
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVANTAGES, RISKS AND INSIGHTS FROM COMPAR-
ING IN-CONTEXT LEARNING MODELS WITH TYPICAL
META-LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate in-context learning (ICL) models from the perspective of learning
to learn. Unlike existing studies that focus on identifying the specific learning
algorithms that ICL models learn, we compare ICL models with typical meta-
learners to understand their superior performance. We theoretically prove the
expressiveness of ICL models as learning algorithms and examine their learnability
and generalizability across extensive settings. Our findings demonstrate that ICL
with transformers can effectively learn data-dependent optimal learning algorithms
within an inclusive space that encompasses gradient-based, metric-based, and
amortization-based meta-learners. However, we identify generalizability as a
critical issue, as the learned algorithms may implicitly fit the training distribution
rather than embodying explicit learning processes. Based on this understanding,
we propose transferring deep learning techniques, widely studied in supervised
learning, to meta-learning to address these common challenges. As examples, we
implement meta-level meta-learning for domain adaptability with limited data and
meta-level curriculum learning for accelerated convergence during pre-training,
demonstrating their empirical effectiveness.

1 INTRODUCTION

Large Language Models (LLMs) Achiam et al. (2023) have witnessed remarkable progress in recent
years. Beyond traditional natural language processing tasks such as machine translation and sentiment
analysis, LLMs have gained prominence in solving more complex tasks by understanding instructions
and examples from human input and generating coherent, human-like text. LLMs use in-context
learning (ICL) (Brown, 2020) to understand and generate responses based on the input text. Given
a prompt containing examples (input-output pairs) from a task and a query input, ICL allows the
LLM to generate the corresponding output without altering their weights. For example, given "happy
-> positive; sad -> negative; blue ->", the model can output "negative", while given "green ->
cool; yellow -> warm; blue ->" the model can output "cool". Formally, ICL can be formulated as
follows: given input (x(1),y(1), · · · ,x(n),y(n),x(n+1)), where there is an underlying task f such
that y(i) = f(x(i)), the model outputs a prediction of f(x(n+1)). By pre-training to simulate the
above behavior over a distribution of f , the ICL model can generalize to unseen tasks.

The remarkable performance of LLMs across a wide range of applications has garnered significant
attention, to understand how the ICL ability is acquired and executed. However, ICL has so far been
well-understood only in highly simplified settings: linear-transformers trained on linear regression
tasks. In these cases, the model is shown to precisely learn to perform pre-conditioned gradient
descent based on input examples, with explicit weights corresponding to the global minimum during
pretraining (Von Oswald et al., 2023; Mahankali et al., 2024; Ahn et al., 2023; Gatmiry et al., 2024).
Nevertheless, this setting is so simplified that it is far removed from real-world scenarios, and no more
complex settings currently offer such a transparent understanding. To achieve a more generalizable
understanding of ICL, researchers have approached the problem from various perspectives, including
theoretical results on expressiveness (Wang et al., 2024; Bai et al., 2023), learning dynamics and
convergence (Tian et al., 2023; Li et al., 2023b; Huang et al., 2024; Zhang et al., 2024; Sander et al.,
2024), generalization error (Li et al., 2023a; 2024; Wies et al., 2024), and observations of ICL model
behaviors (Akyürek et al., 2023; Bhattamishra et al., 2024; Zhang et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: In this paper, we begin by proving that ICL with transformer is expressive enough to
encompass typical meta-learners in the learning algorithm space. We then demonstrate that ICL
exhibits meta-level deep learning properties, allowing deep learning techniques to be effectively
adapted to the meta-level to enhance ICL.

Although precisely understanding what and how do ICL models learn from pre-training is chal-
lenging and depends on various problem settings and data distributions, a basic consensus has been
reached. Specifically, it is understood that an ICL model learns a learning algorithm that maps
(x(1),y(1), · · · ,x(n),y(n)) to f through pre-training. The inference process is then interpreted as
first learning f from (x(1),y(1), · · · ,x(n),y(n)) and subsequently applying it to a new input x(n+1).
This consensus highlights the nature of ICL models as meta-learners (Kirsch et al., 2022; Dai et al.,
2023), which involves learning a learning algorithm to enable systems to quickly adapt to new
tasks—essentially, learning to learn (Schmidhuber, 1987; Thrun & Pratt, 1998). Given tasks for
meta-training (pre-training), the goal is to learn a learner function (i.e., a learning algorithm) that can
make inferences for a given input based on a provided set of labeled examples, enabling generalization
to meta-testing (unseen) tasks. While typical meta-learners have been extensively studied, none have
demonstrated the level of general intelligence achieved by LLMs, or ICL models. This naturally
raises the question: what distinguishes ICL models from typical meta-learners? While existing works
on understanding ICL focus on identifying the exact learning algorithms that ICL models learn, we
aim to address a different question:

Why are ICL models more prominent compared to typical meta-learners?

The seeming difference between ICL models and typical meta-learners lies in their hypothesis spaces.
ICL has been characterized as the outcome of meta-learning with minimal inductive bias (Kirsch
et al., 2022). This difference may contribute to the prominence of ICL models through the advantage
of data-driven approaches over human-designed knowledge. In many fields of machine learning,
the success of learning with less inductive bias—such as training deep black-box models—can be
attributed to this phenomenon (LeCun et al., 2015). Human-designed knowledge is based on past
experience, which may not always be correct or relevant to the target problem, whereas data-driven
knowledge is optimized through training data and can perform well on the target problem when the
hypothesis space is sufficiently expressive and generalizability is ensured. Such characteristics also
extend to the hypothesis spaces of meta-learners, which define the knowledge required to determine a
learning algorithm. The basic hypothesis of meta-learners is a function with two inputs: a support
set containing labeled examples and a query input, which together produce the prediction for the
query. Typical meta-learners explicitly define, or rely on strong prior knowledge provided by humans,
to structure their algorithms—specifically, how to utilize support examples and predict the query.
In contrast, ICL models adhere only to the basic hypothesis, employing a black-box model where
transformers (Vaswani, 2017) are a viable choice. Transformers enable data-driven interactions
among samples at each layer, can be stacked into deep architectures, and incorporate necessary
inductive biases, such as awareness of support labels, identification of the query through tokenization,
and permutation invariance among support examples. These properties enhance their generalizability
as learning algorithms. We conjecture that the prominence of ICL models stems from their ability to
learn optimal learning algorithms within an inclusive hypothesis space. However, the optimality is
data-dependent1, which introduces potential risks in generalizability.

In the following, we verify the above conjecture. We conclude that ICL models can learn data-
dependent optimal algorithms but have limited generalizability. This is evident from their distribution-

1The formal definitions of an optimal learning algorithm and a data-dependent optimal learning algorithm
are provided in Appendix C

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sensitive performance when the algorithm is implicit. Based on this understanding, we identify shared
challenges between training deep models in supervised learning and pre-training ICL models. We
then propose strategically transferring deep-learning techniques to improve ICL through a mapping
from supervised learning to meta-learning. Related works are discussed in Appendix A.

Our contributions can be summarized as follows:

• We investigate ICL model from a learning to learn perspective by comparing it with typical
meta-learners. Treating the learning algorithm as a function learned during training, we
examine ICL’s expressiveness and generalizability, offering a comprehensive understanding
that integrates and extends existing works.

• We theoretically prove that ICL with transformer is expressive enough to perform existing
categories of meta-learning algorithm. Additionally, we demonstrate that it constructs data-
dependent optimal algorithms across extensive settings and investigate its generalizability,
challenging the existing interpretation of ICL as “algorithm selection”.

• We propose improving ICL by strategically transferring deep-learning techniques to the
meta-level through a mapping between supervised learning and meta-learning. As examples,
we enhance the domain adaptability of ICL models through pre-training with meta-level
meta-learning and accelerate convergence through pre-training with meta-level curriculum
learning. Our experiments demonstrate the empirical effectiveness of these approaches.

2 PRELIMINARIES: LEARNING TO LEARN
A learning algorithm (Kirsch et al., 2022) is considered as a mapping from a labeled dataset D =
{(x(i),y(i))}ni=1 and a query input x(q) to a prediction ŷ(q). The function of a learning algorithm
can all be represented as a learner function g:

ŷ(q) = g(x(q),D). (1)

Learning to learn (Vilalta & Drissi, 2002; Hospedales et al., 2021), also known as meta-learning, aims
to optimize a learnable function g(; θ) through meta-training. The process of training ICL models or
other meta-learners exemplifies learning to learn.

2.1 IN-CONTEXT LEARNING WITH TRANSFORMER

Generally, there is a input matrix Z0 composed ofD and x(q), which is fed into a M -layer transformer
TFM . Denote the collection of all model weights in TFM as θM . ICL can thus be represented as a
learner function gM :

gM (x(q),D; θM) = TFM (Z0; θM), (2)

with details on the construction of Z0, the model architecture of TFM , and the optimization of θM
provided in Appendix B.1.

2.2 TYPICAL META-LEARNING

Typical meta-learners are more restricted to certain learning algorithm structures designed by human
experts. Strong inductive biases are introduced into g(; θ), defining how to adapt to D and make
inference for x(q). Typical meta-learners are generally classified into three categories (Bronskill
et al., 2021): gradient-based, metric-based and amortization-based. The function of each category is
summarized below.

Gradient-Based. Given a prediction model h : x 7→ y and a loss function ℓ(·, ·), gradient-based
meta-learners (Finn et al., 2017) perform gradient-descent using the labeled data in D:

ggd(x
(q),D; θ) = h(x(q); θ −

∑n

i=1
∇θℓ(h(x

(i); θ),y(i))). (3)

Metric-Based. Metric-based learners (Koch et al., 2015; Garcia & Bruna, 2018; Sung et al., 2018)
learn to compare the query with examples by optimizing a distance metric in the feature space. Let

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

dθ(·, ·) denote a distance function. Pair-wise metric-based algorithm makes prediction based on the
pair-wise distance between the query and examples:

gsim(x
(q),D; θ) = 1

n

∑n

i=1
dθ(x

(i),x(q))y(i). (4)

For classification tasks where y(i) ∈ {cc}Cc=1, one can also adopt class-prototype metric-based
algorithm (Snell et al., 2017), which compares the query with the class prototypes:

gprt(x
(q),D; θ) =

∑C

c=1
dθ(

1

C

∑
y(i)=c

x(i),x(q))cc, (5)

where cc is the class prototype of class c.

Amortization-Based. Amortization-based meta-learners (Garnelo et al., 2018), also known as
black-box meta-learners, meta-train a black-box model to learn the learning algorithm, making them
much closer to ICL models as meta-learners. However, typical amortization-based methods follow a
framework that uses a set encoder (Zaheer et al., 2017) to map D to a vector e representing the task
context, then feeds the context e and the query to a prediction model fθ : (x, e) 7→ y. Considering
the universal approximation property of neural networks, an amortization-based meta-learner can be
formulated as:

gam(x
(q),D; θ) = fθ(x

(q),
1

n

∑n

i=1
[x(i)|y(i)]). (6)

3 EXPRESSIVENESS OF ICL WITH TRANSFORMER AS LEARNING
ALGORITHMS

Expressiveness in deep-learning refers to a model’s ability to capture complex patterns and re-
lationships within data (LeCun et al., 2015), a fundamental property that enables deep learning
models to achieve high performance on intricate tasks. Here, we focus on expressiveness at the
meta-level—specifically, the ability to capture interaction patterns and relationships among samples
in D and x(q), which corresponds to the expressiveness of learning algorithms. In this section, we
prove that ICL with transformer is expressive enough to perform any learning algorithm that
typical meta-learners can.

Specifically, we show that, with certain parameter instantiations, ICL with transformer gM (2) can
perform gradient-based ggd (3), pair-wise metric-based gsim (4), class-prototype metric-based gprt (5)
and amortization-based gam (6). Since class-prototype metric-based methods are applicable only to
classification tasks, we consider standard C-class classification tasks. The detailed settings of these
tasks, along with the mild assumptions for this part, are provided in Appendix D.1. Formally, we
present the following theorems for classification problems where C <∞:

Theorem 3.1. ∀ θ ∈ R|θ|, ∃M ∈ N∗ <∞, ∃ θM ∈ R|θM |, gM (x(q),D; θM) = ggd(x
(q),D; θ).

Theorem 3.2. ∀ θ ∈ R|θ|, ∃M ∈ N∗ <∞, ∃ θM ∈ R|θM |, gM (x(q),D; θM) = gsim(x
(q),D; θ).

Theorem 3.3. ∀ θ ∈ R|θ|, ∃M ∈ N∗ <∞, ∃ θM ∈ R|θM |, gM (x(q),D; θM) = gprt(x
(q),D; θ).

Theorem 3.4. ∀ θ ∈ R|θ|, ∃M ∈ N∗ <∞, ∃ θM ∈ R|θM |, gM (x(q),D; θM) = gam(x
(q),D; θ).

Proof Sketch The proof of Theorem 3.1∼3.4 are constructed by decomposing the functions of
typical learners into M ∈ N∗ <∞ conditioned steps, where each step can be achieved through one
transformer layer with the following two basic tools:

1. Universal approximation property of multi-layer perceptron (MLP) (Hornik et al., 1989):
This property allows feed-forward layers to express a wide range of functions Rdim1 → Rdim2 .
In each transformer layer, the feed-forward module operates independently on each column
of the input matrix. This enables the transformer to perform a wide range of sample-wise
transformations at every layer.

2. Orthonormal label embedding in R2C : We use a set of orthonormal vectors in R2C as
embeddings for the categorical labels (including the query identifier), such as one-hot
embeddings. This ensures that the attention weight matrix A ∈ R(n+1)×(n+1) in the self-
attention module of each transformer layer can be label-aware. Label-awareness implies that
{A ∈ R(n+1)×(n+1) | (y(i) = y(i′))∧(y(j) = y(j′))⇒ Ai,j = Ai′,j′}, i.e., the interaction

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

weight between ordered a sample pair (i, j) depends only on their labels (y(i),y(j)), and
can take any value in R∗. This allows the learning algorithm to achieve the behavior of a
label-aware set function.

The decomposition into finite conditioned steps is specific to each theorem and is not necessarily
unique. The full proof is provided in Appendix D.

4 ICL MODEL DOES LEARN DATA-DEPENDENT OPTIMAL ALGORITHM

We have shown that the ICL model is expressive by proving that its hypothesis space is inclusive, at
least covering the capabilities of typical meta-learners. However, the specific solution that the ICL
model achieves within this space through pre-training on a given task set—i.e., the exact learning
algorithm it learns—directly determines its performance and generalizability. Understanding this is
crucial to investigating its prominence. In this section, we investigate whether the ICL model, with
sufficient pre-training, learns an optimal learning algorithm from the training tasks, and examine its
generalizability when the specific learning algorithm is not explicitly known.

Algorithm Criterion. To determine whether two learning algorithms are identical, particularly for
classification tasks, their classification boundaries can be visualized through Monte Carlo sampling
of query inputs. Given multiple trials with different sets of labeled examples, if two learner functions
consistently produce the same classification boundary and exhibit identical end-to-end performance,
we can infer with high probability that they represent the same learning algorithm.

Generalizability of Learning Algorithm. We use the terms explicit and implicit optimal learn-
ing algorithm to distinguish the generalizability of a learning algorithm. Formally, we define
explicit optimal algorithm g(;F , ∗) of a function family F as: when n → ∞, ∀f ∈ F , ∀p(x),
Ep(x)[g(x

(q),D;F , ∗)] = f(x(q)), where D = {(x(i), f(x(i)))}ni=1, x(q) ∼ p(x), x(i) ∼ p(x). In
other words, An explicit optimal learning algorithm for F is generalizable across any data distribution
p(x), allowing it to learn any function f ∈ F . In contrast, implicit optimal learning algorithms are
sensitive to the specific data distribution. We denote GΩ as the set of all ground-truth explicit optimal
algorithms for a task set Ω. For example, Ordinary Least Squares is an explicit optimal learning
algorithm g(;F , ∗) for linear regression tasks (F = {f | f(x) = w⊤x}), while memorizing and
looking-up is an implicit optimal learning algorithm for any problem.

4.1 GENERATING TASKS WITH EXPLICIT OPTIMAL ALGORITHMS

To determine whether ICL with transformers learns the optimal learning algorithm, we generate
tasks whose optimal predictions can be precisely achieved by certain explicit learning algorithms.
For specific algorithms, we select representatives from each category of typical meta-learners: gsim,
gprt and gam. Specifically, denoting a set of tasks Ω = {Dτ}Tτ=1, we generate three types of tasks:
pair-wise metric-based tasks Ωsim where MatchNet Vinyals et al. (2016) (∈ gsim) is the optimal
learner, class-prototype metric-based tasks Ωprt where ProtoNet Snell et al. (2017) (∈ gprt) is the
optimal learner, amortization-based tasks Ωam where CNPs Garnelo et al. (2018) (∈ gam) is the
optimal learner. We do not consider ggd for two reasons: (i) it is challenging to define a family of
classification tasks and the corresponding h to guarantee the optimum; and (ii) proving that ICL can
express ggd is not considered as a contribution of this paper, as it is straightforward by leveraging
results from Bai et al. (2023); Wang et al. (2024). Details regarding task generation and experimental
settings are provided in Appendix E.

4.2 ICL MODEL LEARNS EXPLICIT OPTIMAL ALGORITHM ON SIMPLE TASKS

To verify that ICL with transformers learns the optimal algorithm, we perform meta-training using a
single type of task corresponding to one explicit optimal algorithm. We then draw conclusions by
comparing the classification boundaries of the trained ICL model with those of the known optimal
algorithm. Additionally, we augment the above-mentioned optimal meta-learners with parameterized
feed-forward layers, allowing them to be meta-trained alongside the ICL model. This ensures that
their optimality becomes data-dependent, similar to the ICL model. We conduct this investigation
using the three types of tasks described above.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Pair-wise metric-based. (b) Class-prototype metric-based. (c) Amortization-based.

Figure 2: Meta-testing performance of learners meta-trained and tested on the same single type of
tasks.

Figure 2(a) shows the end-to-end performance of learners trained on Ωsim and tested on Ω′
sim(unseen

tasks). The results indicate that the end-to-end performance of the ICL model is only marginally
different from MatchNet, the parameterized optimal meta-learner obtained through meta-training.
To further verify this, we visualize how the ICL model classifies each sample given a few fixed
labeled examples. An example is shown in Figures 3(a) and 3(b), with additional cases provided
in Appendix F.1. These visualizations confirm that the ICL model learns the same algorithm as
MatchNet, which is data-dependent and optimal for Ωsim. Similarly, we observe that the ICL model
learns ProtoNet on Ωprt, where ProtoNet is the optimal learner for this task type, as shown in Figures
2(b), 3(c) and 3(d). Likewise, the ICL model learns CNPs on Ωam, the optimal learner for these tasks,
as demonstrated in Figures 2(c), 3(e) and 3(f). Thus, we conclude that when pre-trained on Ωsim ,
Ωprt or Ωam, the ICL model learns the explicit optimal algorithm.

(a) True label of
task τ1 ∈ Ω′

sim.
(b) ICL predic-
tion of τ1.

(c) True label of
task τ2 ∈ Ω′

prt.
(d) ICL predic-
tion of τ2.

(e) True label of
task τ3 ∈ Ω′

am.
(f) ICL prediction
of τ3.

Figure 3: Comparing ICL’s predictions and true labels on pair-wise metric-based, class-prototype
metric-based and amortization-based tasks. Results of more trials are provided in Appendix F.1.

4.3 ICL MODEL LEARNS IMPLICIT OPTIMAL ALGORITHM ON MIXED TASKS

(a) Pair-wise metric-based tasks. (b) Class-prototype metric-based. (c) Amortization-based.

Figure 4: Meta-testing performance of learners meta-trained on hybrid tasks, tested on each seen task
type separately.

In real-world scenarios, tasks are often complex and diverse. Therefore, we further investigate what
learning algorithm the ICL model learns when the pre-training tasks come from various types that do
not share a single optimal explicit learning algorithm.

Specifically, we mix the above Ωsim, Ωprt and Ωam to form meta-training task set Ωmix, such that
GΩmix = {MatchNet,ProtoNet,CNPs}. We meta-train ICL model, MatchNet, ProtoNet and CNPs
with Ωmix, and evaluate their performance on unseen Ω′

sim, Ω′
prt and Ω′

am respectively. Figure 4 shows
the results. We also compare with the performance of data-dependent optimal algorithm (D.-Dpt.
Optimal) for each type of testing tasks. In Figure 4(a), D.-Dpt. Optimal refers to MatchNet trained on
Ωsim and tested on Ω′

sim; in Figure 4(b), it refers to ProtoNet trained on Ωprt and tested on Ω′
prt; and in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4(c), it refers to CNPs trained on Ωam and tested on Ω′
am. We also visualize the classification

boundaries of the ICL model on testing tasks, which align with those of the optimal algorithms.
Examples of these patterns are shown in Figures 10–12 and are further detailed in Appendix F.2.

From the above results, we draw several conclusions. First, typical meta-learners trained on Ωmix
(MatchNet, ProtoNet, CNPs) fail to achieve the data-dependent optimal (D.-Dpt. Optimal) perfor-
mance on Ω′

sim, Ω′
prt or Ω′

am, indicating that none of thses explicit learning algorithm can simultane-
ously be optimal for Ωsim, Ωprt and Ωam. Second, the ICL model trained on Ωmix (ICL) demonstrates
performance very similar to data-dependent optimal (D.-Dpt. Optimal) models. Furthermore, the
identical classification boundaries presented in Appendix F.2 suggest that the ICL model successfully
learns a data-dependent optimal learning algorithm on Ωmix. Finally, these findings collectively
demonstrate that the ICL model is more expressive than typical meta-learners and is capable of
learning a data-dependent optimal algorithm that /∈ GΩmix . However, the precise nature of this learned
algorithm remains unknown.

We concern about the question of whether the data-dependent optimal learning algorithm on Ωmix is
implicit or explicit, as this is directly related to the generalizability of the ICL model. Existing works
have studied ICL models trained on mixed types of tasks to perform “algorithm selection” (Li et al.,
2023a; Bai et al., 2023; Bhattamishra et al., 2024; Wang et al., 2024). “Algorithm selection” refers to
the process where, among all algorithms that are explicitly optimal for specific pre-training tasks,
the ICL model selects the most suitable algorithm based on the specific task context. This can be
formally described when trained with Ωmix:

gM (x(q),D; θM) = g∗(x(q),D), (7)

s.t., g∗ = arg min
g∈GΩmix

∑
D′⊂D

∑
(x(i),y(i))∈D′

ℓ(g(x(i),D/D′,y(i)),

which is an end-to-end explicit optimal algorithm.

However, we question whether the ICL model truly learns the “algorithm selection” algorithm when
trained on mixed types of tasks. While this interpretation may appear reasonable based on existing
empirical results, it raises concerns about the model’s generalizability to unseen task types and
out-of-distribution data—an aspect that has not been thoroughly investigated in the literature. First, If
ICL model trained with Ωmix strictly follows (7), it would struggle catastrophically with tasks from
novel types that cannot be solved by any g ∈ GΩmix . Second, if the model learns an explicit optimal
algorithm for tasks from seen types, it would lack the distribution sensitivity necessary to consistently
handle tasks from seen types with data from varying distributions. The following results show that
ICL is not "algorithm selection".

(a) True label of
task τ1 ∈ Ω′

rad.
(b) ICL predic-
tion of τ1.

(c) True label of
task τ2 ∈ Ω′

rad.
(d) ICL predic-
tion of τ2.

(e) True label of
task τ3 ∈ Ω′

rad.
(f) ICL prediction
of τ3.

Figure 5: Comparing ICL’s predictions and true labels on radial distance tasks.

4.3.1 ICL CAN SOLVE TASKS FROM UNSEEN TYPE

We continue to consider the ICL model trained on the above Ωmix, but now introduce a novel type of
tasks for testing: radial distance tasks Ωrad. A task is generated by first sampling r ∈ R from p(τ),
which defines the classification boundary. Then, {x(i) ∈ Rd}Ni=1 are sampled from p(x), and labels

are assigned as follows: y(i) =

{
0, ||x(i)|| ≤ r

1, ||x(i)|| > r
. Note that we specifically control p(x) based on r

to ensure that the labels are balanced within each task.

Such radial distance tasks cannot be solved by following the “algorithm selection” approach, as a
radial distance taskD cannot be learned by any g ∈ GΩmix = {MatchNet,ProtoNet,CNPs}. Formally,
∀g ∈ GΩmix ,Ep(τ),p(x)[

∑
(x(i),y(i))∈D ℓ(g(x(i),D/(x(i),y(i))),y(i))] = l, where l represents the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Performance on radial distance
tasks.

(b) Performance on tasks from seen
types under distribution shift.

Figure 6: Comparing ICL with ideal "algorithm selection".

expected loss of making predictions through random guessing. Following the "algorithm selection"
interpretation in (7), no g∗ can be determined. Even if an arbitrary g∗ were selected and used, its
performance would not improve with an increasing number of examples.

However, we find that ICL model trained with Ωmix can handle radials distance tasks effectively.
While the exemplar tasks in Figure 5 show that ICL model does not solve them optimally, the
increasing accuracy with a growing number of examples, as shown in Figure 6(a), indicates that it
effectively learns task-specific information—something that an “algorithm selector” cannot achieve.
We conjecture that when g ∈ Ωg is inclusive, the pre-trained ICL could be generalized to diverse
tasks, including those from novel types. This property likely contributes to the success of LLMs by
approaching the ideal of “learning to learn.”

4.3.2 ICL SHOWS DISTRIBUTION-SENSITIVE GENERALIZABILITY

Another result reveals that the ICL model has limited generalizability, even on tasks from seen types,
as it is sensitive to the data distribution. In contrast, an “algorithm selector,” as an explicit optimal
algorithm, would not exhibit such sensitivity. Figure 6(b) shows the ICL’s performance on hybrid
tasks from seen type. The ICL model is trained with Ωmix from with input distribution p(x), but tested
on Ω′

mix with a shifted distribution p′(x). The performance decreases noticeably as the distribution
shift between training and testing (x-axis) increases, despite the tasks being from seen types. This
result directly addresses our question, demonstrating that though ICL model trained with Ωmix does
learn a data-dependent optimal learning algorithm, it is implicit. Consequently, the ICL model
exhibits limited generalizability, as its meta-testing performance is sensitive to data distribution. This
behavior reflects the generalizability characteristics of deep learning, now observed at the meta-level.

5 IMPROVING ICL THROUGH TRANSFERRING DEEP-LEARNING TECHNIQUES
TO META-LEVEL

ICL with transformers can effectively learn optimal learning algorithms in a data-dependent manner
within an inclusive hypothesis space. However, the learned algorithms may implicitly fit the training
distribution, limiting generalizability—a behavior similar to well-known characteristics of deep
learning. Since ICL models rely solely on feed-forward operations, we explore transferring mature
deep-learning techniques from supervised learning to the meta-level to improve ICL performance.
This involves a conceptual mapping, such as mapping samples to tasks, sample-wise loss to task-wise
autoregressive loss, and epochs to episodes.

From a motivational perspective, supervised deep learning models and ICL models share fundamental
challenges. Both require inclusive training data to generalize well given their large parameter sizes.
However, training data is often limited in real-world scenarios. They also share common goals, such
as improving generalizability, accelerating convergence, and enabling fast adaptation. Techniques in
supervised learning designed to address these issues may also be effective for ICL. From a technical
perspective, many effective techniques in deep learning designed to achieve the above goals do
not impose strict analytical restrictions on the loss function or model architecture, requiring only
a differentiable supervision signal. Therefore, these techniques can at least be implemented at the
meta-level through the proposed mapping.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Next, we discuss two exemplary practices: meta-level meta-learning, which significantly improves
ICL performance on specific domains with very limited data for adaptation, and meta-level curriculum
learning, which effectively accelerates the pre-training process.
5.1 META-LEVEL META-LEARNING

While general ICL models can be applied directly, adapting them to domain-specific data is common
for building domain-specific intelligence. However, limited domain-specific data increases the risk of
overfitting, a few-task problem akin to the few-shot issue in supervised learning. Techniques like
LoRA (Hu et al., 2021) and prefix-tuning (Li & Liang, 2021) address this by efficiently adapting ICL
models. Unlike existing methods that assume a pre-trained general ICL model pre-trained by (13) is
given, we consider pre-training specifically for adaptation, optimizing performance after few-task
domain adaptation. This meta-level meta-learning approach mimics few-task adaptation during
pre-training by solving a bi-level optimization problem. It is practical as real-world pre-training tasks
are often naturally divided into semantic domains.

Consider a domain distribution p(δ). Each domain δ determines a distribution of tasks pδ(τ) where
a domain-specific task set Ωδ = {Dτ}Tδ

τ=1 can be drawn. During pre-training, we manually split
Ωδ into two disjoint task sets: a training (support) task set Ωtr

δ = {Dτ}tτ=1 and a validation (query)
task set Ωval

δ = {Dτ}Tδ
τ=t+1. Denote a meta-level meta-learner as G(g,Ω; ∆), i.e., a domain adapter

adapting meta-learner g with task set Ω. Denote a meta loss function evaluating meta-learner g with
{Dtr

τ ,Dval
τ } as ℓmeta(τ, g). Meta-level meta-training is performing:

min
∆

Ep(δ)[
1

|Ωval
δ |

∑
τ∈Ωval

δ

ℓmeta(τ,G(g(; θ),Ωtr
δ ; ∆))]. (8)

Specifically, to adopt meta-level meta-learning for improving the pre-training of the ICL model
g(; θ) = gM (; θM), we implement MAML as the meta-level meta-learner: G(g(; θ),Ωtr

δ ; ∆) =
g(; θ − ∇θ

1
|Ωtr

δ|
∑

τ∈Ωtr
δ
ℓmeta(τ, g(; θ))), which avoids designing additional learnable ∆ due to

MAML’s model-agnostic property. Alternatively, one can also design meta-level meta-learners
based on metric or amortization-based approaches.

(a) Given 64 tasks for adaptation. (b) Given 256 tasks for adaptation. (c) Given 1024 tasks for adaptation.

Figure 7: Performance of meta-trained ICL model and meta-level meta-trained ICL model on unseen
domain, given a few tasks for adaptation.

We conduct experiments on linear regression tasks, where the distribution of linear weights is
pδ(τ) = N (µδ,Σδ) with (µδ,Σδ) ∼ p(δ). More details are provided in Appendix G. We denote
such meta-level meta-trained ICL model as M2-ICL. After pre-training, we test on unseen domains
drawn from p(δ). Each domain provides Ωtr

δ = {Dτ}tτ=1 for adaptation, and Ωval
δ = {Dτ}Tδ

τ=t+1
for performance evaluation. The performance is shown in Figure 7. Note that reasonable solutions
include ICL w/ adpt, ICL w/o adpt, and M2-ICl w/ adpt, while M2-ICl w/o adpt serves only as an
intermediate product of meta-level meta-learning. We find that M2-ICL w/ adpt outperforms both
ICL w/ adpt and ICL w/o adpt, particularly when the number of adaptation tasks is very small (64,
Figure 7(a)), while the advantage gradually decreases with the growth of task number (marginal
with 1024 adaptation tasks Figure 7(c)). Meta-level meta-learning is effective for fast adaptation on
few-task domain, like typical meta-learning’s effectiveness for fast adaptation on few-shot task. Note
that, although the adaptation strategy in this experiment involves fine-tuning all parameters using
gradient descent (i.e., G is derived from MAML with inner updates as full-parameter fine-tuning),
any differentiable adaptation strategy can replace the inner-update or be incorporated into other
specifications of G. The comparison between ICL and M2-ICL is isomorphic with the comparison
between a model trained using standard supervised learning and a model meta-trained using MAML.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.2 META-LEVEL CURRICULUM LEARNING

Curriculum meta-learning strategy is intuitive, as a meta-learner should progressively learn tasks
from simple to complex for better convergence (Bengio et al., 2009). This approach has been shown
to be effective for gradient-based (Chen et al., 2021; Stergiadis et al., 2021) and metric-based (Zhang
et al., 2022) meta-learners. Here, we investigate whether the curriculum strategy can enhance the
meta-training of ICL.

We consider a simple case: an ICL model learning linear regression tasks, where task complexity
is evaluated by the number of dimensions. This approach, practiced by Garg et al. (2022), has not
yet been explicitly investigated for its effect. With a maximum dimension of 20, we train the ICL
model on tasks with an increasing number of effective dimensions (denoted such baseline as CL-ICL,
which curriculum is shown in Figure 8(a)), while values in the remaining dimensions are set to zero.
The training loss (Figure 8(b)) and performance comparison under limited training (Figure 8(c))
demonstrate that this curriculum enables faster convergence. However, with sufficient training, the
ICL models trained with and without the curriculum exhibit nearly identical training loss and testing
performance (Figure 8(d)). This result suggests that, in this case, the curriculum strategy accelerates
convergence but does not lead to a better optimum.

(a) Effective dimension. (b) Training loss. (c) Testing @ 2 × 105

episodes.
(d) Testing @ 5 × 105

episodes.

Figure 8: Training dynamics and testing performance of training ICL model with curriculum.

6 CONCLUSION, LIMITATIONS AND DISCUSSION

Pre-training an ICL model is fundamentally a process of learning to learn. This paper analyzes
ICL models by comparing them with typical meta-learners, inspiring strategies to enhance ICL. It
is demonstrated that ICL with transformers can effectively learn optimal learning algorithms in a
data-dependent manner within an inclusive hypothesis space. However, the generalizability of these
algorithms remains a critical issue, as the learned algorithm may implicitly fit the training distribution
rather than generalize effectively.

This understanding suggests that ICL models in meta-learning are conceptually isomorphic to deep
models in supervised learning, exhibiting similar characteristics such as data-dependent optimality
and challenges in generalizability. Based on the above understanding, we propose transferring
deep-learning techniques, such as meta-level meta-learning and curriculum learning, to the meta-level
to improve ICL. These strategies show promise in enhancing domain adaptability and accelerating
convergence, offering valuable insights into the nature of ICL and a foundation for building more
robust models.

This paper investigates ICL with transformers while omitting the sequential order of examples. The
effect of example ordering could be studied further, focusing on the impact of positional embeddings
in transformers decoupled from the learning algorithm. Although transformers are the conventional
architecture for ICL, alternative deep architectures for black-box meta-learners, such as classical
RNNs and emerging SSMs Gu & Dao (2023), also warrant exploration. The convergence dynamics
of pre-training ICL models remain poorly understood, particularly for real-world LLMs. Future
work could explore quantitative relationships between hypothesis space size, task inclusiveness, and
generalizability, potentially uncovering a neural scaling law for in-context learning. Additionally,
advanced deep-learning techniques like contrastive learning and denoising could be adapted to the
meta-level to further improve ICL performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In International Conference
on Learning Representations, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in Neural Information
Processing Systems, 36:57125–57211, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and LLMs by learning to learn discrete functions. In International
Conference on Learning Representations, 2024.

John Bronskill, Daniela Massiceti, Massimiliano Patacchiola, Katja Hofmann, Sebastian Nowozin,
and Richard Turner. Memory efficient meta-learning with large images. Advances in Neural
Information Processing Systems, 34:24327–24339, 2021.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yudong Chen, Xin Wang, Miao Fan, Jizhou Huang, Shengwen Yang, and Wenwu Zhu. Curriculum
meta-learning for next poi recommendation. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 2692–2702, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? language models implicitly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005–4019, 2023.

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In International
Conference on Learning Representations, 2018.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713. PMLR, 2018.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? In
International Conference on Machine Learning, pp. 15130–15152, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In International
Conference on Machine Learning, pp. 19660–19722, 2024.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 1(8), 2017.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Workshop, volume 2, pp. 1–30. Lille, 2015.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear
transformers learn and generalize in in-context learning? In International Conference on Machine
Learning, pp. 28734–28783, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023a.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023b.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
the optimal in-context learner with one layer of linear self-attention. In International Conference
on Learning Representations, 2024.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. Advances in
Neural Information Processing Systems, 32:7957–7968, 2019.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do transform-
ers perform in-context autoregressive learning? In International Conference on Machine Learning,
pp. 43235–43254, 2024.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances
in Neural Information Processing Systems, 30:4077–4087, 2017.

Emmanouil Stergiadis, Priyanka Agrawal, and Oliver Squire. Curriculum meta-learning for few-shot
classification. arXiv preprint arXiv:2112.02913, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1199–1208, 2018.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
Learn, pp. 3–17. Springer, 1998.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18:77–95, 2002.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in Neural Information Processing Systems, 29:3630–3638, 2016.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Zhijie Wang, Bo Jiang, and Shuai Li. In-context learning on function classes unveiled for transformers.
In International Conference on Machine Learning, pp. 50726–50745, 2024.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36, 2024.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv
Kumar. O (n) connections are expressive enough: Universal approximability of sparse transformers.
Advances in Neural Information Processing Systems, 33:13783–13794, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30:3391–3401,
2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Ji Zhang, Jingkuan Song, Lianli Gao, Ye Liu, and Heng Tao Shen. Progressive meta-learning with
curriculum. IEEE Transactions on Circuits and Systems for Video Technology, 32(9):5916–5930,
2022.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORKS

This paper is related with a wide range of existing works, including understanding ICL with trans-
former (Von Oswald et al., 2023; Mahankali et al., 2024; Ahn et al., 2023; Gatmiry et al., 2024; Wang
et al., 2024; Bai et al., 2023; Tian et al., 2023; Li et al., 2023b; Huang et al., 2024; Zhang et al., 2024;
Sander et al., 2024; Li et al., 2023a; 2024; Wies et al., 2024; Akyürek et al., 2023; Bhattamishra
et al., 2024; Zhang et al., 2023), meta-learning (Schmidhuber, 1987; Thrun & Pratt, 1998; Koch et al.,
2015; Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017; Garnelo et al., 2018; Requeima et al.,
2019; Garcia & Bruna, 2018; Kirsch et al., 2022), expressiveness of neural networks (Hornik et al.,
1989; Raghu et al., 2017; Yun et al., 2019; 2020), and generalizability of deep-learning (Kawaguchi
et al., 2017; Neyshabur et al., 2017; Zhang et al., 2021). We have mentioned the closely related works
in the main text. Next, we provide a more detailed discussion of the connections between this paper
and the most relevant studies.

Akyürek et al. (2023) and Bai et al. (2023) have comprehensively investigated the explicit learning
algorithms that transformers can learn in-context, including ridge regression, least squares, and
Lasso on linear regression tasks. Building on their findings, we believe that transformers are capable
of learning numerous explicit learning algorithms in-context. Rather than focusing on identifying
specific explicit algorithms under different settings, our work provides a broader and more abstract
understanding of ICL with transformers. We conceptualize ICL as a data-dependent model that
can express typical meta-learners. These meta-learners, in turn, are capable of expressing a wide
range of explicit learning algorithms (Finn & Levine, 2017; Zaheer et al., 2017). This perspective
accommodates and extends existing results. Wang et al. (2024) and Bai et al. (2023) have also proven
that ICL with transformers can implement gradient descent on neural networks. We leverage this result
as a critical tool to show that ICL can perform gradient-based meta-learning algorithms. We adopt
the definition of a learning algorithm from Kirsch et al. (2022) and build on their understanding that
ICL models function as general-purpose meta-learning systems with minimal inductive bias. Kirsch
et al. (2022) demonstrate that ICL models can learn to learn and that their generalizability improves
with an increasing number of training tasks on few-shot image classification tasks. While their work
focuses on generalization trends, we compare ICL models with other meta-learners, proving the
expressiveness of ICL with transformers and revealing its learnability and the characteristics of the
algorithms it learns. The transition patterns of learning ability with more training tasks observed by
Kirsch et al. (2022) complement our findings from the convergence perspective.

B PRELIMINARIES

B.1 IN-CONTEXT LEARNING WITH TRANSFORMER

Input. Following existing works (Von Oswald et al., 2023; Ahn et al., 2023), we investigate
ICL without positional embedding to study its learning to learn ability while ignoring the order of
examples. Let x(i) ∈ Rd be a input, and y(i) ∈ Re be the corresponding output. For each task τ ,
there a task-specific function fτ and dataset of the task Dτ that ∀(x(i),y(i)) ∈ Dτ ,y

(i) = fτ (x
(i)).

Labeled examples and query of a task are input together. Define the input matrix Z0:

Z0 =
[
z(1) z(2) · · · z(n) z(n+1)

]
=

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) q

]
∈ R(d+e)×(n+1), (9)

where q ∈∈ Re is the indicator of unlabeled query. ICL model is trained to output the prediction of
y(n+1) given Z0, with a set of tasks {Dτ}Tτ=1 = {{(x(i),y(i))}Nτ

i=1}Tτ=1 from training distribution
fτ ∼ p(τ),x(i) ∼ p(x), to generalize to unseen tasks.

Model Architecture. ICL is typically achieved by transformer, which are composed of stacked
self-attention layers. Given Z ∈ R(d+e)×(n+1), a single-head self-attention layer Attnsmax is defined
as

Attnsmax
Wk,q,v

(Z) = WvZ · smax(Z⊤W⊤
k WqZ) , (10)

where Wv,Wk,Wq ∈ R(d+e)×(d+e) are the (value, key and query) weight matrices, and smax(·) is
the softmax operator which applies softmax operation to each column of the input matrix. Note that
the prompt is asymmetric since the label for x(n+1) is excluded from the input.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

An M -layer transformer, denoted as TFM , consists of a stack of M self-attention layers and MLP
blocks. Formally, denoting by Zl the output of the lth layer attention, we define

Zl+1 = Zl + σαl
(AttnPl,Ql

(Zl)) for l = 0, 1, . . . ,M − 1, (11)

where σ(·) represents feed-forward layers parameterized by αl, which operates independently on
each column of the input. Given Z0, the prediction is obtained as

ŷ(n+1) = TFM (Z0; {Pl, Ql, αl}M−1
l=0 ,Wr) = Wr[ZM]:,(n+1), (12)

where [ZM]:,(n+1) is the (n+ 1)-th column of ZM , and Wr ∈ Re×(d+e) is the linear readout weight.

During training, given the distribution of tasks fτ ∼ p(τ),x(i) ∼ p(x), and loss function ℓ(·, ·) (e.g.,
cross-entropy), the parameters are optimized to minimize the expectation of auto-regressive loss of
training tasks:

min
{Pl,Ql,θl}M−1

l=0 ,Wr

Ep(τ),p(x)

[1

Nτ

Nτ−1∑
i=0

ℓ(ŷ(i+1),y(i+1))
]
. (13)

B.2 META-LEARNING

Meta-learning is a methodology concerned with “learning to learn” algorithms. Define g(; θ) is
a meta-learner that maps a task dataset Dτ and a query input x(q) to its task-specific prediction.
Typical meta-learning algorithms first learn an explicit model to a model h from Dτ and then perform
the prediction, i.e, ŷ(q) = g(x(q),D; θ) = g′(D; θ)(x(q)). For meta-training, given the training
distribution p(τ) and p(x), from which the tasks {Dτ}Tτ=1 are drawn, the goal is to learn g(; θ) that
performs well on unseen tasks. Within each task, a training set Dtr

τ = {(xτ,i, yτ,i)}ni=1 is used to
provide supervised information, and a validation set Dval

τ = {(xτ,i, yτ,i)}Nτ
i=n+1 is used to evaluate

performance and optimize the meta-learner. The meta-training process is then performed as:

min
θ

Ep(τ),p(x)

[1

Nτ − n

Nτ∑
i=n+1

ℓ(g(x(i),Dtr
τ ; θ),y

(i))
]
. (14)

C OPTIMALITY OF A LEARNING ALGORITHM

We claim ICL model learns data-dependent optimal learning algorithms (DDOLA), which is different
and weaker than (true) optimal learning algorithm (OLA).

Formally, given a finite training set Dtrain = {(xi, yi)} where each sample is i.i.d.: (xi, yi) ∼
p(x, y), and a unseen testing set Dtest = {(xj , yj)} following the same distribution, the OLA is
g∗ = argmaxg E(xj ,yj)∼p(x,y){Prob[g(xj ,Dtrain) = yj]}. Which is to say a learning algorithm can
make the most "accurate" prediction given a training set and unseen target input from the same
distribution. It is possible to know the optimal learning algorithm with the priori of p(x, y). For
example, ordinary least squares is optimal for linear regression with Gaussian noise. In the paper,
three types of tasks are generated by designed ways, i.e., known p(x, y) (Section 4.1). It is obvious
that a MatchNet model with certain parameters (simply keeping all modules inside as identical
mappings) is the optimal learning algorithm for Ωsim, and so does ProtoNet for Ωprt and CNPs for
Ωam. However, meta-learners have not access the true p(x, y). They only learn the function to infer
p(x, y) from Dtrain = {(xi, yi)} through meta-training, which inevitably brings variance and bias,
being (meta-training) data-dependent. So we denote that given certain meta-training set, the best that
a random-initialized and meta-trained deep learner can do as the DDOLA. This could be empirically
approximated by meta-training a deep and random-initialized MatchNet/ProtoNet/CNPs with certain
meta-training set (for the three task types respectively).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D PROOF OF THE META-LEVEL EXPRESSIVENESS OF ICL

D.1 DETAIL SETTINGS

D.1.1 CLASSIFICATION TASK WITH ORTHONORMAL LABEL EMBEDDING

Classification task specifies the ICL’s input in Section B.1 with y(i) ∈ {c1, c2, · · · , cC}, where cc
is the embedding vector of the c-th class. For these label embeddings, we can find 2C orthonormal
vectors in R2C : {uj}2Cj=1, such that:

u⊤
i uj =

{
1, if i = j

0, if i ̸= j
. (15)

A simple choice of {uj}2Cj=1 is the set of 2C one-hot vectors. We use {uj}Cj=1 as the embeddings of
{cc}Cc=1, i.e., y(i) ∈ {uj}Cj=1, and uC+1 as the indicator of query q.

D.1.2 SELF-ATTENTION WITHOUT SOFTMAX

In our setting, we consider self-attention layers that replace the softmax operation in (10) with
column-wise L1-normalization. In particular, (10) is now approximated and reparameterized with
weights P := Wv ∈ R(d+e)×(d+e) and Q := Wk

⊤Wq ∈ R(d+e)×(d+e) as:
AttnP,Q(Z) = PZnormcol

1 (Z⊤QZ) . (16)

where [normcol
1 (A)]i,j =


Ai,j∑
i |Ai,j |

,
∑
i

|Ai,j | ≠ 0

0,
∑
i

|Ai,j | = 0
. Note that it is conventional to omit certain

nonlinearities, such as the softmax operation, in self-attention layers to align transformers with
explicit learning algorithms. While existing works often replace the softmax operation with 1

n

(Von Oswald et al., 2023; Ahn et al., 2023), the normcol
1 in (16) provides a closer approximation.

Since the proof for the gradient-based algorithm (3) follows trivially from the results of Bai et al.
(2023); Wang et al. (2024), we focus on metric-based algorithms (4) and (5), as well as amortization-
based algorithms (6). We prove that there exists an TF model with specific real-valued parameters
that can perform these algorithms.

Note that, for simplicity in proving the expressiveness of ICL with transformer, we focus on the
algorithm framework: we leave feature-level transformations with neural networks alone as they can
occur in both ICL model and conventional meta-learners, and enjoy the same universal approximation
property (Hornik et al., 1989); we also do not consider the order of samples in D, omitting any se-
quential models in meta-learners and positional embeddings in ICL. Typical metric-based algorithms
are thus categorized into to types: one is based on pair-wise distance (4), e.g., MatchNet; another
one is based on distance with class prototypes (5), e.g., ProtoNet. And typical amortization-based
algorithms are summarized as a function taking the query and the encoded set as input (6). By proving
that these exemplar set and inference functions can be implemented, more complex algorithms—such
as feature-wise transformations, interactions between samples, and advanced distance functions—can
be easily achieved through the recursive application of self-attention and feed-forward layers.

D.1.3 ICL CAN PERFORM PAIR-WISE METRIC-BASED ALGORITHMS

For pair-wise metric-based algorithms, we take MatchNet for example, proving (12) can perform

ŷ(n+1) =
1

n

n∑
i=1

< x(i),x(n+1) > y(i). (17)

In fact, this case is relatively simple and can be implemented using a single-layer transformer

without relying on the two tools. One implementation is Q0 =

[
I 0
0 0

]
, P0 =

[
0 0
0 I

]
, Wr =[

0 · · · 0
u1 · · · uc

]⊤
. Note that though the output of TF would be λ

∑n
i=1 < x(i),x(n+1) > y(i),

where λ ∈ R is a query-specific value, it has the same classification result with (17).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.1.4 ICL CAN PERFORM CLASS-PROTOTYPE METRIC-BASED ALGORITHMS

For the second category of metric-based algorithms, we take ProtoNet for example, proving (12) can
perform

ŷ(n+1) =

C∑
c=1

−|| 1
Nc

∑
y(i)=c

x(i) − x(n+1)||uc. (18)

This can be implemented by a 3C − 1 layer transformer achieving [Z3l−1](d:d+2C),(n+1) = q +∑l
c=1 ||x(n+1) − pc||u(c+1+C)mod(2C) in the following step-by-step functions:

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) q

]
, (19)

Z1 =

[
x(i) x(n+1) − p1

y(i) q

]
, (20)

Z2 =

[
x(i) x(n+1) − p1

y(i) q + ||x(n+1) − p1||uC+2

]
, (21)

Z3 =

[
x(i) x(n+1)

y(i) q + ||x(n+1) − p1||uC+2

]
, (22)

Z4 =

[
x(i) x(n+1) − p2

y(i) q + ||x(n+1) − p1||uC+2

]
, (23)

Z5 =

[
x(i) x(n+1) − p2

y(i) q + ||x(n+1) − p1||uC+2 + ||x(n+1) − p2||uC+3

]
, (24)

Z6 =

[
x(i) x(n+1)

y(i) q + ||x(n+1) − p1||uC+2 + ||x(n+1) − p2||uC+3

]
, (25)

· · · , (26)

Z3l−3 =

[
x(i) x(n+1)

y(i) q +
∑l−1

c=1 ||x(n+1) − pi||u(i+1+C)mod(2C)

]
, (27)

Z3l−2 =

[
x(i) x(n+1) − pl

y(i) q +
∑l−1

c=1 ||x(n+1) − pi||u(i+1+C)mod(2C)

]
, (28)

Z3l−1 =

[
x(i) x(n+1) − pl

y(i) q +
∑l

c=1 ||x(n+1) − pi||u(i+1+C)mod(2C)

]
, (29)

(30)

and readout by Wr =

[
0 · · · 0 · · · 0

−uC+2 · · · −u(c+1+C)mod(2C) · · · −u1

]⊤
. Each step of function

from Zl to Zl+1 can be implemented by one transformer layer, which would be proved later.

D.1.5 ICL CAN PERFORM AMORTIZATION-BASED ALGORITHMS

Denote the set embedding 1
n

∑n
i=1[x

(i)|y(i)] as e ∈ Rd′
. As f in (6) can always be implemented by

feed forward layers taking the concatenation of x(q) and e as input, there exists a learnable function
h1 in Rd′ × Rd and h2 in Rd × R2C that

f([(x(q))⊤, e⊤]⊤) = h2(x
(q) + h1(e)). (31)

Thus, we prove that (12) can perform

ŷ(n+1) = h2(x
(n+1) + h1(

1

n

n∑
i=1

[x(i)|y(i)])). (32)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

This can be implemented by a 3 layer transformer achieving the following step-by-step function:

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) q

]
, (33)

Z1 =

[
x(i) x(n+1) + h1(

1
n

∑n
i=1[x

(i)|y(i)])
y(i) q

]
(34)

Z2 =

[
x(i) h2(x

(n+1) + h1(
1
n

∑n
i=1[x

(i)|y(i)]))
y(i) q

]
, (35)

and readout by Wr =

[
I 0
0 0

]
. Each step of function from Zl to Zl+1 can be implemented by one

transformer layer, which would be proved now.

D.1.6 THE FUNCTION OF ONE TRANSFORMER LAYER

A transformer layer (11) can perform a wide range of functions, as we can decompose it is composed
of a self-attention layer and feed-forward layers, where (i) self-attention (16) with orthonormal label
tokenization (15) can achieve a wide range of label-aware set operations. (ii) feed-forward layer σ(·)
in (11) can learn any measurable functions in Rd+2c × Rd+2c. Here we prove how a transformer
layer can obtain the above functions from Zl to Zl+1. The main idea is a function can be decomposed
to three sub-steps: label-selecting which is achieved by A = Z⊤QZ, linear interaction achieved by
PZnormcol

1 (A), and non-linear transformation by σθ(·) if needed.

Label-Aware Attention. In one self-attention layer, equation (16), first each column in Z refer to
other columns through attention weights A = Z⊤QZ. A ∈ R(n+1)×(n+1) is selecting interaction
objectives and weighting interaction weights. We use label-aware to describe {A ∈ R(n+1)×(n+1) |
(y(i) = y(i′)) ∧ (y(j) = y(j′)) ⇒ Ai,j = Ai′,j′}, i.e., the interaction weight between ordered
sample-pair (i, j) only depends on their labels (y(i),y(j)) (including unknown label q), and can be
arbitrary value in R.

With our orthonormal label embedding in R2c, A is label-aware, thus can achieve label-aware
interaction. For example, to achieve (19) to (20), we require (c+ 1)2 conditions about A:

Ac1,q = 1

Aci,q = 0, i ∈ {2, 3, · · · , C}
Aq,ci = 0, i ∈ {1, 2, · · · , C}
Aci,cj = 0, i, j ∈ {1, 2, · · · , C}
Aq,q = 0

(36)

As A = Z⊤QZ and Ai,j is only related to y(i),y(j), we have Q =

[
0 0
0 L

]
where L ∈ R2C×2C .

Equation (36) gives (C + 1)2 linear equations about L:

u⊤
1 Luq = 1

u⊤
i Luq = 0, i ∈ {2, 3, · · · , C}

u⊤
q Lui = 0, i ∈ {1, 2, · · · , C}

u⊤
i Luj = 0, i, j ∈ {1, 2, · · · , C}

u⊤
q Luq = 0

(37)

Proposition D.1. ∀c > 1, Equation (37) has solutions in R2C×2C .

Proof. Denote ui ⊗ uj = [ui,1u
⊤
j , ui,2u

⊤
j , · · · , ui,2Cu

⊤
j]

⊤ ∈ R4C2

, L⃗ =

[L1,1, · · · , L1,2C , · · · , L2C,2C]
⊤ ∈ R4C2

, then u⊤
i Luj = (ui ⊗ uj)

⊤L⃗.

(37)⇐⇒ UL⃗ = A⃗, where

U = [ui ⊗ uj for i, j ∈ {1, 2, · · · , C + 1}]⊤ ∈ R(C+1)2×4C2

. (38)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(ui ⊗ uj)
⊤(ui′ ⊗ uj′) =

2c∑
t=1

uitui′tu
⊤
j uj′ (39)

= (u⊤
j uj′)(

2c∑
t=1

uitui′t) (40)

= (u⊤
j uj′)(u

⊤
i ui′) (41)

=

{
1, if i = i′ ∧ j = j′

0, if i ̸= i′ ∨ j ̸= j′
(42)

=⇒ rank(U) = (C + 1)2 (43)

[U, A⃗] ∈ R(C+1)2×(4C2+1), c > 1 =⇒ rank([U, A⃗]) ≤ (C + 1)2. (44)

(43), (44) =⇒

rank([U, A⃗]) = rank(U) = (C + 1)2 < 4C2. (45)

=⇒ Equation UL⃗ = A⃗ has solutions in R4C2

. ⇐⇒ Equation (37) has solutions in R2C×2C .

Note that for any function from Zl to Zl+1, the number of conditions about A ≤ (2C)2. Thus for any
label-aware function from Zl to Zl+1, it requires a label-ware A and we can find a linear system of
equations UL⃗ = A⃗, that has solutions in R4c2 , as the proof rank([U, A⃗]) = rank(U) ≤ 4c2 is without
loss of generalizability.

Linear Interaction. After obtaining desired A, normcol
1 (A) is performed as normcol

1 is a better
approximation of softmax than 1

n , and also required to deal with inconsistent label number in our
classification tasks. Then all columns in Z interact with the others linearly through PZnormcol

1 (A).

Still taking (19) to (20) as example, after obtaining desired A satisfying (36), P =

[
−I 0
0 0

]
can

achieve the function.

Non-Linear Transformation. In (11), σθ(·) is feed-forward layers that function on each column
of Z independently. Thanks to the universal approximation property (Hornik et al., 1989), it can
approximate any measurable function in Rd+2c × Rd+2c to any desired degree of accuracy. Thus
feature-level non-linear transformation from Zl to Zl+1 could turn to σθl(·). For example, (19) to
(20) does not require non-linearity so it can be implemented as σ(z) = z. For (20) to (21), one
implementation is σ(z) = [0, ||[z]1:d+1||uC+2]

⊤. Note that in this step, the = does not hold strictly,
but can be approximated by MLPs with error ϵ > 0. We use "=" to mean such approximation for
simplicity, as the error can be arbitrary small.

In conclusion, each step from Zl to Zl+1 can be implemented using a transformer layer. Typical
metric- and amortization-based meta-learning algorithms (4)(5)(6) can be implemented with ICL.
More complex models following the same set functions can also be performed by ICl with additional
recursion of transformer layers, whose proof is trivial. Moreover, as it has been proved that ICL
can perform gradient-based algorithms (3), ICL can exactly perform conventional handcrafted meta-
learning algorithms.

E GENERATING TASKS

Here, we present the task generation process for gsim, gprt and gam. The tasks are designed in specific
forms such that they are all linearly separable in x(i) ∈ Rd, enabling 2D visualization to observe the
behavior of ICL.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Pair-wise metric-based. (b) Class-prototype metric-based. (c) Amortization-based.

Figure 9: Examples of three types of tasks.

For pair-wise metric-based algorithms gsim, we generate a task by sampling C ×NC support samples
{x(i) ∈ Rd}C×NC

i=1 from distribution p(τ) and randomly assign them with labels y(i) = c, making
C × NC supports exactly contains NC label c for each c = 1, 2, · · · , C. Then the remaining
samples {x(i) ∈ Rd}NC+N

i=C×NC+1 are sampled from distribution px, and assigned with labels y(i) =
argmaxc

∑C×NC

j=1,y(j)=c < x(i),x(j) >. A typical meta-learner, MatchNet, can learn the optimal
classifier. A case is shown in Figure 9(a), where each point corresponds to a x(i) ∈ R2 and different
labels are assigned with different colors.

For class-prototype metric-based algorithms gprt, we generate a task by sampling C prototypes
{pc ∈ Rd}Cc=1 from p(τ). Then sample {x(i) ∈ Rd}Ni=1 from px, and assign labels by y(i) =
argminc ||pc − x(i)||. The corresponding optimal classifier is ProtoNet. A case is shown in Figure
9(b).

For amortization-based algorithms gam, we pre-define a partition of R, {Ωc}Cc=1, as decision range.
We generate a task by sampling µ ∈ Rd from p(τ). Then sample {x(i) ∈ Rd}Ni=1 from px(µ) =

N (µ,Σ), and assign labels by y(i) = c where
∑d

t=1[x
(i) − µ]t ∈ Ωc. The corresponding optimal

classifier is CNPs. A case is shown in Figure 9(c).

F MORE EMPIRICAL RESULTS

F.1 ICL MODEL TRAINED WITH SINGLE TYPE OF TASKS

Figures 10, 11 and 12 show more cases to support that ICL model learns MatchNet, ProtoNet, CNPs
on Ωsim, Ωprt, Ωam respectively.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 10: Comparison of ICL’s predictions with true labels on pair-wise metric-based meta-testing
tasks, with the ICL model trained on a single task type.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 11: Comparing ICL’s predictions and true labels on class-prototype metric-based tasks, with
the ICL model trained on a single task type.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 12: Comparing ICL’s predictions and true labels on amortization-based tasks, with the ICL
model trained on a single task type.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 13: Comparing ICL’s predictions and true labels on pair-wise metric-based tasks, with the ICL
model trained on mixed task types.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 14: Comparing ICL’s predictions and true labels on class-prototype metric-based tasks, with
the ICL model trained on mixed task types.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 15: Comparing ICL’s predictions and true labels on amortization-based tasks, with the ICL
model trained on mixed task types.

F.2 ICL MODEL TRAINED WITH MIXED TYPE OF TASKS

Figures 13, 14 and 15 show cases to support that ICL model learns data-dependent optimal learning
algorithm on Ωmix = {Ωsim, Ωprt, Ωam}.

G EXPERIMENT DETAILS

Our code is provided at https://anonymous.4open.science/r/code_unicl-D60E/.

21

https://anonymous.4open.science/r/code_unicl-D60E/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 1: Image classification accuracy (%) on Meta-Dataset, a benchmark for cross-domain few-shot
image classification.

Method Traffic Signs MSCOCO MNIST CIFAR10 CIFAR100 Average
ICL w/o adpt 45.4 35.5 88.1 65.2 55.9 58.02

ICL w/ adpt (8 tasks) 41.9 35.1 76.4 64.9 55.5 53.76
ICL w/ adpt (16 tasks) 43.3 36.2 78.5 66.0 56.3 56.06
ICL w/ adpt (32 tasks) 46.1 36.5 83.2 66.8 58.3 58.18

M2-ICL (8 tasks) 45.9 39.4 86.6 67.4 57.2 59.30
M2-ICL (16 tasks) 47.5 40.6 88.9 68.0 57.9 60.58
M2-ICL (32 tasks) 52.6 44.1 91.0 69.4 59.2 63.26

H META-LEVEL META-LEARNING FOR CROSS-DOMAIN FEW-SHOT IMAGE
CLASSIFICATION

We investigate the effective of meta-level meta-learning on real-world few-shot image classification
problem. We use Meta-Dataset Triantafillou et al. (2019) for training. Because it contains multiple
datasets inside each we can sample many few-shot classification tasks, thus can be naturally divided
into multiple domains to perform the meta-level meta-training (8).

Following standard settings, we used the training sets of ILSVRC, Omniglot, Aircraft, Birds, Textures,
Quick Draw, and Fungi during training. For testing, we used unseen datasets such as Traffic Signs,
MSCOCO, and additional datasets like MNIST, CIFAR10, and CIFAR100. Each dataset is treated
as a domain for meta-level meta-learning. We considered 5-way 5-shot tasks at the meta-level and
8/16/32 tasks-for-adaptation per domain at the meta-meta-level. The sampling of classes and images
to form tasks, as well as the sampling of tasks-for-adaptation within a domain, was random.

We consider the following baselines:

• ICL w/o adpt: The standard meta-learning setting, where meta-training is performed on all
tasks without distinguishing between datasets. During meta-testing, no domain adaptation is
performed, meaning that the 8/16/32 tasks are not utilized.

• ICL w/ adpt: The meta-training process is identical to that of ICL w/o adpt. While dur-
ing meta-testing, the model adapts using 8/16/32 domain-specific tasks by fine-tuning all
parameters (step = 5, learning rate = 0.0001, batch size = 8/16/32).

• M2-ICL: Meta-level meta-training an ICL model following the method introduced in Sec-
tion 5.1. The domain adaptation process, i.e., the inner-loop of meta-level-MAML is
configured as step=5, lr=0.0001, with 16 tasks-for-adaptation per domain. During testing,
given 8/16/32 domain-specific tasks, the same adaptation process is applied.

Our implementation builds the ICL model with a 8-layer transformer (without positional encoding),
where the input features are 512-dim extracted by a ResNet (resnet-18). Though the model is
relatively toy, it is enough to verify the effectiveness of meta-level meta-learning for improving ICL
in real-world application: the method pipeline is generalizable and one can replace them with models
with more advanced architectures or for other applications.

The results are provided in Table 1. We find that the M2-ICL significantly outperforms ICL w/o or w/
adpt with any tasks. Specifically, comparing with ICL w/o adpt (standard meat-training and testing),
adapting the ICL model with 8 tasks badly harms the performance due to overfitting, and with 16
tasks also do harm, while 32 tasks shows marginally improvement. However, adapting the M2-ICL
model with only 8 tasks is enough to surpasses the average performance, and the growing number of
tasks for adaptation brings more significant improvement. ICL w/o adpt, ICL w/ adpt (32 tasks) and
M2-ICL (8 tasks) have comparable performance. This show the proposed meta-level meta-learning is
very effective to improve the few-task domain adaptation ability.

I ILLUSTRATION OF META-LEVEL META-LEARNING

Here, we provide further illustrations of the problem setting and the algorithm procedure of the
proposed meta-level meta-learning, supplementing Section 5.1. The problem setting is illustrated in

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: The problem setting of meta-level meta-learning.

Figure 16. Conventional single-task learning solves problems on a single task, which consists of a set
of data points for training and another set for testing. Typical meta-learning addresses problems on a
domain, which includes a set of tasks for meta-training and another set for meta-testing. Meta-level
meta-learning operates on a collection of domains, each containing multiple tasks, and involves a set
of domains for meta-level meta-training and another set for meta-level meta-testing.

Next, we illustrate the process of training an M2-ICL model. The meta-level meta-training process,
with MAML as the meta-level meta-learner, is provided in Algorithm 1. Note that the meta-level
meta-learner G(;∆) in Equation (8) does not have to be MAML. We take MAML as G(;∆) because
of its model-agnostic property, which allows us to avoid designing additional learnable parameters ∆.
However, one can design customized G(;∆) meta-learners, such as metric-based or amortization-
based methods.

Algorithm 1 Training M2-ICL

Input: Training domain distribution p(δ), ICL model g(; θ).
1: while Not converge do
2: Sample a domain δ ∼ p(δ).
3: Sample tasks τ ∼ pδ(δ) to form task sets Ωtr

δ and Ωval
δ .

4: for Every task τ ∈ Ωtr
δ do

5: Calculate task loss ℓmeta(τ, g(; θ)) =
1
Nτ

∑Nτ−1
i=0 ℓ(ŷ(i+1),y(i+1)) by (12).

6: end for
7: Update θδ = θ −∇θ

1
|Ωtr

δ|
∑

τ∈Ωtr
δ
ℓmeta(τ, g(; θ)).

8: for Every task τ ∈ Ωval
δ do

9: Calculate task loss ℓmeta(τ, g(; θτ)) =
1
Nτ

∑Nτ−1
i=0 ℓ(ŷ(i+1),y(i+1)) by (12).

10: end for
11: Update θ ← θ −∇θ

1
|Ωval

δ |
∑

τ∈Ωval
δ
ℓmeta(τ, g(; θτ)).

12: end while

23

	Introduction
	Preliminaries: Learning to Learn
	In-Context Learning with Transformer
	Typical Meta-Learning

	Expressiveness of ICL with Transformer as Learning Algorithms
	ICL Model Does Learn Data-Dependent Optimal Algorithm
	Generating Tasks with Explicit Optimal Algorithms
	ICL Model Learns Explicit Optimal Algorithm on Simple Tasks
	ICL Model Learns Implicit Optimal Algorithm on Mixed Tasks
	ICL Can Solve Tasks from Unseen Type
	ICL Shows Distribution-Sensitive Generalizability

	Improving ICL through Transferring Deep-Learning Techniques to Meta-Level
	Meta-Level Meta-learning
	Meta-Level Curriculum Learning

	Conclusion, Limitations and Discussion
	Related Works
	Preliminaries
	In-Context Learning with Transformer
	Meta-Learning

	Optimality of a Learning Algorithm
	Proof of the Meta-Level Expressiveness of ICL
	Detail Settings
	Classification Task with Orthonormal Label Embedding
	Self-Attention without Softmax
	ICL Can Perform Pair-Wise Metric-Based Algorithms
	ICL Can Perform Class-Prototype Metric-Based Algorithms
	ICL Can Perform Amortization-Based Algorithms
	The Function of One Transformer Layer

	Generating Tasks
	More Empirical Results
	ICL Model Trained with Single Type of Tasks
	ICL Model Trained with Mixed Type of Tasks

	Experiment Details
	Meta-Level Meta-Learning for Cross-Domain Few-Shot Image Classification
	Illustration of Meta-Level Meta-Learning

