Generative Autoencoding of Dropout Patterns

Shunta Maeda '

Abstract

We propose a generative model termed Decipher-
ing Autoencoders. In this model, we assign
a unique random dropout pattern to each data
point in the training dataset and then train an au-
toencoder to reconstruct the corresponding data
point using this pattern as information to be en-
coded. Even if a completely random dropout
pattern is assigned to each data point regardless
of their similarities, a sufficiently large encoder
can smoothly map them to a low-dimensional
latent space to reconstruct individual training
data points. During inference, using a dropout
pattern different from those used during train-
ing allows the model to function as a genera-
tor. Since the training of Deciphering Autoen-
coders relies solely on reconstruction error, it
offers more stable training compared to other
generative models. Despite their simplicity, De-
ciphering Autoencoders show sampling quality
comparable to DCGAN on the CIFAR-10 dataset.
Code: https://github.com/shuntama/
deciphering—autoencoders

1. Introduction

Recent advancements in generative image models have pri-
marily focused on decomposing the generative process into
incremental steps (Ho et al., 2020; Delbracio & Milanfar,
2023). While highly effective, this approach is not with-
out its challenges. Iterative models can result in extended
computation times and increased sensitivity to hyperparam-
eters, complicating the training process. Although models
like Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoders offer single-step
inferences as potential alternatives, they too encounter is-
sues of training instability. Such instability can hinder scal-
ability, which is essential for the success of deep learning
models. Against this backdrop, our study explores simple

“Equal contribution 'Uchr Technology, Tokyo, Japan. Corre-
spondence to: Shunta Maeda <shunta@uchrtech.com>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

autoencoders (Vincent et al., 2008; Bengio et al., 2013),
with the aim of highlighting and advancing stable, scalable
single-step generative models.

Variational Autoencoders (VAEs) (Kingma & Welling,
2013) are generative models that can directly sample from a
decoder. By assuming a prior distribution for training in the
latent space, VAEs can generate new samples by drawing
from this distribution. VAEs offer more stable training than
GANSs and enable faster sampling than other generative mod-
els, such as autoregressive and diffusion models. However,
the constraints imposed on the latent space can compromise
the quality of the generated samples. Furthermore, balanc-
ing the reconstruction error and the KL divergence term
during training can be a practical challenge, often requiring
specific adjustments to avoid issues like over-regularization
and posterior collapse (Van Den Oord et al., 2017).

Regularized Autoencoders (RAEs) (Ghosh et al., 2019) have
been proposed to address these inherent issues in VAEs.
They do not use the KL divergence term but instead in-
troduce a regularization term to prevent overfitting while
preserving smoothness in the latent space. However, due
to the lack of control over the learned latent space distribu-
tion, RAEs require a posterior density estimation step for
sampling.

In this paper, we propose a deterministic generative autoen-
coding framework named Deciphering Autoencoders that
does not require assumptions about the latent space distri-
bution nor posterior density estimation. Our approach com-
mences by assigning a unique, randomly generated pattern
to each data point in the training dataset (ciphering). This
pattern is then encoded using an encoder-decoder network
to reconstruct the corresponding data point (deciphering).
The objective function relies solely on the reconstruction
error, promoting highly stable training. For sampling, we
generate new random patterns from the distribution used
during training. These patterns are then encoded to produce
fresh samples. We have observed that utilizing dropout pat-
terns as random patterns for encoding enhances the model’s
training. Additionally, we propose a structural implicit
regularization technique to mitigate overfitting. Decipher-
ing Autoencoders exhibit sampling quality comparable to
that of DCGAN (Radford et al., 2015) on the CIFAR-10
dataset (Krizhevsky et al., 2009).

https://github.com/shuntama/deciphering-autoencoders
https://github.com/shuntama/deciphering-autoencoders

Submission and Formatting Instructions for ICML 2024

Latent

O
O
O
O
O
O
O

Figure 1. Conceptual diagram of the encoder in Deciphering Au-
toencoders.

2. Deciphering Autoencoders

Our first step involves generating unique random patterns
{2}, € Z corresponding to each element of our training
dataset {x;}YY,; € X. This process results in forming a
pair of datasets {(z;, 2;)}~;. Here, z; is an image with
dimensions 3 x h x w. The random patterns z; can be any
that can be encoded by the encoder network. The whole of
encoder-decoder network as generator gg : Z — X learns
the parameters 6 by minimizing a following reconstruction
error

1 N
~ 2 Ao (=), z2). (1)
=1

In this study, we employed LPIPS (Learned Perceptual Im-
age Patch Similarity) metric (Zhang et al., 2018) as the
distance measure !. Sampling is performed by generating
new random patterns from the same distribution used during
training and inputting these into the model. We will refer
to this model as Deciphering Autoencoders. This frame-
work can be conceptualized as ciphering each z; into z;,
and subsequently deciphering z; to reconstruct z; through
the training.

Configuration of z; We integrated channel-wise dropout
layers after each encoder hierarchy and adopted this dropout
patterns unique to each x; as z;. Figure 1 presents a concep-
tual diagram of the encoder in Deciphering Autoencoders.
In the diagram, only the channels indicated in red are ac-
tivated, and the pattern of these activated channels is as-
signed as unique to each data point. By utilizing an encoder
with sufficiently large parameters, we anticipate that ran-

'While it is feasible to use MSE as the distance function for
training, it results in blurry generated images. Therefore, we
adopted LPIPS to improve image quality.

dom activation patterns can be smoothly organized in a
low-dimensional latent space.

Regularization To enhance the quality of the generated
samples, we have introduced a geometric regularization
technique. The proposed geometric regularization involves
applying a geometric transformation 7 to x; using random
transformation parameters 7. Subsequently, we input both
r and z; into the model to decode the transformed z;. As a
result, Equation 1 is updated as follows:

N

1

i Z d(go(zi,r), T (z4,71)). 2)
i=1

In this study, we employed horizontal spatial shift as the
chosen geometric transformation. Through this regulariza-
tion approach, we anticipate the encoder to encode more
abstract features of the images that are independent of their
spatial positions. Additionally, apart from the geometric
regularization, we also apply regularization through the use
of a high learning rate and substantial weight decay during
the optimization process.

Model architecture We employed an encoder-decoder
network that incorporates residual blocks (He et al., 2016)
with batch normalization (Ioffe & Szegedy, 2015). In the
decoder, group convolution is utilized as needed to reduce
the number of parameters 2. The spatial shift information of
the geometric regularization is processed by a Multi-Layer
Perceptron (MLP) and is then input to the decoder alongside
the latent variables. We emphasize that the number of active
layers in the channel-wise dropout used as z; is not deter-
mined stochastically; instead, it is configured so that a fixed
number of channels are active in each layer. In this work, the
number of channels in each hierarchy of the encoder is 128,
256, and 512, and the number of active channels that are not
suppressed by the channel-wise dropout is set to 1, 4, and 16,
respectively. With this configuration, the possible number
of z; patterns is (') x (*3°) x (°F) ~ 1.88 x 10%°, which
is sufficiently large compared to the size of the training
dataset.

3. Results

Implementation To train the model, we employed the
AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 2e-3 and a batch size of 256 for a total
of 1000 epochs. During this training process, weight decay

>To smoothly map random activation patterns to a low-
dimensional latent space, the encoder requires a sufficiently large
number of parameters. However, to avoid overfitting, the num-
ber of parameters in the decoder should be kept to a necessary
minimum.

Submission and Formatting Instructions for ICML 2024

Figure 2. Randomly generated CIFAR-10 results.

Table 1. Quantitative results for CIFAR-10 train and test dataset.

FID () IS(D
train 39.02 6.84
test 42.73 6.77

was linearly warmed up from 0.0 to 0.08 over initial 400
epochs. Notably, only the MLP module, which takes the
shift amount for geometric regularization as input, had a
lower learning rate set to 2e-4. The maximum shift amount
for geometric regularization was limited to 8 pixels. After
the initial 1000 epochs of training, geometric regularization
was disabled, and training was extended for an additional
2000 epochs. Model evaluation was performed using model
weights with an exponential moving average at a decay
rate of 0.99995. The implementation was carried out using
PyTorch (Paszke et al., 2019), and all experiments were
conducted on a single NVIDIA A4000 GPU. The complete
model training process required approximately 30 hours. It
is worth noting that batch normalization layers were inserted
after all convolution and transposed convolution layers ex-
cept for the final layer of the network, and these batch nor-
malization layers were essential for the successful training
of the model.

CIFAR-10 Table 1 presents the results of unconditional
generation using Deciphering Autoencoders trained on
CIFAR-10. The evaluation metrics utilized are the Frechet
Inception Distance (FID) (Heusel et al., 2017) and Incep-
tion Score (IS) (Salimans et al., 2016) 3. The performance

3We calculated FID using pytorch-fid (https://github.

com/mseitzer/pytorch-£fid) and IS using torch-fidelity
(https://github.com/toshas/torch-fidelity).

Table 2. Quantitative results for CIFAR-10 train and test dataset.

number of clusters FID (}) IS (1)
1 (w/o clustering) 48.72 5.96
8 42.83 6.34
16 45.88 6.36
32 44.15 6.63
64 44.39 6.58

achieved by Deciphering Autoencoders is comparable to
that of DCGAN. Figure 2 showcases randomly generated
images.

In the formulation described in Section 2, completely ran-
dom dropout patterns are assigned to each data point. Inter-
estingly, we observed a slight improvement in performance
when the training data were pre-clustered. Clustering infor-
mation was conveyed to the model by selectively activating
channels in the first dropout layer of the encoder. We em-
ployed the k-means method for clustering. Table 2 presents
the relationship between the number of clusters and model
performance *. Performance improves as the number of
clusters increases up to 32, but no further improvement is
observed beyond that. Notably, in other experiments within
this paper, the number of clusters is consistently set to 32.

Finally, we conducted training without employing geometric
regularization to assess its effect. The results yielded FID =
47.69 and IS = 6.12, indicating a decrease in performance
compared to when geometric regularization was employed
(FID = 42.73, IS = 6.77).

*For this experiment, we conducted training for only 1000
epochs without extending fine-tuning.

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://github.com/toshas/torch-fidelity

Submission and Formatting Instructions for ICML 2024

HeOnJaHE
=0 »BAF: 5
ﬂﬂlﬁ

y

B0 avm

]
[

@

o [P) S6 ol |- [of

(b) Randomly generated samples
Figure 3. Qualitative analysis on CelebA dataset.

CelebA To verify the generalizability of the proposed
method, we conducted experiments using the CelebA
dataset (Liu et al., 2015). We utilized 162,770 images from
the CelebA training set. As a preprocessing step, we cropped
the central 160 x 160 pixels of each image and resized them
to 32 x 32 pixels. Additionally, we modified some training
conditions to suit the dataset: latent dimension was set to
256, and image shift to 0. Figure 3 shows the results after
650 epochs of training 7. Here, we present only qualitative
results. These results demonstrate that our proposed method

>We trained the model with a learning rate of 2e-3 for 500
epochs, then reduced the learning rate by a factor of 10 for 100
epochs, and again by another factor of 10 for the final 50 epochs. In
the case of CIFAR-10, lowering the learning rate led to overfitting,
whereas no such issue was observed with CelebA.

is effective even for datasets with different domains and data
sizes.

4. Related Works

Ghosh et al. (Ghosh et al., 2019) proposed that VAEs could
be viewed as Autoencoders with Gaussian noise added to
the decoder input. They suggested that this concept could be
substituted with decoder regularization and, consequently,
introduced a simpler deterministic framework called Reg-
ularized Autoencoders. However, this model sacrifices the
ability to sample from its prior distribution. To address this
limitation, they incorporated an ex-post density estimation
step for generating new sample.

Saseendran et al. (Saseendran et al., 2021) extended the
work of Ghosh et al. (Ghosh et al., 2019) by introducing a
deterministic regularization scheme that efficiently shapes
the latent space of the model during training. As a result,
the latent distribution is guided toward an expressive prede-
termined prior, eliminating the need for an ex-post density
estimation step.

Bojanowski et al. (Bojanowski et al., 2017) proposed Gen-
erative Latent Optimization (GLO), a framework to train
generators only with simple reconstruction losses. In this
framework, a set of random vectors is prepared to be paired
with a set of training images. The initialized random vectors
are jointly optimized with the generator to be modified into
the proper vectors for each image. Unlike GLO, in Deci-
phering Autoencoders, a random dropout pattern is used to
represent each data point, and these patterns remain con-
stant throughout the training. The encoder takes over the
optimization of the latent space.

5. Conclusion

Deciphering Autoencoders is a deterministic generative au-
toencoding framework that provides stable training solely
based on a reconstruction error. Despite its simplicity, it
demonstrates image generation performance comparable
to the initially proposed GANs. Notably, the theoretical
understanding of why Deciphering Autoencoders functions
effectively as a generative model remains unclear, and the
exploration of the training protocol and model structure
is still insufficient. Addressing these improvements and
achieving theoretical clarifications will be a challenge for
future research.

References

Bengio, Y., Yao, L., Alain, G., and Vincent, P. Generalized
denoising auto-encoders as generative models. NeurIPS,
2013.

Submission and Formatting Instructions for ICML 2024

Bojanowski, P., Joulin, A., Lopez-Paz, D., and Szlam, A.
Optimizing the latent space of generative networks. arXiv
preprint arXiv:1707.05776, 2017.

Delbracio, M. and Milanfar, P. Inversion by direct iteration:
An alternative to denoising diffusion for image restoration.
arXiv preprint arXiv:2303.11435, 2023.

Ghosh, P, Sajjadi, M. S., Vergari, A., Black, M., and
Scholkopf, B. From variational to deterministic autoen-
coders. arXiv preprint arXiv:1903.12436, 2019.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. NeurIPS, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. NeurIPS, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. NeurIPS, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Liu, Z., Luo, P, Wang, X., and Tang, X. Deep learning face
attributes in the wild. In ICCV, 2015.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 2019.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. NeurlPS, 2016.

Saseendran, A., Skubch, K., Falkner, S., and Keuper, M.
Shape your space: A gaussian mixture regularization
approach to deterministic autoencoders. NeurIPS, 2021.

Van Den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. NeurIPS, 2017.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In ICML, 2008.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, 2018.

