (87.89%, 90.44%) 83.33% (81.52%, 84.43%)

14



References319

[1] S. Azizi, L. Culp, J. Freyberg, B. Mustafa, S. Baur, S. Kornblith, T. Chen, P. MacWilliams,320

S. S. Mahdavi, E. Wulczyn, B. Babenko, M. Wilson, A. Loh, P.-H. C. Chen, Y. Liu, P. Bavishi,321

S. M. McKinney, J. Winkens, A. Guha Roy, Z. Beaver, F. Ryan, J. Krogue, M. Etemadi,322

U. Telang, Y. Liu, L. Peng, G. S. Corrado, D. R. Webster, D. Fleet, G. Hinton, N. Houlsby,323

A. Karthikesalingam, M. Norouzi, and V. Natarajan, “Robust and efficient medical imaging324

with self-supervision,” arXiv preprint arXiv:2205.09723, 2022.325

[2] C. Perone, P. Ballester, R. Barros, and J. Cohen-Adad, “Unsupervised domain adaptation for326

medical imaging segmentation with self-ensembling,” in Proc. Int. Conf. Medical Imaging with327

Deep Learning (MIDL), 2018.328

[3] D. C. Castro, I. Walker, and B. Glocker, “Causality matters in medical imaging,” arXiv preprint329

arXiv:1912.08142, 2019.330

[4] Y. Zhai, S. Tong, X. Li, M. Cai, Q. Qu, Y. J. Lee, and Y. Ma, “Investigating the catastrophic331

forgetting in multimodal large language models,” arXiv preprint arXiv:2309.10313, 2023.332

[5] A. Lozano, J. Nirschl, J. Burgess, S. R. Gupte, Y. Zhang, A. Unell, and S. Yeung-Levy,333

“mu-bench: A vision-language benchmark for microscopy understanding,” arXiv preprint334

arXiv:2407.01791, 2024.335

[6] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “Lora:336

Low-rank adaptation of large language models,” in Proc. Int. Conf. Learn. Representations337

(ICLR), 2022.338

[7] A. Prabhakar, Y. Li, K. Narasimhan, S. Kakade, E. Malach, and S. Jelassi, “Lora soups: Merging339

loras for practical skill composition tasks,” arXiv preprint arXiv:2410.13025, 2024.340

[8] E. Kesim and S. S. Helli, “Multi lora meets vision: Merging multiple adapters to create a341

multi-task model,” arXiv preprint arXiv:2411.14064, 2024.342

[9] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,343

P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervi-344

sion,” in Proc. Int. Conf. Mach. Learn. (ICML). PMLR, 2021, pp. 8748–8763.345

[10] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training for346

unified vision-language understanding and generation,” in Proc. Int. Conf. Mach. Learn. (ICML).347

PMLR, 2022, pp. 12 888–12 900.348

[11] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,349

M. Reynolds et al., “Flamingo: A visual language model for few-shot learning,” Advances in350

Neural Information Processing Systems, vol. 35, pp. 23 716–23 736, 2022.351

[12] S. Zhang, Y. Xu, N. Usuyama, H. Xu, J. Bagga, R. Tinn, S. Preston, R. Rao, M. Wei, N. Valluri352

et al., “Biomedclip: A multimodal biomedical foundation model pretrained from fifteen million353

scientific image-text pairs,” arXiv preprint arXiv:2303.00915, 2023.354

[13] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,355

H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith et al., “Model soups: Averaging weights of356

multiple fine-tuned models improves accuracy without increasing inference time,” in Proc. Int.357

Conf. Mach. Learn. (ICML). PMLR, 2022, pp. 23 965–23 998.358

[14] E. Yang, L. Shen, G. Guo, X. Wang, X. Cao, J. Zhang, and D. Tao, “Model merging in359

llms, mllms, and beyond: Methods, theories, applications and opportunities,” arXiv preprint360

arXiv:2408.07666, 2024.361

[15] A. Kleiman, G. K. Dziugaite, J. Frankle, S. Kakade, and M. Paul, “Soup to go: Mitigating362

forgetting during continual learning with model averaging,” arXiv preprint arXiv:2501.05559,363

2025.364

15



NeurIPS Paper Checklist365
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Question: Do the main claims made in the abstract and introduction accurately reflect the367

paper’s contributions and scope?368

Answer: [Yes]369

Justification: The abstract and introduction frame a focused goal—improving biomedical370

VLM performance in organ-centered microscopy by a concrete, novel combination of371

parameter-efficient LoRA adaptation and adapter-level weight interpolation (Linear Average,372

SLERP, Task Arithmetic, TIES, WiSE-FT). They clearly bound the scope to BioMedCLIP373

and µ-Bench organs, state contributions (a systematic benchmark of five merging families and374

empirical analyses of dataset imbalance/domain similarity), and preview calibrated accuracy375

gains that are later substantiated in the Results section. The text avoids over-generalization,376

explicitly backs claims with evaluation data, and thus matches the methodology and evidence377

presented in the paper.378
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• The answer NA means that the abstract and introduction do not include the claims380

made in the paper.381

• The abstract and/or introduction should clearly state the claims made, including the382

contributions made in the paper and important assumptions and limitations. A No or383

NA answer to this question will not be perceived well by the reviewers.384

• The claims made should match theoretical and experimental results, and reflect how385

much the results can be expected to generalize to other settings.386

• It is fine to include aspirational goals as motivation as long as it is clear that these goals387

are not attained by the paper.388

2. Limitations389

Question: Does the paper discuss the limitations of the work performed by the authors?390

Answer: [Yes]391

Justification: The paper clearly discusses its limitations in the dedicated Limitations and392

Future Work section. It identifies strong assumptions (e.g., high structural similarity across393

organ datasets) and shows how these constrain divergence-based methods like Task Arith-394

metic and TIES. It also reflects on dataset imbalance, where large domains dominate smaller395

ones, and acknowledges the scope of claims by noting that experiments were only run on396

a single foundation model (BioMedCLIP). Furthermore, it addresses robustness concerns397

by proposing evaluation on noisier real-world datasets such as TCGA, CAMELYON, and398

PANDA, and by extending testing to other biomedical and general-purpose VLMs. These399

acknowledgments demonstrate transparency about the work’s boundaries, align with the400

checklist guideline that empirical results depend on implicit assumptions, and provide a401

roadmap for how future studies could address these weaknesses.402

Guidelines:403

• The answer NA means that the paper has no limitation while the answer No means that404

the paper has limitations, but those are not discussed in the paper.405

• The authors are encouraged to create a separate "Limitations" section in their paper.406

• The paper should point out any strong assumptions and how robust the results are to407

violations of these assumptions (e.g., independence assumptions, noiseless settings,408

model well-specification, asymptotic approximations only holding locally). The authors409

should reflect on how these assumptions might be violated in practice and what the410

implications would be.411

• The authors should reflect on the scope of the claims made, e.g., if the approach was412

only tested on a few datasets or with a few runs. In general, empirical results often413

depend on implicit assumptions, which should be articulated.414

• The authors should reflect on the factors that influence the performance of the approach.415

For example, a facial recognition algorithm may perform poorly when image resolution416

is low or images are taken in low lighting. Or a speech-to-text system might not be417
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used reliably to provide closed captions for online lectures because it fails to handle418

technical jargon.419

• The authors should discuss the computational efficiency of the proposed algorithms420

and how they scale with dataset size.421

• If applicable, the authors should discuss possible limitations of their approach to422

address problems of privacy and fairness.423

• While the authors might fear that complete honesty about limitations might be used by424

reviewers as grounds for rejection, a worse outcome might be that reviewers discover425

limitations that aren’t acknowledged in the paper. The authors should use their best426

judgment and recognize that individual actions in favor of transparency play an impor-427

tant role in developing norms that preserve the integrity of the community. Reviewers428

will be specifically instructed to not penalize honesty concerning limitations.429

3. Theory assumptions and proofs430

Question: For each theoretical result, does the paper provide the full set of assumptions and431

a complete (and correct) proof?432

Answer: [NA]433

Justification: The paper does not present formal theorems or proofs. However, the mathemat-434

ical formulations of the interpolation and souping strategies (e.g., Linear Averaging, SLERP,435

Task Arithmetic, TIES, and WiSE-FT) are clearly defined in the methods section, with436

equations and details provided in the appendix to ensure reproducibility and correctness.437

Guidelines:438

• The answer NA means that the paper does not include theoretical results.439

• All the theorems, formulas, and proofs in the paper should be numbered and cross-440

referenced.441

• All assumptions should be clearly stated or referenced in the statement of any theorems.442

• The proofs can either appear in the main paper or the supplemental material, but if443

they appear in the supplemental material, the authors are encouraged to provide a short444

proof sketch to provide intuition.445

• Inversely, any informal proof provided in the core of the paper should be complemented446

by formal proofs provided in appendix or supplemental material.447

• Theorems and Lemmas that the proof relies upon should be properly referenced.448

4. Experimental result reproducibility449

Question: Does the paper fully disclose all the information needed to reproduce the main ex-450

perimental results of the paper to the extent that it affects the main claims and/or conclusions451

of the paper (regardless of whether the code and data are provided or not)?452

Answer: [Yes]453

Justification: The paper fully discloses experimental details needed for reproducibility. All454

datasets are publicly available (µ-Bench), and the fine-tuning process with LoRA adapters455

is described with clear hyperparameters. Model souping strategies (Linear Average, SLERP,456

Task Arithmetic, TIES, and WiSE-FT) are defined mathematically in the methods section457

and appendix. Tables and figures report average and harmonic mean accuracies across fine-,458

coarse-, and combined-pathology tasks, with explicit breakdowns by organ system. Together,459

these details provide sufficient information for independent researchers to replicate the key460

experiments and validate the claims.461

Guidelines:462

• The answer NA means that the paper does not include experiments.463

• If the paper includes experiments, a No answer to this question will not be perceived464

well by the reviewers: Making the paper reproducible is important, regardless of465

whether the code and data are provided or not.466

• If the contribution is a dataset and/or model, the authors should describe the steps taken467

to make their results reproducible or verifiable.468
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• Depending on the contribution, reproducibility can be accomplished in various ways.469

For example, if the contribution is a novel architecture, describing the architecture fully470

might suffice, or if the contribution is a specific model and empirical evaluation, it may471

be necessary to either make it possible for others to replicate the model with the same472

dataset, or provide access to the model. In general. releasing code and data is often473

one good way to accomplish this, but reproducibility can also be provided via detailed474

instructions for how to replicate the results, access to a hosted model (e.g., in the case475

of a large language model), releasing of a model checkpoint, or other means that are476

appropriate to the research performed.477

• While NeurIPS does not require releasing code, the conference does require all submis-478

sions to provide some reasonable avenue for reproducibility, which may depend on the479

nature of the contribution. For example480

(a) If the contribution is primarily a new algorithm, the paper should make it clear how481

to reproduce that algorithm.482

(b) If the contribution is primarily a new model architecture, the paper should describe483

the architecture clearly and fully.484

(c) If the contribution is a new model (e.g., a large language model), then there should485

either be a way to access this model for reproducing the results or a way to reproduce486

the model (e.g., with an open-source dataset or instructions for how to construct487

the dataset).488

(d) We recognize that reproducibility may be tricky in some cases, in which case489

authors are welcome to describe the particular way they provide for reproducibility.490

In the case of closed-source models, it may be that access to the model is limited in491

some way (e.g., to registered users), but it should be possible for other researchers492

to have some path to reproducing or verifying the results.493

5. Open access to data and code494

Question: Does the paper provide open access to the data and code, with sufficient instruc-495

tions to faithfully reproduce the main experimental results, as described in supplemental496

material?497

Answer: [Yes]498

Justification: The experiments use publicly available datasets (µ-Bench) and the BioMed-499

CLIP model. Scripts to reproduce the main experimental results, including training and500

evaluation of LoRA adapters and adapter soups, will be made publicly available on GitHub501

upon publication. Instructions, dependencies, and environment details will be included to502

ensure reproducibility.503

Guidelines:504

• The answer NA means that paper does not include experiments requiring code.505

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/506

public/guides/CodeSubmissionPolicy) for more details.507

• While we encourage the release of code and data, we understand that this might not be508

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not509

including code, unless this is central to the contribution (e.g., for a new open-source510

benchmark).511

• The instructions should contain the exact command and environment needed to run to512

reproduce the results. See the NeurIPS code and data submission guidelines (https:513

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.514

• The authors should provide instructions on data access and preparation, including how515

to access the raw data, preprocessed data, intermediate data, and generated data, etc.516

• The authors should provide scripts to reproduce all experimental results for the new517

proposed method and baselines. If only a subset of experiments are reproducible, they518

should state which ones are omitted from the script and why.519

• At submission time, to preserve anonymity, the authors should release anonymized520

versions (if applicable).521

• Providing as much information as possible in supplemental material (appended to the522

paper) is recommended, but including URLs to data and code is permitted.523
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6. Experimental setting/details524

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-525

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the526

results?527

Answer: [Yes]528

Justification: The paper specifies the essential experimental details to understand the results.529

Training and evaluation are conducted on µ-Bench, with clearly defined organ-specific530

domains (Cardiovascular, Gastrointestinal, Hematopathology, Neuropathology). LoRA531

fine-tuning hyperparameters (e.g., rank, learning rate, epochs) and data split strategies532

are described in the methods and appendix. All interpolation strategies (Linear Average,533

SLERP, Task Arithmetic, TIES, WiSE-FT) are defined mathematically, with parameter534

sensitivities (e.g., β, trim thresholds, τ ) reported in controlled ablation studies. Together,535

these details allow readers to interpret the results and replicate the experimental setup, while536

additional specifications (e.g., optimizer choice and implementation details) are provided in537

the appendix.538

Guidelines:539

• The answer NA means that the paper does not include experiments.540

• The experimental setting should be presented in the core of the paper to a level of detail541

that is necessary to appreciate the results and make sense of them.542

• The full details can be provided either with the code, in appendix, or as supplemental543

material.544

7. Experiment statistical significance545

Question: Does the paper report error bars suitably and correctly defined or other appropriate546

information about the statistical significance of the experiments?547

Answer: [Yes]548

Justification: The paper reports confidence intervals for key accuracy metrics, including549

overall performance and organ-specific evaluations. Variability is captured through accuracy550

distributions across test splits, and confidence intervals are explicitly computed (95% CI)551

rather than omitted. While the paper does not include extensive hypothesis testing, the552

provided confidence bounds are sufficient to establish statistical reliability for the main553

claims.554

Guidelines:555

• The answer NA means that the paper does not include experiments.556

• The authors should answer "Yes" if the results are accompanied by error bars, confi-557

dence intervals, or statistical significance tests, at least for the experiments that support558

the main claims of the paper.559

• The factors of variability that the error bars are capturing should be clearly stated (for560

example, train/test split, initialization, random drawing of some parameter, or overall561

run with given experimental conditions).562

• The method for calculating the error bars should be explained (closed form formula,563

call to a library function, bootstrap, etc.)564

• The assumptions made should be given (e.g., Normally distributed errors).565

• It should be clear whether the error bar is the standard deviation or the standard error566

of the mean.567

• It is OK to report 1-sigma error bars, but one should state it. The authors should568

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis569

of Normality of errors is not verified.570

• For asymmetric distributions, the authors should be careful not to show in tables or571

figures symmetric error bars that would yield results that are out of range (e.g. negative572

error rates).573

• If error bars are reported in tables or plots, The authors should explain in the text how574

they were calculated and reference the corresponding figures or tables in the text.575

8. Experiments compute resources576
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Question: For each experiment, does the paper provide sufficient information on the com-577

puter resources (type of compute workers, memory, time of execution) needed to reproduce578

the experiments?579

Answer: [Yes]580

Justification: The paper specifies the GPU class used (NVIDIA RTX 6000 Ada) and core581

training settings (optimizer, epochs, batch size, schedule), memory required, per-run and582

total estimated compute time.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,586

or cloud provider, including relevant memory and storage.587

• The paper should provide the amount of compute required for each of the individual588

experimental runs as well as estimate the total compute.589

• The paper should disclose whether the full research project required more compute590

than the experiments reported in the paper (e.g., preliminary or failed experiments that591

didn’t make it into the paper).592

9. Code of ethics593

Question: Does the research conducted in the paper conform, in every respect, with the594

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?595

Answer: [Yes]596

Justification: The work conforms to the NeurIPS Code of Ethics. It uses publicly available597

microscopy benchmark datasets (µ-Bench) for evaluation, introduces no new sensitive data,598

and does not involve human or animal subjects. The research focuses on methodological599

contributions to biomedical vision–language modeling and avoids privacy, fairness, or600

misuse concerns.601

Guidelines:602

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.603

• If the authors answer No, they should explain the special circumstances that require a604

deviation from the Code of Ethics.605

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-606

eration due to laws or regulations in their jurisdiction).607

10. Broader impacts608

Question: Does the paper discuss both potential positive societal impacts and negative609

societal impacts of the work performed?610

Answer: [Yes]611

Justification: The paper discusses the broader impact of improving biomedical VLMs,612

including potential benefits for pathology workflows and medical research by enabling613

more accurate, resource-efficient analysis of microscopy images. It also acknowledges614

risks such as possible misuse or over-reliance on automated systems, which could lead to615

misdiagnoses if models are deployed prematurely. These points are framed as considerations616

for responsible application of the research.617

Guidelines:618

• The answer NA means that there is no societal impact of the work performed.619

• If the authors answer NA or No, they should explain why their work has no societal620

impact or why the paper does not address societal impact.621

• Examples of negative societal impacts include potential malicious or unintended uses622

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations623

(e.g., deployment of technologies that could make decisions that unfairly impact specific624

groups), privacy considerations, and security considerations.625

• The conference expects that many papers will be foundational research and not tied626

to particular applications, let alone deployments. However, if there is a direct path to627

any negative applications, the authors should point it out. For example, it is legitimate628
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to point out that an improvement in the quality of generative models could be used to629

generate deepfakes for disinformation. On the other hand, it is not needed to point out630

that a generic algorithm for optimizing neural networks could enable people to train631

models that generate Deepfakes faster.632

• The authors should consider possible harms that could arise when the technology is633

being used as intended and functioning correctly, harms that could arise when the634

technology is being used as intended but gives incorrect results, and harms following635

from (intentional or unintentional) misuse of the technology.636

• If there are negative societal impacts, the authors could also discuss possible mitigation637

strategies (e.g., gated release of models, providing defenses in addition to attacks,638

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from639

feedback over time, improving the efficiency and accessibility of ML).640

11. Safeguards641

Question: Does the paper describe safeguards that have been put in place for responsible642

release of data or models that have a high risk for misuse (e.g., pretrained language models,643

image generators, or scraped datasets)?644

Answer: [NA]645

Justification: The paper does not release new datasets or pretrained models, and the methods646

are evaluated only on µ-Bench, which is already publicly available. Since no new resources647

with dual-use risks are introduced, explicit safeguards were not required.648

Guidelines:649

• The answer NA means that the paper poses no such risks.650

• Released models that have a high risk for misuse or dual-use should be released with651

necessary safeguards to allow for controlled use of the model, for example by requiring652

that users adhere to usage guidelines or restrictions to access the model or implementing653

safety filters.654

• Datasets that have been scraped from the Internet could pose safety risks. The authors655

should describe how they avoided releasing unsafe images.656

• We recognize that providing effective safeguards is challenging, and many papers do657

not require this, but we encourage authors to take this into account and make a best658

faith effort.659

12. Licenses for existing assets660

Question: Are the creators or original owners of assets (e.g., code, data, models), used in661

the paper, properly credited and are the license and terms of use explicitly mentioned and662

properly respected?663

Answer: [Yes]664

Justification: All datasets used in this work, including µ-Bench, are publicly available and665

were cited appropriately. Their licenses and terms of use (e.g., CC BY 4.0) were respected666

in all experiments.667

Guidelines:668

• The answer NA means that the paper does not use existing assets.669

• The authors should cite the original paper that produced the code package or dataset.670

• The authors should state which version of the asset is used and, if possible, include a671

URL.672

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.673

• For scraped data from a particular source (e.g., website), the copyright and terms of674

service of that source should be provided.675

• If assets are released, the license, copyright information, and terms of use in the676

package should be provided. For popular datasets, paperswithcode.com/datasets677

has curated licenses for some datasets. Their licensing guide can help determine the678

license of a dataset.679

• For existing datasets that are re-packaged, both the original license and the license of680

the derived asset (if it has changed) should be provided.681
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• If this information is not available online, the authors are encouraged to reach out to682

the asset’s creators.683

13. New assets684

Question: Are new assets introduced in the paper well documented and is the documentation685

provided alongside the assets?686

Answer: [Yes]687

Justification: We release the trained LoRA adapter soup models described in the paper. The688

GitHub repository will include instructions for loading and reproducing results, licensing689

information (CC BY 4.0), and notes on intended use and limitations. The assets will be fully690

documented upon publication.691

Guidelines:692

• The answer NA means that the paper does not release new assets.693

• Researchers should communicate the details of the dataset/code/model as part of their694

submissions via structured templates. This includes details about training, license,695

limitations, etc.696

• The paper should discuss whether and how consent was obtained from people whose697

asset is used.698

• At submission time, remember to anonymize your assets (if applicable). You can either699

create an anonymized URL or include an anonymized zip file.700

14. Crowdsourcing and research with human subjects701

Question: For crowdsourcing experiments and research with human subjects, does the paper702

include the full text of instructions given to participants and screenshots, if applicable, as703

well as details about compensation (if any)?704

Answer: [NA]705

Justification: The study did not involve any crowdsourcing or research with human subjects;706

all experiments were conducted on existing publicly available biomedical microscopy707

datasets.708

Guidelines:709

• The answer NA means that the paper does not involve crowdsourcing nor research with710

human subjects.711

• Including this information in the supplemental material is fine, but if the main contribu-712

tion of the paper involves human subjects, then as much detail as possible should be713

included in the main paper.714

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,715

or other labor should be paid at least the minimum wage in the country of the data716

collector.717

15. Institutional review board (IRB) approvals or equivalent for research with human718

subjects719

Question: Does the paper describe potential risks incurred by study participants, whether720

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)721

approvals (or an equivalent approval/review based on the requirements of your country or722

institution) were obtained?723

Answer: [NA]724

Justification: The study used only pre-existing, publicly available biomedical microscopy725

datasets from repositories such as Zenodo, Dataverse, Dryad, and BBBC. All data were726

shared under permissive licenses (e.g., CC BY 4.0) that allow derivatives and redistribution,727

and no new data were collected from human participants; therefore, IRB approval was not728

required.729

Guidelines:730

• The answer NA means that the paper does not involve crowdsourcing nor research with731

human subjects.732
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• Depending on the country in which research is conducted, IRB approval (or equivalent)733

may be required for any human subjects research. If you obtained IRB approval, you734

should clearly state this in the paper.735

• We recognize that the procedures for this may vary significantly between institutions736

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the737

guidelines for their institution.738

• For initial submissions, do not include any information that would break anonymity (if739

applicable), such as the institution conducting the review.740

16. Declaration of LLM usage741

Question: Does the paper describe the usage of LLMs if it is an important, original, or742

non-standard component of the core methods in this research? Note that if the LLM is used743

only for writing, editing, or formatting purposes and does not impact the core methodology,744

scientific rigorousness, or originality of the research, declaration is not required.745

Answer: [NA]746

Justification: The research did not employ LLMs as an important, original, or non-standard747

component of the proposed methods; any LLM use was limited to routine editing of the748

paper or code-editing assistance, which does not require declaration under the NeurIPS749

LLM policy.750

Guidelines:751

• The answer NA means that the core method development in this research does not752

involve LLMs as any important, original, or non-standard components.753

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)754

for what should or should not be described.755
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