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Abstract

Accurate visual localization from aerial views is a fundamental problem with ap-
plications in mapping, large-area inspection, and search-and-rescue operations. In
many scenarios, these systems require high-precision localization while operat-
ing with limited resources (e.g., no internet connection or GNSS/GPS support),
making large image databases or heavy 3D models impractical. Surprisingly, lit-
tle attention has been given to leveraging orthographic geodata as an alternative
paradigm, which is lightweight and increasingly available through free releases by
governmental authorities (e.g., the European Union). To fill this gap, we propose
OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Ger-
many and the United States with multiple modalities. The dataset addresses domain
shifts between UAV imagery and geospatial data. Its paired structure enables fair
benchmarking of existing solutions by decoupling image retrieval from feature
matching, allowing isolated evaluation of localization and calibration performance.
Through comprehensive evaluation, we examine the impact of domain shifts, data
resolutions, and covisibility on localization accuracy. Finally, we introduce a refine-
ment technique called AdHoP, which can be integrated with any feature matcher,
improving matching by up to 95% and reducing translation error by up to 63%.
The dataset and code are available at: jhttps://deepscenario.github.io/OrthoLoC.

1 Introduction

Visual localization for Unmanned Aerial Vehicles (UAVs) is essential for digital-twin modeling [60,
74]], surveillance [29], search-and-rescue [51]], and infrastructure inspection [34], yet faces unique
challenges not addressed by ground-level localization systems. While ground-level approaches [356,
711 [70] benefit from similar viewpoints between images [59} 49, 571, aerial applications encounter
dramatic perspective differences and require scalability over large areas [69, [72].

Current UAV localization algorithms rely on retrieving the closest match from a database of posed
images [72,[77], which is inaccurate, or on 3D models of the scene [69, [66], which are memory and
computationally expensive. In limited resources settings, as it is often the case for connectivity-limited
environments, this can result in accuracy degradation. Recent approaches like LoDLoc [78] improve
storage efficiency by using Level-of-Detail (LoD) but still assume unchanged environments, perform
poorly in building-sparse areas such as highways, and its initialization depends on positioning sensors.

In contrast, a compelling solution involves geodata, such as orthographic aerial views (Digital
Orthophotos (DOPs)) and elevation maps (Digital Surface Models (DSMs)). These provide a reliable,
lightweight source for localizing UAV images, as shown in Figure [T Such data is increasingly
accessible through free releases from European government geoportals [46, 17]], and where public
access is limited, can be synthesized using photogrammetric tools [20]]. Geodata are scalable and
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Georeferenced Coordinate Frame
Figure 1: Georeferenced UAV Localization / Calibration with Orthographic Geodata. Our
framework bridges the aerial-to-orthographic domain gap. It enables precise 6-DoF localization
and calibration using only DOP and DSM geodata. This approach works even in GNSS-denied
environments without requiring expensive 3D models or image databases.

better suited for low-resource settings. For example, covering an area of approximately 0.265 km?
would require a 3D model of around 8 GB [69], whereas geodata requires about 30 times less memory.
Surprisingly, no existing UAV localization approach seems to fully leverage these data sources. We
believe this is mainly due to the absence of aligned cross-domain datasets and the lack of full-pose
paired large-scale benchmarks specifically designed for localization using these types of geodata.

To fill this gap, we capture and release the Orthographic Aerial Localization and Calibration Dataset
(OrthoLoC). It comprises 5 main modalities such as UAV imagery, DOPs, DSMs, 3D point maps,
and 3D meshes with a total of 16.4K images captured in 47 regions in 19 cities across 2 countries.
Our dataset is the first to offer three key advantages: (1) paired UAV-geodata structure that decouples
pose estimation from image retrieval, eliminating confounding error sources in the evaluations; (2)
precise 6-DoF poses obtained through multi-view georeferenced photogrammetric reconstruction;
and (3) additional reference data sources to increase the domain gaps in the dataset.

We have evaluated state-of-the-art methods on this novel localization and calibration task in a
comprehensive benchmark. Additionally, we introduce a method-agnostic refinement technique called
Adaptive Homography Preconditioning (AdHoP) that further improves localization and calibration
accuracy. The technique exploits the uniform structure of DOPs to perform homography-based
warping by assuming quasi-planar surfaces common in built environments.

Our evaluation reveals several insights. First, state-of-the-art matching algorithms can generalize to
aerial perspectives but struggle with the substantial domain gap between perspective UAV imagery
and orthographic reference data. Second, our AdHoP technique significantly reduces the perspective
disparity, improving all metrics across the tested methods, particularly achieving up to 95% and 63%
enhancements in matching and translation accuracy, respectively. Third, camera calibration in aerial
settings presents unique challenges due to fundamental geometric ambiguities that affect parameters
estimation. Finally, reference data characteristics including domain shifts, data resolutions, and
covisibility. significantly impact localization performance, with higher resolution geodata providing
improvement in accuracy.

The main contributions of this paper are: (1) OrthoLoC, the first UAV dataset providing alignment
with geodata across multiple modalities and locations; (2) a unified benchmarking framework for UAV
localization and calibration that integrates with state-of-the-art matching algorithms and includes our
AdHoP technique for addressing perspective disparities; and (3) benchmarking results for camera
localization and calibration and an analysis of performance factors including cross-domain challenges,
data resolution effects, and covisibility.

2 Related Work

2.1 UAV Localization Datasets

The advancement of UAV localization research has been hampered by dataset limitations. Most
existing collections fail to support comprehensive 6-DoF evaluation due to several shortcomings.
Datasets such as University-1652 [77] and DenseUAV [[18]| provide only partial pose information



(typically 2-DoF or 3-DoF), insufficient for applications requiring complete 6-DoF estimation.
Collections derived from Google Earth [[73] 9] 52] predominantly feature nadir views, exhibiting
limited viewpoint diversity that fails to capture oblique perspectives common in practical UAV
operations. Several datasets incorporate synthetic data—either entirely synthetic environments [40,
32] or synthetically rendered views [68 (66 —introducing domain gaps that affect generalization to
real-world scenarios.

Most importantly, existing datasets lack integrated geodata resources crucial for evaluating local-
ization methods leveraging lightweight orthographic representations. While the concurrent Any Vis-
Loc [72] dataset includes orthographic geodata, its primary pose evaluation focus is on 3-DoF rather
than full 6-DoF. Additionally, it presents a misalignment between its low-resolution satellite im-
agery and aerial photogrammetry data, which compromises effective evaluation of cross-domain
geodata-based localization. We illustrate this misalignment in the supplementary material.

In contrast, OrthoLoC provides complete 6-DoF ground-truth poses with calibration information,
diverse viewpoints across multiple altitudes and angles, real-world imagery from different geographic
environments, carefully aligned high-resolution geodata, and paired structure that facilitates isolated
evaluation of localization algorithms, independent of retrieval errors. This comprehensive design
establishes a foundation for decoupled evaluation of UAV localization and calibration methods using
lightweight orthographic references, filling a critical research gap.

2.2 Visual Localization

Image retrieval-based localization. Image retrieval methods [2 1} 50} 61] use global descriptors
to match query images against geo-tagged databases. CNN-based approaches such as NetVLAD [1]
and Dislocation [2] are efficient but struggle with large viewpoint and illumination changes in UAV
imagery. Recent works (25 31} 126] mitigate these issues through view synthesis and self-supervised
learning, yet performance drops under extreme perspective shifts. Chen et al. [[10] introduced
ComplexUAV, a high-resolution UAV dataset covering diverse terrains, along with a contrastive
learning framework that improves retrieval robustness and generalization. Nonetheless, retrieval-
based methods remain insufficient for accurate 6-DoF UAV localization, motivating alternatives that
leverage geodata directly.

Matching-based localization. Structure-based methods typically build a 3D model using Structure
from Motion (SfM) techniques [53]] and establish 2D-3D correspondences, either using mesh mod-
els [[7, 76, 45, 169] or dense depth maps [66]. Pose estimation is then performed via PnP algo-
rithms [28) [24] 44} 36] coupled with RANSAC optimization [14} [13] |5 |6 3. Recent advances
in feature matching have produced three primary categories of matchers: dense matchers (e.g.,
DKM [21]], ROMA [23]]), semi-dense matchers (e.g., LOFTR [57]], eLoFTR [65], XoFTR [62]]), and
sparse matchers (e.g., SuperGlue [49], DeDoDe [22], XFeat [48]). Geometry-aware techniques
such as MASt3R [38] and DUSt3R [64] further improve matching by integrating geometric con-
straints. While these state-of-the-art matchers provide robust performance across many scenarios,
their effectiveness with orthographic geodata remains unexplored until now.

UAV-specific localization. Aerial vehicle positioning systems have evolved from 2-DoF to 6-DoF
approaches to address specific challenges. Early CNN-based techniques employed multiscale block
attention [82] and capsule networks [80], while recent transformer-based frameworks integrate
semantic guidance [81]] and relation-aware global attention [[18} 158, 39] to address scale variations
and urban uncertainties. However, most of these methods target only 2-DoF or 3-DoF localization
rather than full 6-DoF pose estimation required for advanced applications.

For extended pose estimation, several approaches have emerged with increasing degrees of freedom.
For 4-DoF estimation, methods align UAV observations with rendered or autoencoded satellite
imagery [47, 4]]. 5-DoF methods employ dual Siamese networks with visual odometry and Kalman
filtering [55]. Recent 6-DoF frameworks leverage curriculum learning [30], viewpoint-robust feature
extraction [[12]], attention-based architectures [27]], visibility-aware registration [1 1], and photorealistic
synthetic data [66, [68]. While all these methods depend on complete 3D models that require
extensive manual effort to create, our approach utilizes widely accessible geodata for 6-DoF pose
estimation and camera calibration. Benchmarking results demonstrate accurate localization despite
temporal gaps between geodata acquisition and UAV flight. This simplifies deployment by utilizing
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Figure 2: Data Modalities in OrthoLoC. Each sample includes a query image, a point map (repre-
sented as a depth map), a local mesh, visible 3D keypoints, and photogrammetrically reconstructed
DOP/DSM. The dataset also includes an augmented version of DOP/DSM derived from secondary
sources, introducing domain gaps for increased variability.

standardized, government-provided resources rather than requiring custom 3D reconstruction for
each operational area.

3 The OrthoLoC Dataset

We introduce a comprehensive UAV localization dataset that addresses key limitations in existing
benchmarks. Our dataset comprises 16.4k real UAV images spanning 47 locations across 19 cities
in Germany and the United States, captured in diverse environmental contexts including urban,
suburban, rural, and highway scenes. Each sample provides a query image with precise ground-truth
6-DoF pose, camera intrinsics, and rich 3D scene representations: point maps, 3D keypoints, local
meshes, and aligned 2.5D geodata rasters derived from multiple sources. Figure [2]illustrates the
data modalities in our dataset. Figure 3] presents the complete creation pipeline. Dataset details are
provided in the supplementary material.

3.1 Data Acquisition and Processing

Data collection employed commercial drones equipped with Global Positioning System (GPS). For
each location, we performed 3D scene reconstruction using SfM and Multi-View Stereo (MVS)
techniques to generate camera poses, dense point clouds, and textured meshes. The reconstructions
were georeferenced using Real-Time Kinematic (RTK) measurements or manually annotated Ground
Control Points (GCPs) to ensure precise spatial alignment.

From these reconstructions, we generated orthographic DOPs via camera renderings and DSMs
through rasterization at 5 cm/pixel resolution. We complemented these with SIFT [42] keypoints
extracted from the DOP and lifted to 3D using corresponding DSM elevations, providing reliable
landmarks for pose verification.

3.2 Data Pairing

To recover the pose and intrinsic parameters, visual localization methods often require solving image
retrieval before running the proper estimation algorithm. These two steps are coupled, making
it difficult to disentangle the contribution of each component. Hence, we pair the query with
reference data to isolate the contribution of different components and evaluate localization algorithms
independent of retrieval performance.

To achieve this, we establish precise correspondences by ray-tracing from each query image with
known camera parameters onto the 3D mesh model and exact cropping regions in the DOP and DSM
that geometrically align with the query viewpoint. To quantify how positional uncertainty affects
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Figure 3: Dataset Creation Pipeline. First, (A) data acquisition involves UAV imagery collection.
This data, combined with georeferencing techniques like GCPs and RTK, reconstructs a georeferenced
3D textured mesh. Subsequently, geodata is derived through rasterization and orthographic rendering.
Then, (B) data pairing identifies regions of interest for each query image via raycasting. These areas
undergo random expansion, followed by cropping geometric elements to form samples. Finally,
(C) the data is augmented with geodata from external sources, where spatial alignment is verified.

localization accuracy, we extend the reference area beyond the visible query region through spatial
perturbations by applying random offsets of 0-10 meters that simulate realistic retrieval imprecision.

In summary, a dataset sample consists of the tuple (I, P, RP°?P RPSM K TV, F,S), where I €
RZXWX3 is the UAV image, P € RH¥*Wx3 i5 the point map, RP" ¢ RE XWPx3 ¢ the

orthophoto raster, RPSM ¢ R PMXWPR S the elevation raster, K € R3*3 is the camera intrinsic
matrix, T € SE(3) is the camera pose, V € RV >3 represents the mesh vertices, 7 € NM*3 defines
the mesh faces, and S is the set of 3D keypoints. All geometric elements are transformed into a local
coordinate system to preserve privacy while maintaining precise geometric relationships.

3.3 Domain Augmentation

Solving UAV localization requires robustness to natural changes in scenes due to time passing.
Typically, reference geodata may have been collected months or years before a UAV flight, creating
significant domain gaps that cannot be easily addressed through simple data augmentation or domain
adaptation techniques. These gaps are particularly challenging because they involve both appearance
and structural changes that vary unpredictably across locations and seasons.

We can divide these challenges into two categories: (1) visual domain gaps in DOPs through
appearance changes (color shifts, illumination variations, seasonal differences) while maintaining
structural consistency; and (2) structural domain gaps in DSMs through geometric modifications
(construction changes, vegetation growth, infrastructure evolution).

Including real-world domain gaps in our dataset is essential because synthetic alternatives cannot
replicate the complex natural variations occurring over time. Our dataset provides three sample
categories: minimal to no domain gap (i.e., same-domain) samples that include geodata from the
3D reconstruction, visual domain gaps only (i.e., cross-domain DOP), and both visual and structural
disparities (i.e., cross-domain DOP and DSM). Cross-domain samples were created by incorporating
open geodata from European locations and visually verifying alignment with same-domain samples.

3.4 Comparison with Existing Datasets

OrthoLoC presents the first UAV localization dataset for 6-DoF pose estimation using governmental
geodata (DOPs and DSMs) as the only reference. This eliminates costly posed image databases,
meshes, or point clouds, enabling real-time localization without preprocessing.



Table 1: Comparison of Existing UAV Localization Datasets.

Legend: Country codes: Switzerland (CH), China (CN), United States (US), Germany (DE); Geographic:
Urban (U), Suburban (SU), Rural (R), Campus (C), Highway (H); UAV images: Real (Re), Synthetic (Sy);
View: top-down (nadir), angled (oblique), mixed views (both); Altitude: <150 m (low), >150 m (high), mixed
altitudes (both); 3D: Depth (D), Point Map (PM), Level of Detail (LoD); Task: Image Retrieval (IR); Platform: +
indicates georeferencing techniques (RTK, GCP); XD: cross-domain (reference data are from external sources).

Geographic Coverage UAV Data Reference Data
Dataset Country Scene #Loc Imgs (Re+Sy) View Alt 3D Platform|Amount Type 3D XD| Task
Unpaired
MatrixCity [40],0,4 - U 1 0+519k  oblique low D virtual X X X X |6-DoF
CrossLoc (68,759 CH U 2 4.5k+19.5k  both low D/PM drone+ 1 X X X |6-DoF
AirLoc [69],,5 CN U 1 2.7k+0 both low X  drone+ X X Mesh X |6-DoF
UAVDAL [66],,, CN U 2 0.9k+18k both low D  drone+ 1 X Mesh/DSM X |6-DoF
Swiss-EPFL [78],,,, CH U 2 2.2k+14.7x  both low X  drone+ 2 X LoD X |6-DoF
UAVDAL-LoD [78],,4 CN 1) 2 3.7k+18k both low X  drone+ 1 X LoD X |6-DoF
UAV-VisLoc [67]504 CN U 11 6.7k+0 nadir high X drone+ 11 DOP X X | IR
GTA-UAV [32],,5 - U 1 0+33k nadir both X virtual X X X X |6-DoF
AnyVisLoc [12],0,5 CN URSU 25 18k+0 both both X  drone+ 25 DOP DSM v |3-DoF
Paired
University-1652 [77],,,,] US C 39 | 701+50.2k oblique both X web 951  Images X v | IR
DenseUAV [18],,5 CN C 14 9k+0 nadir low X drone 18k Images X v |3-DoF
SUES-200 [79),023 CN U 200 40k+0 both high X drone 200  DOP X v/ | IR
ALTO [15]502 US  URSU 1 154k+0  nadir _high X aircrafty | 165k DOP__ LIDAR X |6-DoF
VPAIR [52],0,, DE U,R,SU 1 2.7k+0 nadir high X  aircraft+ | 2.7k Images Depth v |6-DoF
OrthoLoC (Ours) USDE URSUH 47 16.4k+0 both both PM drone+ | 164k DOP DSM v |6-DoF

Our dataset spans 47 locations across 2 countries with 16.4 k real UAV images, paired multi-modal
data (DOPs, DSMs, and 3D reconstructions), diverse viewpoints from nadir to oblique perspectives,
and high-precision ground-truth achieving approximately 5 cm median error via GCPs evaluation.
Over 4 k governmental orthoimages and surface models enable robust domain adaptation assessment.
OrthoLoC uniquely provides aligned DOP+DSM pairs with accurate 6-DoF poses across multiple
altitudes and privacy-preserving georeferencing decoupling.

As shown in Table 1} existing datasets suffer from (1) restricted geographic coverage [68 152,
151 140l (69, 166} [78]], (2) synthetic data dependency [77, 40, 32} 168 (78], or (3) incomplete pose
information [[77,[79,[18,167]. Our geometric consistency analysis reveals significant projection errors
in CrossLoc [68], UAVDA4L [66], and AnyVisLoc [72], which provides only 3-DoF poses with
misaligned reference data. Assessment details are in the supplementary material.

4 Localization with Orthographic Geodata

Unlike traditional approaches that rely on image retrieval or 3D models, we explore the novel
paradigm of UAV localization using 2.5D orthographic geodata. No existing methods are directly
applicable to this scenario, as previous work has not leveraged the combination of DOPs and DSMs for
UAV pose estimation. This section presents the problem formulation, our benchmarking framework,
and our refinement technique.

4.1 Problem Formulation

Goal. Given an orthophoto raster RPOP, an elevation raster RPSM, and a query UAV image I taken
from an arbitrary viewpoint, we aim to determine the georeferenced 6-DoF pose 'T of the camera
(localization) and, optionally, its intrinsic parameters K (calibration).

Challenges. The key challenge is bridging two fundamentally different projection models: perspec-
tive projection for UAV imagery and orthographic projection for geodata. This difference creates a
domain gap that is particularly pronounced in oblique views where perspective distortion is significant.
Additionally, another domain gap arises from the visual and structural discrepancies between the
query and reference data caused by differences in acquisition time. We provide the mathematical prin-
ciples for both projection types, with particular focus on deriving a formulation for nadir orthographic
projection in the supplementary material.

Benchmarking framework. Given the absence of existing methods that directly tackle UAV
localization using orthographic geodata, we propose a comprehensive benchmarking framework
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Figure 4: UAV 6-DoF Localization and Calibration with AdHoP: (A) Initial Localization /
Calibration: We match features between the query image and DOP (1), lift the correspondences
to 3D using the DSM (2), and compute an initial pose and optional intrinsics (3). (B) AdHoP
Refinement: Using the initial 2D-2D correspondences, we estimate a homography to warp the DOP
(4), thereby reducing perspective differences. This enables enhanced feature matching on the warped
orthophoto (5). The new correspondences are then mapped back to the original unwarped coordinate
space (6), lifted to 3D using the DSM (7), and used to compute refined camera parameters (8). The
refinement is accepted only when it reduces the reprojection error (9).

to evaluate various combinations of matching algorithms as backbones. Our framework is entirely
backbone-agnostic, enabling integration with any feature matching method, as illustrated in Figure ]
and detailed in the following subsections.

4.2 Initial Camera Calibration / Localization

We establish 2D-2D correspondences between the query image I and the orthophoto RP°F using state-
of-the-art matching methods such as GIM+DKM [54], RoMA [23], SuperGlue [49], and LoFTR [57].
Each 2D point matched in RP°F is lifted to a 3D point using the corresponding elevation value
from RPSM, providing the necessary 3D-2D correspondences for pose estimation (details in the
supplementary material). Next, we filter correspondences by excluding matches with low confidence
scores (below 0.5), invalid 3D points (missing data values), and points outside the field of view.
Our calibration approach employs a two-stage optimization strategy. In the first stage, we use an
initial guess of the focal length to estimate the camera pose by optimizing reprojection errors using
RANSAC-EPnP and a 5-pixel inlier threshold. In the second stage, we use this pose to initialize
a Levenberg-Marquardt optimization that jointly refines camera intrinsics and extrinsics. For pure
localization tasks, we only perform the first stage, as intrinsics are assumed to be known.

4.3 AdHoP Refinement

Perspective differences between query and reference images are a major challenge in UAV localiza-
tion, especially for oblique viewpoints. Our geodata-based approach addresses this with Adaptive
Homography Preconditioning (AdHoP), a method-agnostic refinement technique that exploits the
approximate planarity of many aerial elements (roads, building roofs, fields). Formally, AdHoP
estimates a homography matrix H € R**3 from initial 2D-2D correspondences using normalized
Direct Linear Transform (DLT) with RANSAC. We adopt this straightforward formulation to avoid
the complexity and biases of learning-based methods, requiring no training, dataset dependencies, or
ad-hoc domain assumptions while providing a transparent and general baseline. The homography
warps the orthophoto to better match the query perspective, enabling a second round of feature
matching with improved similarity. The new matches are mapped back using H~1, lifted to 3D via



Table 2: Quantitative Localization Results on OrthoLoC Test Sets. Rankings between matchers
are highlighted as first, second , and third . Bold values indicate the best performance comparing
without/with AdHoP. RI indicates a rotation-invariant matcher (matching performed with 4 rotated

versions, selecting the one with most correspondences). Abbreviations: SuperPoint (SP), Super-
Glue (SG), LightGlue (LG), Minima (MM).

Matcher RI| ME [px]} TE [m]} RE [°]} RPE [px]] [1m-1° [%]T 3m-3° [%]T S5m-5° [%]1|Speed [s].
SP+SG [19.149] X| 22/22 0.36/0.35 0.15 /0.15 28 /28 639/644 774/77.6 78.7/789| 0.2 /0.3
SP+LG [19]i41] X1 20/20 0.37 /0.37 0.16/0.15 29 /29 64.0/642 77.0/77.4 78.8/79.0 | 0.1 /0.2

DeDoDe [22] X 12712 0.42/0.39 0.18/0.16 3.6/32 27.5/28.2 333/33.6 35.6/357|0.3 /0.3
XFeat [48] X1257.0/38.1| 1.58/0.96 0.74/0.45 13.0/7.8 427/50.8 57.4/63.0 61.2/651| 0.1 /0.2
XFeat+LG [48]41] | x| 4.3/32 0.57/0.48 0.25/0.20 47/3.8 42.5/45.7 54.4/56.3 56.3/57.3| 0.1 /0.3
LoFTR [57] X |317.2/312.9|121.56 / 118.77 109.49 / 107.22 1451.9/1384.7| 18.0/21.0 23.3/25.6 23.9/26.3| 0.1 /0.2
MM-+LoFTR [33][78]| X |266.9 /269.1| 87.17/84.69 98.89/97.81 902.4/841.4 |145/18.2 21.5/23.1 22.5/23.7| 0.3 /0.6
eLoFTR [65] X 1329.5/311.9(124.29/117.53 109.25 / 102.50 1552.2/1471.1| 19.0/22.9 24.0/27.6 24.8/28.4 | 0.1 /0.2
XoFTR [62] X [291.7/285.9|113.65/113.15 107.24/ 107.65 1322.4/1275.2| 19.7/21.5 23.8/24.8 24.1/254 | 0.1 /0.2
DKM [21] /| 88/27 3.83/1.40 1.93/0.63 31.9/11.9 [33.6/422 442/498 45.6/504 | 0.8/1.7
XFeat* [48] X\ 2222/79.2 1.07/0.66 0.48/0.30 8.8/54 48.8/59.8 67.3/72.3 70.4/73.7| 0.1 /0.2
GIM+DKM [54/21] | v | 1.5/1.3 0.40/0.32 0.12 /0.12 3.1/2.6 74.1/754 86.6/87.9 87.4/884 | 1.3/2.6
DUSt3R [64] /| 50/49 3.45/3.68 1.47/1.53 25.8/27.3 3.6/64 33.6/338 51.7/498 | 1.5/2.1
MASI3R [38] /| 24/23 0.61/0.60 0.28/0.26 50/48 62.4/63.5 81.4/82.0 842/845 | 2.2/34
RoMa [23 /| 21.6/24 1.47/0.75 0.67/0.32 12.5/6.2 44.4/54.6 56.1/65.1 59.2/66.8 | 1.1/2.1
MM-+RoMa [33!23] |/ | 70.8/4.6 3.63/1.21 1.92/0.55 342799 38.6/47.9 489/58.0 51.6/59.5| 1.1/2.1

the DSM, and used to refine pose estimation. The refinement is accepted only if it reduces mean
reprojection error.

In our experiments, we demonstrate that combining different matching algorithms with AdHoP
significantly improves localization and calibration accuracy, with GIM+DKM+AdHoP emerging
as the most effective combination across diverse scenarios. This approach highlights the practical
advantages of integrating geodata into localization pipelines.

5 Experimental Results

In this section, we introduce the evaluation metrics (Section and present our benchmarking
results. We evaluate both localization (Section [5.2) and calibration performance (Section[5.3) using
state-of-the-art feature matchers as backbones. We then analyze some factors affecting performance
across different scenarios (Section[5.4). For complete experimental results and additional analyses,
please refer to the supplementary material.

5.1 Evaluation Metrics

We report several metrics: Matching Error (ME) in pixels as the median distance between ground-
truth and estimated matching coordinates; Translation Error (TE) in meters and Rotation Error (RE)
in degrees for pose accuracy; Reprojection Error (RPE) in pixels for keypoint reprojection errors;
recall percentages at thresholds 1m-1°, 3m-3°, and 5Sm-5°; and Relative Focal Length Error (RFE) in
percent for calibration accuracy. We also report computation time in seconds.

5.2 Camera Localization

We report localization performance when using state-of-the-art feature matching approaches with and
without our AdHoP strategy in Table[2] GIM+DKM [54, 21] achieves the highest performance across
the majority of metrics. SP+SG [19,49]] and SP+LG [19, 41]], along with GIM+DKM, all achieve
precise localization below 40 cm and 0.16 degrees. However, the sparse matchers (SP-based) have
notably lower recall compared to GIM+DKM, indicating they successfully localize fewer images.
Semi-dense approaches like LoFTR [57]] and XoFTR [62] perform poorly, with recall below 19.7%.
Our intuition is that these approaches suffer from limited training datasets or architectural constraints
that prevent handling large domain shifts.

Integrating AdHoP substantially improves performance across all matchers. We observe an average
matching improvement of about 30%, yielding translational and rotational error reductions of 20%
each. The best-performing GIM+DKM [54} 21] with AdHoP reduces translation error by 20%, from
0.40 m to 0.32 m. Previously underperforming methods show even more dramatic improvements:



XFeat* [48] matching error decreases by 95.86%, DKM [21] reduces translation error by 63%, and
RoMa increases 1m-1° recall by 23% while reducing translation error by half. We illustrate
in Figure 5] the impact of AdHoP in reducing errors.
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Figure 5: Localization Without and With AdHoP. xFeat* [48] matchmg results showmg 3D
keypoint projections in green (using the ground-truth pose) and red (using the estimated pose). Blue
lines indicate projection discrepancies between estimated and ground-truth positions.

5.3 Camera Calibration

Our calibration experiments reveal a fundamental challenge in estimating camera intrinsics from
UAYV imagery due to geometric ambiguity between focal length and translation estimation. We
provide mathematical proof of this ambiguity and detailed calibration benchmarking results in the
supplementary material. Despite this challenge, the combination of GIM+DKM [54} 21]] with our
AdHoP technique achieves the best focal length estimation with just 1.6% relative error with a
translation error of 2.09 m. However, the recall remains relatively low at 21.8%, highlighting the
inherent difficulty of the calibration task.

5.4 Performance Factors

Domain shift. Using cross-domain DOPs affects algorithms differently, with varying robustness to
appearance changes. Even the best-performing method, GIM+DKM [54] 21] with AdHoP, shows
a threefold increase in translational error under these conditions. Further domain shift, combining
both cross-domain DOPs and DSMs, causes significant degradation across all methods. For instance,
GIM+DKM [34], with AdHoP experiences a sevenfold increase in translation error, rising from
0.16 m to 1.12m. These findings highlight the need for localization algorithms robust against both
visual and geometric domain shifts. Complete results are provided in the supplementary material.

Resolution and covisibility impact. Performance remains robust when scaling images to 30% of
original size (~ 300 pixels, with highest geodata resolution at 13 m/pixel), with degradation occurring
only at lower resolutions. Additionally, localization accuracy depends heavily on the covisibility ratio
between query and reference images, dropping significantly when less than 20% of the elements seen
in the query image are visible in the reference data. These findings have important implications for
real-world UAV deployment, where error-prone upstream tasks like image retrieval may result in
extraction of incomplete reference data. A detailed analysis of these factors is in the supplementary.

6 Conclusion

We presented a novel paradigm for UAV visual localization using widely available geodata. To support
this approach, we introduced OrthoLoC, a diverse large-scale UAV localization and calibration dataset
spanning multiple environments and regions. Our benchmarking framework matches UAV imagery
with orthophotos, which are lifted to 3D using 2.5D elevation models to solve pose estimation via
PnP. Our proposed AdHoP technique consistently enhances various matching algorithms, yielding
significant improvements in both pose estimation and camera calibration performance.

Our benchmarking demonstrated that standard 2.5D geodata proved sufficient for accurate 6-DoF pose
estimation in outdoor UAV localization. Our evaluations revealed that dense matchers, specifically
GIM+DKM [54, 21]] with AdHoP, achieved 75.4% recall at 1m-1° threshold, though with limited
robustness to domain shifts. Camera calibration performance remained challenging due to inherent



geometric ambiguities between focal length and translation estimation. We also demonstrated that
higher resolution data significantly improved localization accuracy, confirming that low-resolution
reference data (such as satellite imagery) limited performance. Moreover, we found that the area
coverage of geodata—typically determined by upstream tasks like region of interest detection through
image retrieval—critically affected correspondence distribution and reliable pose estimation.

Limitations and future work. Calibration remains affected by translation and focal length ambigui-
ties, which could be addressed by training end-to-end networks for improved localization. While our
framework shows strong performance, it requires geodata with at least 20% covisibility and does not
yet scale to large rasters without region detection, a key factor for real-world deployment. Moreover,
AdHoP improves partially incorrect correspondences but fails when matches are completely corrupted.
This highlights the potential of more advanced homography estimators, particularly learning-based
approaches, to reduce reliance on initial matching and increase robustness.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the dataset and code with clear instructions for easy use.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We used image matchers with their default settings from original reposito-
ries and provide all necessary details, including parameter settings, in the supplementary
materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We followed standard localization metrics, which typically exclude error bars,
and omitted them due to the high computational cost of full benchmarking.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Average execution times are reported in the results tables, and hardware details
are provided in the supplementary material. CPU memory usage is not included due to the
shared cluster setup, but sufficient information is given to support reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research strictly follows privacy policies and conforms with the NeurIPS
Code of Ethics. Drone flights were conducted at heights preventing identification of indi-
viduals or sensitive details. We downscaled 4K images to full HD to protect privacy while
maintaining quality. Georeferenced 3D reconstructions include random offsets to remove
exact locations. Data from geoportals complies with copyright terms (CC BY 4.0 or CC
BY-ND 4.0) and is clearly linked in the project page and repository.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: This paper focuses on advancing UAV localization, essential for applications
such as digital twins in infrastructure management, urban planning, and autonomous systems.
These advancements facilitate efficient monitoring, planning, and critical operations like
search-and-rescue and environmental inspections.

We recognize potential ethical concerns, particularly related to surveillance and use in
GPS-denied or sensitive areas. However, robust sensor-based systems are expected to be
favored in these contexts, reducing the risk of misuse of vision-based localization.

Our research is intended to broadly enhance UAV localization knowledge, supporting devel-
opments that prioritize societal benefits while carefully considering ethical implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research poses no significant risk of misuse. We rely exclusively on
self-collected drone imagery compliant with aviation regulations and official data from
European geoportals, avoiding any web-scraped content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: A subset of our dataset includes cross-domain samples sourced from geoportals

under CC BY 4.0 or CC BY-ND 4.0 licenses for research use. All licensing details and
source links are clearly documented on the project page and GitHub repository.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets are thoroughly documented, with detailed instructions and
explanations provided in the supplementary materials, project page, and GitHub repository
to ensure accessibility and ease of use.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing experiments were conducted.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing experiments were conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs as part of the core methodology in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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A Mathematical Formulation

This section establishes the mathematical foundation for our approach to localization and calibration
using orthographic geodata. We present the camera projection models and the 3D lifting operation
from a DOP raster to 3D coordinates using a DSM raster.

A.1 General Camera Projection Model

The general form of projecting a 3D point onto a camera image plane is given by:

Tm:P—p,
] . (n
Ap =KIITP,

~ fr 0 ¢
where P € R* is a 3D point in homogeneous coordinates, K = | 0 f,, ¢, | € R3*3is the camera

0 0 1

S o - . R t Ax4 -

intrinsic matrix with focal lengths f., f, and principal points c;, ¢y, T = o 1| € R**% is the

extrinsic matrix representing the world-to-camera pose with R € SO(3) and t € R?, IT € R3**is a
projection matrix, p € R? is the projected point in homogeneous image coordinates, and ) is a scale
factor. Note that for simplicity, we ignore distortion effects in the following.

Our work leverages two distinct projection models: perspective projection from UAV cameras and
orthographic projection (specifically nadir view) used in raster geodata. We illustrate both projections
in Figure

(04,0y) u Nadir Orthographic
\ Camera e.g. DOP, DSM

2 5,<0

=
5,0

Z
o
Coordinate

Reference
System

Perspective Camera
.g. UAV Camera

Optical Center

Figure 6: Comparison of Projection Models Used in This Work. The perspective projection,
commonly employed in UAV cameras, features rays converging at a single camera center, resulting in
perspective effects where parallel lines in the real world appear to converge in the image. In contrast,
the orthographic nadir projection, often applied to raster geodata, uses parallel vertical rays that
preserve scale relationships and spatial accuracy in the world.

A.2 Perspective Projection

A characteristic of perspective projection m, is the intersection of all rays at a single point (camera
center), accounting for perspective effects that make parallel lines in the world intersect in the image
plane. In this case, f. > 0, f, > 0, A corresponds to the depth of the 3D point with respect to the
camera, and IT = [Is 0] with I3 being the 3 x 3 identity matrix and O a column vector of zeros.
We use perspective projection for modeling UAV imagery.

A.3 Nadir Orthographic Projection

In orthographic nadir projections, all rays passing through the camera are parallel and strictly vertical,
yielding a camera center at infinity. Projection lines are perpendicular to the XY plane, resulting
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in parallel rays without perspective effects. This characteristic makes orthographic projection the
standard representation for geodata such as satellite imagery and digital elevation models.

A nadir orthographic camera is defined by an origin (0, 0,) (the top left raster position in common
reference frames) with scales s, and s, defining the metric grid cell size. Unlike perspective cameras,
orthographic cameras maintain the same distance relationships in pixel coordinates as in world
coordinates, scaled by s; and s,,.

For the nadir orthographic projection function 7,, we can derive the closed-form formulation yielding
A=1L,R=I5t=[-0, —oy O]T, fo =1/sz, fy =1/s,, and ¢, = ¢, = 0. The projection

10 0 0
matrix is I = [0 1 0 O] , which eliminates the Z component, effectively collapsing 3D points
0 0 0 1

onto a plane.

Proof. In raster geodata such as DOPs and DSMs with (o, o) describing the XY position of the
origin in predefined 3D geographic reference coordinate system (e.g., UTM) and pixel size (s, s,) in
metric space, a pixel coordinate (x, y) can be mapped to its X and Y coordinates in that 3D reference
coordinate system using a simple linear transformation:

X\ |szx+o0g
=] @
We can extract  and y as:
X — oy,
x = ,
Sz
Y —o, 3)
y= — -
Sy
In matrix form, this gives:
I e
M:()S{JO—ZZZ. )
1 0 0 0 1 1

Decomposing this compact projection matrix into the form KIIT yields:

L0 0o ol 90 o

KIIT=|0 L1 0/]|0 1 0 0 vl . 3)
sy 001 0
00100010001

In standard geospatial data conventions, the origin is typically at the top-left corner of the raster,
with s, > 0 and s, < 0. This negative s, accounts for the fact that the y-axis in pixel coordinates
increases downward, while in world coordinates it increases upward. Given this convention, we have
fz =1/sy > 0and f, = 1/s, < 0. This negative focal length has no direct physical counterpart
in traditional optical systems. Nevertheless, this mathematical abstraction effectively represents the
orthographic projection found in aerial mapping data, while enabling us to represent both orthographic
and perspective projections in a unified formulation.

A.4 Lifting 2D Coordinates in DOP to 3D Coordinates using DSM

Our framework leverages orthographic geodata in the form of DSM and DOP rasters, denoted as

DSM DSM DOP DOP . .
RPSM ¢ RW7UXHTT and RPOP € RW™ X H7"X3 | regpectively. These rasters are characterized
SM_sDSM) | (sDOP, sPOP), and origins (0R5M, oDSM), (02°F, 0DOF). Utilizing the linear

D
by scales (s 2 58y , 0y 2 50y
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correspondence between these representations, we derive 3D scene points from 2D coordinates in the
DOP raster as:

P, = [pror™ Rosw(sppor))] ©®

where f : R2 — R? is a linear transformation mapping coordinates between the rasters. This
transformation is defined as:

DOP DOP___DSM
Sy 0 Op —Og
SDSM SDSM
* DOP DOP”__DSM o
~DSM __ s, 0, —O, ~ DOP
i - 0 s]gSM SDSMy pP; )
y y
0 0 1

where - denotes homogeneous coordinates. In our dataset, both rasters share the same scales and
origins, simplifying f to the identity function. This formulation establishes 3D-2D correspondences
between 2.5D orthographic geodata and UAV imagery.

A.5 Optimization of Camera Parameters

. . Tyl S
Given a query image I € RW *H"*3 captured by a UAV, georeferenced camera calibration involves
estimating camera parameters within a geospatial reference frame by minimizing a reprojection loss:

* * .
T*, K" = arg min Lyeproj,
T, K

)

(3)
Ereproj = Zp (||7Tp(Pi>KaT) - szHQ) ’

where P; € R? represents the 3D scene points, p/ € R? corresponds to their associated 2D points in
the image I, and p(-) is a robust cost function, specifically the Huber loss, which mitigates the impact
of outlier correspondences. The calibration process involves optimizing the intrinsic and extrinsic
parameters using the Levenberg-Marquardt [43},[75]] algorithm. For initialization, we assume the focal
length is f, = f, = max(W’, H') and derive the initial extrinsic parameters through RANSAC-
EPnP [37]], employing a 5-pixel inlier threshold. In localization tasks, the intrinsic parameters K
remain fixed, and only the extrinsic parameters T are estimated.

B OrthoLoC Dataset Details

B.1 Dataset Statistics

Our dataset consists of 16,427 samples with raster sizes of 1024x1024 pixels and query image sizes
of 1024x682 or 1024x767 pixels.

From the 51 locations in our dataset, 48 were split into training (13K samples) and validation (1.5K
samples) sets to facilitate future work focused on training models using our data. Representative
samples from these 48 locations were used to create an in-Place test set, reflecting performance
on previously seen environments. The remaining 3 locations were reserved for an out-Place test
set, designed to evaluate generalization to novel environments. The dataset samples are further
categorized into three types: same domain, cross-domain within DOP, and cross-domain between
DOP and DSM.

Table 3: Distribution of Samples Across Dataset Splits.

Sample Type All | Train Val Test In-Place Test Out-Place
Same domain 10,923 | 9,255 1,030 142 496
DOP cross-domain 4,698 3,764 421 17 496
DOP & DSM cross-domains 806 328 38 17 423
All types 16,427 | 13,347 1,489 176 1,415

As shown in Table 3| our dataset is well-distributed across different sample types, with the majority
being same-domain samples (10,923 samples). The training set contains 13,347 samples (81.3%),
while validation and testing sets comprise 1,489 (9.1%) and 1,591 (9.7%) samples respectively.
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Table 4: Characteristics Across Sample Types and Dataset Splits.

Sample Type Dataset Split

Characteristic Stats All Same DSP DSP & Train Val Test Test
domain cross DSM cross inPlace outPlace

Mean 14.6 143 14.6 18.6 14.0 14.4 18.6 20.4

Obliqueness (deg) Min 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1
Max 86.8 86.8 56.3 30.9 86.8 55.8 59.7 56.3

Mean | 37,512 | 36,061 40,360 37,660 | 36,903 37477 49,434 41,810

DSM area (m?) Min 982 982 11,238 14,691 982 2,394 22,344 11,238
Max | 370,686 | 370,686 370,686 60,569 | 370,686 337,931 241,607 370,686

Mean 101.92 100 107 104 101 101 111 109

Elevation (m) Min 23 23 72 74 23 24 99 72
Max 201 201 201 124 154 148 134 147

Mean 18.72 18.3 19.8 18.9 18.6 18.7 21.5 20.1

Scale (cm/pix) Min 4.1 4.1 11.3 11.9 4.1 4.8 15.9 11.3
Max 73.1 73.1 73.1 24.1 73.1 68.1 553 73.1

Mean 18,402 17,329 20,896 18,406 18,061 18,822 23,666 20,524

Query visible area (m?) Min 550 550 5,518 7,446 550 780 12,080 5,518
Max | 286,785 | 286,785 286,785 26,678 | 286,785 271,372 148,775 286,785

Mean 99.99 100.0 100.0 99.9 100.0 100.0 100.0 99.9

Covisibility (%) Min 95.7 99.4 99.6 95.7 95.7 98.7 99.9 95.7
Max 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table [4] demonstrates the diversity in our dataset. We observe varying obliqueness angles (0° to
86.8°), elevations (23m to 201m), and scales (4.1cm/pix to 73.1cm/pix) across different sample types
and splits. The covisibility remains consistently high (above 95.7%) across all samples, ensuring
quality matches between query and reference images.

The test sets feature higher average obliqueness angles and DSM areas compared to the training data,
providing more challenging evaluation scenarios. This diversity across all characteristics makes our
dataset well-suited for robust model training and evaluation across different geographical conditions.

B.2 Samples Diversity

In addition to the statistics, we illustrate the diversity of our dataset by presenting representative
samples from different environments and viewing conditions in Figure[7} We also show local meshes
for randomly picked samples from our dataset in Figure[8] These examples showcase the variability
in scene content, viewpoint, and domain characteristics that make our dataset particularly challenging
and representative of real-world conditions.

B.3 Comparison with Existing Datasets

We performed a detailed analysis of geometric consistency across recent aerial visual localization
datasets to assess the accuracy of their ground-truth poses. Our evaluation projects 3D keypoints —
extracted from high-precision DOPs and DSMs obtained from open geoportals — onto query images
using the provided camera parameters, enabling visual verification of pose quality.

As shown in Figure@ CrossLoc [68] and UAVDAL [66]] exhibit noticeable projection errors, indi-
cating pose inaccuracies. While AnyVisLoc [[72]] offers cross-domain augmentation using satellite
imagery, this data is low resolution and poorly aligned with photogrammetry-based DOPs, limiting
its suitability for realistic cross-domain experiments.

In contrast, our OrthoLoC dataset delivers superior geometric consistency with accurately projected
keypoints and well-aligned cross-domain data at resolutions comparable to official geoportal sources,
enabling reliable cross-domain localization research.

B.4 Dataset Creation Pipeline

The dataset is created by capturing data with drones, building 3D models through photogrammetry
with georeferencing, extracting data like orthophotos and elevation rasters, and pairing query images
with reference data followed by domain augmentation.
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Figure 7: Dataset Diversity Across Environments and Viewing Conditions. Our dataset spans
diverse scenes (urban, suburban, rural, industrial) and perspectives (nadir, oblique). (Rows 1-3) Same
domain for query data (query image, point map) and reference data (DOP, DSM); (Rows 4-5) DOP
domain shifts; (Rows 6-7) Combined DOP and DSM domain shiftsh

B.4.1 Data Acquisition and Processing

Data collection. Our data collection encompassed 47 locations across 19 regions in Germany
and the United States. We utilized a variety of commercial drones equipped with GPS and RTK
technology to ensure precise positioning. To facilitate robust photogrammetric reconstruction, we
implemented systematic flight paths, following established protocols in aerial mapping.

>The geodata used to increase the domain shifts are ontained from different open geoportals. 4™ row:
Geodata © Geobasis NRW, 5™ row: Geodata © HLBG, 6™ - 7 rows: Geodata © LDBV Bayern
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Figure 9: Dataset Quality Assessment. Geometric consistency evaluated by projecting 3D keypoints

onto query images or showing alignment between DOP from different sources. Our dataset shows
superior consistency with accurate projections.
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Geodata were downloaded from public geoportals, with temporal misalignment considered explicitly.
The dataset introduces time gaps of 2-8 years between geodata and UAV imagery, matching common
update cycles (2-3 years in urban areas, over 5 years in rural regions). This design provides a realistic
benchmark for developing methods robust to outdated geodata.

Georeferenced 3D scene reconstruction. At each location, we acquire N flight images I;
(1 <€ 4 < N) and begin the pipeline by georeferencing them to constrain the subsequent SfM
optimization. We leverage GPS, RTK, or manually annotate GCPs to ensure accurate alignment. We
execute a collection of SfM pipelines—including DJI Terra [20]], PixPro [63], and COLMAP [53]]
with MVS [8]—and select the best output for each scene based on bundle-adjustment reprojection
errors, GCP RTK residuals, and qualitative keypoint projections, following the procedure used in
benchmarked localization methods.

Formally, the pipeline extracts features from the images and constructs a pose graph. SfM computes
initial camera poses and a sparse point cloud P, which MVS densifies to refine poses and produce
a denser 3D representation. We triangulate using Poisson surface reconstruction [35] and apply
texturing to generate a mesh with vertices V = {P;}; and faces F.

We obtain precise 6-DoF ground-truth poses by jointly optimizing the scene geometry P, camera
extrinsics T;, and shared intrinsics K, while incorporating georeferencing constraints from three
complementary sources: (1) standard GPS for coarse positioning, (2) RTK for centimeter-level
accuracy, and (3) manually annotated GCPs for high-precision alignment. Our GCPs were carefully
selected following established best practices similar to those validated in [16]. As shown in fig.[T0}
we manually chose features with precise, visually distinctive characteristics, such as road marking
edges, ensuring optimal visibility and spatial distribution across the mapping area. The corresponding
3D coordinates were obtained from either vehicle-based Mobile Laser Scanning point clouds or
high-precision governmental geodata by sampling the DSM at these locations. These 2D-3D
correspondences are incorporated into the bundle adjustment during SfM reconstruction as follows:

T;, K, P = arg min Lreproj + AgpsLaps + AcerLacp
T K,P

Lieproj = Y _ p (7P, K, Ty) — pijlla) ,
i

®
Lgps = Z 1Ci — G773,

Loce =Y [P —PFY3.
k
Here, P; € R3 is a 3D scene point, p;; € R? is its projection in image I; through 7,(-), p(-) is a
robust cost function, C; € R? is the camera center, and CiGP S is the measured GPS or RTK position.
For ground control, P, denotes a GCP point, and chp is its reference position. Weighting factors
Agps and Agcp are tuned to balance the reliability of each data source. After optimization, the residual
GCP errors yield Root Mean Square Error (RMSE) values of 0.023 m, 0.030 m, and 0.042 min X, y,
and z, respectively, with an overall 3D RMSE of 0.051 m.

While the optimization includes radial and tangential lens distortion coefficients, these terms are omit-
ted from the equations for simplicity. The dataset provides undistorted images, allowing researchers
to focus on focal length estimation, which is the most challenging aspect of UAV camera calibration.

Rasterization and rendering. The 3D mesh reconstruction is converted into two complementary
geospatial representations: a DSM matrix RPSM and a DOP matrix RP°P. The DSM is generated by
casting rays downward from a planar grid aligned with the XY plane at the maximum elevation. Each
erid cell (7, 7) corresponds to a geographic position (z, ), and the value at RPSM (i, j) represents the
highest elevation (z-coordinate) of the mesh intersected by the ray. Cells with no intersections are
explicitly marked as invalid. The DOP is created by rendering a nadir-oriented, orthographic view of
the textured mesh with a virtual camera aligned along the negative z-axis. The resulting image is
georeferenced and resampled to align with the resolution and coordinate system of the DSM.

We also extract a sparse set S of SIFT [42] keypoints from the DOP, which are lifted to 3D coordinates
by mapping their positions to corresponding elevations in the DSM using Equation (6). These
keypoints serve as reliable landmarks for pose verification in our evaluations.
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Figure 10: Manual GCP Selection Procedure. (A) We manually establish 2D-2D correspondences
between the UAV images and a DOP (acquired from high-precision open geoportals), using visually
distinctive features such as road markings. The feature positions are extracted in at least three images
from the set of collected UAV images. (B) The elevation of the corresponding pixel is then extracted
to obtain 2D-3D correspondences.

B.4.2 Data Pairing

Selection of regions of interest. Given known camera parameters (K;, T;) for each query image
I,;, correspondences with geospatial representations are established through a precise geometric
approach. To improve computational efficiency, the query image camera is downscaled by a factor of
8, and a grid of image coordinates pj is generated for the downscaled image. For each coordinate,
ray tracing is performed through the camera using P§ = 71 (p§, Ki, Ty, d), where 771(+) is the
inverse projection function and d is the ray-mesh intersection depth.

Projected points with valid intersections (d; < oo) are filtered, and an irregular quadrilateral is fitted
to the valid points. To introduce variability, stochastic perturbations are applied to the quadrilateral

vertices as Pj, = Pj+e wheree ~ U (—20m, 20m). The perturbed 3D points P;l are then projected
onto the DOP and DSM to define corresponding 2D regions, which are used to crop rasters RPOF
and RPSM for each sample i.

To enrich data modalities, per-pixel raycasting generates point maps P; € R" >3 from which
depth maps can derived using the extrinsic parameters. Additionally, visible mesh elements (V;, F;)
and SIFT keypoints (S;) are also selected for each viewpoint, increasing the dataset’s modalities.

Data anonymization. To preserve geographic privacy while maintaining geometric relationships,
we transform each data sample into a local coordinate system. For each sample, we apply a translation
transform v; € R? defined by randomly selecting a finite 3D point from the visible scene. This
translation is consistently applied to all geometric elements:

PI-P,—v. Ri-R.  t-t+Ruv,.
DSM'=DSM — Vi, 0, =0y~ Vig, 0,=0y— Viy, 10
Vi=Vi—vi, Si=8—vi,

where P; represents 3D points in the original point cloud, V; and S; denote visible points and scene
points respectively, and v; ., v; ,, and v;  stand for the x, y, and z coordinates of vector v;.
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The camera transformation by translation is derived as follows: First, we convert the world-to-camera
pose T'; (with rotation R,; and translation t;) to its inverse camera-to-world pose Ti_1 (with rotation
R, and translation —R, t;, which represents the camera center). After shifting this camera center by
v;, we obtain a new camera-to-world pose with rotation RZT and translation —RiTti —v;. Converting
back to the world-to-camera frame yields the original rotation matrix (R,))T = R; and a new
translation vector —RT(—R;rti —v;)=t; +Rv;.

This transformation suppresses absolute georeferencing while preserving all relative geometric
relationships essential for localization evaluation. The random selection of transformation vectors
ensures that geographic coordinates cannot be reliably reconstructed from the published dataset,
protecting sensitive location information.

C Additional Experimental Details and Results

C.1 Experiment Setting

Our experiments were conducted on a cluster using a computation node equipped with an Intel(R)
Xeon(R) Gold 6254 CPU @ 3.10GHz and a single Quadro RTX 8000 GPU with 48GB memory.

For benchmarking, we evaluated algorithms using the provided model weights without fine-tuning to
assess inherent robustness. Images were resized to meet each algorithm’s requirements, with resulting
coordinates transformed back to full resolution before 3D lifting. Rotation-invariant algorithms
processed each image in four orientations, selecting the output with the largest correspondence set.

The 6-DoF pose estimation was performed using PnP [28] with LO-RANSAC [14] for outlier
rejection, applying a 5-pixel reprojection threshold for inlier selection. For algorithms providing
confidence scores, a 0.5 threshold was used to pre-filter correspondences. Optimization was restricted
to estimating focal length, assuming a fixed aspect ratio and principal point at the image center, based
on empirical validation.

C.2 Qualitative Assessment of AdHoP Performance

This section offers a detailed qualitative evaluation of the AdHOP strategy in various scenarios. While
quantitative results in the main paper highlight consistent improvements in localization accuracy,
visual analysis of reprojected keypoints provides further insights into the strengths and limitations of
the method.

The left column of Figure [TT] presents examples of challenging scenarios where AdHoP achieves
successful localization. These include cases where AdHoP reduces large initial errors to achieve
highly accurate poses with minimal reprojection error, enhances moderately accurate estimates to
near-perfect precision, and improves the spatial distribution of correspondences across the image
plane, leading to better geometric consistency.

The right column highlights instances where AdHoP struggles to deliver improvements. In some
cases, it slightly worsens performance by increasing matching errors or producing less accurate poses,
often due to correspondences with worse geometric cues. In other scenarios, the approach fails to
improve poorly initialized calibrations, as the homography-based warping introduces distortions that
prevent effective matching. These issues are typically observed under extreme domain shifts, highly
repetitive patterns, or significant discrepancies between the reference geodata and query images,
where existing matchers exhibit poor performance. Notably, the failure modes of AdHoP are captured
in the computed projection error, allowing automatic rejection of results when the reprojection error
increases.

We also present an example of warped DOP in Figure demonstrating how this transformation
significantly improves alignment between the geodata and UAV imagery by reducing domain shifts
in appearance. The most accurately warped regions correspond to planar and non-occluded areas.
However, some domain shifts persist, primarily in regions where: (1) building facades are missing in
the DOPs, (2) areas occluded in the orthographic projection, (3) regions with strong shadows, and (4)
inherent appearance differences in DOP from different capture times.

This qualitative analysis supports our quantitative results, showing that AdHoP improves accuracy in
most cases.
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Figure 11: Qualitative Results of the Localization Using Our Baseline Method. The left side
illustrates successful improvements achieved using AdHoP, while the right side presents degenerate
or failure cases. Green and red points denote projections of the 3D keypoints S; using the ground-truth
and estimated poses, respectively. The blue lines indicate the discrepancies between these projections.
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éed DOP '
Figure 12: Effectiveness of Warped DOP in Addressing Domain Shifts. Left: The original DOP
exhibits significant discrepancies with UAV imagery due to temporal changes, lighting variations,
and pronounced viewpoint differences. Middle: The warped DOP after applying the computed

transformation demonstrates substantially improved alignment with UAV imagery. Right: The
corresponding UAV query image to match.
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C.3 Camera Calibration Results

Table 5: Quantitative Calibration Results on OrthoLoC Test Sets. Rankings between matchers
are highlighted as first, second , and third . Bold values indicate the best performance comparing
without/with AdHoP. RI indicates a rotation-invariant matcher (matching performed with 4 rotated
versions, selecting the one with most correspondences). Abbreviations: SuperPoint (SP), Super-
Glue (SG), LightGlue (LG), Minima (MM).

Matcher RI| ME [px]] | RFE [%]] TE [m]] RE [°]] RPE [px]| |1m-1°[%]1 3m-3° [%]1 5m-5°[%]1 | Speed [s]]

SP+SG [191149] X 22/22 26/24 3.09/2.93 0.60/0.57 164/159 | 121 /11.1 40.0/41.2 50.7/52.7 | 0.2 /0.3
SP+LG X| 20720 1.9/1.8 2.49/2.30 0.54/0.52 152/143 |13.1 /13.1 46.1/48.1 54.6/57.1 | 0.1 /0.2
DeDoDe X | 12/12 2.5/17 3.40/2.11 0.60/0.42 17.0/12.2 53/74 17.7/21.7 21.4/250 | 0.3 /0.3
XFeat X | 257.0/60.5 | 100.0/60.1|180.53/192.47 169.09/173.66 648.8/809.0 | 0.0/0.1 0.0/1.6 0.0/25 0.1/0.3
XFeat+LG X 43/32 6.1/27 7.40/3.35 1.06/0.73 29.1/19.5 44/6.6 17.4/30.7 26.0/38.5 | 0.1 /0.3
LoFTR [57] X |317.2/308.7| 93.2/83.5 [170.00/154.66 129.88/112.92 914.2/899.4 | 04/5.0 19/142 27/155 | 0.1 /0.3
MM+LoFTR [331781] X |261.1/261.1| 86.0/54.2 | 193.17/143.00 112.46/91.81 1035.7/950.4| 0.1/5.3 09/150 16/17.2 | 0.3 /0.6
eLoFTR [65] X 1328.8/315.0| 96.0/80.7 188.04/160.78 128.66/107.91 868.8/858.1 | 0.6/5.3 1.8/16.0 2.6/17.6 | 0.1 /0.2
XoFTR X 1286.6/282.2| 91.9/71.6 | 180.41/146.27 135.07/107.65 942.8/829.1 | 0.3/4.1 1.9/126 25/145 | 0.1 /02
DKM [21] V| 49.0/28 50.5/9.3 | 131.70/32.22 108.41/4.19 818.4/114.2 | 28/12.3 124/30.0 17.5/348 | 0.8/1.7
XFeat* [48] X | 222.2/10.2 [ 100.0/52.6 | 184.95/184.39 170.90/173.72 660.9/789.9 | 0.0/0.2 0.0/2.8 0.0/4.0 0.1/02
GIM+DKM [54)21] | v 15/1.4 24/1.6 3.07/2.09 0.65/0.47 17.8/131 | 16.2/21.8 49.5/59.0 58.2/678 | 1.3/2.6
DUSt3R v 50/49 12.5/12.3 | 14.68/17.02 2.39/2.82 75.3/86.9 0.3/0.2 57/55 127/114 | 1.5/2.1
MASH3R [38] v 24/23 49739 6.10/4.72 0.95/0.79 28.7/23.3 6.0/84 31.1/380 453/51.6 | 2.2/33
RoMa V| 20.8/25 91.9/7.0 | 150.82/10.62 149.98/1.73  616.0/46.2 1.1/52 8.0/27.6 12.5/38.8 | 1.1/2.1
MM-+RoMa [33123] | v | 71.1/4.3 | 99.3/13.5| 165.60/26.39 142.71/3.70  646.2/97.7 1.1/3.3 7.1/20.7 114/30.5 | 1.1/22

Table 5] presents our full camera calibration results across different feature matching approaches, both
without and with our proposed AdHoP strategy. The integration of AdHoP significantly enhances
calibration performance across all matchers, with GIM+DKM [54} 21]] achieving the best focal length
estimation with an RFE of 1.6%. The most dramatic improvement is observed with RoMa [23]],
where translation errors are reduced from 150.82 m to 10.62 m.

Our experimental results show a strong correlation between focal length errors and translation errors,
driven by the inherent mathematical ambiguity of the perspective projection model. In the next
section, we provide a mathematical proof of the correlation between focal length and the camera
translation.

C4 Proof of Focal Length and Translation Ambiguity

We denote a 3D point as P = [X,Y, Z] " and its corresponding 2D image point as p = [p;, py] .
For simplicity, we assume that the focal lengths in the intrinsic matrix K are equal, i.e., f, = fy, = f,
which is a reasonable assumption for most modern cameras. Let rq, ro, r3 denote the three rows of
the rotation matrix R.

Using the projection model defined in Equation (T), the projection of a single 3D point onto the image
plane is expressed as:
ry- P —+ tx

11
rg'P+tZ+C$7 ( )

Pz = [
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ro - P —|— ty

—f. 2 - T 12
P=f et (12)
where r; - P represents the dot product between the i-th row of R and the 3D point P.

For the reprojection error, we use the Mean Squared Error (MSE) for this proof. Given a set of N
corresponding 2D-3D point pairs {(p;, P;)}Y ;:

N
reprOJ = Z ||pz pz||2 Z DPx,i pac z + (py,i - ﬁy,i)2) 5 (13)

where p; = [z i ﬁy’i]—r is the projection of P, using the estimated camera parameters.

For notation simplicity, let:
a; =11 -P;+t,,

biZI'Q'Pi—f—ty, (14)
ci=r3-P;+1,.

Then the projected points become:

~ a; ~ 7
pz,i:f';+cwa py,i:f'g'i'cy- (15)

% 7

The partial derivative of p, ; with respect to f is:

Oz a
= . 16
af o (16)
Similarly for p, ;:
Opy,i b
Bui 2 (17)
of  a
The partial derivative of the reprojection error with respect to f is:
0E, i . b;
repmj = N Z l: Dz.i px z : (_7,) + (py7i - py7i) : (_Cz):l
N . (18)
__2 (Poi — Do) - 2 4 ( .,A,).ﬁ
=N — Pzi — Px,i o Py,i — Py,i o
aEreproj 1

Mathematical approximation for 5 X F Near the optimal solution, the reprojection errors

(Pa,i — Ps,i) and (py ; — Py.;) become very small. To understand the relationship with f, consider that
at near-optimal parameters, we can approximate p,, ; ~ p, ; and use small perturbations J f around
the current estimate of f. The change in projected coordinates would be:

Spai = o6f - 2. (19)
For identical relative changes in focal length (%), the absolute change in projection is proportional
to f, as:

6f a;
FRCE

This means the sensitivity of the projection (and consequently the error gradient) to absolute changes
in f scales with % For larger f values, the same absolute change has less impact on the projection.
8Erepmj 1

Therefore, S T

0Pz = [- (20)
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For the translation component ¢, we compute:

aﬁx g Q;
—=—f-—. 21
=3 1)
Similarly:
Opy.i b;
yr L 22
atz f CZZ ( )

The partial derivative of the reprojection error with respect to ¢, is:

aEreproj . 2 al A @i D bi
th = N ; [(pa:,z _px,i) : <f ! CQ) + (pyﬂ _py,i) ’ (f ’ 612):|

K2

(23)

N
2f . o,
ﬁ ; |:(pw,2 - pz,i) . 6—2 + (py,i - py,i) . C2:|

% 1

Proving that f and ¢, are coupled. In aerial imagery, ¢, is typically much larger than the variations
in scene depth, so ¢; ~ ¢, for most points. With this approximation:

aEreproj _ i
ot 2

(24)

The critical insight comes from examining how f and ¢, affect the projection. Consider a simplified
projection model with ¢; ~ ¢.:

a;
ﬁx,i%f'ti"i'cx- (25)

If we simultaneously scale f by a factor « and ¢, by the same factor «, the projection remains
unchanged:

a;

Qg
+Cw:f'

+cy. (26)

This exact mathematical compensation creates a "valley" in the optimization landscape where different
combinations of f and ¢, produce nearly identical reprojection errors, making their individual values
ambiguous.

For comparison, the partial derivative with respect to ¢, is:

8151,7,' _
ot,

1
fo—. Q27
¢

Comparing these derivatives reveals the key relationships:

8-Ereproj 1 aEreproj i aﬁx,z i
aof T F o T o o (28)

Importance of data variation for robust estimation. The coupling between f and ¢, creates an
ill-posed optimization problem when 3D points lie approximately on a plane, as is common in aerial
imagery. Spatial diversity in point correspondences is crucial for breaking this ambiguity for two key
reasons:

* Depth variation: Points at different depths create different sensitivity patterns to f and t,.
When the scene contains significant depth variations, the exact compensation relationship
between f and ¢, breaks down, as the ¢; = r3 - P; +t, term varies more significantly across
points.
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* Geometric constraints: Points distributed across the image plane, especially toward the
borders, experience different projection behaviors than points clustered in the center. The
peripheral points are more sensitive to focal length changes, providing stronger constraints
during optimization.

Our AdHoP strategy specifically addresses this challenge by encouraging spatially diverse corre-
spondence distributions across the image plane. By ensuring correspondences span different image
regions with varying depths, we better constrain the parameter space and reduce the inherent focal
length-translation ambiguity, making the optimization more likely to converge to the correct parameter
values. This explains why our experimental results show significantly improved focal length and
translation estimates when using AdHOoP, as the strategy effectively breaks the mathematical coupling
that would otherwise lead to ambiguous solutions.

C.5 Domain Shift Analysis

Table 6: Quantitative Results of Localization on OrthoLoC Test Sets Across Domain Config-
urations. We evaluate matchers under three scenarios: same domain (reference and query from
identical sources), DOP cross-domain (different orthophoto sources), and DOP+DSM cross-domain
(different orthophoto and elevation model sources). For each metric, results are presented as: same
domain / DOP cross-domain / DOP+DSM cross-domain. Rankings between matchers are highlighted

as first, second , and third . Bold values indicate the best performance within each domain config-
uration group. Rl indicates a rotation-invariant matcher (matching performed with 4 rotated versions,
selecting the one with most correspondences). Abbreviations: SuperPoint (SP), SuperGlue (SG),
LightGlue (LG), Minima (MM).

Matcher RI ME [px]| TE [m]] RE [°]} RPE [px]| 1m-1° [%]1 3m-3° [%]1 5m-5° [%]1
SP+SG (194149 X 1.5/2.8/2.8 0.20/0.42/1.09 0.08 /0.16/0.52 1.6/32/92 96.2/75.4/41.5 99.3 /85.1/83.5 99.5/87.4/86.3
SP+LG [19/41 X 15/2.5/25 0.21/0.42/1.07 0.07 /0.17/0.50 1.6/3.4/9.0 94.4/71.3/42.3 98.1/80.4/80.4 98.6 /83.3/83.0

DeDoDe [22 X 12/22/21 0.33/2.89/3.45 0.13/1.18/1.56 2.6/23.3/28.1 68.5/1.8/0.7 76.2/55/4.8 79.0/6.8/6.6

XFeat [48 X | 2.6/210.4/214.9 0.23/16.43/27.62 0.09/8.68/11.88 1.9/136.0/243.8 92.8/28.8/157 94.5/425/41.4 94.7/458/44.5
XFeat+LG [48/41] | X 1.8/3.8/3.8 0.19 /0.75/1.36 0.08 /0.33/0.62 14 /58/11.4 99.1 /56.0/28.3 99.5 /67.9/67.8 99.5 /70.1/70.7
LoFTR [57 X|291.3/313.4/331.4|110.48 / 123.28 / 129.28 101.50 / 107.81/111.09 1198.5/1505.7 /1511.8| 30.4/18.3/10.5 31.5/22.0/21.4 32.6/22.4/21.8
MM+LoFTR [331[78]| X |294.3/216.6/228.6| 90.15/82.47/84.96  100.86/93.99/96.14  960.8/783.0/777.7 | 27.1/155/87 27.9/20.2/19.6 28.4/20.9/20.3
eLoFTR [65. X |285.0/330.5/334.3|102.97 / 124.06 / 127.49 96.61/106.57/107.73 1176.8/1718.6/1745.8| 33.2/19.5/11.8 35.4/228/21.8 359/23.6/23.2
XoFTR (62 X [273.2/283.4/299.7|103.26 / 114.13 / 118.62 100.65 / 108.60 / 114.40 1254.4/1268.0/1322.8| 29.5/20.1/11.8 29.7/22.4/20.7 30.0/23.0/21.8
DKM |21 v 1.1/96.9/123.0 0.20/61.30/60.74 0.08 /63.16/69.68 1.5 /518.3/526.9 65.0/33.1/19.8 66.1/40.0/37.5 66.5/40.7/38.4
XFeat* [48 X| 22/89.1/94.4 0.32/1.57/1.81 0.11/0.66/0.90 2.6/11.3/17.1 95.0/44.2/26.8 96.9/559/559 96.9/58.1/58.2
GIM+DKM [34)21] | v/ 1.0 /18/1.8 0.16 /0.48/1.10 0.05 /0.17/0.54 1.1/36/94 100.0 /70.4/45.5 100.0 /80.7/78.6 100.0 /81.7/79.5
DUSH3R [64 v 3.9/6.5/6.8 2.43/527/4.99 1.08/2.05/2.05 18.9/37.2/38.8 152/06/0.5 59.2/16.8/16.8 76.3/31.2/33.0
MASHR |38 v 1.6/3.2/32 0.25/1.05/1.48 0.10/0.44/0.66 2.0/80/125 99.4 /47.7/30.1 100.0 /70.3/70.3 100.0 /74.8/74.0
RoMa [23 v 1.1/56/5.1 0.18 /1.59/1.84 0.07 /0.60/0.92 14 /11.7/16.5 78.7/46.2/29.5 79.0/558/557 79.0/58.3/589
MM-+RoMa 331231 [ v | 1.1 /28.3/33.2 0.20/3.24/4.57 0.07 /1.44/2.24 1.5 /35.1/46.8 72.1/39.2/23.0 72.4/49.1/47.5 72.4/51.5/50.2

Table [6] presents the quantitative localization results using our baseline with AdHoP, incorporating
reference data from different domains.

For same-domain scenarios, the majority of the models reach high performance (except semi-dense
matchers and Dust3R [64]] with recall Im-1° below 50%). GIM+DKM [54} 21] and Mast3R [38]]
demonstrate particularly high accuracy in these conditions with recall 1m-1° 100% and 99.4%,
respectively.

When employing DOPs from visually distinct domains, the increased appearance gap between query
and reference data leads to noticeable performance degradation. The extent of this degradation varies
significantly across matching algorithms, with some exhibiting greater robustness to appearance
changes than others. Even the best performing GIM+DKM [54, 21]] degrades by 29.6% in cross-
domain scenarios. DeDoDe [22] is very sensitive to domain shifts, with recall 1m-1° dropping
drastically from 68.5% to 1.8%. Dust3R [64]], on the other hand, struggles across all domains,
highlighting its limitations in aerial views.

Further increasing the domain shift by additionally incorporating DSMs from different sources
generally degrades performance, highlighting the importance of geometry cues for pose estimation.
Some algorithms degrade strongly as they find matches primarily on edges or object boundaries
where DSMs differ significantly between sources, while others show more resilience by matching
features in geometrically stable regions where elevation remains consistent across different DSM
sources. An example of performance degradation is illustrated in Figure[13]
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Figure 13: Example of Domain Shift Impact When Using GIM+DKM [54] and AdHoP. No shift
(left), DOP shift (middle), DOP+DSM shifts (right). Top: colored point clouds (created using DSM
with colors from DOP); Bottom: reprojections with green (ground-truth), red (estimated) points and
blue discrepancy lines indicating reprojection errros.
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Figure 14: Resolution Impact on Localization: Performance of GIM+DKM (54, 21] + AdHoP
across varying raster and query image resolutions.

C.6 Resolution Analysis

We evaluate how raster resolution affects our lightweight localization system, an important factor for
storage-constrained UAV platforms. Additionally, we analyze the effects of query image resolution
on matching performance, with results shown in Figure [T4]

Our findings indicate that localization performance remains robust down to 512px raster resolution,
with noticeable degradation only at lower resolutions. At 256px, translation error increases by 44%
and rotation error by 33% compared to the highest resolution. This suggests that significant storage
savings can be achieved with minimal performance impact by using moderately reduced resolution
reference data.

Query image resolution shows similar patterns, maintaining adequate performance down to 512px
before exhibiting significant degradation. The balance between computational efficiency and localiza-
tion accuracy becomes particularly important for onboard processing in real-time UAV applications.

C.7 Covisibility Analysis

To assess algorithm robustness in real-world scenarios where perfect image retrieval cannot be
guaranteed, we systematically reduce the covisibility ratio between query and reference images
by cropping the reference raster. Our experiments reveal that having only a subset of potential
correspondences significantly degrades performance, as shown in Figure[T3]
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Figure 15: Covisibility Ratio Impact:

across different covisibility ratios.

Localization performance of GIM+DKM [54] 21] + AdHoP

When the covisibility ratio drops below 20%, we observe a sharp increase in both translation and
rotation errors. This degradation occurs because the distribution of matched points becomes non-
uniform across the image. This non-uniformity causes PnP to overfit to specific image regions,
creating an underdetermined problem that compromises localization accuracy.

Figure[I6]demonstrates how the same query image produces different localization results depending
on whether the reference points are well-distributed or concentrated in a particular area of the image.
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Figure 16: Covisibility Comparison in Localization Setup. (left) 20% coverage, (middle) 50%
coverage, (right) full coverage. The top row shows query-raster covisibility, while the bottom row
displays reprojection of the keypoints S; using the estimated pose. Note how the distribution of points
significantly affects the quality of calibration.

These findings have important implications for real-world applications, suggesting that image retrieval
systems should prioritize maximizing overlap between query and reference images.

C.8 Utilizing Multi-Modal Data for Ground-Truth Geometry-Aware Correspondences

Our dataset enables computing geometry-aware confidences that can guide network training. We
show that filtering correspondences based purely on geometric constraints, using ground-truth data,
provides perfect pose estimation.
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Geometry-aware confidences computation. Given the 3D point maps and DSM in our dataset,
we establish ground-truth correspondences with associated confidence values. For each pixel p! in
the query image I, we:

1. Backproject it to a 3D point P; using the perspective camera model and the point map.
2. Project P; onto the DSM plane using the orthographic projection model.

This process, illustrated in Figure[6] reveals a fundamental limitation in perspective-to-orthographic
projection with 2.5D geodata. Unlike full 3D meshes where visible points have one-to-one corre-
spondence with 3D space, raster geodata creates a many-to-one mapping. When ray-casting from the
perspective view, multiple points (p? and p’j’ ) can map to the same orthographic position (p7 = p]

because 2.5D representations store only a single height value per (z,y) coordinate. As shown in
Figure [6] points along vertical structures (like building facades) in the perspective view map to
identical locations in the orthographic view, creating ambiguous correspondences. To address this
ambiguity, we introduce a geometry-aware confidence measure «; for each correspondence using:

a; = exp(—7y - d;), (29)
P, =n"'(p)), (30)
di = |[P; — 7w, (76 (Py)) 12, (31)

where 7 1 is the perspective back-projection, 7, is the orthographic projection, 7, ! is the ortho-
graphic back-projection (which assigns the DSM height to the 2D coordinates), and =y is a scaling
parameter (we set it to 1). Note that the composition 7 Lo, is not an identity due to the dimensional
reduction in orthographic projection, as illustrated in Figure 0]

C.9 Are 2.5D Rasters Sufficient for Accurate Localization?

To understand the practical potential of commonly available 2.5D geodata for UAV localization, we
investigate how geometric ambiguities affect pose estimation accuracy and whether simple filtering
strategies can overcome these challenges.

Table [/| summarizes the localization results achieved using ground-truth correspondences with
geometry-aware confidences. Different thresholds 7 are used to filter points.

Table 7: Quantitative Results of Localization on OrthoLoC Test Sets (Same Domain) Using
Ground-Truth Matchings.

Filtering Condition | TE [m]] RE [°]] RPE [px]]|1m-1° [%]1 3m-3° [%]1 5m-5° [%]1
a; > 0.0 0.03 0.00 0.2 100.0 100.0 100.0
a; > 0.5 0.03 0.01 0.2 100.0 100.0 100.0
a; > 0.95 0.00 0.00 0.0 100.0 100.0 100.0
a; > 0.99 0.00 0.00 0.0 100.0 100.0 100.0

In the unrestricted 2.5D case (a; > 0.0), all valid points from the 2.5D DSM are used, including those
from vertical structures or occluded areas. This approach introduces minor errors, due to ambiguities
in the many-to-one mapping of vertical structures. As 7 increases, filtering progressively excludes
ambiguous points, improving data purity. At higher thresholds (e.g., o; > 0.95), the mapping
becomes close to a one-to-one relationship, and pose estimation achieves perfect localization with no
observable errors.

These findings demonstrate the sufficiency of 2.5D orthographic geodata for accurate UAV localiza-
tion when paired with robust geometric filtering. By carefully selecting 7, 2.5D geodata can achieve
performance levels comparable to full 3D representations, motivating further research into leveraging
2.5D geodata capabilities.
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