
Learning Intrinsically Motivated Options
to Stimulate Policy Exploration

Louis Bagot * 1 Kevin Mets 1 Steven Latré 1

Abstract
A Reinforcement Learning (RL) agent needs to
find an optimal sequence of actions in order to
maximize rewards. This requires consistent ex-
ploration of states and action sequences to ensure
the policy found is optimal. One way to motivate
exploration is through intrinsic rewards, i.e. agent-
induced rewards to guide itself towards interest-
ing behaviors. We propose to learn from such
intrinsic rewards through exploration options, i.e.
additional temporally-extended actions to call sep-
arate policies (or ”Explorer” agents) associated
to an intrinsic reward. We show that this method
has several key advantages over the usual method
of weighted sum of rewards, mainly task-transfer
abilities and scalability to multiple reward func-
tions.

1. Introduction
At the core of the Reinforcement Learning paradigm lies
the exploration-exploitation dilemma – the agent wants to
maximize its reward, using the knowledge at hand, but also
needs to look for better behaviors. Despite impressive re-
cent breakthroughs, state-of-the-art RL methods in high-
dimensional environments still rely on randomness in action-
or parameter-space to explore; with for example Noisy Nets
(Fortunato et al., 2018) in Rainbow (Hessel et al., 2018),
entropy maximization in Soft Actor-Critic (Haarnoja et al.,
2018), or just ε-greedy in Deep Q-Network (Mnih et al.,
2015). The latter, in particular, has the most naive explo-
ration procedure possible. Indeed, it is state-independent,
without memory, and the exploration behavior emerging
from it is, by construction, single-step and purely random.
We would like ways to consistently explore the environment,

*Equal contribution 1University of Antwerp - imec; ID-
Lab - Department of Computer Science; Sint-Pietersvliet 7,
2000 Antwerp, Belgium. Correspondence to: Louis Bagot
<louis.bagot@uantwerpen.be>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

or in other words, sample-efficiently span the state-action
space.

In environments where the MDP can be considered from
a tabular point-of-view, it is possible to extract powerful
Exploration-Exploitation balances. Methods that achieve
this, e.g. MBIE-EB (Strehl & Littman, 2008), often use
an intrinsic reward (Oudeyer & Kaplan, 2009), a reward
generated by the agent (as opposed to extrinsic environment
rewards) to motivate alternative behaviors that might be
useful for the true task learning.

For more complex and higher-dimensional environments, a
very wide range of methods have been proposed, such as
pseudo-count-based methods (Bellemare et al., 2016; Ostro-
vski et al., 2017; Fox et al., 2018) or curiosity-based methods
(Schmidhuber, 2010; Houthooft et al., 2016; Pathak et al.,
2017). The resulting behavior, from intrinsic reward alone,
is a consistent policy that actively tries to find surprising
elements in the environment (Burda et al., 2019a). The gap
in efficiency with a random exploration policy is striking,
and motivated this work.

To integrate such intrinsic rewardsRi into an RL framework
with extrinsic reward Re, the traditional approach is to care-
fully tune a reward-shaping hyperparameter β in the final
reward expressionR = Re+βRi. Several drawbacks come
with this, such as hard fine-tuning of β, loss of task-transfer
potential, constraints on the reward function, and restriction
to a single intrinsic reward function.

Our proposed alternative is to decouple the policy into an
Explorer and an Exploiter, and to add an exploration op-
tion to the set of actions of the Exploiter (see Fig. 1). It
is an additional action that the Exploiter can use to let the
Explorer act for some time, before taking back control.

The objective and contribution of this work is in: first, shift-
ing the attention towards decoupled agents in intrinsic re-
ward settings; second, opening up the path for a new family
of intrinsic reward functions; third, allowing the learning
from multiple intrinsic reward functions; and fourth, taking
a step towards an agent with several task-independent and
learnt policies built-in.

In Section 2, we present related work, mainly intrinsic mo-

Learning Intrinsically Motivated Options

tivation techniques and existing approaches to learn from
such signals. In Section 3, we introduce in more detail the
method, its theoretical advantages, and implementation. In
Section 4, we provide experiments in a tabular setting to
support our claims. In Section 5, we discuss ways to export
the method in function approximation, as well as limitations.
Section 6 concludes the paper.

2. Related Work
2.1. Options and Hierarchical RL

An option (Sutton et al., 1999) is a generalization of actions
to cover a sequence of primitive actions or other options.
Options are often linked with Hierarchical RL (Barto &
Mahadevan, 2003), allowing a meta-agent to use multiple
controller agents or other meta-agents, which enables rea-
soning over temporally extended states and actions.

2.2. Exploration without intrinsic motivation

Most recent state-of-the-art works in Deep RL explore with-
out intrinsic motivation and focus on much simpler explo-
ration methods, generally relying on randomness in action-
or parameter-space.

Deep Q-Network (Mnih et al., 2015) simply uses ε-greedy.
An improvement was found in Noisy Networks (Fortunato
et al., 2018), which learn perturbations of the network
weights to drive exploration, relying on the idea that a single
change in weight can yield significant changes in policy.
Along with ε-greedy, they have been found to perform rela-
tively well in comparison to intrinsically motivated agents
(Taiga et al., 2020). However, is it impossible to extract just
the exploration policy from the network, diminishing its in-
terest from a task transfer and generalization point-of-view.

Entropy-regularization methods (Williams, 1992) try to pre-
vent the agent from overfitting to a task or falling into local
minima by solving it while acting as randomly as possible.
Most notably, Soft Actor-Critic (Haarnoja et al., 2018) is an
off-policy actor-critic algorithm that achieved excellent and
very stable results on hard control tasks.

2.3. Intrinsic Motivation

Intrinsic motivation is of interest because it ”leads organisms
to engage in exploration, play, and other behavior driven
by curiosity in the absence of externally-supplied rewards”
(Barto, 2013). We describe a number of methods that could
be used to generate intrinsic reward to train our Explorer.

Curiosity-based methods use prediction error from a learnt
forward model F to generate intrinsic reward, fundamen-
tally Ri = ||st+1 − F (st, at) ||, motivating the search for
surprising elements and transitions (Pathak et al., 2017;

Burda et al., 2019a; Kim et al., 2019).

Count-based methods count state-action visitsN (s, a) and
generate reward for states that are not often visited, e.g.
Ri = 1/

√
N (s, a). This motivates the search for novel

states. To extend to complex state-spaces, recent work uses
density models to generate a pseudo-count (Bellemare et al.,
2016; Ostrovski et al., 2017; Martin et al., 2017). E-values
(Fox et al., 2018) have been shown to generalize count-
based methods by drawing inspiration from optimistic start
methods. A count can be derived from theE-value, naturally
generating an intrinsic reward for exploration; but an agent
can also be derived directly from the learnt value function.

Intrinsic motivation is not limited to exploration – indeed,
a line of work focuses rather on skill learning. Methods
within this branch (Achiam et al., 2018; Eysenbach et al.,
2019) often use an intrinsic reward to motivate diversity, i.e.
ease of distinction of the skills.

Such methods motivate designing agents equipped with
multiple intrinsic reward functions. A thorough survey and
classification of intrinsic motivation can be found in (Aubret
et al., 2019).

2.4. Options for exploration

Option learning is an active field in Reinforcement Learning;
in particular, options aimed at exploration and coverage
(Machado et al., 2017; Jinnai et al., 2019) can be found
using information from the graph Laplacian. Such options
are often learnt using intrinsic rewards to lead from one key
state to another.

A recent paper (Dabney et al., 2020) showed that temporally
extending ε-greedy by repeating the sampled action for a
random duration can lead to vastly improved exploration.

Both ideas can conveniently directly be used as Explorer
modules within our framework.

2.5. Combining Intrinsic and Extrinsic rewards

Although extensive work has been done on the different
ways to generate intrinsic rewards, surprisingly little work
exists on incorporating such rewards with the environment’s;
the traditional approach uses the weighted sum R = Re +
βRi and fine-tunes β.

In the paper introducing Random Network Distillation
(Burda et al., 2019b), a very efficient method for intrinsic
motivation based on state reconstruction error, the authors
shortly propose to decouple the network’s heads into an
exploration and exploitation head. However, first, they limit
this idea to using different discount rates; and second, they
only apply it to the value function estimator, not to the pol-
icy network, effectively merging both policies into one in
the process. In contrast, we decouple the agents all the way

Learning Intrinsically Motivated Options

Figure 1. Architecture of the agent with our proposed extension in green. The Exploiter is trained using the extrinsic reward Rt (red)
while the Explorer uses the intrinsic reward Ri,t. Note that the time-step t is incremented at the Environment step, hence fi,r takes
(At, St+1) as input.

to the policies, conserving knowledge and distinct behaviors
of both.

The engaged climber method (Perotto, 2015) also proposed
to decouple an exploration and exploitation strategy, where
the Explorer is trained with a version of a curiosity-based
reward. The focus of the author is on the timing to switch
between strategies, presenting a set of conditions to decide
whether to switch. However, our work differs in two main
ways: First, their algorithm and hyperparameter choices
assume knowledge of the MDP; and second, their switching
method relies heavily on the reward sign, and is not learnt;
while we use options.

In a preliminary paper empirically studying the success of
Hierarchical RL (Nachum et al., 2019), the authors intro-
duce Explore & Exploit, the closest approach we find to ours.
They train an Explorer and Exploiter with respectively in-
trinsic (from goal specification) and extrinsic rewards. The
core differences with our method is that a temporary policy
is chosen from a fixed {Explorer : 0.2, Exploiter : 0.8}
distribution. The Exploiter can therefore not deliberately
choose to explore, nor can-he choose not to, as the explo-
ration is deliberately not formulated as an option. The au-
thors only use their algorithm for comparison purposes in
a HRL setting, while our focus is in learning from intrinsic
motivation.

3. Method
We assume that the agent is equipped with an intrinsic
reward function fir (s, a, s′) = Ri to generate a pseudo-
reward Ri from the (s, a, s′) transition. This function’s
purpose is to help the agent consistently explore diverse
behaviors to find the optimal policy, with examples provided
in Section 2.3, and is expected to generate an interesting
behavior without extrinsic reward at all. We focus on how
to efficiently use this reward as a learning signal to improve
sample-efficiency and performance.

3.1. Traditional approach drawbacks

The traditional approach, which can be called weighted sum
reward, is to fine-tune a β parameter in the total reward
expression R = Re + βRi, where Re is the task’s reward,
called extrinsic. It basically comes down to tuning a single
hyperparameter to balance out exploration and exploitation.
However, multiple problems arise from this approach.

Constraints on the reward function The weighted sum
assumes thatRi → 0, so that the agent can converge towards
optimal behavior. First, this means that it constraints the
exploration to the beginning of the learning, while as pointed
out in (Sutton & Barto, 2018), “any method that focuses on
the initial conditions in any special way is unlikely to help
with the general non-stationary case”. Indeed, we constrain
our fir function to disappear asymptotically; however, there
is always ground for exploration. Second, if the reward

Learning Intrinsically Motivated Options

function is non-stationary or too expressive, it can cause
convergence issues: ”when intrinsic rewards evolve over
time, the agent generally cannot find an optimal stationary
policy” (Aubret et al., 2019).

Loss of knowledge and generalization First, if the re-
ward function disappears asymptotically, the learnt ex-
ploratory behavior will be lost – the agent will forget how to
explore. Second, even if it did not, in combining both poli-
cies into one, it is impossible to extract either the greedy or
exploratory behavior at any time. If no greedy behavior can
be extracted, the performance will be hindered as long as
the intrinsic reward does not disappear. If no exploratory be-
havior can be extracted, we lose valuable task-independent
knowledge about the environment. Third, in combining the
policies, it is unclear when the greedy behavior will win
over the exploratory one, which might impede multi-step
exploration.

Hyperparameter fine-tuning In the weighted sum ex-
pression, fine-tuning β is reward-dependent, non-intuitive,
and can therefore be tedious: ”without due care, the optimal
policy can be altered or even completely obscured by the
intrinsic rewards” (Fortunato et al., 2018). We will see that
there is not always a good balance.

Extensions to multiple reward functions If multiple in-
trinsic reward functions f (j)ir = R

(j)
i are available, the

grid-search fine-tuning of β(j) parameters in the total R =

Re +
∑
j β

(j)R
(j)
i reward expression quickly becomes im-

practical. Even with few reward functions, the rewards R(j)
i

are hard to compare intuitively, both in amplitude and de-
caying rates, so we are likely to lose most of the behaviors
in the fine-tuning process.

3.2. Proposed alternative

Our focus is therefore on finding a way to benefit from an
intrinsic motivation function fir without such downsides.
The key insight to our approach lies in the fact that a purely
intrinsically motivated agent can still learn powerful explo-
ration policies (Burda et al., 2019a).

3.2.1. LEARNING FROM THE INTRINSIC REWARD

Our proposition can be summarized in the term decoupling:
training a different agent per reward function available. We
call the agent trained with extrinsic reward r (s, a, s′) =
Re the Exploiter; all other agents, trained with intrinsic
rewards f (j)ir (s, a, s′) = R

(j)
i , are called Explorers.

3.2.2. CALLING THE EXPLORATION POLICY

We would like the agent to learn when to explore, and when
to exploit. For this, we equip the Exploiter with an explo-
ration option, i.e. an additional action to call the Explorer.
For n Explorers, if k = |A| with A the set of possible ac-
tions, then the options are aexplorerj = ak+j ,∀j ≤ n. The
overall agent architecture with n = 1 Explorer is shown in
Fig. 1, with additions in green.

When called, an Explorer acts for the next cswitch time-
steps1, before ”switching” back to the Exploiter. Learning
an option termination function is beyond the scope of this
paper. Usage of the option leads to multi-step exploration,
which corresponds to an exploratory temporal abstraction
and has empirically been shown, in some settings, to be
important for Hierarchical RL (Nachum et al., 2019).

3.2.3. TRAINING

The reward R̂t+1 =
∑cswitch−1
k=0 γkRt+k+1 and bootstrap-

ping discount γcswitch are used for option learning.2.

All agents –Exploiter, or Explorers– have access to the
primitive actions for natural control; only the Exploiter
has access to more, with as many options as Explorers
available. The agents are all trained off-policy from the
(S0, A0, ..., St, At, St+1) stream of data; using extrinsic re-
ward r (St, At, St+1) = Re for the Exploiter, and intrinsic
rewards f (j)ir (St, At, St+1) = R

(j)
i for Explorers.

3.2.4. UNDER-SAMPLING PROBLEM

When the action space is large, the options might get
drowned in the possibilities, and get sampled less. To pre-
vent this, under an ε-greedy Exploiter policy, we can choose
a probability pex to select an exploration option when act-
ing non-greedily (under probability ε). At one extreme,
pex = 1/ (k + n) leads back to normal ε-greedy action
selection (which can therefore be seen as a default hyper-
parameter choice). At the other extreme, choosing pex = 1
means the Exploiter will exclusively use an option and call
an Explorer when acting non-greedy. This would mean that
ε-greedy is now, with probability ε, causing the agent to
use consistent, multi-step exploration – instead of a single
step of random action selection. Note that in this setting,
we should make sure that the Explorers explore the whole
state-action space, in order to ensure thorough exploration.

3.3. Comparison with the weighted sum method

In this subsection we answer the problems that arise from
using the weighted sum reward scheme, R = Re + βRi,

1Notation from Explore&Exploit, (Nachum et al., 2019).
2Full notations, simplified for clarity, should include minimum

operators with T , the termination time in episodic environments.

Learning Intrinsically Motivated Options

Figure 2. Shortcut Maze environment. The agent starts in state S
and a reward of 1 is distributed when the agent reaches the terminal
state G. The shortcut opens up after N steps.

mentioned in subsection 3.1, point-by-point.

Constraints on the reward function Since we decou-
pled the Exploiter and Explorer, the Explorer is now an
independent agent that can learn from any reward function
fir. It does not matter if the function is non-stationary, or
expressive, or does not disappear in time.

Loss of knowledge and generalization The task-
independent knowledge about the environment –regarding
how to explore, or any other skill the Explorers might have
learnt– is now contained in the Explorers as usable policies.
In the context of task task-transfer, the Exploiter alone can
be switched out for a new Exploiting agent, while keeping
the set of f (j)ir , options and learnt Explorers intact (in green
on Fig. 1).

Hyperparameter tuning The β exploration hyperparam-
eter is removed completely from the method, which means
we do not need to fine-tune it to balance out exploitation
and exploration. The agent can decide how much it explores.
Note that in return, we have a whole Explorer agent to take
care of.

Extensions to multiple reward functions When using
Explorers and Exploration Options, the extension to multi-
ple reward functions f (j)ir is natural and requires little extra
work.

4. Experiments
4.1. Environment and Setting

We evaluate our method in a tabular setting, on the Shortcut
Maze environment (Sutton & Barto, 2018), where a shorter
path is opened up afterN = 30k steps (Fig 2). Note that the
environment is only interesting if the agent did indeed find
the first longer path, or finding the shorter path becomes
easy. We implement this environment with a sparse reward
of 1 when the agent reaches the goalG, and set γ = 0.9 < 1
so the agent looks for the shortest geodesic path. We use a
learning rate of α = 0.1 for all learnt agents.

The agent is evaluated in a testing phase, using the greedy
behavior (the Exploiter still has access to the options). Dur-
ing such testing phases –but not in training–, the agent is
limited to 100 steps to reach the goal. We average the results
over 50 runs.

4.2. Comparison with baselines

We compare our ExploreOption with other model-free base-
lines for exploration. The first baseline (referred-to as
”QL”) is a simple ε-greedy QLearning (Watkins & Dayan,
1992) with ε annealed from 1 to 0.1 over 5k steps. A
constant ε = 0.1 is used for all other QLearning agents.
The second is an Optimistic QLearning (referred-to as
”QL O”), with Q1 = 1. The third is a QLearning agent
with a visit-count reward inspired from MBIE-EB3 (Strehl
& Littman, 2008), Ri = 1/

√
N (s′) =: fir (s, a, s′) with

total reward R = Re + βRi, which we refer to as QLearn-
ing+VisitCounts (”QL+VC”). Since we want the values of
states to go down with visits, we use an optimistic initial-
ization at Q1 = β/ (1− γ), which solves the first update
with target 0 + β/

√
(1) + γQ1. The ExploreOption agent

is implemented with a QLearning Exploiter and Explorer
(n = 1), and the Explorer uses the same optimistic values4

as QL+VC and is trained with reward Ri alone. Note that
the Explorer does not have access to the done flag indicat-
ing a terminal state, and sees the terminal G→ S transition
as any other (with a random action). This is essential for
positive reward functions, as otherwise the agent will be
pushed off the goal state, resulting in biased exploration.
The whole agent is referred-to as ”QL+EO”. The hyperpa-
rameters are fixed using the best values of the studies from
the following paragraphs.

The results are shown in Fig 3. As expected, QLearning
alone with an annealed ε does not find the short path, hav-
ing overfit to the longer one. Optimistic values alone do
not help much for this task, as the path opens up after the
agent’s expectations wear down. The algorithm is therefore
simply slower than QLearning to find the first path. Since
QL+VC uses optimistic values, its slow convergence is sim-
ilar, and even slightly slower to ensure visit-count based
exploration – it barely has time to find the first path before
the second opens up. In comparison, QL+EO finds the first
path even faster than QLearning alone, due to proper ex-
ploration, while it finds the second path much faster than
the visit-count based approach. As we decoupled explo-
ration from exploitation, the agent is able to benefit from
consistent exploration without harming the greedy behavior.

3We use visit-counts N (s′) instead of N (s, a) to speed up
learning in a deterministic environment.

4using β = 1, but this hyperparameter has no effect here.

Learning Intrinsically Motivated Options

Figure 3. Number of steps to the goal over training steps. Com-
parison of QLearning with annealed ε (QL), QLearning with Opti-
mistic starts (QL O), QLearning with a Visit-Count based reward
(QL+VC), and QLearning with an ExploreOption (QL+EO).

4.3. cswitch and intrinsic reward functions

The cswitch hyperparameter controls the number of steps
the Explorer acts before the Exploiter takes the control back.
With cswitch = 1, the Explorer has the least time and ex-
pressiveness, close to ε-greedy. With cswitch =∞ (imple-
mented arbitrarily as cswitch = 3600), the Explorer plays
until the end of the episode. The hyperparameter can be as-
sociated with the β hyperparameter from the weighted sum
scheme, as cswitch appears when decoupling to get rid of β,
and β also controls how much we care about exploration. In
this section we compare these two hyperparameters, as well
as the approaches’ sensitivity to fir, on a set of 3 intrinsic
reward functions.

The first intrinsic reward function we use is the inverse
square-root of the visit-counts from the baselines, giving
more reward to less-often visited states: fir (s, a, s′) =
1/
√
N (s′), which we refer to as Inverse sqrt.

Based on the same intuition, the second function
we use is fir (s, a, s′) = −

√
N (s′) referred to as

Negative sqrt. This function explodes in time, but
we use it to show that decoupling allows for much more
expressive reward functions, and functions that do not disap-
pear in time. Note that regardless of the value of β > 0, the
exploration reward will eventually lead the QL+VC agent.

The third function we use is based on the Successor Rep-
resentation (SR)(Dayan, 1993), defined as Ψπ (s, s′) :=
Eπ,p [

∑∞
t=0 γ

tI {St = s′} |S0 = s], and can be interpreted
as a form of generalization or distance over states, based
on the similarities of the states they lead to, i.e. their suc-
cessors. The SR can conveniently be learnt with TD(0)

and it has been shown recently (Machado et al., 2018)
that the norm of the SR can be used as an intrinsic re-
ward signal, which makes it one of the most general in-
trinsic reward functions available. The resulting intrinsic
reward is then fir (s, a, s′) = 1/ ‖Ψ (s)‖1, referred to as
Successor Rep. We use the same optimistic starts as for
Inverse sqrt.

In order to compare the reward functions and hyperparame-
ters, we plot the average time the agent takes to reach the
goal during the first part of training (before the path opens
up; top subplot) and second part of training (after the path
opens up; bottom subplot) when varying the hyperparame-
ters cswitch and β. Different reward functions correspond
to different curves, as the legend details – the results are
shown in Fig. 4.

First, let’s focus on our approach (QL+EO – left plots, first
three curves of the legend). We observe that the method
is extremely robust to changes in the function: the re-
sults are virtually the same, with a slight delay for the
Successor Rep to converge in the first phase. Regarding
cswitch, as expected, the method fails to find the second
path, or is exceedingly slow, for the lowest values of cswitch
(for 1 and 3). In such cases, the Explorer does not have
enough time to take the Exploiter out of the sub-optimal
trajectory, hence the shorter path is never found, leading to
an average (and worst possible) performance of 16 steps to
the goal (lower plot). Remember that without the option,
the Exploiter is a normal ε-greedy QLearning algorithm.
Note that the highest values of cswitch take the most time
to find the first path, which is likely due to the agent be-
ing taken out the temporary optimal path when the task is
straightforward. Any cswitch ≥ 5 finds the shorter path
consistently and very fast. Even the first path is found faster
with intermediate values of cswitch. These observations
align with the Hierarchical RL study (Nachum et al., 2019):
multi-step exploration, i.e. through temporal abstractions,
is essential to achieve our performance. Since most values
show good results, we arbitrarily selected cswitch = 15 for
the baselines.

The robustness of the approach to changes in the
intrinsic reward function is striking, especially since
Negative sqrt is so expressive, and Successor Rep
does not come with the guarantees that Inverse sqrt
possesses. QL+EO benefits just as well from all of them, as
long as they lead to consistent exploration.

In comparison, QL+VC (right plots) has much less attractive
results. Inverse sqrt, as mentioned in the comparison,
suffers from a difficult β tuning, where high values lead to
very delayed finding of the first path, while lower values sim-
ply fail to find the second path altogether. This shows that
trying to combine both policies into one leads to balancing
out when one or the other takes the lead, rather than benefit-

Learning Intrinsically Motivated Options

Figure 4. (lower is better) Average time to the goal, during training, before (top plot) and after (bottom plot) the path opens up (N steps);
for varying hyperparameters. The x axis is not linear, only a set of increasing values of the hyperparameter that are of interest.
Comparison of learning-based exploration methods and hyperparameters using different reward functions. Each plot reports the average
performance before (up) and after (down) the path opens up. (left:) QLearning+ExploreOption; (right:) QLearning+VisitCounts.

ing from both behaviors. The Successor Rep finds the
first path slightly faster, but no value of β was found to dis-
cover the second path at all. Regarding Negative sqrt,
averaging does not display the severe instabilities, and the
average time in the second phase is actually often higher
than 16. The value β = 0.001 is unstable at first but settles
down to the optimal path; however, the visit counts will
eventually blow the agent out of the correct trajectory.

4.4. Multiple Explorers

As we have seen in Section 4.2, we might want to learn
from multiple reward functions, as they offer a spec-
trum of behaviors. Since our ExploreOption approach
scales naturally with the number of reward functions avail-
able, we can try this idea with all 3 intrinsic functions
used before: Inverse sqrt, Negative sqrt and
Successor Rep. The result are shown in the curve ”All”
from Fig. 4 (left).

The outcome is virtually the same as for any of those
functions separately, with very close performance to
Inverse sqrt in particular. Small to no changes to per-
formance compared to the functions alone was to be ex-
pected, as they all provided very similar results, all focus on
exploration, and the spectrum of behaviors that can emerge
from such a simple Gridworld is limited. However, the
point is that the integration of several intrinsic reward func-
tions – and therefore several resulting intrinsically motivated
policies – was trivial and did not harm performance. We
believe this is a fundamental improvement on the traditional
approach to intrinsic motivation.

4.5. Random Explorer

Learning an additional agent and an intrinsic function can
be computationally expensive. This raises the question of
the necessity of learning an exploratory policy: how much
would the performance or sample-efficiency be affected if
the Explorer did not require resources? We answer this
question by replacing the (learnt) QLearning algorithm of
the Explorer by a random Explorer agent. The results are
reported on the left of Fig 4, ”Random Explorer” curve.
Note that for cswitch = 1, we fall back to QLearning. For
all higher values, the first path is found faster, showing
that multi-step exploration, even with a random policy, is
valuable. Interestingly, the agent finds the short path for
the highest values of cswitch, even though performance is
slower than the learnt agents, and less robust to cswitch.

The gap in performance between the agents with a learnt
or random Explorer is already big, but it is bound to widen
considerably with more complex environments and intrinsic
reward functions, where the random behavior can become
useless5.

4.6. Probability of the ExploreOption.

As introduced in subsection 3.2.4, the pex hyperparameter
allows to sample the options more frequently in an ε-greedy
setting.

Fig 5 provides a study of the pex hyperparameter. For the
special case pex = 0, it is interesting to see that although
the method is nearly similar to QLearning, the agent can

5Compare, for example, the exploration behavior of the learnt
agent on Mario versus a random agent (Burda et al., 2019a)

Learning Intrinsically Motivated Options

Figure 5. (lower is better) Varying pex for the ExploreOption.

still select the option when breaking ties randomly after
initialization, hence the agent still finds the first path faster
than QLearning. Apart from pex = 0 none of the values
prevent the agent from finding the shortest path, and the
algorithm is relatively robust to it. Lower probabilities take
slightly longer to find the path, since exploration is less
frequent. We used the intuitive balance pex = 0.5 so far.

4.7. Option learning rate

In a tabular setting, each state-action pair (s, a) has its own
Q value, and in particular, we learn the Q (·, aexplore) val-
ues for all states. However, intuitively, proper usage of the
option requires function approximation in order to gener-
alize over states. To test this hypothesis, we tried setting
the option learning rate to 0 – the option would only be
used through ε-greedy, and not learnt. We found that the
performance did not change: the agent did not need to learn
to use the option to benefit form the Explorer’s behavior
off-policy. In the experiments so far, we used arbitrarily the
learning rate αexplore = 0.001, but any value αexplore ≤ α
could work.

This observation is important, and we can summarize what
we learnt from these experiments. The gap in performance
of QL+EO with QL and QL+VC in this tabular setting
can be attributed to just three main factors: first, multi-
step exploration, i.e. cswitch > 1; second, an independent
Explorer from which to learn off-policy; and third, a learnt
(consistent) Explorer.

5. Discussion
5.1. Limitations

A major flaw of the algorithm presented here is the arbitrary,
and potentially hard to tune, cswitch parameter. Several

alternatives are possible, such as learning cswitch (Laksh-
minarayanan et al., 2017; Sharma et al., 2017); learning an
option termination function (Bacon et al., 2017); or learning
a stop action for the Explorer. The method proved robust
to cswitch in a tabular setting; future work will study it in
more complex environments.

Our method relies heavily on the quality of the fir functions
to generate rewards that would independently lead to a pow-
erful exploration policy. We should keep in mind that these
functions are not perfect, and might not properly span the
state-action space.

5.2. Learning from alternative signals

In Horde (Sutton et al., 2011), General Value Functions
(GVFs) are a generalization of value-functions to pseudo-
rewards and pseudo-discounts. Horde is then a collection
of multiple GVF learners, called demons. Control demons
learn action-value functions, while prediction demons learn
values functions. This framework generates a massive
knowledge representation of the environment based on
value functions.

GVFs and Horde share many similarities with the frame-
work of auxiliary task learning (Jaderberg et al., 2017;
Mirowski et al., 2017). There the agent learns, in addi-
tion to the task, auxiliary tasks that can be control tasks
(e.g. pixel control, feature control), or prediction tasks (e.g.
Depth or reward prediction). The weights of the function
approximator are shared with all tasks in order to build a
powerful and general representation.

From these viewpoints, all our Explorers can be considered
control tasks or demons, amassing knowledge about the
environment through the reward function they try to maxi-
mize. In addition to this, an important observation from the
intrinsic motivation literature is that virtually all methods
rely on learning interesting properties about the MDP, e.g.
a Forward Model, an Inverse Dynamics Model, the Suc-
cessor Representation, or density models. All of these can
then be seen as prediction tasks or demons, also gathering
task-independent knowledge about the environment.

Therefore, combining everything, the final agent is a multi-
headed function approximator, learning all Exploiter, Ex-
plorers and f (j)ir jointly and off-policy. This agent not only
builds a very strong task-independent representation; it also
contains a lot of information about the environment - how to
explore, or other behaviors; as well as predictive knowledge
such as forward models or a Successor Representation. This
agent would be very easily transferred across tasks – we
only need to switch in a new Exploiter head. This will be
the object of future work.

Learning Intrinsically Motivated Options

6. Conclusion
We introduced a new approach for learning from intrinsic
motivation. We carried out experiments with QLearning
agents on the simple non-stationary Shortcut Maze environ-
ment, where exploration is needed to find a shortcut. We
demonstrated empirically that its sample-efficiency, adapt-
ability and exploration performance vastly surpass that of
the traditional approach, a weighted sum of rewards. We
showed that:

1. Exploration through temporal abstractions over several
steps, especially with a learnt Explorer, lead to much
better sample-efficiency and exploration;

2. Our method adapts much better to miscellaneous in-
trinsic reward functions than the usual R = Re + βRi;

3. Decoupling exploiting and exploring policies improves
both exploration and exploitation while preserving
knowledge about the environment and scaling easily
with several reward functions.

We presented a view from GVFs and auxiliary tasks, which
vastly broadens the scope of the method for multiple Explor-
ers and reward functions, giving glimpses of an agent with a
strong representation, world knowledge, control knowledge
and task-transfer abilities.

Acknowledgements
This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” programme.

We would like to thank Matthias Hutsebaut-Buysse for
tremendously helpful feedback and reviews on the first ver-
sion of the paper. We are also deeply appreciative of the re-
inforcement learning community on Reddit, which provided
helpful insights on the field and on intrinsic motivation-
related questions in particular.

References
Achiam, J., Edwards, H., Amodei, D., and Abbeel, P. Vari-

ational Option Discovery Algorithms. arXiv preprint
arXiv:1807.10299, 2018.

Aubret, A., Matignon, L., and Hassas, S. A survey on
Intrinsic Motivation in Reinforcement Learning. arXiv
preprint arXiv:1908.06976, 2019.

Bacon, P.-L., Harb, J., and Precup, D. The Option-Critic Ar-
chitecture. In AAAI Conference on Artificial Intelligence,
2017.

Barto, A. G. Intrinsic motivation and reinforcement learn-
ing. In Intrinsically motivated learning in natural and
artificial systems, pp. 17–47. Springer, 2013.

Barto, A. G. and Mahadevan, S. Recent Advances in Hierar-
chical Reinforcement Learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying Count-Based Explo-
ration and Intrinsic Motivation. In Advances in neural
information processing systems, pp. 1471–1479, 2016.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-Scale Study of Curiosity-Driven
Learning. In International Conference on Learning Rep-
resentations, 2019a. URL https://openreview.
net/forum?id=rJNwDjAqYX.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by Random Network Distillation. In In-
ternational Conference on Learning Representations,
2019b. URL https://openreview.net/forum?
id=H1lJJnR5Ym.

Dabney, W., Ostrovski, G., and Barreto, A. Temporally-
extended { \epsilon}-greedy exploration. arXiv preprint
arXiv:2006.01782, 2020.

Dayan, P. Improving Generalization for Temporal Differ-
ence Learning: The Successor Representation. Neural
Computation, 5(4):613–624, 1993.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
Is All You Need: Learning Skills without a Reward Func-
tion. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/
forum?id=SJx63jRqFm.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy Networks
for Exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=rywHCPkAW.

https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW

Learning Intrinsically Motivated Options

Fox, L., Choshen, L., and Loewenstein, Y. DORA The
Explorer: Directed Outreaching Reinforcement Action-
Selection. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=ry1arUgCW.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In
Dy, J. and Krause, A. (eds.), International Confer-
ence on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 1861–1870,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/haarnoja18b.html.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining Improvements in
Deep Reinforcement Learning. In AAAI Conference on
Artificial Intelligence, 2018.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,
F., and Abbeel, P. VIME: Variational Information Maxi-
mizing Exploration. In Advances in Neural Information
Processing Systems, pp. 1109–1117, 2016.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment Learning with Unsupervised Auxiliary Tasks. In
International Conference on Learning Representations,
2017.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris, G. Discov-
ering options for exploration by minimizing cover time.
In International Conference on Machine Learning, pp.
3130–3139, 2019.

Kim, H., Kim, J., Jeong, Y., Levine, S., and Song, H. O.
EMI: Exploration with Mutual Information. In Interna-
tional Conference on Machine Learning, 2019.

Lakshminarayanan, A. S., Sharma, S., and Ravindran, B.
Dynamic Action Repetition for Deep Reinforcement
Learning. In AAAI Conference on Artificial Intelligence,
2017.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning, pp. 2295–2304, 2017.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
Based Exploration with the Successor Representation.
arXiv preprint arXiv:1807.11622, 2018.

Martin, J., Narayanan, S. S., Everitt, T., and Hutter, M.
Count-Based Exploration in Feature Space for Reinforce-
ment Learning. In International Joint Conference on
Artificial Intelligence, pp. 2471–2478, 2017.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Bal-
lard, A., Banino, A., Denil, M., Goroshin, R., Sifre,
L., Kavukcuoglu, K., Kumaran, D., and Hadsell, R.
Learning to Navigate in Complex Environments. In
International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJMGPrcle.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A.,
Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level Con-
trol through Deep Reinforcement Learning. Nature, 518
(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine,
S. Why Does Hierarchy (Sometimes) Work So Well in
Reinforcement Learning? CoRR, abs/1909.10618, 2019.
URL http://arxiv.org/abs/1909.10618.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and
Munos, R. Count-Based Exploration with Neural Den-
sity Models. In International Conference on Machine
Learning, volume 70, pp. 2721–2730. JMLR. org, 2017.

Oudeyer, P.-Y. and Kaplan, F. What is Intrinsic Motivation?
A Typology of Computational Approaches. Frontiers in
neurorobotics, 1:6, 2009.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-Driven Exploration by Self-Supervised Predic-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 16–17, 2017.

Perotto, F. S. Looking for the Right Time to Shift Strat-
egy in the Exploration-Exploitation Dilemma. Schedae
Informaticae, 24:73–82, 2015.

Schmidhuber, J. Formal Theory of Creativity, Fun, and
Intrinsic Motivation (1990–2010). IEEE Transactions on
Autonomous Mental Development, 2(3):230–247, 2010.

Sharma, S., Lakshminarayanan, A. S., and Ravindran, B.
Learning to Repeat: Fine Grained Action Repetition for
Deep Reinforcement Learning. In International Confer-
ence on Learning Representations, 2017.

Strehl, A. L. and Littman, M. L. An analysis of model-
based Interval Estimation for Markov Decision Processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

https://openreview.net/forum?id=ry1arUgCW
https://openreview.net/forum?id=ry1arUgCW
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=SJMGPrcle
https://openreview.net/forum?id=SJMGPrcle
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1909.10618

Learning Intrinsically Motivated Options

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Sutton, R. S., Precup, D., and Singh, S. P. Be-
tween MDPs and Semi-MDPs: A Framework for Tem-
poral Abstraction in Reinforcement Learning. Ar-
tif. Intell., 112(1-2):181–211, 1999. doi: 10.1016/
S0004-3702(99)00052-1. URL https://doi.org/
10.1016/S0004-3702(99)00052-1.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., and Precup, D. Horde: a Scalable
Real-time Architecture for Learning Knowledge from
Unsupervised Sensorimotor Interaction. In International
Conference on Autonomous Agents and Multiagent Sys-
tems, volume 2, pp. 761–768, 2011.

Taiga, A. A., Fedus, W., Machado, M. C., Courville, A.,
and Bellemare, M. G. On Bonus Based Exploration
Methods In The Arcade Learning Environment. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BJewlyStDr.

Watkins, C. J. and Dayan, P. Q-Learning. Machine learning,
8(3-4):279–292, 1992.

Williams, R. J. Simple Statistical Gradient-following Algo-
rithms for Connectionist Reinforcement Learning. Ma-
chine learning, 8(3-4):229–256, 1992.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://openreview.net/forum?id=BJewlyStDr
https://openreview.net/forum?id=BJewlyStDr

