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Abstract

Scientific question answering (SQA) is an
important task aimed at answering questions
based on papers. However, current SQA
datasets have limited reasoning types and ne-
glect the relevance between tables and text,
creating a significant gap with real scenarios.
To address these challenges, we propose a QA
benchmark for scientific tables and text with
diverse reasoning types (SCITAT). To cover
more reasoning types, we summarize various
reasoning types from real-world questions. To
reason on both tables and text, we require the
questions to incorporate tables and text as much
as possible. Based on SCITAT, we propose a
baseline (CAR), which combines various rea-
soning methods to address different reasoning
types and process tables and text at the same
time. CAR brings average improvements of
4.1% over other baselines on SCITAT, validat-
ing its effectiveness. Error analysis reveals the
challenges of SCITAT, such as complex numer-
ical calculations and domain knowledge.

1 Introduction

Scientific Question Answering (SQA) plays a cru-
cial role in addressing research questions based on
scientific papers (Tsatsaronis et al., 2015; Lee et al.,
2023). Advancing SQA development can signif-
icantly accelerate knowledge acquisition (Taylor
et al., 2022; Al4Science and Quantum, 2023). The
dense technical terms and heterogeneous data repre-
sentations in papers present challenges for the SQA
task (Sun et al., 2024; Pramanick et al., 2024).

To evaluate and enhance the model capabilities
in SQA, numerous datasets are proposed (Pam-
pari et al., 2018; Jin et al., 2019; Pappas et al.,
2020). However, existing datasets exhibit the fol-
lowing limitations, as shown in Table 1. Firstly,
the reasoning types are relatively narrow, failing
to capture the complexity of real scenarios, such
as data analysis, which is frequently encountered
in actual queries (Moosavi et al., 2021). Secondly,

Reasoning Type Evidence
Dataset  y""N""D T  Text Table TaT
BioRead | @ v
QASA > & Q v
SciGen (* ) v
SciTab > 9 v
SPIQA |0 @ v v
SCITAT | @ ®© © @ v v v

Table 1: Comparison of SCITAT to recent SQA datasets,
introduced in Appendix A.l1. TaT denotes Table and
Text. L, N, D, and T denote the reasoning type of Look
Up, Numerical Reasoning, Data Analysis, and Tabula-
tion, with examples in Figure 1. Pie charts represent the
proportion of subtypes compared with SCITAT.

prior works focus only on split text and tables,
overlooking the relevance between tables and text,
thereby limiting their applicability (Wang et al.,
2022). To address the limitations, in this paper:
(i) We introduce a new SQA benchmark, covering
diverse real-scenery reasoning types and consider-
ing tables and text simultaneously. (ii) To enhance
the performance on the benchmark, we propose
a baseline, which can handle multiple reasoning
types and process tables and text simultaneously.

Firstly, we propose a QA benchmark for scien-
tific tables and text (SCITAT), which are collected
from papers in arXiv.org. To incorporate more
reasoning types, we summarize various reasoning
types from the real questions raised by researchers
(see Figure 1). To ensure the questions require
reasoning on both tables and text, we require
questions to involve tables and text as much as
possible. Overall, SCITAT contains 953 questions
derived from 871 papers. Data analysis reveals that
SCITAT encompasses 4 reasoning types and 13
subtypes, covering the types summarized from the
real questions in SparkRA (Wu et al., 2024a) and
previous works (Lu et al., 2023; Wu et al., 2024b).
SCITAT not only requires the model to look up
information and numerical reasoning but also re-
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Figure 1: Illustrations of the reasoning types in SCITAT. The tables and text (left) show color-coded spans for
question context. The questions (right) are examples of 4 reasoning types, with their rationales and answers.

quires complex data analysis and tabulation, effec-
tively meeting the needs of real-world researchers.

Considering the challenges of SCITAT, we pro-
pose a baseline to process scientific data by integrat-
ing reasoning methods (CAR). To handle multiple
reasoning types, CAR includes two modules: Cal-
culator and Reasoner. To process tables and text,
Calculator extracts and calculates numerical infor-
mation from tables and text, which is then provided
to Reasoner for further reasoning.

We construct a series of baselines on SCITAT.
Experimental results reveal that CAR outperforms
other baselines with 4.1% on average, proving the
effectiveness of the combination of Calculator and
Reasoner. However, the Exact Match of CAR us-
ing gpt-4o is still below 50%, which indicates that
SCITAT serves as a challenging benchmark. Error
analysis reveals the main challenges of SCITAT,
such as context grounding, complex numerical cal-
culation, and the need for domain knowledge.

Our contributions are as follows:

1. To the best of our knowledge, we develop
SCITAT, the first QA benchmark for scientific
tables and text, covering diverse reasoning
types based on real scenarios.

2. We propose CAR, a baseline to solve various
reasoning types and process tables and text by
integrating reasoning methods.

3. We conduct a series of experiments, provid-
ing results and error analysis to highlight the
challenges of SCITAT, thereby guiding the
direction for future improvements.

2 SCITAT Dataset

The input for our task consists of scientific tables,
text, and a question, and the output is the answer.
Moreover, we annotate the rationale of each ques-
tion. For brevity, we refer to each question, its cor-
responding rationale, and answer, as an instance.
We begin by describing the construction process
of SCITAT. We employ a framework combining
automatic generation with manual annotation to
enhance both the quality and efficiency of the an-
notation process, as illustrated in Figure 2.

2.1 Paper Preparation

Source Data Collection We select papers from
the “Artificial Intelligence”, “Computation and
Language”, and “Machine Learning” subfields of
“Computer Science” following previous datasets
(Lee et al., 2023; Moosavi et al., 2021; Lu et al.,
2023). We collect LaTeX code from papers pub-
lished between January 2020 and July 2023 on
arxiv.org', using a heuristic method to extract all
the tables with their corresponding captions and
labels, and text in each paper.

Tables and Text Selection To ensure the inclu-
sion of both tables and text, we filter out papers
without tables. Additionally, to guarantee the rel-
evance of the tables and text in the context, the
context we provide when annotating the question
is a paragraph that mentions tables and the tables
mentioned. Specifically, we randomly select at
least one paragraph from the paper that mentions
tables and the mentioned tables as the context.

"https://info.arxiv.org/help/bulk_data/index.html
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Figure 2: The overview of our annotation process. The blue boxes represent the data and the white boxes with solid

lines represent the annotation procedures.

The requirements for generating questions

1. The question must meet the reasoning type.

2. The question is best answered by referring to both the tables and the text simultaneously.
3. The question should be with more reasoning and calculation.

Figure 3: The requirements for generating questions.

2.2 Initial Generation

Reasoning Type Design To observe the reason-
ing types that researchers might query, we select
SParkRA (Wu et al., 2024a), a platform specifically
designed to provide QA services for researchers in
the context of scientific papers. We hypothesize
that the reasoning types observed in these ques-
tions are comparable to those found in real-world
inquiries. We randomly select 650 questions and
categorize their reasoning types. To account for
potentially unobserved reasoning types, we also
incorporate reasoning types from previous datasets
(Lu et al., 2023; Wu et al., 2024b). Finally, we
summarize 4 reasoning types and 13 subtypes for
SCITAT, as shown in Table 2.

Question and Answer Generation We assign a
reasoning type to each context, including a para-
graph and mentioned tables. Manually annotating
scientific questions and answers is time-consuming
and prone to introducing annotation artifacts since
it requires substantial domain expertise and a deep
understanding of the paper (Bender and Friedman,
2018; Pramanick et al., 2024). To address these
challenges, we leverage the extensive knowledge
and powerful instruction-following capabilities of
gpt-40 (OpenAl et al., 2024) following previous
works (Zhang et al., 2023, 2024; Yu et al., 2025).
We guide the LLM to generate questions aligned
with the reasoning type based on the context using
three-shot prompt, with requirements outlined in
Figure 3. We guide the LLM to generate the ratio-
nale and answer for each question according to the

context with a three-shot prompt. Detailed prompts
are provided in Appendix B.1.

2.3 Human Refinement

Since LLMs cannot guarantee the reasonableness
of the questions or the correctness of the answers,
we employ manual checks and refinement. (i) For
the context, annotators are tasked with verifying
that the extracted tables and text are consistent with
the original paper and removing any incorrect ones.
(if) For the questions, annotators should refine them
following the guidelines in Figure 3. (iii) For the
rationales and answers, annotators are required to
verify their correctness and correct any errors. Due
to the diverse reasoning types in SCITAT, our an-
swers include both short-form and free-form types.
Annotators are instructed to extract one or more
tokens for short-form answers and use complete
sentences for free-form answers. (iv) For the an-
swer source, annotators are prompted to select the
source of the answer, which may include Text, Ta-
ble, or Table and Text, and identify the relevant ta-
bles. Annotators are compensated $1 per instance.

2.4 Quality Control

To ensure the quality of SCITAT, we implement
rigorous quality control strategies.

Competent Annotators The annotators we em-
ploy are all graduate students majoring in artificial
intelligence. Initially, they undergo annotation
training sessions to learn the task and the annota-
tion interface (see Appendix C.1) and are required
to annotate 20 questions. We retain those with



Reasoning Type Subtypes Description %
Look U Table Look Up Search for specific tables 2.7
P Span Look Up Search for spans in tables or paragraphs 2.0
Arithmetic Calculation Numerical calculations 11.1

Comparison Comparison of values 8.2

. . Aggregation Combines multiple data points into a single metric 3.9
Numerical Reasoning Ranking Arranges items in a specific order 7.0
Counting Counting occurrences 9.2

Domain Knowledge Calculation  Calculations requiring domain knowledge 6.5
Descriptive Analysis Summarize or interpret to spot patterns and trends ~ 23.3

Data Analysis Anomaly Detection Detect deviations and their causes 7.0
Causal Analysis Investigate cause-and-effect relationships 10.6

Tabulation - Standardizing the formats of tables/subtables 8.4

Table 2: The reasoning types, the description of their subtypes, and their proportion in SCITAT. Look Up, Numerical
Reasoning, Data Analysis, and Tabulation account for 4.7%, 46.0%, 40.9%, and 8.4% respectively.

Statistics Long-context  Short-context
Questions 953 953
Papers 871 871

Avg. Tables 5.2 1.1

Avg. Cells 60.8 56.6
Avg. Paragraphs 80.2 1.0

Avg. [Paragraphl 83.4 113.0

Table 3: The statistics of SCITAT. Avg. Tables and Avg.
Cells indicate the average number of tables and cells per
table. Avg. Paragraphs and Avg. |[Paragraphl indicate the
average number of paragraphs and the average length
of each paragraph.

Statistics Table Text TaT Total
Short-form answers 234 13 93 340
Free-form answers 308 67 238 613
Total 542 80 331 953

Table 4: Question distribution over different answers
and sources in SCITAT.

Exact Match > 95% and provide constructive feed-
back on their mistakes. Detailed annotation infor-
mation is provided in Appendix C.2.

Two-round Validation After the instances are
submitted by the annotator, a two-round validation
is implemented, consisting of manual verification
and revision, following the previous work (Zhu
et al., 2021). (i) In the first round, a verifier exam-
ines each instance to ensure that the annotations
adhere to the guidelines. If errors are found, the
verifier communicates with the annotator and re-
quests the corresponding corrections. (ii) In the
second round, a different annotator reviews the in-
stances again. Any identified errors are discussed
with the verifier annotator and revised as needed.

2.5 Data Analysis

Basic Statistics To better evaluate the reasoning
ability across different context lengths, we con-
struct two settings: long-context and short-context.
In the long-context setting, the model should an-
swer questions based on the whole paper. In the
short-context setting, the model is required to an-
swer questions based on a paragraph and the tables
referenced in that paragraph. We present the statis-
tics of SCITAT in the two settings in Table 3. We
also show the question distribution over different
answers and sources in Table 4. Notably, over 1/3
of the questions in SCITAT require reasoning that
involves both tables and text simultaneously.

Reasoning Types We analyze the distribution of
reasoning types in SCITAT, as shown in Table 2. It
can be found that SCITAT has a variety of reason-
ing types evenly distributed. Among these types,
Data Analysis and Tabulation are identified as com-
mon patterns based on observations of real queries
and are rarely represented in existing datasets.

3 CAR

CAR is designed to address the questions on the
context of scientific tables and text. Given that SC-
ITAT combines diverse reasoning types, CAR is
composed into two modules: Calculator and Rea-
soner, as illustrated in Figure 4, which focus on
different reasoning types. To process tables and
text simultaneously, Calculator extracts and com-
putes the numerical information from the context
and Reasoner derives the final answer based on the
calculated information. The prompts we use are
presented in Appendix B.2.



iTables 2 and 3 compare with prior works. Pre-trained embeddings used are

iindicated as XLnet-largeX (Yang et al., 2019), BERT base® and large® (Devlin et al..i

12019), , Graph Recategorization, which can utilize an external entity recognizer

:(Lyu and Titov, 2018; Zhang et al., 2019) as (G.R.) and a* indicates the Naseem et E

1al. (2019) oracle.

iTabIzs: !

| Model UAS LAS Model AMR1.0 AMR2.0

' Mrini et al.(2019)* 97.3 96.3 Cai and Lam (2020) 75.4 80.2
(GR)

i c)Stack-Transform !

L er 96.240.1 94.70.0 c)Stack-Transformer 75.4+0.0 79.00.1 !

Table 2: Test-set performance prior art on

\ the English Penn-Treebank. AMR1.0 and AMR2.0 in terms of Smatch.

\Question:

\Compare the performance of Stack-Transformer on the Penn-Treebank and AMR

\datasets with previous studies, and analyze the reasons for differences.

_______________________________________________________________

Table 3: Test-set performance and prior art on

(
11. Calculator:

! |
! Instruction: Read the Tables and Text, then write program to |
0 - ! i
YN complete the calculation in Question. You must return a |
' complete sentence. |

! Program: i
! def compare_performance(): H

! return "Stack-Transformer is {uas} UAS and {las} LAS ..."

i2. Reasoner:
:

! Instruction: Based on the Tables and Text with the
information, answer Question. Determine whether the |
information are correct and use it reasonably.

O

m
! Answer: The information provide ... Stack-Transformer is
! @ more competitive on AMR, likely due to the higher complexity
'~ ofthe task. |

Figure 4: The overview of CAR, which consists of two modules: (i) Calculator generates code to compute the
numerical information required for solving the question. (if) Reasoner continues the reasoning process based on the
information provided by the Calculator to answer the question.

3.1 Calculator

The input to the Calculator consists of a question
and the scientific context (including tables and text),
and the output provides the numerical information
necessary to answer the question. Specifically, we
prompt the LLM to generate a program function
based on the context to answer the question. Unlike
other Program-of-Thought (PoT) methods (Gao
et al., 2023; Chen et al., 2023) that require the pro-
gram to return the answer directly, the function is
designed to return a sentence explicitly describing
the numerical information, as illustrated in Fig-
ure 4. Once the function is obtained, it is executed
to extract the numerical information.

3.2 Reasoner

The Reasoner takes as input a question, the sci-
entific context, and the numerical information ob-
tained from the Calculator to produce the final an-
swer. Specifically, we utilize a CoT prompt (Wei
et al., 2022) to guide the LLM through a step-by-
step reasoning process based on the context and
information, leading to the final answer. However,
since the information may not always be accurate
or helpful, we further prompt the LLM to engage in
reflection, evaluating the correctness and relevance
of the extracted information during reasoning.

4 Experiments

4.1 Settings

Metrics Due to the significant difference in token
counts between free-form answers and short-form
answers (see Table 12), we evaluate the two types
of answers separately. For short-form answers, we
use Exact Match (EM) to assess correctness, while
for free-form answers, we use F1 and BERTScore

F1 (BERTScore) (Zhang* et al., 2020), following
previous studies (Zhu et al., 2021; Moosavi et al.,
2021). EM measures the proportion of the pre-
dicted result that exactly matches the gold answer.
F1 calculates the overlap between predicted and
gold answers based on their bag-of-words repre-
sentation. BERTScore evaluates the similarity be-
tween predicted and gold answers by calculating
the cosine similarity of their embeddings.

Models We employ the open-source LLM
Llama3.1-Instruct (Dubey et al., 2024), Qwen2.5-
Coder-Instruct (Hui et al., 2024) and the closed-
source LLM gpt-40 (OpenAl et al., 2024) to eval-
uate SCITAT. Llama3.1 and Qwen2.5-Coder are
among the top-performing open-source general
models and code models, while gpt-4o0 is one of
the leading closed-source models.

Baselines We compare CAR with the following
baselines, with prompts in Appendix B.2.

* Direct QA (Pramanick et al., 2024) prompts
the LLM to directly answer the questions.

e CoT (Wei et al., 2022) prompts the LLM to
perform the step-by-step reasoning process
and then get the final answer.

e PoT (Gao et al., 2023; Chen et al., 2023)
prompts the LLM to generate a program that
can be executed to obtain the answer.

* Three-Agent (Fatemi and Hu, 2024) is cur-
rently the state-of-the-art method for reason-
ing on tables and text without considering
fine-tuning models, which consists of three
agents: an analyst agent that looks up relevant
information and performs calculations, and



Long-context

Short-context

Model Scale  Method EM Fl1 BERTScore EM Fl1  BERTScore
Direct QA | 0.0  30.6 66.4 0.0 307 66.5
CoT 13.0  29.5 65.6 2.6 41.4 71.6
88 PoT 44 217 54.0 171 215 49.9
Three-Agent | 12.6  34.3 68.5 221 365 67.6
CAR 24.8 375 69.7 24.2 44.3 73.2
Llama3.1
Direct QA | 0.0 316 67.5 00 336 68.7
CoT 303 36.8 69.9 321 441 73.1
70B  PoT 53 288 61.7 36.8  35.6 64.0
Three-Agent | 30.3  40.0 71.3 403 40.0 71.1
CAR 35.9 41.7 71.8 40.7 46.2 74.4
Dircct QA | 0.0  27.7 64.8 18 352 68.9
CoT 153 36.6 69.3 215 442 73.2
Qwen2.5-Coder 7B PoT 44 6.9 35.4 197  14.3 42.2
Three-Agent | 10.6  35.9 68.8 203  41.8 72.5
CAR 16.8 41.3 71.5 25.9 44.5 73.7
Direct QA | 0.0 298 67.3 0.0 39.6 715
CoT 313 413 72.7 322 46.8 75.5
gpt-4o ; PoT 50 150 44.4 283 31.2 59.8
Three-Agent | 34.7  40.3 72.3 271 449 74.6
CAR 37.5 41.8 73.1 43.7 471 75.7

Table 5: Performance comparison of different models and methods. The best results of each model under each

setting are annotated in bold.

two critic agents that provide feedbacks on
extraction and calculation and correct errors.

Given the long-context setting, we adopt zero-shot
prompts in main experiments to prevent exceeding
the context limit, with the few-shot results in the
short-context setting in Appendix E.1.

4.2 Main Experiments

The results of comparing CAR with other base-
lines on SCITAT are shown in Table 5. The re-
sults reveal that: (i) CAR significantly outperforms
other baselines across different models and settings,
achieving an average improvement of 4.1% on all
metrics, highlighting its effectiveness. (i) Despite
improvement, CAR demonstrates suboptimal per-
formance, as EM and F1 remain below 50.0, and
while BERTScore is relatively high (Moosavi et al.,
2021; Zhao et al., 2024a), it remains under 80.0, re-
flecting the challenge of SCITAT. We also observe:

Baselines (i) CAR outperforms Three-Agent,
demonstrating the diversity of reasoning types in
SCITAT. It encompasses not only Look Up and
Numerical Reasoning, and complex computations
in SCITAT cannot be solved solely by the models
themselves. Three-Agent is more pronounced on
larger-scale models, as their stronger critic capabil-
ities allow for more precise information extraction
and calculation (Pan et al., 2024; Tian et al., 2024,

Lin et al., 2024). (ii) Among other baselines, CoT
achieves higher performance, while Direct QA ex-
hibits lower EM, and PoT shows lower F1 and
BERTScore. Considering that diverse reasoning
types in SCITAT, CoT is relatively better at han-
dling these types of questions (Wei et al., 2022; Wu
et al., 2024b; Pramanick et al., 2024). Direct QA,
due to its lack of reasoning, is prone to computa-
tional errors and longer answers for short-form an-
swers, resulting in an EM score of zero (Snell et al.,
2024). Since the program typically returns shorter
answers (see Appendix E.2), the PoT method is
less effective at answering free-form questions.

Context Settings CAR demonstrates a more sig-
nificant improvement in the long-context setting
than the short-context setting. Due to the dense
knowledge presented in the paper, directly answer-
ing questions based on the entire paper may con-
fuse the model, preventing it from focusing on the
relevant tables and text (Lee et al., 2023; Pramanick
et al., 2024). In contrast, CAR uses the Calculator
to extract and compute useful numerical informa-
tion from the paper, effectively guiding the Rea-
soner and avoiding the need to search for answers
directly within the whole paper.

Answer Types CAR shows more significant im-
provements in short-form answers than free-form
answers. For short-form answers, the Reasoner
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Figure 5: The average performance of CAR across four
models on four reasoning types. Look denotes Look Up,
Numerical denotes Numerical Reasoning, and Analysis
denotes Data Analysis.

typically only needs to verify the correctness of the
result of the Calculator and extract the answer. In
contrast, for free-form answers, the Reasoner often
needs to perform additional analysis based on the
numerical information provided by the Calculator.

Reasoning Types We present the average perfor-
mance of four models across reasoning types in
Figure 5. Specifically, the F1 and BERTScore for
the type of Look Up are 0 as all corresponding an-
swers are short-form. The EM for Data Analysis
is 0, as all the answers to this reasoning type are
free-form. We can observe that: (i) The models
perform worst on Data Analysis, which requires
more comprehensive capabilities, such as numeri-
cal computation, logical reasoning, and summariza-
tion (Wu et al., 2024b). (ii) The F1 and BERTScore
on Tabulation are the highest, but the EM is the
lowest, indicating the difficulty of this reasoning
type. While the predicted result may be close to
the gold answer, achieving an exact match remains
challenging. This highlights the need for more
effective evaluation metrics. (iii) There is still sig-
nificant room for improvement on all the types,
underscoring the challenges of SCITAT.

4.3 Ablation Experiments

To demonstrate the effectiveness of CAR, we per-
form an ablation study by removing each mod-
ule, with results presented in Table 6. Specifically,
when removing the Calculator, it is the same as the
CoT baseline. The significant performance drop
confirms the validity of CAR. The results suggest
that relying on a single reasoning method is insuffi-
cient to derive accurate answers due to the diverse

Free-form answers

Short-form answers

20 |

10 +

Percentage

Miss Locate Calculate Knowl.Redundancy

Error Types

Figure 6: The distribution of error types of CAR. Knowl.
denotes Knowledge.

Scale Method EM F1 BERTScore
CAR 24.2 44.3 73.2
8B w/o Calculator | 20.6 41.4 71.6
w/o Reasoner 0.3 30.8 62.8
CAR 40.7 46.2 74.4
70B w/o Calculator | 32.1 44.1 73.1
w/o Reasoner 0.0 42.0 70.4

Table 6: The ablation results of CAR using Llama3.1
in the short-context setting, compared with removing
Calculator (w/o Calculator) and removing Reasoner
(w/o Reasoner).

reasoning types in SCITAT. Especially, the EM
of removing Reasoner is low since we prompt the
program to return the entire numerical information
instead of the simple answer.

4.4 Error Analysis

To present the challenges of SCITAT, we analyze
the error instances of CAR using Llama3.1-70B.
Specifically, we randomly select 25 error instances
with BERTScore below 60 from the results cor-
responding to free-form answers and another 25
instances with EM of 0 from the results correspond-
ing to short-form answers. We manually categorize
the error types, as illustrated in Figure 6, with ex-
amples of error types in Appendix D. It can be
observed that the distribution of error types for
free-form answers and short-form answers differs
significantly. We proceed with a detailed analysis.

(i) Miss refers to the omission of part of the
answer, such as when only some sub-questions
are addressed, or when data analysis is limited to
summarizing phenomena without providing con-
clusions or insights. (if) Locate refers to locating
incorrect relevant context according to the ques-
tion. (iii) Calculate denotes errors in applying for-
mulas, programming mistakes, or computational



inaccuracies. (iv) Knowledge refers to errors in
responses due to the lack of domain-specific knowl-
edge. (v) Redundancy refers to the generation of
unnecessary responses that result in an EM of zero.
Compared to previous datasets, SCITAT presents
the following challenges. (i) Free-form and short-
form answers are associated with different error
types, necessitating the design of distinct methods.
(i) SCITAT requires integration of various reason-
ing types and the processing of both tables and
text, demanding the model to have strong domain-
specific knowledge in the scientific field. We out-
line these challenges to inspire future work in ad-
dressing these issues, aiming to enhance model
performance in SQA on tables and text.

5 Related Works

5.1 Scientific QA Datasets

Early SQA datasets were designed in a cloze-style
format, limiting their difficulty (Pampari et al.,
2018; Pappas et al., 2018). To address this issue,
PubMedQA (Jin et al., 2019), QASPER (Dasigi
et al., 2021), and QASA (Lee et al., 2023) em-
ploy humans to annotate questions and answers
over papers, and Scilnstruct (Zhang et al., 2024)
collects questions from sources like textbooks and
synthesizes answers using LL.Ms. However, these
works primarily focus on text, without consider-
ing the tables appearing in papers. Therefore, Sci-
Gen (Moosavi et al., 2021) focuses on generating
descriptions based on tables in papers, SciTab (Lu
et al., 2023) concentrates on the table fact veri-
fication, and SPIQA (Pramanick et al., 2024) is
designed for QA based on tables and images.
Nevertheless, the reasoning types of existing
datasets are relatively limited, since they do not
involve diverse reasoning types, such as Data Anal-
ysis and Tabulation, that frequently occur in real
scenarios. Moreover, they overlook the relevance
between tables and text, limiting their application
(Chen et al., 2020; Wang et al., 2022). Therefore,
we propose SCITAT, a QA benchmark for scientific
tables and text with diverse reasoning types.

5.2 QA Datasets for Tables and Text

Previous QA datasets for tables and text mainly
focus on Look Up and Numerical Reasoning in
the Wikipedia and financial domains. For exam-
ple, HybridQA (Chen et al., 2020) annotates QA
pairs over Wikipedia tables and text, which pri-
marily focuses on look up spans in the context.

TAT-QA (Zhu et al., 2021), FinQA (Chen et al.,
2021), DocMath-Eval (Zhao et al., 2024c¢), and Fi-
nanceMATH (Zhao et al., 2024b) primarily address
the numerical reasoning task in the financial do-
main. However, previous datasets focus on limited
reasoning types, mainly Look Up and Numerical
Reasoning, which differ significantly from the SQA
scenarios in real-world applications. Furthermore,
these datasets do not require models to possess
domain-specific knowledge in science. A detailed
comparison SCITAT with previous datasets for ta-
bles and text is shown in Appendix A.2.

Considering the reasoning types of existing
datasets, previous works introduce programs to ob-
tain the final answer (Gao et al., 2023; Chen et al.,
2023; Zhang et al., 2023). For instance, Blend-
SQL (Glenn et al., 2024) prompts the LLM to gen-
erate a superset of SQL that can query information
from both tables and text to obtain answers. Hpro-
pro (Shi et al., 2024) provides commonly used pro-
gram functions, allowing the LLM to directly call
them during program generation. However, these
methods can not apply directly to SCITAT, as Sc-
ITAT also involves reasoning types, such as Data
Analysis, which is challenging to be solved by the
program alone (Wu et al., 2024b). Therefore, we
propose CAR, which combines multiple reasoning
types to enhance performance on SCITAT.

6 Conclusion

To address the limitations of previous scientific
QA datasets, which involve limited reasoning types
and fail to consider the relevance between tables
and text, we propose SCITAT, the QA benchmark
for scientific tables and text with diverse reason-
ing types. To incorporate diverse reasoning types,
we analyze the questions posed by researchers and
combine the types in prior works, summarizing 4
reasoning types with 13 subtypes. To ensure that
the questions encompass both tables and text, we re-
quire the questions to include both elements when-
ever possible. For SCITAT, we introduce CAR, a
baseline that combines reasoning methods to en-
hance the performance across various reasoning
types, with handling both tables and text. Experi-
mental results show that CAR outperforms other
baselines by an average of 4.1%, demonstrating
its effectiveness. Error analysis reveals the chal-
lenges in SCITAT, such as grounding relevant con-
text, complex numerical reasoning, and the need
for domain-specific knowledge.



Limitations

(7)) SCITAT currently supports only the English lan-
guage. Future versions will include additional lan-
guages. (ii) Currently, we focus on single-turn QA
for scientific tables and texts in SCITAT. Multi-
turn dialogues on scientific tables and text will be
explored in future work.

Ethics Statement

All models used in this paper are publicly avail-
able, and our utilization of them strictly complies
with their respective licenses and terms of use. We
collect papers from ariv.org following its terms of
use and regulations. During the dataset construc-
tion process, we ensure that the collected papers
are publicly accessible and do not infringe on any
copyrights. Additionally, we confirm that the com-
pensation provided to annotators is significantly
higher than the local minimum wage.
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A Comparison with Previous Datasets

A.1 Comparison with Previous Scientific QA
Datasets

Table 1 presents the comparison of SCITAT with
previous scientific QA datasets. We first introduce
the existing datasets. BioRead (Pappas et al., 2018)
is a cloze-style QA dataset on the biomedical pa-
pers, which only conteains the reasoning type of
Look Up and focuses only on the text. QASA (Lee
et al., 2023) is QA datasets on papers in Al and
ML fields, but only concentrates on the text in pa-
pers, and lack the reasoning type of Tabulation.
SciGen (Moosavi et al., 2021) aims to generate de-
scriptions according to the tables in the papers in
the field of Computer Science. SciTab (Lu et al.,
2023) aims to judge the claims according to the
scientific tables in the field of Computer Science,
which only contains the reasoning types of Lok
Up and Numerical Reasoning. SPIQA (Pramanick
et al., 2024) is mulmimodal QA dataset on the sci-
entific papers, which only focus on the split text
and tables, ignoring the relevance between tables
and text, and lacking the reasoning type of Data
Analysis and Tabulation. It can be seen that Sc-
ITAT contains more diverse reasoning types and
consider the relevance between tables and text.

A.2 Comparison with Previous QA Datasets
for Tables and Text

Table 7 present the comparison of SCITAT with
previous QA datasets over tabular and textual data
and scientific QA datasets. It can be seen that
SCITAT contains more diverse and closer to real-
life user questions. Moreover, SCITAT requires
the model to possess domain-specific knowledge
in the scientific field. It must not only understand
the dense terminology commonly found in papers
but also apply this knowledge to solve questions,
which is not required by other datasets.

B Prompt

In this section, we show the prompts we use to
synthesize data and conduct experiments.

B.1 Prompt for Generating Data

Table 8 provides the prompt for generating ques-
tions, rationales, and answers when constructing
SCITAT.
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B.2 Prompt for Experiments

Table 9 shows the prompt to build the baselines in
our experiments, and Table 10 shows the prompt
used by CAR. The prompts of Three-Agent we use
are referred to the original paper (Fatemi and Hu,
2024).

C Manual Annotation Procedure

C.1 Annotator Training Process

We recruit students from Computer Science or Ar-
tificial Intelligence programs who are willing to
participate in the annotation task, offering a com-
pensation of $1 per instance. Initially, we provide a
detailed explanation of the task, including its defini-
tion, the specific responsibilities of the annotators,
and how to use the annotation interface. We thor-
oughly explain the requirements for the questions,
rationales, and answers, as well as how to select
the source of the answers, as stated in §2.3. Ad-
ditionally, we provide three examples and explain
possible scenarios that might arise. Finally, we
clarify the annotation deadline and inform them
that the data will undergo additional checks. To
promptly detect any errors or biases in the annota-
tions, we sent the data in batches. After the two-
round validation on the already annotated data, we
communicate with the annotators to address any
issues and proceed to send the next batch of data.

C.2 Statistics of the Manual Annotation
Procedure

On average, annotating a single data point required
10 minutes per annotator. The annotation process
for the 953 instances was completed in approx-
imately two months. The first round of annota-
tions was conducted by 10 annotators, with two
additional annotators performing two-round vali-
dation. Overall, 43.9% of the initially generated
data is filtered out, and the remaining 43.5% of
initial answers are both modified and filtered. This
process involved correcting incorrect answers and
streamlining responses to ensure accuracy and re-
duce LLM-induced biases.

C.3 Annotating Interface

The annotation process is conducted using a custom
tool developed by us. Figure 7, Figure 8, Figure 9,
and Figure 10 show the overall user interface for
the manual annotation.



Reasoning Type

Dataset Domain
Look Up Numerical Reasoning Data Analysis Tabulation

HybridQA (Chen et al., 2020) Wiki v X X X
TAT-QA (Zhu et al., 2021) Finance v v X X
FinQA (Chen et al., 2021) Finance X v X X
DocMath-Eval (Zhao et al., 2024c) | Finance v v X X
FinanceMATH (Zhao et al., 2024b) | Finance v v X X
SCITAT Science v v v v

Table 7: Comparison of SCITAT to recent QA datasets over tabular and textual data. Wiki denotes Wikipedia.

The prompt for Generating Questions

{Table}
{Paragraph}

You are a highly intelligent and obedient academic field question generation system.
Generate a question referring to the table and paragraph above which meets the requirements in the question

description "{Type}".
The generated question must meet:

1. The question should be with fewer statements and more reasoning and calculation.
2. The question must be answerable based on the paragraph alone, and not answerable only based on the table.

3. The question must meet the question description.

4. Do not generate multiple questions or sub-questions at once.

Examples:
{Examples}

The prompt for Generating Rationales and Answers

{Table}
{Paragraph}

Based on the information in the Table and Paragraph, please answer the question "{Question}".
Represent your answer with: "Reason: <Your Reason> Answer: <Your Answer>"
If there are multiple questions, you need to answer them one by one, and the answers are separated by "

Examples:
{Examples}

Table 8: The prompts for generating the questions, rationales, and answers of SCITAT.

D Case Study for Error Analysis

In this section, we show examples of different error
types, as shown in Figure 11, Figure 12, Figure 13,
Figure 14, and Figure 15.

E Additional Experiments

In this section, we present additional experiments.

E.1 Results of Few-shot Prompts

In this subsection, we present the performance
of CAR with the few-shot prompts in the short-
context setting, as shown in Table 11. Specifically,
we annotate 4 demonstrations, each corresponding
to one of the four reasoning types in SCITAT. It
can be observed that the performance of SCITAT
with the few-shot prompts outperforms that under
the zero-shot prompts.
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E.2 Statistics of The Number of Output
Tokens

In this subsection, we show the comparison of the
number of tokens output by different methods and
the number of tokens of gold answers. (i) It can
be found that the number of tokens output by PoT
is consistently lower than that of other methods,
whether it is a short-form answer or a free-form an-
swer, which explains to a certain extent the reason
why PoT has low performance, especially on the
free-form answers. (ii) On the contrary, the num-
ber of tokens output by the Direct QA is generally
high, which also reveals the reason why its EM is
0 on the short-form answers. (iif) And CAR is the
closest in quantity to the number of tokens of gold
answer, which shows that CAR can adapt to obtain
answers of various reasoning types.



The prompt for DirectQA

Based on the information in the Table and Paragraph, you should answer the question.
If there are multiple questions, you need to answer them one by one, and the answers are separated by "

Table (including its label, caption, and content):
{Table}

Paragraph:

{Paragraph}

Please answer the question "{Question}".

The prompt for CoT

Based on the information in the Table and Paragraph, you should answer the question.
Represent your answer with: "Reason: <Your Reason> Answer: <Your Answer>".
If there are multiple questions, you need to answer them one by one, and the answers are separated by "

Table (including its label, caption and content):
{Table}

Paragraph:

{Paragraph}

Please answer the question "{Question}".

The prompt for PoT

Table (including its label, caption and content):
{Table}

Paragraph:

{Paragraph}

Read the above Table and Paragraph, and then write code to answer the question "{Question}".
Please **directly use** the information such as numbers in tables and paragraphs, do not define tables and then

process them.

You must return the answer ‘ans = * at the end of the code instead of ‘print".
Attention that if there are multiple questions, you need to answer them one by one, and the answers are separated by

Table 9: The prompts for baselines.

E.3 Influence of Order on CAR

To study the influence of order on the performance
of CAR, we conduct experiments by reversing the
two modules, with results presented in Table 13.
Specifically, we first apply the Reasoner module
and then feed its output into the Calculator, which
verifies and corrects any numerical errors to pro-
duce the final result. The significant performance
drop confirms the validity of CAR. The results sug-
gest that depending on the program output for the
final answer limits performance on SCITAT since
the program struggles with free-form responses, as
discussed in §4.2. The lower performance of PoT,
as shown in Table 5, also supports our view.
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F Discussion of Details

F.1 Why Papers from Three Subfields are
Selected?

(i) The three subfields selected in SciTAT fol-
low mainstream science datasets, including
QASPER (Dasigi et al., 2021), QASA (Lee et al.,
2023), SciGen (Moosavi et al., 2021), and Sc-
iTab (Lu et al., 2023). (ii) Our primary focus is
on addressing diverse scientific questions and rea-
soning types, which are independent of the specific
domains.

F.2 Why the Baselines are Chosen?

The selected baselines in the main experiments
follow those used in previous datasets (Sc-
iTab (Lu et al., 2023), SciEval (Sun et al., 2024),
SPIQA (Pramanick et al., 2024), SciBench (Wang
et al., 2023)). To further validate the necessity



The prompt for Calculator

Table (including its label, caption, and content):

{Table}

Paragraph:

{Paragraph}

Read the above Table and Paragraph, and then write code to answer the question "{Question}".

Please **directly use** the information such as numbers in tables and paragraphs, do not define tables and then
process them.

You must return the answer ‘ans = * at the end of the code instead of ‘print*.

You cannot return just one or a few numbers or words, you must return a complete sentence.

The prompt for Reasoner

Based on the Table and Paragraph with the Tips, you should answer the question.

Please determine whether the tips are correct, use the tips reasonably in Reason, and organize the Answer into an
appropriate form.

Represent your answer with: "Reason: <Your Reason> Answer: <Your Answer>".

Attention that if there are multiple questions, you need to answer them one by one, and the answers are separated by

Table (including its label, caption, and content):
{Table}

Paragraph:

{Paragraph}

Tips:

(Tips)

Please answer the question "{Question}".

Table 10: The prompts for CAR.

Model Scale Method EM F1 BERTScore
B CAR (zero-shot) | 24.2  44.3 73.2
Llama3.1 CAR (few-shot) | 28.7 48.0 76.2
70B CAR (zero-shot) | 40.7  46.2 74.4
CAR (few-shot) | 43.4 46.8 74.6

Table 11: The results of CAR with few-shot prompts compared with zero-shot prompts.

of SCITAT and the effectiveness of CAR, we add
Three-Agent (Fatemi and Hu, 2024), which is the
state-of-the-art method for reasoning on both tables
and text. The previous methods in the scientific
question answering (SQA) task primarily focus on
model training (Dasigi et al., 2021; Lee et al., 2023;
Zhang et al., 2024), which makes direct compar-
isons with CAR infeasible. Therefore, we do not
compare CAR with the baselines in the SQA task.
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Reasoning Type: Domain knowledge Caculation

Question: Based on the information provided in the paragraph and the table, if the Statistical Machine Translation system's dataset consists of 24k
parallel sentences and achieves a BLEU score of 41, estimate the BLEU score improvement necessary for the Proposed neural machine translation
system to achieve an average BLEU score improvement of 10% across similar datasets.

Predicted Answer: Reason: The Statistical Machine Translation (SMT) system has a BLEU score of 41. A 10% improvement over this score would
mean a BLEU score improvement of 10% of 41. Therefore, the necessary BLEU score improvement for the Proposed neural machine translation
system over the SMT system would be 0.10 * 41.Answer: 4.1 (an improvement to a BLEU score of 45.1 is needed for a 10% improvement).

Paragraph

\section {Sanskrit Hindi Machine Translation Systems} \label{Sanskrit Hindi Machine Translation Systems} The comparisons of the existing and
proposed system are shown in Table. \ref{tab:comp} \begin{itemize} \subsection{Sanskrit-Hindi Anusaarka-2009} \item Approach:ltis a
\textbf{rule based} MT system \cite{bharati2009anusaaraka}. \item The insights for the system are taken from Panini's Ashtadhyayi. \item
Developed By:Chinmaya International Foundation (CIF), Indian Institute of Information Technology, Hyderabad (IlIT-H) and University of Hyderabad
at Department of Sanskrit Studies. \item Tool:\textbf{Samsadhani} It is a Language accessor cum machine translation system. Input can be of an of
the following encodings Unicode-Devanagari, WX-alphabetic, Itrans 5.3, Velthuis (VH), Harward Kyoto (KH), Sanskrit Library Project (SLP). Output
can be displaved in either Devanaaari script or in Roman Diacritical Notation. The svstem has a Sanskrit lanauaae analvser which does the analvsis

Figure 7: The user interface, showing the paper information and the paragraph.

Tables

Table 1:
Label: tab:comp

Caption: Comparison of Sanskrit Hindi Translation systems

\textbf{Sanskrit-Hindi (Rule Based)} \textbf{Sanskrit-Hindi (Statistical)} \textbf{Sanskrit Hindi

(Proposed)}
The system fails when extended to large domains. It

is developed for domains like kids stories, building
interactive media and e-learning substance for kids.

Sanskrit-Hindi text corpora has been collected or
developed manually from the literature, health, news and
tourism domains.

The proposed system is based
on neural machine translation
technique that covers all
domains in general based on the
dataset used.

Hand crafted rules based on Panini's Ashtadhyayi.

Separate modules like tokenizer, sandhi splitter,
morph analyser, parser, word sense disambiguation,
part of speech tagger, chunker, Hindi lexical transfer
and a Hindi language generator used to get
translation.

Figure 8:

Based on Bayes theorem. Similar words assigned random
numbers.

SMT system have three separate main components-The
translation model, reordering model, and the language
model.SMT would evaluate fluency of a sentence in a
target language a few words at a time using N-gram
language model.

The user interface, showing the tables.
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Word embedding used, similar
words have close numbers.

Proposed system learns complex
relationship between languages
as one single model. Proposed
model considers the entire
sentence.
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Annotation Information

Correct Reasoning Type

Arithemetic Caculation

Revised Question

Based on the information provided in the paragraph and the table, if the Statistical Machine Translation system's dataset consists of 24k parallel sentences and
achieves a BLEU score of 41, estimate the BLEU score improvement necessary for the Proposed neural machine translation system to achieve an average BLEU

Revised Rationale

Reason: The Statistical Machine Translation (SMT) system has a BLEU score of 41. A 10% improvement over this score would mean a BLEU score improvement of
10% of 41. Therefore, the necessary BLEU score improvement for the Proposed neural machine translation system over the SMT system would be 0.10 * 41

Revised Answer

41

Figure 9: The user interface, showing the annotation information.

Answer From

Table

Select Relevant Tables

tab:comp

If Remain:

Figure 10: The user interface, showing the choice for the answer source, relevant tables, and if to remain.

Figure 5 essentially confirms the results obtained so far. However, we now observe, for higher
« values, that the cluster values of textbook-based networks become seemingly indistinguishable
from those observable for Wikipedia corpora-based networks — the same observation concerns
the SZ-Eco-based networks. Textbook-based TCNs are again hardly distinguishable from TCNs
derived from informal language newspaper articles about topics related to economics (SZ-Eco).
In any case, Table 7 also shows that all value distributions along the x and y axis are now
distinguishable with only three exceptions: the dynamics of clustering is obviously more corpus

specific.

z-values:

SZ-Al_SZ-Reo B WP-All

WP-Eco WP-Top-1

WP-Top-3

Zeit-All

SZ-Al — 13323 %1075 6661,3x 1070 37748 x 10
— 21330 1079 15543 x 10-15
1554,3 x 1013

WP-All
WP-Top-1

ZeitAll — — — —

3.250,7 x 10-990
332, :

2164,6 x 10-29
1.332,3 x 1035
6.661,3x 10716
0.000.2
6.944,0 x 1005
04775

1.443,3 x 1015
11102 x 1016
15543 x 10713

14433 x 10745

SZ-Eco  TB

WP-Top-1

WP-Top-3

Zeit-All

10000  6.661,3x 1016
— 1.221,2 x 1023

Sz7-All
SZ-Eco
B
WP-All
WP-Eco
WP-Top-1
WP-Top-3
Zeit-All

FEErrrrg
z

1.086,4 x 10-5¢
1.332,3 x 10-25
1477,7 x 10-12
3.734,6 x 10~
40788 x 10~

24453 x 10~7!
1.332,3 x 1025
1.872,1 x 10-10
00126
38152 x 106
0.000,9

14433 x 1015

67,
7.908,8 x 10~'2
21094 x 10~1%
1.042,1 x 1012
31530 x 10714

Table 7: P-values of the Kol S:

f-fit test applied to the pairwise com-

binations of the z and y values of the distributions in Fig. 5.

:' Question:
!Which tables illustrate the indistinguish ability of textbook-based
'networks from Wikipedia corpora-based networks for higher $\\alpha$

values, and how does the paragraph support this observation?

:Pr‘edicfed Answer:
1WP-AIll vs WP-Eco, WP-Top-1 vs WP-Top-3, and WP-Top-1 vs
IWP-Top-3.

:'Gold Answer:
:Table tab:cws-x

ifrom those observable for Wikipedia corpora-based networks.

Figure 11: The case for the error type of "Miss".
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iThe paragraph mentions that for higher $\\alpha$ values, that the cluster !
walues of textbook-based networks become seemingly indistinguishable 1
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‘We propose two First, we late the maximum number of bi-sentences that an
individual can acquire by the age of 23. The results are given in Table 1. We first estimate the
daily acquisition time, then we deduce the number of sentences acquired annually.

awake oce. Cumul. per year (Million sent.)
Age Sleep | time sent. | Analysis 1 Analysis 2
Hours | -2H | per day bi-sent. L1 | L2 | bi-sent.
Infant 1 16 6 5,760 1.1 1.1
Young child 2 16 6 5,760 2.1 3.2
3 14 8 7,680 3.5 6.0
4~5 12 10 9,600 5.3 9.5
Beg.prim.school 6 12 10 9,600 8.8 16.5
7~9 11 11 10,560 10.7 20.3
End prim. school 10 11 11 10,560 16.5 31.9
11 10 12 11,520 18.6 36.1
12 10 12 11,520 20.7 40.3
13 9 13 12,480 23.0 44.9
End middle school | 14~17 8 14 13,440 25.4 49.8
End high school 18 8 14 13,440 35.2 69.4
19~20 8 14 13,440 37.7 70.6 | 1.2 1.2
End Bachelor 21~22 8 14 13,440 42.6 73.1 | 3.7 3.7
End Master 23 8 14 13,440 47.5 75.5 | 6.1 6.1
number of read or heard by a professional translator

The results from the COMPAS dataset are detailed in Fig. 3, where minority popula-
tion density, disparity, and loss measures are shown. In this scenario, the optimal control
method shows comparable performance to RL-based algorithms. Specifically, TRPO and
PPO reach a terminal state with a loss value of 0.574, which achieves the same level of
performance compared to the proposed optimal control method. This similarity in per-
formance is attributed to the lesser disparity in representation between different gender
attributes within the COMPAS dataset.

Table 3: COMPAS: Terminal State with Initial \} = 0.6 and \3 = 0.4
Environment M

Fair-agnostic Fair-aware Dynamic-aware

ERM Mini DRO PG TRPO PPO Optim
Density-2 1 | 0.271 0.256 0.184  0.263  0.264  0.257  0.274
Disparity | | 0.522 0.529 0.153  0.435 0489 0442  0.516
Loss | 0.770 0.803 1.391  0.848  0.808 0.858  0.764

Environment M

Fair-agnostic Fair-aware Dynamic-aware

ERM Mini DRO PG TRPO PPO Optim
Density-2 1 | 0.316 0.298 0.075  0.317 0317 0317  0.317
Disparity | | 0.684 0.702 0.925  0.863  0.683  0.683  0.683
Loss | 0.577 0.605 1296 0.594 0.574  0.574  0.574

In particular, given a graph, we first extract all cycles
out of it. Then, all edges that are not inside the cycles
are considered motifs. We consider combining cycles with
more than two coincident nodes into a motif. Although
this method cannot extract complex motifs like single-input
and multi-input motifs, it can generate the most important
motifs, such as ring structures in biochemical molecules
and the feed-forward loop motif. By adopting this simple
but general motif extraction method, we can explain a
GNN model without any domain knowledge, making our
explanation model more applicable. Need to be noted that,
even though the motif extraction rule cannot extract single-
input and multi-input motifs, these motifs can be implicitly
identified by our attention layer. Experiments in the table 2|
demonstrate it. e

Results on quantitative studies for different explanation methods. Note that since the Sparsity cannot be fully controlled, we report Fidelity scores.
(The less the better) under similar Sparsity levels for five real-world datasets. For two synthetic datasets, BA-Shape and BA-2Moli, we report
accuracy. S is the sparsity value. K is the maximum number of edges required by baseline models. Our MotifExplainer does not need this required
hyper-parameter. The best performances on each dataset are shown i bold.

MUTAG PTC NCI PROTEINS IMDB BA-2Motifs BA-Shape
5=07 §=07 5=0.7 §=0. 5=0.7 K=5 K=5
(Fidelity) (Accuracy)

'GNNExplainer 0.260 0.441 0.365 0453 0365 0.742 0925
PGExplainer 0241 0.388 0.402 0521 0225 0.926 0963
SubgraphX 0.287 0227 0.303 0.021 0.167 0.774 0874
ReFine 0.221 0349 0.409 0435 0.127 0.932 0954
MotifExplainer | 0.031 0.129 0.115 -0.030 0101 | 1.0 10

;’ Question:
'How does the calculated cumulative number of bi-sentences by the end
1of a Bachelor's degree differ between Analysis 1 and Analysis 2 based

1on the interpretation of the data in Table \ref{tab1}?

iPredicted Answer:
\We cannot calculate the difference between Analysis 1 and Analysis 2
ibased on the data in Table \\ref{tab1}.

|AnaIyS|s 1is 42 6 million, and Analysis 2 is 3.7 million; the difference is
:38.9 million bi-sentences.

IQueshon
'WhICh algorithm ranks the highest in terms of minimizing both disparity
:and loss across Environment $M*{\\ast}_2$?

iGold Answer:
:TRPO, PPO, and Optim

:'Quesﬁon:

1Using the explanation method described in the paragraph, calculate the
inumber of motifs in a biochemical molecule represented by a graph
iwhere all nodes form a single ring and there are no other connecting
edges outside this cycle.

Figure 14: The case for the error type of "Knowledge".
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4 XAI Queries as Computation Problems

In this section, we consider successively the 9 XAI queries
from (Audemard, Koriche, and Marquis 2020), as listed in
Table 1, and we present them in formal terms.

nQues’rlon

llfthe task requires solving EMC and DPI queries successively, with EMC:
Itaklng 10 minutes and DPI taking 5 minutes, what is the total time taken .

nto perform 3 EMC queries and 2 DPI queries? i

E XAI query Description | O R S e s A e A s . )
! EMC Enume?a.ting Minimum-Carqinality explaqations ! .—P-r‘-ea;c-f-e-d-il:l;v-vér: s TTTTTTTTTTTTTTmmmm e !
E ::)CPCI) gs:::;i g:e g)ﬁﬁtﬁﬂiﬁiﬁ?ﬂiﬁ%ﬂ 1 13EMC queries take 3 x 10 = 30 minutes, and 2 DPI queries take 2 x 5 = i
! CIN Counting the INs%ances ookl wil:h a given class i 110 minutes. The_zref_ore, the total time_taken to perform 3 EMC queries '
H EIN Enumerating the INstances associated with a given class i La_n_d_g _D.Fjl_q_u_e_n_e_s_l.s _3_0 _t _1 _0 o f‘ 9 _minu _t(-is_ _______________________ H
H IMA Identifying MAndatory features or forbidden features in a given class | | f G- 0"8' /3: r; s-v; e'r‘ """""""""""""""""""""""""""""" !
H IR Identifying IRrelevant features in a given class ] 40 t 1
H MO Identifying MOnotone (or anti-monotone) features in a given class i '_ - _n_]l_n_u_(is: _______________________________________________ '
! MCP Measuring Closeness of a class to a Prototype !
E Table 1: Some XAI queries. i
Figure 15: The case for the error type of "Redundancy".
Long-context Short-context
Model Scale . Method Short-form Answers  Free-form Answers Short-form Answers Free-form Answers
- - Gold Answer 1.5 45.1 1.5 45.1
Direct QA 120.3 197.7 109.3 135.1
CoT 35.8 75.4 23.3 74.4
8B PoT 5.3 26.6 2.8 25.1
CAR 24.3 54.8 21.4 53.8
Llama3.1 Direct QA 118.9 220.1 118.9 220.1
CoT 5.9 44.2 14.3 46.2
70B PoT 3.6 30.0 3.3 36.4
CAR 17.1 43.5 16.5 43.0
Direct QA 151.2 213.2 105.7 141.6
CoT 30.1 84.5 20.7 69.1
gpt-40 - PoT 3.0 24.4 4.6 52.4
CAR 10.6 67.0 10.6 82.4

Table 12: Statistics of the number of tokens of gold answers and different results.
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Scale Method EM F1 BERTScore

3B CAR 24.2 44.3 73.2
Reversing | 21.5 214 47.2

70B CAR 40.7 46.2 74.4
Reversing | 37.1  35.9 65.1

Table 13: The results of CAR, compared with reversing
the two modules (Reversing) in the short-context setting.
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