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1. Introduction

The hypergeometric series rFr−1 is defined as

rFr−1

(
a1, a2, . . . , ar
b1, b2, . . . , br−1

;λ
)

:=
∞∑
k=0

(
(a1)k(a2)k · · · (ar)k

k!(b1)k(b2)k · · · (br−1)k

)
λk

where (a)k := a(a +1) · · · (a +k−1) and where none of the bi is 0 or a negative integer [5]. 
The truncated hypergeometric series rFr−1

( a1, ..., ar

b1, ..., br−1 ;λ
)
n

is the degree n polynomial 
in λ obtained by truncating the hypergeometric series to the sum over k from 0 to n.

In this paper, we study the arithmetic of 3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)
n
; these values are related 

to a family of K3 surfaces

Sλ : W 2 = X1X2X3(X1 −X2)(X2 −X3)(X3 − λX1)

with generic Picard number 19, that has been studied in [4,17]. The variation of the 
complex structure of this family is depicted by its Picard–Fuchs differential equation, 
which is an order-3 ordinary differential equation. Up to multiplication by a scalar, 
its unique holomorphic solution near 0 is 3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)
. Moreover, the Picard–Fuchs 

equation of the family Sλ is projectively equivalent to the symmetric square of the 
Picard–Fuchs equation of

Eλ : y2 = (x− 1)
(
x2 − 1

1 − λ

)
;

see [17]. In terms of arithmetic, if we let Ap(λ) = #(Sλ/Fp) − p2 − 1 and ap(λ) =
p + 1 − #(Eλ/Fp), then Ap(λ) =

(
1−λ
p

)
(ap(λ)2 − p) [4].1

Deuring’s argument [10, p. 255] shows that for any λ ∈ Fp,

Ap(λ) ≡ 3F2(λ)p−1 ≡ 3F2(λ) p−1
2

(mod p).

More generally Dwork showed in [11] that for any λ ∈ Zp, there is a p-adic number γ(λ)
such that

3F2(λ)mps−1 ≡ γ(λ) · 3F2(λp)mps−1−1 (mod ps) (1)

for all integers m, s ≥ 1.
It can be shown that these congruences come from a formal group structure attached 

to Sλ, as constructed by Stienstra [24]. In particular, when 3F2(λ)p−1 �= 0 (mod p)
(i.e. p ordinary for Sλ), one can use the so-called Shioda–Inose structure of the K3 

1 The surfaces Xλ̃ with affine model Xλ̃ : s2 = xy(x + 1)(y + 1)(x + λ̃y) studied in [4] are isomorphic to 
Sλ via λ = −λ̃, X1 = 1, X2 = −1/y, X3 = x/y, and W = s/y3. Note that our λ is the negative of the λ̃
in [4].
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surfaces Sλ to show that γ(λ) =
(

1−λ
p

)
· αp(λ)2, with αp(λ) being the unit root of 

X2 − ap(λ)X + p = 0.
At special values of λ, stronger congruences have been observed for the truncations 

3F2(λ)n. Such congruences, that are stronger than what can be predicted from the formal 
group structure, are known as supercongruences. For example, Stienstra and Beukers 
conjectured the following supercongruences involving truncated hypergeometric series 
in [25], corresponding to our λ = 1 case: for odd primes p,

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ; 1
)

p−1
2

=
p−1
2∑

k=0

( (1
2 )k
k!

)3

≡ bp (mod p2)

where bp is the pth coefficient of the weight-3 cusp form η(4z)6, where η(z) =

q1/24
∞∏

n=1
(1 − qn) with q = e2πiz, is the eta function. This conjecture was proved by 

Van Hamme in [29], with subsequent proofs by Ishikawa [14] and Ahlgren [1]. More re-
cently, using a different technique, it is shown in [19] that for any prime p ≡ 1 (mod 4),

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ; 1
)

p−1
2

= −Γp

(
1
4

)4

(mod p3)

where Γp(·) denotes the p-adic Gamma function; there is a similar expression for primes 
which are congruent to 3 modulo 4.

Similarly, Z.-W. Sun conjectured (see remark 1.4 in [26]) a congruence for the λ = 64
case:

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ; 64
)

p−1
2

=
p−1
2∑

k=0

( (1
2 )k
k!

)3

(64)k ≡ ap (mod p2)

where ap = 0 if p ≡ 3, 5, 6 (mod 7) and ap = 4x2 − 2p where p = x2 + 7y2, x, y ∈ Z, if 
p ≡ 1, 2, 4 (mod 7). In fact, this ap is just the pth coefficient of η(z)3η(7z)3.

We show that such supercongruences occur for 3F2(λ)n whenever the elliptic curve 
Eλ has complex multiplications (CM):

Theorem 1. Let λ be an algebraic number such that Eλ has complex multiplications. Let 
p be a prime and let Eλ have a model defined over Zp with good reduction modulo pZp. 
Then

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

p−1
2

=
p−1
2∑

k=0

( (1
2 )k
k!

)3

λk ≡
(

1 − λ

p

)
αp(λ)2 (mod p2)

where αp(λ) ∈ Zp is the unit root of X2 − [p +1 −#(Eλ/Fp)]X +p = 0 if Eλ is ordinary 
at p; and αp(λ) = 0 if Eλ is supersingular at p.
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This result confirms the conjecture of Sun mentioned above. The rational values of λ
such that Eλ has CM are λ = −1, 4, −8, 64, 14 , 

−1
8 , and 1

64 [4]; but note that this theorem 
applies also to algebraic CM values of λ and primes p such that λ can be embedded in Zp. 
For example, Eλ is CM when λ = 7

8 + 5
√

2
8 , and Theorem 1 applies to both embeddings 

of λ in Zp for p ≡ ±1 (mod 8).
At each CM value λ with |λ| < 1 in each embedding, there is a Ramanujan-type 

formula of the form 
∞∑
k=0

(ak + 1) 
( (1

2 )k
k!

)3

λk = b

π
where a, b are algebraic numbers 

depending on λ. Corresponding supercongruences for 
p−1
2∑

k=0

(ak+1) 
( (1

2 )k
k!

)3

λk have been 

obtained in [8].
We derive the following corollary to Theorem 1 in section 4:

Corollary 2. Let Hk be the harmonic sum 
∑k

j=1
1
j . If Eλ is a CM elliptic curve, then for 

almost all primes p such that λ embeds in Zp,

p−1
2∑

i=0

(
2i
i

)3 (
λ

64

)i
(

6(H2i −Hi) +
((

λ
64
)p−1 − 1
p

))
≡ 0 (mod p).

Below is one simple, special case of these congruences for λ = 64.

Corollary 3. For all primes p > 3, we have

p−1
2∑

i=1

(
2i
i

)3 i∑
j=1

1
i + j

≡ 0 (mod p). (2)

In general, such congruences are difficult to prove. For similar work, see [1,3] and 
Remark 1 of [18].

Here are some other well-known examples of supercongruences. Beukers conjectured 
that for all odd primes p

4F3

(
1−p
2 , 1−p

2 , 1+p
2 , 1+p

2
1, 1, 1 ; 1

)
≡ cp (mod p2)

where the left hand side2 is the p−1
2 th Apéry number 

∑(p−1)/2
k=0

((p−1)/2
k

)2((p−1)/2+k
k

)2
and cp is the pth coefficient of the weight-4 modular form η(2z)4η(4z)4.

In [22], Rodriguez-Villegas made many supercongruence conjectures, including that 
for all odd primes p

2 Note that this hypergeometric series terminates after the p−1
2 th term, because of the negative integer 

argument 1−p
2 , while Rodriguez-Villegas’s conjecture that follows is a genuine truncation.
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4F3

(
1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1 ; 1
)

(p−1)/2
≡ cp (mod p3).

Ahlgren and Ono proved the modulo p2 conjecture of Beukers using Gaussian hyper-
geometric functions (see [3] and [21, Chapter 11]). Kilbourn applied these methods to 
prove the modulo p3 conjecture of Rodriguez-Villegas [15], and McCarthy proved an-
other of Rodriguez-Villegas’s modulo p3 conjectures using a p-adic analogue of Gaussian 
hypergeometric functions [20].

We end our introduction with another motivation for supercongruences. It is known 
that the coefficients of weight-k noncongruence modular forms satisfy the so-called Atkin 
and Swinnerton-Dyer congruences [6,23]. These congruences are supercongruences if 
k > 2 [23] and have played an important role in understanding the characterizations 
of genuine noncongruence modular forms [16].

The paper is organized as follows. We present some background in Section 2. Section 3
discusses supercongruences and uses a theorem of Coster and van Hamme to show that 
the function 3F2(λ)n exhibits supercongruences whenever Eλ has CM. In section 4, we 
relate these supercongruences to some interesting combinatorial congruences.

2. Preliminaries

2.1. Legendre polynomials

Let Pn(x) denote the nth Legendre polynomial, which can be defined by Pn(x) =
1

2nn!
dn

dxn (x2−1)n [5,9,28]. Equivalently, the degree n Legendre polynomial can be defined 
as

Pn(x) := 2F1

(
−n, n + 1

1 ; 1 − x

2

)
=

n∑
k=0

(
n

k

)(
−n− 1

k

)(
1 − x

2

)k

. (3)

The first few Legendre polynomials are P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). 

These polynomials form an important class of orthogonal polynomials and have several 
nice properties; one relevant to our application is that they have generating function 
(1 − 2xt + t2)−1/2 =

∑∞
n=0 Pn(x)tn. Because of this, special values of Pn(x) show up in 

certain expansions of differential forms on elliptic curves.

2.2. The Atkin and Swinnerton-Dyer congruences

For elliptic curves of the form E : y2 = x(x2 + Ax + B) defined over Zp with t = x/y

as a local parameter at the point at infinity (where t has a simple zero), Coster and 
van Hamme showed that the coefficients of the t-expansion of the invariant differential 
form −dx

2y of E come from special values of Legendre polynomials (see formula (1) of [9]). 
Explicitly,
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−dx

2y =
∞∑
k=0

akt
k dt

t
=

∞∑
k=0

Pk

(
A√

A2−4B

)
(
√

A2 − 4B )kt2k+1 dt

t
, (4)

where a2k+1 = Pk

(
A√

A2−4B

)
(
√
A2 − 4B )k and a2k = 0.

The Atkin and Swinnerton-Dyer congruences (ASD) for elliptic curves (Theorem 4 
of [6]) imply that if E has good reduction modulo p, then for all positive integers m and 
for s ≥ 0,

amps+1 −Apamps + pamps−1 ≡ 0 (mod ps+1) (5)

where Ap = p + 1 − #(E/Fp). We define ak to be 0 if k is not integral, as may happen 
for the final term if s = 0.

Essentially, the ASD congruences say that for fixed p and m, terms of the sequence 
{amps} satisfy a three-term congruence with increasing p-adic precision as s increases. 
The ASD congruences generalize the Hecke recursion: Fourier coefficients bn of weight 
k = 2, normalized Hecke newforms with trivial nebentypus satisfy the three-term recur-
sion, for all positive integers m, for s ≥ 0, and for all p,

bmps+1 − bpbmps + pbmps−1 = 0. (6)

In the ASD congruences for an elliptic curve E , we distinguish two cases. If the middle 
coefficient Ap is divisible by p, we say that E is supersingular at p or simply that p
is supersingular. Otherwise, we say E is ordinary at p or that p is ordinary. Dwork’s 
congruences, in which consecutive ratios of certain terms in a sequence converge to a 
p-adic limit, are related to ASD congruences at ordinary primes. If p is ordinary and 
is unramified in Kp := Qp(

√
A2 − 4B ), let βp be the p-adic unit root of T 2 − [p + 1 −

#(E/Fp)]T + p. Then the ASD congruences imply that amps ≡ βp · amps−1 (mod ps). 
Using the relation between a2k+1 and the Legendre polynomial, we have for any good 
odd ordinary prime p for E unramified at Kp

Pmps−1
2

(
A√

A2 − 4B

)
≡ χp

mps−1 · βp · Pmps−1−1
2

(
A√

A2 − 4B

)
(mod ps), (7)

where χp ∈ Kp is the (not necessarily primitive) order-4 root of unity satisfying χp ≡(
1√

A2−4B

) p−1
2 (mod p).

2.3. Clausen formula

It follows from the well-known Clausen formula for hypergeometric series and a Pfaff 
transformation that

2F1

(
−a, a + 1

1 ; 1 ±
√

1 − x

2

)2

= 3F2

( 1
2 ,−a, a + 1

1, 1 ;x
)
. (8)

See equation (3.3) of [8] for a derivation of this formula.
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Thus,

Pn(
√

1 − λ )2 = 3F2

( 1
2 , −n, n + 1

1, 1 ;λ
)
. (9)

The following congruence of degree (p − 1)/2 polynomials holds coefficient-wise.

Lemma 4. Let p be any odd prime. Then

3F2

(
1
2 ,

1−p
2 , 1+p

2
1, 1 ;x

)
≡ 3F2

( 1
2 ,

1
2 ,

1
2

1, 1 ;x
)

p−1
2

(mod p2Zp[x]).

Proof. We use Zudilin’s observation about rising factorials (see Lemma 1 in [7], [18]),

(
1
2 + ε

)
k

=
(

1
2 + ε

)(
1
2 + ε + 1

)
· · ·

(
1
2 + ε + k − 1

)

=
(

1
2

)
k

⎛
⎝1 + 2ε

k∑
j=1

1
2j − 1 + O(ε2)

⎞
⎠ ,

to expand (1±p
2 )k in terms of (1

2)k. When we take the product (1−p
2 )k(1+p

2 )k, the coeffi-
cients of p1 cancel; and so the product is congruent to (1

2 )k2 modulo p2, which establishes 
the coefficient-wise congruence. �
3. Supercongruences

To prove our main theorem, we use the following theorem of Coster and van Hamme.

Theorem 5 (Coster and van Hamme, [9]). Let p be an odd prime. Let d be a square-
free positive integer such that (−d

p ) = 1. Let K be an algebraic number field such that √
−d ∈ K and K ⊂ Qp. Consider the elliptic curve

E : Y 2 = X(X2 + AX + B)

with A, B ∈ K, where A and Δ = A2 − 4B are p-adic units. Let ω and ω′ be a basis 
of periods of E and suppose that τ = ω′/ω ∈ Q(

√
−d ) (which implies that the curve 

has complex multiplication), τ has positive imaginary part, and A = 3℘(1
2ω), 

√
Δ =

℘(1
2ω

′ + 1
2ω) − ℘(1

2ω
′), where ℘ is the Weierstrass ℘-function. Let π, ̄π ∈ Q(

√
−d ) such 

that ππ̄ = p, with π̄ a p-adic unit, π = u1 + v1τ , and πτ = u2 + v2τ with u1, v1, u2, v2
integers and v1 even. Then we have

Pmpr−1
2

(
A√

)
≡ εmpr−1 · π̄ · Pmpr−1−1

(
A√

)
(mod π2r), (10)
Δ 2 Δ
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where m and r are positive integers, with m odd, and ε = (
√
−1 )−u2v2+v2+p−2, where 

Pn(x) is the nth Legendre polynomial.

The main point of the theorem is the existence of supercongruences arising from an 
elliptic curve E with complex multiplication. While Coster and van Hamme interpreted 
the congruence as inclusion in an ideal of the ring of integers of K, we interpret all of our 
congruences p-adically. Since the number field K embeds into Qp and π is just p times 
a p-adic unit under this embedding, we may simply replace (mod π2r) with (mod p2r)
when we view the congruence p-adically. These congruences are twice as strong as formal 
group theory predicts.

Note that ε and π̄ in the theorem above must correspond to ±χp and ±βp (with 
the same sign) in our notation. The conditions that τ has positive imaginary part, that 
A = 3℘(1

2ω), and that 
√

Δ = ℘(1
2ω

′+ 1
2ω) −℘(1

2ω
′), can always be satisfied by a suitable 

choice of the basis of periods; and we can additionally ensure that ε = χp and π̄ = βp.

Proposition 6. For CM values λ of the family Eλ : y2 = (x − 1)(x2 − 1
1−λ ), such that 

λ ∈ Zp and p is ordinary, for all positive integers m and s with m odd,

3F2

(
1
2 ,

1−mps

2 , 1+mps

2
1, 1

;λ
)
≡

(
1 − λ

p

)
·αp(λ)2 · 3F2

(
1
2 ,

1−mps−1
2 , 1+mps−1

2
1, 1

;λ
)

(mod p2s)

where αp(λ) is the unit root of X2 − [p + 1 − #(Eλ/Fp)]X + p = 0.

Proof. Letting X = x −1, Y = y, the elliptic curve Eλ can be rewritten as Y 2 = X(X2+
2X+ λ

λ−1 ). Then we have A = 2, B = λ
λ−1 , Δ = A2−4B = 4

1−λ , and A√
A2−4B =

√
1 − λ.

By our assumptions that Eλ has complex multiplication, that λ ∈ Zp, and that p
is ordinary, we satisfy the conditions of Theorem 5: K = Q(λ) embeds into Qp and 
λ �≡ 1 (mod p), so Δ is a p-adic unit. Combining (9) and (10), we have

3F2

(
1
2 ,

1−mps

2 , 1+mps

2
1, 1

;λ
)

= Pmps−1
2

(
√

1 − λ )2

≡ (εmps−1
π̄)2 · Pmps−1−1

2
(
√

1 − λ )2 (mod p2s)

= (χp
mps−1

βp)2 · 3F2

(
1
2 ,

1−mps−1
2 , 1+mps−1

2
1, 1

;λ
)

=
(

1 − λ

p

)
· αp(λ)2 · 3F2

(
1
2 ,

1−mps−1
2 , 1+mps−1

2
1, 1

;λ
)
.

For the final equality, note that we have chosen A and B so that βp = αp(λ) and so that 
χp

2 is the Legendre symbol 
(

1−λ
p

)
, which does not change when we raise it to the odd 

power mps−1. �
Proof of Theorem 1. Note that for all primes p that are ordinary for Eλ, Theorem 1
follows from Proposition 6 and Lemma 4. For primes p that are supersingular for Eλ, 
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we can conclude from the ASD congruence that P p−1
2

(
√

1 − λ ) ≡ 0 (mod p). Hence 

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

p−1
2

≡ 3F2

(
1
2 ,

1−p
2 , 1+p

2
1, 1 ;λ

)
= P p−1

2
(
√

1 − λ )2 ≡ 0 (mod p2), which con-

cludes the proof. �
We note that this establishes, modulo p2, all cases of Conjecture 5.2 of [26] by 

Z.-W. Sun. These conjectures can be written as

p−1
2∑

k=0

(
2k
k

)3 (
λ

64

)k

≡
{(

c
p

)
(4a2 − 2p) (mod p2) if ( p

D ) = 1 where a2 + Db2 = p

0 (mod p2) if ( p
D ) = −1

,

with appropriate choices of D ∈ Z+ and character 
(

c
p

)
. Note that 

∑ p−1
2

k=0
(2k
k

)3 ( λ
64
)k =

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

p−1
2

via the identity (1/2)k3

k!3 =
(2k
k

)3 1
64k . These conjectures address the 

λ-values λ = −8, 1, −1
8 , 4, 

1
4 , 64, 1

64 , −1, which are all of the CM values for Eλ over Q, as 
verified in [4], with the exception of the degenerate case λ = 1, for which Eλ is not an 
elliptic curve. The supercongruence for λ = 1 was proved by Van Hamme in [30] and by 
Ono in [21].

If Eλ has CM over K = Q(
√
−D ), then the attached 2-dimensional representation 

ρ decomposes into 2 Grossencharacters when ρ is restricted to Gal(Q/K). At splitting 
primes p, which are precisely the ordinary primes of Eλ, the trace of the Frobenius is 
αp(λ) +βp(λ), where both αp(λ) and βp(λ) are in the ring of integers of the quadratic field 
K and have absolute value 

√
p. In the case that K has class number 1 (all Sun λ values 

correspond to class number 1 cases), then ideals (αp(λ)) and (βp(λ)) are the two distinct 
prime ideals above p. That is, αp(λ) = a + b

√
−D and βp(λ) = a − b

√
−D = p

αp(λ) , 
where a and b are integers or half integers depending on D ≡ 1 or 3 (mod 4), such 
that a2 + b2D = p. In the ordinary case, our congruences involve αp(λ)2, which is just 
a2−Db2+2ab

√
−D. Using βp(λ)2 = a2−Db2−2ab

√
−D ≡ 0 (mod p2) and a2+b2D = p, 

we have αp(λ)2 ≡ 4a2−2p (mod p2), which, along with the character 
(

1−λ
p

)
, is the target 

of Z.-W. Sun’s congruences in the case that 
(
p
D

)
= 1. In the case that 

(
p
D

)
= −1, p is 

a supersingular prime of Eλ and so 3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

p−1
2

≡ 0 (mod p2), establishing the 

other half of Z.-W. Sun’s congruences.
Alternatively, we note that Ono has explicitly identified the values αp(λ), for all CM 

curves Eλ with λ ∈ Z, in Theorem 6 of [21]. These values αp(λ) determine the formal 
group structure and the ASD congruences (i.e., that ap(λ) ≡

(
1−λ
p

)
αp(λ)2 (mod p)); 

combining this with Coster and Van Hamme’s supercongruences gives another proof of 
Sun’s conjectures, that ap(λ) ≡

(
1−λ
p

)
αp(λ)2 (mod p2).

Theorem 1, and the following Conjecture 7, apply not only to the cases considered by 
Ono and Z.-W. Sun, which correspond to CM values of λ over Q, but also to infinitely 
many other algebraic CM values of λ, for those primes p such that λ embeds in Zp with 
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λ �≡ 0, 1 (mod p). This is satisfied by almost all primes p such that there is a prime ideal 
p above p in Q(λ) with inertia degree 1.

Based on numeric evidence, we have

Conjecture 7. For CM values λ of the family Eλ : y2 = (x − 1)(x2 − 1
1−λ ), such that 

λ ∈ Zp and p is ordinary, for all positive integers m and s with m odd,

3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

mps−1
2

≡
((

1 − λ

p

)
αp(λ)2

)
3F2

(
1
2 ,

1
2 ,

1
2

1, 1 ;λ
)

mps−1−1
2

(mod p3s)

where αp(λ) is the unit root of X2 − [p + 1 − #(Eλ/Fp)]X + p = 0.

4. Corollaries

An idea of Gessel for dealing with the supercongruences of the Apéry numbers

cn = 4F3

(
−n, −n, 1+n, 1+n

1, 1, 1 ; 1
)

=
n∑

k=0

(
n

k

)2(
n + k

k

)2

is as follows [12]. He identified the auxiliary sequence dn = 2 
∑n

k=0
(
n
k

)2(n+k
k

)2(Hn+k −
Hn−k), where Hk is the harmonic sum 

∑k
j=1

1
j , and showed that ck+pn ≡ (ck +

pndk)cn (mod p2) where 0 ≤ k < p. Using the idea of Ishikawa [13], we take 
k = n = p−1

2 . It follows that when c(p−1)/2 �≡ 0 (mod p), we have the supercongru-
ence c(p2−1)/2 ≡ c2(p−1)/2 (mod p2) precisely when d(p−1)/2 ≡ 0 (mod p), which follows 
from the p-adic properties of harmonic sums. In [3], Ahlgren and Ono also need an en-
tity similar to d(p−1)/2 to be zero modulo p, which they established using a binomial 
coefficient identity proved by the WZ method [2].

In the above examples, supercongruences of a sequence cn were shown to be equiva-
lent to congruences of an auxiliary sequence dn; and the congruences for dn were proved 
using whatever method applied in each case. Similarly, the supercongruence in Theo-
rem 1 for the sequence an =

∑n
i=0

(2i
i

)3( λ
64 )i is equivalent to the auxiliary congruence 

in Corollary 2 for the sequence dn =
∑n

i=0
(2i
i

)3( λ
64 )i(6(H2i −Hi) + (λ/64)p−1−1

p ). How-
ever, we proved our supercongruence using the theorem of Coster and Van Hamme, and 
thus obtain our auxiliary congruence. We know of no direct proof of Corollary 2; we 
expect a proof for each fixed individual λ might require some combinatorial identity and 
additional intelligent guesses of WZ pairs to prove the identity, see [1,3].

Lemma 8. For the sequence an =
∑n

i=0
(2i
i

)3( λ
64 )i, we introduce the auxiliary sequence 

dn =
∑n

i=0
(2i
i

)3( λ
64 )i(6(H2i − Hi) + (λ/64)p−1−1

p ). Then for any prime p, any k with 
p−1
2 ≤ k < p, and any n,

ak+pn ≡ akan + pdk

n∑
i

(
2i
i

)3 (
λ

64

)i

(mod p2).

i=0
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Proof. Notice we can write ak+pn − akan as the telescoping sum 
n∑

i=1
Tk,i, where

Tk,n = (ak+pn − akan) − (ak+p(n−1) − akan−1)

= (ak+pn − ak+p(n−1)) − ak(an − an−1)

=
k∑

i=−p+k+1

(
2i + 2pn
i + pn

)3 (
λ

64

)i+pn

−
(

k∑
i=0

(
2i
i

)3 (
λ

64

)i
)(

2n
n

)3 (
λ

64

)n

Using the condition that p−1
2 ≤ k < p, we notice that 

(2i+2pn
i+pn

)
≡ 0 (mod p) if −p +k+1 <

i < 0. Simplifying modulo p2, these terms disappear and we can factor.

Tk,n ≡
k∑

i=0

((
2i + 2pn
i + pn

)3 (
λ

64

)pn

−
(

2n
n

)3 (
λ

64

)n (2i
i

)3
)(

λ

64

)i

(mod p2)

The factor 
(2i+2pn

i+pn

)3 may be rewritten as −Γp(1+2i+2pn)3
Γp(1+i+pn)6

(2n
n

)3, where Γp is the p-adic 

Gamma function (see [21, Chapter 11]). Let Tk,n ≡
(

λ
64
)n (2n

n

)3
Uk,n (mod p2), where

Uk,n =
k∑

i=0

((
−Γp(1 + 2i + 2pn)3

Γp(1 + i + pn)6

)(
λ

64

)(p−1)n

−
(

2i
i

)3
)(

λ

64

)i

.

To simplify the p-adic Gamma function modulo p2, we expand Γp in terms of factorials 
and harmonic sums Hn =

∑n
i=1

1
i . (By convention, H0 = 0.) We also use the congruence, 

for p > 3, that Hp−1 ≡ 0 (mod p). (Wolstenholme has shown this congruence holds 
modulo p2, though we only need modulo p [31].)

Γp(1 + i + pn)r ≡ (−1)(1+i+pn)ri!r(1 + pnrHi)
n−1∏
j=0

(p− 1)!r(1 + pjrHp−1) (mod p2)

≡ (−1)(1+i+pn)ri!r(1 + pnrHi)(−1)nr (mod p2)

≡ (−1)(1+i)ri!r(1 + pnrHi) (mod p2)

Plugging this into Uk,n, we have

Uk,n ≡
k∑

i=0

((
(2i)!3(1 + 6pnH2i)
(i)!6(1 + 6pnHi)

)(
λ

64

)(p−1)n

−
(

2i
i

)3
)(

λ

64

)i

(mod p2)

≡
k∑

i=0

(
2i
i

)3 (
λ

64

)i
(

(1 + 6pn(H2i −Hi))
(

λ

64

)(p−1)n

− 1
)

(mod p2)

Using 
(

λ
64
)(p−1)n =

(
1 + p

((
λ
64

)p−1−1
p

))n

≡ 1 + pn 
((

λ
64

)p−1−1
p

)
(mod p2),
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Uk,n ≡
k∑

i=0

(
2i
i

)3 (
λ

64

)i
(

(1 + 6pn(H2i −Hi))
(

1 + pn

((
λ
64
)p−1 − 1
p

))
− 1

)

≡ pn

k∑
i=0

(
2i
i

)3 (
λ

64

)i
(

6(H2i −Hi) +
((

λ
64
)p−1 − 1
p

))
(mod p2)

So Tk,n ≡ pn
(2n
n

)3( λ
64 )ndk (mod p2). Combining this congruence with the telescoping 

sum ak+pn − akan =
n∑

i=1
Tk,i completes the proof of the lemma. �

Using this lemma, we show the equivalence of Theorem 1 and Corollary 2.

Proof of Corollary 2. We consider Tk,n with k = p−1
2 and n = 1. By definition, 

T p−1
2 ,1 = a 3p−1

2
− a p−1

2
a 3−1

2
; we can rewrite this, modulo p2, as P 3p−1

2
(
√

1 − λ )2 −
P p−1

2
(
√

1 − λ )2P 3−1
2

(
√

1 − λ )2. Since the sequence Pn−1
2

(
√

1 − λ ) satisfies ASD congru-
ences, we know that T p−1

2 ,1 ≡ 0 (mod p). However, Theorem 1 is precisely the information 

we need to conclude that T p−1
2 ,1 ≡ 0 (mod p2) whenever λ is a CM value of Eλ that 

embeds in Zp.
Thus, since

T p−1
2 ,1 ≡ pλ

8

(p−1)/2∑
i=0

(
2i
i

)3 (
λ

64

)i
(

6(H2i −Hi) +
((

λ
64
)p−1 − 1
p

))
(mod p2),

we have the desired congruence d p−1
2

≡ 0 (mod p) whenever we have supercongruences 
for a p−1

2
. �
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