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Abstract
We study the problem of learning multi-index models in high-dimensions using a two-layer neural
network trained with the mean-field Langevin algorithm. Under mild distributional assumptions
on the data, we characterize the effective dimension deff that controls both sample and computa-
tional complexity by utilizing the adaptivity of neural networks to latent low-dimensional struc-
tures. When the data exhibit such a structure, deff can be significantly smaller than the ambient
dimension. We prove that the sample complexity grows linearly with deff , bypassing the lim-
itations of the information exponent or the leap complexity that appeared in recent analyses of
gradient-based feature learning. On the other hand, the computational complexity may inevitably
grow exponentially with deff in the worst-case scenario.

1. Introduction
A key characteristic of neural networks is their adaptability to the underlying statistical model.
Several works have shown that shallow neural networks trained by (variants of) gradient descent can
efficiently learn functions of low-dimensional projections (i.e., multi-index models) with a sample
complexity that depends on the properties of the nonlinear link function known as the information
exponent [9] or the leap complexity [2]. Specifically, to learn a target function with information
exponent or leap complexity k ∈ N+ on isotropic Gaussian data, a sample size of n ≳ dΘ(k) is
typically required in these analyses [1, 11, 12, 21, 35]. This sample complexity is also predicted by
the framework of correlational statistical query (CSQ) lower bounds [2, 23].

On the other hand, if the (polynomial) optimization budget is not taken into consideration, [7]
showed that neural networks can learn multi-index models with a sample complexity that does not
depend on the information or leap exponent. However, thus far it has been relatively unclear whether
standard first-order optimization algorithms inherit this optimality.

A promising approach to obtain statistically optimal sample complexity is to consider training
neural networks in the mean-field regime [17, 34, 37, 41, 43], where overparameterization lifts the
gradient descent dynamics into the space of measures with global convergence guarantees. While
most existing results in this regime focus on optimization instead of generalization/learnability guar-
antees, recent works have shown that in certain settings, neural networks in the mean-field regime
can achieve a sample complexity that does not depend on the leap complexity [18, 45, 47, 51].
However, these guarantees rely on stringent assumptions on data (isotropic Gaussian, hypercube,
etc.) as well as single-index models with specific link functions [10, 33], or k-sparse partiy classifi-
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cation [45, 47, 51]. Moreover, the computational complexity of the training algorithm in [45, 47] is
exponential in the ambient (input) dimension, without adapting to the potential structure in the in-
puts. An exception in this direction is the recent work of [39], which considers the k-parity problem
on anisotropic data.

Our contributions. Motivated by the above discussion, we address two key questions. First,
Can we train two-layer neural networks using the MFLA to learn arbitrary multi-index

models with an optimal sample complexity?
We answer this in the affirmative by showing that empirical risk minimization on a standard variant
of a two-layer neural network can be achieved by the MFLA. This result handles arbitrary multi-
index models on subGaussian data with general covariance, hence enabling us to achieve the optimal
sample complexity with standard gradient-based training. However, such a universal guarantee
will inevitably suffer from an exponential computational complexity; thus, the second fundamental
question we aim to answer is

Are there conditions under which the computational complexity of the MFLA can be improved
by adapting to data structure?

We provide a positive answer by showing that the computational complexity of MFLA is governed
by the effective dimension of the learning problem, instead of its ambient dimension; this implies an
improved efficiency of MFLA when the data is anisotropic as in prior works [28, 36].

Related works. The training dynamics of neural networks in the mean-field regime is described
by a nonlinear partial differential equation in the space of parameter distributions [17, 34, 41]. Un-
like the NTK description [19, 30] that freezes the parameters around the random initialization, the
mean-field regime allows for the parameters to travel and learn useful features, leading to improved
statistical efficiency. While convergence analyses for mean-field neural networks are typically qual-
itative in nature, in that they do not specify the rate of convergence or finite-width discrepancy, the
mean-field Langevin algorithm that we study is a noticeable exception, for which the convergence
rate [16, 29, 38] as well as uniform-in-time propagation of chaos [13, 44] have been established.

The benefit of feature learning has also been studied in a “narrow-width” setting for learning
low-dimensional target functions. Examples of low-dimensional targets include single-index mod-
els [5, 9, 11, 21, 35] and multi-index models [1, 2, 12, 20, 23, 24]. While the information-theoretic
threshold for learning such functions is n ≳ d [8, 22], the complexity of gradient-based learning is
governed by properties of the link function. For instance, in the single-index setting, prior works
established a sufficient sample size of n ≳ dΘ(k) where k is the information exponent [9, 11, 21] or
the generative exponent [4, 22, 25, 32]. This presents a gap between the information-theoretically
achievable sample complexity and the performance of neural networks optimized by gradient de-
scent, which we aim to close by studying the statistical efficiency of mean-field neural networks.

2. Preliminaries: Statistical Model and Training Algorithm
Statistical model. In this paper, we consider the regression setting where the input x ∈ Rd is
generated from some distribution and the response y ∈ R is given by the multi-index model

y = g
(
⟨u1,x⟩√

k
, . . . , ⟨uk,x⟩√

k

)
+ ξ. (2.1)

Here, g : Rk → R is the unknown link function, ξ is a zero-mean ς-subGaussian noise independent
from x; for simplicity, we assume that ς2 ≲ 1. Without loss of generality, we assume u1, . . . ,uk
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are orthonormal and form the matrix U = (u1/
√
k, . . . ,uk/

√
k)⊤ ∈ Rk×d; thus, we can use the

shorthand notation y = g(Ux)+ ξ. Throughout the paper, we consider the setting k ≪ d, and treat
k as an absolute constant independent from the ambient input dimension d.

For our predictor, we use a two-layer neural network coupled with ℓ2 regularization to learn the
statistical model (2.1). Denoting the m neurons with a matrix W := (w1, . . . ,wm)

⊤, the student
model and the ℓ2-regularizer are given as

ŷm(x;W ) :=
1

m

m∑
j=1

Ψ(x;wj) and R(W ) :=
1

m
∥W ∥2F =

1

m

m∑
j=1

∥wj∥2, (2.2)

where Ψ : Rd × W → R is the activation function, and wj ∈ W with W denoting the weight
space. In this formulation, the second layer weights are all fixed to be +1. In the classical regression
setting where we observe n i.i.d. samples {(x(i), y(i))}ni=1 from the data distribution, the regularized
population and empirical risks are defined respectively as

Jλ(W ) := E[ℓ(ŷm(x;W ), y)]+
λ

2
R(W ) and Ĵλ(W ) :=

1

n

n∑
i=1

ℓ(ŷm(x
(i);W ), y(i))+

λ

2
R(W ),

where ℓ(ŷ, y) = ρ(ŷ − y) with ρ : R → R+ being a convex loss.

Training Algorithm. We minimize the regularized empirical risk Ĵλ(W ) via the mean-field
Langevin algorithm (MFLA) with stepsize η, which updates the weights at iteration l by

wl+1
j = wl

j −mη∇wj Ĵλ(W ) +

√
2η

β
ξlj , 1 ≤ j ≤ m, (2.3)

where ξlj are independent standard Gaussian random vectors. In Appendix A, we will introduce
the necessary background on the mean-field Langevin dynamics (MFLD) and optimization on the
space of measures, where we observe that (2.3) is a simple time-discretization of the MFLD.

3. Learning Multi-index Models

In this section, we will provide the learning guarantees. For technical reasons, we use an ap-
proximation of ReLU denoted by z 7→ ϕκ,ι(z) for some κ, ι > 1, which is given by ϕκ,ι(z) =
κ−1 ln(1 + exp(κz)) for z ∈ (−∞, ι/2] and extended on (ι,∞) such that ϕκ,ι is C2 smooth,
|ϕκ,ι| ≤ ι,

∣∣ϕ′
κ,ι

∣∣ ≤ 1, and
∣∣ϕ′′
κ,ι

∣∣ ≤ κ. Note that ϕκ,ι recovers ReLU as κ, ι → ∞. To be able
to learn functions with positive and negative parts, we choose W = R2d+2, and use the notation
w = (ω⊤

1 ,ω
⊤
2 )

⊤ with ω1,ω2 ∈ Rd+1, and ultimately use

Ψ(x;w) := ϕκ(⟨x̃,ω1⟩)− ϕκ(⟨x̃,ω2⟩), (3.1)

where x̃ := (x, r̃x)
⊤ ∈ Rd+1 for a constant r̃x corresponding to bias, to be specified later. The

above can also be viewed as a 2-layer neural network with second-layer weights frozen at ±1. We
make the following assumption on the input distribution.

Assumption 1 The input x has zero mean and covariance Σ. Further, ∥x∥ and ∥Ux∥ are sub-
Gaussian with respective norms σn∥Σ∥1/2F and σu∥Σ1/2U⊤∥F for some absolute constants σn, σu.
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Even though the above assumption covers a wide range of input distributions, it is mainly motivated
by the Gaussian case which satisfies the above assumption. Without loss of generality, we will
consider a scaling where ∥Σ∥ ≲ 1. A key quantity in our analysis is the effective dimension which
governs the algorithmic guarantees.

Definition 1 (Effective dimension) Define deff := c2x/r
2
x where cx := tr(Σ)1/2, rx := ∥Σ1/2U⊤∥F.

The effective dimension deff can be significantly smaller than the ambient dimension d, leading to
particularly favorable results in the following when deff = polylog(d). This concept has numerous
applications from learning theory to statistical estimation; see e.g. [6, 27, 48, 50]. We make the
following assumption on the link function in (2.1).

Assumption 2 g is locally Lipschitz, i.e. |g(z1)− g(z2)| ≤ L∥z1 − z2∥ for z1, z2 ∈ Rk satisfy-
ing ∥z1∥ ∨ ∥z2∥ ≤ r̃x := rx(1 + σu

√
2 ln(n)q) for some q > 0 and L = O(1/rx).

We emphasize that the above Lipshitz condition is only local; allowing e.g. polynomially grow-
ing link functions. We scale the Lipschitz constant with 1/rx to make sure |y| ≍ 1 with high
probability. The main result of this section is stated in the following theorem.

Theorem 2 For an appropriate choice of hyperparameters η, κ, ι, λ, and β, with a sufficient num-
ber of samples, number of neurons, and number of iterations that can be bounded by

n ≤ Õ(deff), m ≤ Õ(d2eÕ(deff)), l ≤ Õ(d3eÕ(deff)), (3.2)

with probability at least 1−O(n−q) for some q > 0, MFLA can achieve the excess risk bound

EW l Ey,x[ρ(y − ŷm(x;W
l))]− Eξ[ρ(ξ)] ≤ on(1). (3.3)

We refer to Theorem 28 in Appendix B for a more precise statement with the choice of hyper-
parameters. The theorem above demonstrates a certain adaptivity to the effective low-dimensional
structure, both in terms of statistical and computational complexity, which occurs without explicitly
encoding any information about the covariance structure in the algorithm. In contrast, “fixed-grid”
methods (see [15] and references therein), that fix the first-layer of a two-layer network’s representa-
tion similar to random features regression [40], and then train the second-layer by solving a convex
problem, do not show this type of adaptivity to low dimensions. In particular their computational
complexity always scales exponentially with the ambient dimension d, unless information about the
covariance structure is explicitly used when specifying the fixed representation.

Comparison with prior bounds. Here, we compare the guarantee of Theorem 2 with two prior
works that are particularly relevent. First, [7] requires d

k+3
2 sample complexity for learning general

multi-index models with k indices, which is worse than the complexity deff of Theorem 2 even in
the worst case deff = d. The improvement in our bound is due to a refined control over ∥Ux∥.
Further, [7] does not provide a quantitative analysis of the optimization complexity, and it is not
clear if their algorithm is adaptive to the covariance structure. Moreover, [39] studies learning k-
sparse parities, a subclass of multi-index models we considered, for which it is considerably simpler
to construct optimal neural networks with a bounded activation. While the effective dimension (and
the resulting sample complexity) of [39] is not explicitly scale-invariant, we derive a scale-invariant
translation of their bound in Appendix C, and show that it is always lower bounded by our effective
dimension, especially when Σ is nearly rank-deficient.
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4. Interpreting the Effective Dimension

To better demonstrate the impact of effective dimension, we consider two covariance models.
Spiked covariance. We consider the spiked covariance model of [36]. Namely, given a spike
direction θ ∈ Sd−1, suppose the covariance and the target directions satisfy

Σ =
Id + αθθ⊤

1 + α
, α ≍ dγ2 , ∥Uθ∥ ≍ d−γ1 , γ2 ∈ [0, 1], γ1 ∈ [0, 1/2]. (4.1)

Note that in high-dimensional settings, γ1 = 1/2 corresponds to a regime where θ is sampled
uniformly over Sd−1, whereas γ1 = 0 corresponds to the case where θ has a strong correlation with
U . We only consider γ2 ≤ 1 since γ2 > 1 corresponds to a setting where the input is effectively
one-dimensional. In this setting, effective dimension depends on γ1 and γ2.

Corollary 3 Under the spiked covariance model (4.1), we have deff ≍ d1−{(γ2−2γ1)∨0}.

To get improvements over the isotropic effective dimension d, either the spike magnitude α or
the spike-target alignment ∥Uθ∥ needs to be sufficiently large so that γ2 > 2γ1. As γ2 → 1
and γ1 → 0, the effective dimension will be smaller than polylog(d), leading to a computational
complexity that is quasipolynomial in d.
Covariance with decaying eigenvalues. Next, we consider a more general power-law decay for
the eigenspectrum. Suppose Σ =

∑d
i=1 λiθiθ

⊤
i is the spectral decomposition of Σ, and

λi
λ1

≍ i−α,
∥Uθi∥2

∥Uθ1∥2
≍ i−γ , for 1 ≤ i ≤ d, (4.2)

for some absolute constants α, γ > 0. Notice that
∑d

i=1∥Uθi∥2 = ∥U∥2F = 1. The following
corollary characterizes deff in terms of the parameters α and γ.

Corollary 4 Under the power-law eigenspectrum for the covariance matrix (4.2), we have

deff ≍


d1∧(2−α−γ) α < 1, γ < 1

d1−α α < 1, γ ≥ 1

d(1−γ)∨0 α ≥ 1

,

where ≍ above hides polylog(d) dependencies.

Thus, the computational complexity becomes quasipolynomial in d when α, γ ≥ 1. This happens
when Σ is approximately low-rank with most of its eigenspectrum concentrated around the first few
eigenvalues, and the corresponding eigenvectors are well-aligned with the row space of U .

5. Conclusion

In this paper, we investigated the mean-field Langevin algorithm for learning multi-index models.
We proved that the statistical and computational complexity of this problem can be characterized
by an effective dimension which captures the low-dimensional structure in the input covariance,
along with its correlation with the target directions. In particular, the sample complexity scales al-
most linearly with the effective dimension, while without additional assumptions, the computational
complexity may scale exponentially with this quantity. We leave open the question of under which
assumptions the computaitonal complexity will be polynomial even in the effective dimension as an
interesting direction for future research.
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the space of probability measures. Springer Science & Business Media, 2005.

[4] Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita
iuvant: Data repetition allows sgd to learn high-dimensional multi-index functions. arXiv
preprint arXiv:2405.15459, 2024.

[5] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Repre-
sentation. arXiv preprint arXiv:2205.01445, 2022.

[6] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the
presence of low-dimensional structure: a spiked random matrix perspective. Advances in
Neural Information Processing Systems, 36, 2023.

[7] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681, 2017.

[8] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal
errors and phase transitions in high-dimensional generalized linear models. Proceedings of the
National Academy of Sciences, 116(12):5451–5460, 2019.

[9] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent
on non-convex losses from high-dimensional inference. J. Mach. Learn. Res., 22:106–1, 2021.
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Appendix A. Background on Optimization in Measure Space and MFLD

Notation. We denote the Euclidean inner product with ⟨·, ·⟩, the Euclidean norm for vectors and
the operator norm for matrices with ∥·∥, and the Frobenius norm with ∥·∥F. We use P(W), P2(W),
and Pac

2 (W) to denote the set of (Borel) probability measures, the set of probability measures with
finite second moment, and the set of absolutely continuous probability measures with finite second
moment on the weight space W , respectively. Finally, δw0 denotes the Dirac measure at w0.

Optimization in measure space. To minimize the regularized empirical risk Ĵλ defined in Sec-
tion 2, we will consider a discretization of the following set of SDEs, which essentially define an
interacting particle system over m neurons:

dwt
j = −m∇wjJ(w

t
1, . . . ,w

t
m)dt+

√
2

β
dBj

t for 1 ≤ j ≤ m, (A.1)

where (Bj
t )
m
j=1 is a set of independent Brownian motions on the weight space W .

Notice that the neural network and the regularizer in (2.2) are both invariant under permutations
of the weights (w1, . . . ,wm); thus, an equivalent integral representation is given by

ŷ(x;µW ) :=

∫
Ψ(x; ·)dµW and R(µW ) :=

∫
∥ · ∥2dµW with µW =

1

m

m∑
j=1

δwj . (A.2)

Indeed, ŷ(x;µW ) = ŷm(x;W ) and R(µW ) = R(W ), and this formulation allows extension to
infinite-width networks by letting µ ∈ P2(W). Thus, we rewrite the population and the empirical
risks in the space of measures as

Jλ(µW ) := Jλ(W ) and Ĵλ(µW ) := Ĵλ(W ),

and allow their domain to be all µ ∈ P2(W). We can equivalently state the interacting SDE sys-
tem (A.1) as (see e.g. [16, Proposition 2.4])

dwt
j = −∇wĴ ′

λ[µW t ](wt
j) +

√
2

β
dBj

t for 1 ≤ j ≤ m, (A.3)

where Ĵ ′
λ[µ] ∈ L2(W) denotes the first variation [42, Definition 7.12] of Ĵλ(µ).

As m → ∞, the stochastic empirical measure µW t weakly converges to a deterministic measure
µt for all fixed t, a phenomenon known as the propagation of chaos [46]. Furthermore, µt can be
characterized as the law of the solution of the following SDE and non-linear Fokker-Planck equation

dwt = −∇wĴ ′
λ[µt](w

t)dt+

√
2

β
dBt and ∂tµt = ∇ · (µt∇Ĵ ′

λ[µt]) + β−1∆µt, (A.4)

where ∇· and ∆ are the divergence and Laplacian operators, respectively. Due to the existence of
mean-field interactions, (A.4) is known as the mean-field Langevin dynamics (MFLD).

For a pair of probability measures µ ≪ ν both in P(W), we define the relative entropy H(µ | ν)
and the relative Fisher information I(µ | ν) respectively as

H(µ | ν) :=
∫
W

ln
dµ

dν
dµ and I(µ | ν) :=

∫
W

∥∥∥∥∇ ln
dµ

dν

∥∥∥∥2dµ. (A.5)

10
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It is well-known at this point that µt in (A.4) can be interpreted as the Wasserstein gradient flow of
the entropic regularized functional Fβ(µ) := Ĵλ(µ) + 1

βH(µ | τ), where τ is the uniform measure
on compact W or the Lebesgue measure on a Euclidean space [3, 31, 49]. For this gradient flow
to converge exponentially fast towards the minimizer µ∗

β := argminµFβ(µ), we require a gradient
domination condition on µ∗

β in the space of probability measures, given as

H(µ |µ∗
β) ≤

CLSI

2
I(µ |µ∗

β), ∀µ ∈ P(W), (A.6)

which is referred to as the log-Sobolev inequality (LSI). If the measure dνµt ∝ exp(−βF ′[µt])dτ
satisfies LSI with constant CLSI for all t ≥ 0, µt enjoys the following exponential convergence

Fβ(µt)−Fβ(µ∗
β) ≤ e

−2t
βCLSI (Fβ(µ0)−Fβ(µ∗

β)); (A.7)

see e.g. [16, Theorem 3.2] and [38, Theorem 1].

Appendix B. Proofs of Section 3

Before presenting the layout of proofs, we introduce a useful reformulation of the objective Fβ,λ(µ).
Recall that

Fβ,λ(µ) = Ĵ0(µ) +
λ

2
R(µ) +

1

β
H(µ).

Let γ ∝ exp
(−λβ

2 ∥w∥2
)

be the centered Gaussian measure on R2d+2 with variance 1/(λβ). Then,
we can rewrite the above as

Fβ,λ(µ) = Ĵ0(µ) +
1

β
H(µ | γ)− d

2
ln

(
λβ

2

)
.

As a result, we can define

F̃β,λ(µ) := Ĵ0(µ) +
1

β
H(µ | γ), (B.1)

which is non-negative and equivalent to Fβ up to an additive constant. Notice that

µ∗
β := argmin

µ
Fβ,λ(µ) = argmin

µ
F̃β,λ(µ).

This reformulation, which was also used in [45], allows us to combine the effect of weight decay
and entropic regularization into a single non-negative term H(µ | γ). Furthermore, the simple den-
sity expression for the Gaussian measure γ allows us to achieve useful estimates for H(µ | γ). In
particular, as we will show below, it is possible to control H(µ∗

β | γ) with effective dimension rather
than ambient dimension, which leads to dependence on deff rather than d in our bounds.

We break down the proof of Theorem 2 into three steps:

1. In Section B.2 we show that there exists a measure µ∗ ∈ P2(R2d+2) where ŷ(·;µ∗) can
approximate g on the training set with bounds on R(µ∗). This construction provides upper
bounds on Ĵ0(µ

∗
β) and H(µ∗

β | γ).

2. In Section B.3, we perform a generalization analysis via Rademacher complexity tools given
the bound on H(µ∗

β | γ), leading to a bound on J0(µ
∗
β).

11
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3. Finally, in Section B.4, we estimate the LSI constant and constants related to smoothness/discretization
along the trajectory, which imply that Fm

β,λ(µ
m
l ) converges to Fβ(µ∗

β), where Fm
β,λ is an ad-

justed objective over P(R(2d+2)m) defined in (B.6). This bound implies the convergence of
EW∼µml [J0(W )] to J0(µ

∗
β), which was bounded in the previous step.

Before laying out these steps, in Section B.1, we will introduce the required concentration results.
In the following, we will use the unregularized population J0(µ) := E[ℓ(ŷ(x;µ), y)] and empirical
Ĵ0(µ) = ESn [ℓ(ŷ(x;µ), y)] risks, and also consider the finite-width versions J0(W ) := J0(µW )
and Ĵ0(W ) := Ĵ0(µW ).

B.1. Concentration Bounds

We begin by specifying the definition of subGaussian and subexponential random variables in our
setting.

Definition 5 [50] A random variable x is σ-subGaussian if E
[
eλ(x−E[x])] ≤ eλ

2σ2/2 for all λ ∈ R,
and is (ν, α)-subexponential if E

[
eλ(x−E[x])] ≤ eλ

2ν2/2 for all |λ| ≤ 1/α. If x is σ-subGaussian,
then

P(x− E[x] ≥ t) ≤ exp
(−t2

2σ2

)
. (B.2)

If x is (ν, α)-subexponential, then

P(x− E[x] ≥ t) ≤ exp
(
− 1

2
min

( t2
ν2

,
t

α

))
(B.3)

Moreover, for centered random variables, let |·|ψ2
and |·|ψ1

denote the subGaussian and subexpo-
nential norm respectively [48, Definitions 2.5.6 and 2.7.5]. Then x is σ-subGaussian if and only if
σ ≍ |x− E[x]|ψ2

, and is (ν, ν)-subexponential if and only if ν ≍ |x− E[x]|ψ1
.

Next, we bound several quantities that appear in various parts of our proofs.

Lemma 6 Under Assumption 1, for any q > 0 and all 1 ≤ i ≤ n, with probability at least 1−n−q,∥∥∥Ux(i)
∥∥∥ ≤ rx

(
1 + σu

√
2(q + 1) lnn

)
= r̃x. (B.4)

Proof By subGaussianity of ∥Ux∥ from Assumption 1 and the subGaussian tail bound, with prob-
ability at least 1− n−q−1 ∥∥∥Ux(i)

∥∥∥ ≤ E[∥Ux∥] + σurx
√
2(q + 1) lnn

= rx + σurx
√
2(q + 1) lnn.

The statement of lemma follows from a union bound over 1 ≤ i ≤ n.

Lemma 7 Under Assumption 1, we have ESn

[
∥x∥2

]
≲ c2x with probability at least 1−exp(−Ω(n)).

12
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Proof By the triangle inequality,

|∥x∥|ψ2
≤ |∥x∥ − E[∥x∥]|ψ2

+ |E[∥x∥]|ψ2
≲ σn

∥∥∥Σ1/2
∥∥∥
F
+ tr(Σ)1/2 ≲ tr(Σ)1/2.

Recall c2x := tr(Σ). Furthermore, by [48, Lemma 2.7.6] we have∣∣∣∥x∥2∣∣∣
ψ1

= |∥x∥|2ψ2
≲ c2x.

We arrive at a similar result for the centered random variable ∥x∥2 − E[∥x∥]2 = ∥x∥2 − c2x. We
conclude the proof by the subexponential tail inequality,

P
(
ESn

[
∥x∥2

]
− c2x ≥ tc2x

)
≤ exp(−min(t, t2)Ω(n)).

Lemma 8 Under Assumption 1, we have ESn

[
y2
]
≲ 1 with probability at least 1−2 exp(−Ω(n)).

Proof We have
|y|2 ≤ 3g(0)2 + 3O(1/r2x)∥Ux∥2 + 3ξ2.

By a similar argument to Lemma 7 we have∣∣∣∥Ux∥2
∣∣∣
ψ1

= |∥Ux∥|2ψ2
≤ 2|∥Ux∥ − E[∥Ux∥]|2ψ2

+ 2E[∥Ux∥]2 ≲ (1 + σ2
u)r

2
x,

since E
[
∥Ux∥2

]
= r2x. As a result, by the subexponential tail bound,

ESn

[
∥Ux∥2

]
− E

[
∥Ux∥2

]
≲ (1 + σ2

u)r
2
x ≲ r2x,

with probability at least 1− exp(−Ω(n)). Similarly,
∣∣ξ2∣∣

ψ1
≤ |ξ|2ψ2

≲ ς2, therefore,

ESn

[
ξ2
]
− E

[
ξ2
]
≲ ς2 ≲ 1,

with probability at least 1− exp(−Ω(n)). The statement of the lemma follows by a union bound.

Lemma 9 Under Assumption 1, for any q > 0 and n ≳ c2x
∥Σ∥(1 + σ2

n(q + 1) ln(n)) ln(dnq),

with probability at least 1 − O(n−q) we have
∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥. Further, if q ≥ 1, then

E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2.

Proof First, note that by subGaussianity of ∥x∥, for every fixed i, we have with probability at least
1− n−q−1, ∥∥∥x(i)

∥∥∥− E[∥x∥] ≤ σn

∥∥∥Σ1/2
∥∥∥
F

√
2(q + 1) lnn.

13
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Since E[∥x∥] ≤ cx, via a union bound, with probability at least 1− n−q,∥∥∥x(i)
∥∥∥ ≤ cx + σncx

√
2(q + 1) lnn =: c̃x.

Define the clipped version of x via xc = x(1 ∧ c̃x
∥x∥). Then, on the above event,

ESn

[
xx⊤

]
= ESn

[
xcx

⊤
c

]
.

Moreover, ∥∥∥E[xcx⊤
c

]∥∥∥ = sup
∥v∥≤1

E
[
⟨xc,v⟩2

]
≤ sup

∥v∥≤1
E
[
⟨x,v⟩2

]
=
∥∥∥E[xx⊤

]∥∥∥.
Finally, by the covariance estimation bound of [50, Corollary 6.20] for centered subGaussian ran-
dom vectors and the condition on n given in the statement of the lemma,∥∥∥ESn

[
xcx

⊤
c

]∥∥∥− ∥∥∥E[xcx⊤
c

]∥∥∥ ≲
∥∥∥E[xx⊤

]∥∥∥
with probability at least 1−O(n−q). Consequently, we have

∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥ with probability

at least 1−O(n−q).
For the second part of the lemma, let E denote the event on which the above

∥∥ESn

[
xx⊤]∥∥ ≲

∥Σ∥ holds. Then,

E
[∥∥∥ESn

[
xx⊤

]∥∥∥1/2] = E
[
1(E)

∥∥∥ESn

[
xx⊤

]∥∥∥1/2]+ E
[
1(EC)

∥∥∥ESn

[
xx⊤

]∥∥∥1/2]
≲ ∥Σ∥1/2 + P

(
EC
)1/2 E[∥∥∥ESn

[
xx⊤

]∥∥∥]1/2
≲ ∥Σ∥1/2 +O(n−q/2)cx.

Suppose q ≥ 1. Then for n ≳ c2x/∥Σ∥, we have E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2, which completes

the proof.

We summarize the above results into a single event.

Lemma 10 Suppose n ≳ c2x
∥Σ∥(1 + σ2

n(q + 1) ln(n)) ln(dnq). There exists an event E such that
P(E) ≥ 1−O(n−q), and on E:

1.
∥∥Ux(i)

∥∥ ≤ r̃x for all 1 ≤ i ≤ n.

2. ESn

[
∥x∥2

]
≲ c2x.

3.
∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥.

4. E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2.

5. ESn

[
y2
]
≲ 1.

14
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We recall the variational lower bound for the KL divergence, which will be used at various stages
of different proofs to relate certain expectations to the KL divergence.

Lemma 11 (Donsker-Varadhan Variational Formula for KL Divergence [26]) Let µ and ν be
probability measures on W . Then,

H(µ | ν) = sup
f :W→R

∫
fdµ− ln

(∫
efdν

)
.

Finally, we state the following lemma which will be useful in estimating smoothness constants
in the convergence analysis.

Lemma 12 Suppose (z,x) ∈ R× Rd are drawn from a probability distribution D. Then,

∥ED[zx]∥ ≤
√

ED[z2]∥ED[xx⊤]∥.

Proof We have

∥ED[zx]∥ = sup
∥v∥≤1

⟨v,ED[zx]⟩ = sup
∥v∥≤1

ED[z⟨v,x⟩]

≤ sup
∥v∥≤1

√
ED[z2]ED

[
⟨v,x⟩2

]
(Cauchy-Schwartz)

≤
√
ED[z2] sup

∥v∥≤1
⟨v,ED[xx⊤]v⟩

=
√

ED[z2]∥ED[xx⊤]∥.

Notice that the distribution D can be both the empirical as well as the population distribution.

B.2. Approximating the Target Function

We begin by stating the following approximation lemma which is the result of [7, Proposition 6]
adapted to our setting.

Proposition 13 Suppose g : Rk → R is L-Lipschitz and |g(0)| = O(Lr̃x). On the event of
Lemma 10, there exists a measure µ ∈ P2(R2d+2) with R(µ) ≤ ∆2/r̃2x such that

max
i

∣∣∣g(Ux(i))− ŷ(x(i);µ)
∣∣∣ ≤ CkLr̃x

( ∆

Lr̃x

) −2
k+1

ln
( ∆

Lr̃x

)
+

ln 4

κ
,

for all ∆ ≥ Ck, where Ck is a constant depending only on k, provided that the hyperparameter ι

satisfies ι ≥ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)
.

Proof Throughout the proof, we will use Ck to denote a constant that only depends on k, whose
value may change across instantiations. Let z := Ux ∈ Rk and z̃ := (z⊤, r̃x)

⊤ ∈ Rk+1. Recall
that on the event of Lemma 6 we have ∥z(i)∥ ≤ r̃x and |g(z(i))| ≲ Lr̃x for all 1 ≤ i ≤ n. Let τ

15



LEARNING MULTI-INDEX MODELS WITH MEAN-FIELD NEURAL NETWORKS

denote the uniform probability measure on Sk. By [7, Proposition 6], for all ∆ ≥ Ck, there exists
p ∈ L2(τ) with ∥p∥L2(τ) ≤ ∆ such that

max
i

∣∣∣∣g(z(i))−
∫
Sk

p(v)ϕ∞

( 1

r̃x

〈
v, z̃(i)

〉)
dτ(v)

∣∣∣∣ ≤ CkLr̃x
( ∆

Lr̃x

) −2
k+1 ln

( ∆

Lr̃x

)
.

In fact, we have a stronger guarantee on p. Specifically, p(v) is given by

p(v) =
∑
j≥1

λ−1
j rjhj(v),

where r ∈ (0, 1), λj , hj : Sk → R are introduced by [7, Appendix D]. In particular,

h(v) = g
( r̃xv1:k

vk+1

)
vk+1,

with the spheircal harmonics decomposition h(v) =
∑

j≥0 hj(v). It is shown in [7, Appendix D.2]
that λj ≤ Ckj

(k+1)/2, and one can prove through spherical harmonics calculations (omitted here
for brevity) that |hj(v)| ≤ Ck supv∈Sk h(v)j

(k−1)/2 ≤ CkLr̃xj
(k−1)/2. As a result,

|p(v)| ≤
∑
j≥0

λ−1
j rj |hj(v)| ≤

∑
j≥1

λ−1
j rj |hj(v)| ≤ CkLr̃x

∑
j≥1

jkrj ≤ CkLr̃x
(1− r)k

.

Using 1− r =
(
CkLr̃x/∆

)2/(k+1)
as in [7, Appendix D.4] yields

|p(v)| ≤ CkLr̃x

( ∆

Lr̃x

)2k/(k+1)
.

Define p+(v) := p(v) ∨ 0 and p−(v) := (−p(v)) ∨ 0. Then, by positive 1-homogeneity of
ReLU,∫
Sk

p(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v) =

∫
Sk

p+(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v)−

∫
Sk

p−(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v)

=

∫
Sk

ϕ∞

(p+(v)
r̃x

⟨v, z̃⟩
)
dτ(v)−

∫
Sk

ϕ∞

(p−(v)
r̃x

〈
v, z̃(i)

〉)
dτ(v)

=

∫
Rk+1

ϕ∞(⟨v, z̃⟩)dµ̃1(v)−
∫
Rk+1

ϕ∞(⟨v, z̃⟩)dµ̃2(v)

=

∫
Rd+1

ϕ∞(⟨w, x̃⟩)dµ1(w)−
∫
Rd+1

ϕ∞(⟨w, x̃⟩)dµ2(w),

where µ̃1 := (·)p+(·)
r̃x

#τ and µ̃2 := (·)p−(·)
r̃x

#τ are the corresponding pushforward measures, µ1 =

TU#µ̃1 and µ2 = TU#µ̃2, where TU (v) = (U⊤vk, vk+1)
⊤ ∈ Rd+1 for v = (v⊤

k , vk+1)
⊤ ∈

Rk+1. In other words, w ∼ µ1 is generated by sampling v ∼ µ̃1 and letting w = (U⊤vk, vk+1)
⊤,

with a similar procedure for w ∼ µ2. Furthermore,

R(µ) =

∫
Rd+1

∥w∥2dµ1(w) +

∫
Rd+1

∥w∥2dµ2(w) =

∫
Rk+1

∥v∥2dµ̃1(v) +

∫
Rk+1

∥v∥2dµ̃2(v)

=

∫
Sk

p(v)2

r̃2x
dτ(v) ≤ ∆2

r̃2x
.
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The last step is to replace ϕ∞ with ϕκ,ι. Note that for all i, and almost surely over w ∼ µ1, we

have
∣∣∣〈w, x̃(i)

〉∣∣∣ ≤ p+(v) ≤ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)
, with a similar bound holding for w ∼ µ2. As

a result, by choosing ι ≥ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)
, we have ϕκ,ι

(〈
w, x̃(i)

〉)
= ϕκ

(〈
w, x̃(i)

〉)
for

all i and almost surely over w ∼ µ1 and w ∼ µ2. By the triangle inequality, we have∣∣∣g(Ux(i))− ŷ(x(i);µ)
∣∣∣ ≤∣∣∣∣{∫ ϕκ,ι

(〈
w, x̃(i)

〉)
− ϕ∞

(〈
w, x̃(i)

〉)}
dµ1(w)

∣∣∣∣
+

∣∣∣∣{∫ ϕκ,ι

(〈
w, x̃(i)

〉)
− ϕ∞

(
⟨w, x̃⟩(i)

)}
dµ2(w)

∣∣∣∣
+

∣∣∣∣g(Ux(i))−
∫

ϕ∞

(〈
w, x̃(i)

〉)
(dµ1(w)− dµ2(w))

∣∣∣∣
≤2 ln 2

κ
+ CkLr̃x

( ∆

Lr̃x

) −2
k+1 ln

( ∆

Lr̃x

)
,

which completes the proof.

Next, we control the effect of entropic regularization on the minimum of F̃β,λ via the following
lemma.

Lemma 14 Suppose ρ is Cρ Lipschitz. For every µ∗ ∈ P(R2d+2), we have

min
µ∈Pac(R2d+2)

F̃β,λ(µ) ≤ Ĵ0(µ
∗) +

λ

2
R(µ∗) +

2
√
2Cρ√
πλβ

ESn [∥x̃∥].

Proof We will smooth µ∗ by convoliving it with γ, i.e. we consider µ = µ∗ ∗ γ. Let u ∼ γ
independent of w ∼ µ∗ and denote u = (u⊤

1 ,u
⊤
2 )

⊤ with u1,u2 ∈ Rd+1. We first bound Ĵ0(µ
∗∗γ).

Using the Lipschitzness of the loss and of ϕκ,ι, we have

Ĵ0(µ
∗ ∗ γ)− Ĵ0(µ

∗) =ESn

[
ℓ
(∫

Ψ(x;w)d(µ∗ ∗ γ)(w)− y
)
− ℓ
(∫

Ψ(x;w)dµ∗(w)− y
)]

≤CρESn

[∣∣∣∣∫ Ψ(x;w)d(µ∗ ∗ γ)(w)−
∫

Ψ(x;w)dµ∗(w)

∣∣∣∣]
=CρESn

[∣∣∣∣∫ (Eu[Ψ(x;w + u)]−Ψ(x;w))dµ∗(w)

∣∣∣∣]
≤CρESn

[∫
Eu[|ϕκ,ι(⟨ω1 + u1, x̃⟩)− ϕκ,ι(⟨ω1, x̃⟩)|]dµ∗(w)

]
+ CρESn

[∫
Eu[|ϕκ,ι(⟨ω2 + u2, x̃⟩)− ϕκ,ι(⟨ω2, x̃⟩)|]dµ∗(w)

]
≤CρESn

[∫
{Eu1 [|⟨u1, x̃⟩|] + Eu2 [|⟨u2, x̃⟩|]}dµ∗(ω)

]
=
2
√
2Cρ√
πλβ

ESn [∥x̃∥].

Next, we bound the KL divergence via its convexity in the first argument,

H(µ∗ ∗ γ | γ) = H
(∫

γ(· −w′)dµ∗(w′) | γ
)

≤
∫

H(γ(· −w′) | γ(·))dµ∗(w′).
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Furthermore,

H(γ(· −w′) | γ(·)) =
∫

λβ

2

(
−
∥∥w −w′∥∥2 + ∥w∥2

)
γ(dw −w′) =

λβ∥w′∥2

2
.

Consequently,

H(µ∗ ∗ γ | γ) ≤ λβ

2
R(µ∗),

which finishes the proof.

Combining above results, we have the following statement.

Corollary 15 Suppose the event of Lemma 10 holds, ρ is Cρ Lipschitz, and λ ≲ 1. Then,

min
µ∈Pac(R2d+2)

F̃β,λ(µ)− ESn [ρ(ξ)] ≲ Cρ
r̃x
rx

(
rx∆

r̃x

) −2
k+1

ln

(
rx∆

r̃x

)
+

Cρ
κ

+
λ∆2

r̃2x
+

Cρ(cx + r̃x)√
λβ

,

for all ∆ ≥ Ck, provided that ι ≥ Ck∆
2k/(k+1)(rx/r̃x)

(k−1)/(k+1).

Proof We will use Lemma 14 with µ∗ ∈ P(R2d+2) constructed in Proposition 13. Then, for all
∆ ≥ Ck,

Ĵ0(µ
∗) = E[ρ(ŷ(x;µ∗)− y)]

= ESn [ρ(ŷ(x;µ
∗)− g(Ux)− ξ)]

≤ ESn [ρ(ξ)] + CρESn [|ŷ(x;µ∗)− g(Ux)|]

≤ ESn [ρ(ξ)] + CkCρ
r̃x
rx

(
rx∆

r̃x

)− 2
k+1

ln

(
rx∆

r̃x

)
+

Cρ ln 4

κ
.

Furthermore, Proposition 13 guarantees R(µ∗) ≤ ∆2/r̃2x. Combining these bounds with Lemma 14
completes the proof.

B.3. Generalization Analysis

Let
µ∗
β := argmin

µ∈Pac
2 (R2d+2)

Fβ(µ) = argmin
µ∈Pac

2 (R2d+2)

F̃β(µ).

Corollary 15 gives an upper bound on Ĵ0(µ
∗). In this section, we transfer the bound to J0(µ

∗) via a
Rademacher complexity analysis. Since Corollary 15 implies a bound on H(µ | γ), we will control
the following quantity,

sup
µ:H(µ | γ)≤∆2

J0(µ)− Ĵ0(µ).

To be able to provide guarantees with high probability, we will prove uniform convergence over a
truncated version of the risk instead, given by

sup
µ:H(µ | γ)≤∆2

J κ
0 (µ)− Ĵ κ

0 (µ),

18
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where
J κ
0 (µ) := E[ρκ(ŷ(x;µ)− y)], Ĵ κ

0 (µ) := ESn [ρκ(ŷ(x;µ)− y)],

and ρκ(·) := ρ(·) ∧ κ. We will later specify the choice of κ.
We are now ready to present the Rademacher complexity bound.

Lemma 16 ([14, Lemma 5.5], [45, Lemma 1]) Suppose ρ is either a Cρ-Lipschitz loss or the
squared error loss. Let ϑ :=

√
2κ for the squared error loss and Cρ for the Lipschitz loss. Re-

call γ = N (0,
Id+1

λβ ). Then,

E

[
sup

{µ∈Pac(R2d+2):H(µ | γ)≤M}
J κ
0 (µ)− Ĵ κ

0 (µ)

]
≤ 4ϑι

√
2M

n
.

Proof We repeat the proof here for the reader’s convenience. Let (ξi)ni=1 denote i.i.d. Rademacher
random variables. Notice that for the squared error loss, ρκ is

√
2κ Lipschitz. Then, by a standard

symmetrization argument and Talagrand’s contraction lemma, we have

E

[
sup

µ:H(µ | γ)≤M
J0(µ)− Ĵ0(µ)

]
≤ 2E

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiρ(ŷ(x
(i);µ)− y)

]

≤ 2ϑE

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]

Next, we proceed to bound the Rademacher complexity. Specifically,

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξi

∫
Ψ(x(i);w)dµ(w)

]
= Eξ

[
1

α
sup

µ:H(µ | γ)≤M

∫
α

n

n∑
i=1

ξiΨ(x(i);w)dµ(w)

]

≤ M

α
+

1

α
Eξ

[
ln

∫
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)
dγ(w)

]

≤ M

α
+

1

α
ln

∫
Eξ

[
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)]
dγ(w),

where the first inequality follows from the KL divergence lower bound of Lemma 11. Additionally,
by sub-Gaussianity and independence of (ξi) and Lipschitzness of ϕκ,ι, we have

Eξ

[
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)]
≤ exp

(
α2

2n2

n∑
i=1

Ψ(x(i);w)2

)

≤ exp

(
2α2ι2

n

)
Plugging this back into our original bound, we obtain

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x;µ)

]
≤ M

α
+

2αι2

n
.
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Choosing α =
√

Mn
2ι2

, we obtain

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x;µ)

]
≤ 2ι

√
2M

n
,

which completes the proof.

We can convert the above bound in expectation to a high-probability bound as follows.

Lemma 17 In the setting of Lemma 16, for any δ > 0, we have

sup
µ∈Pac(R2d+2):H(µ | γ)≤M

J κ
0 (µ)− Ĵ κ

0 (µ) ≲ ϑι

√
M

n
+ κ

√
ln(1/δ)

n
,

with probability at least 1− δ.

Proof As the truncated loss is bounded by κ, the result is an immediate consequence of McDi-
armid’s inequality.

Next, we control the effect of truncation by bounding J0(µ) via J κ
0 (µ), which is achieved via

the following lemma.

Lemma 18 Suppose H(µ | γ) ≤ M . Then,

J0(µ)− J κ
0 (µ) ≲

(
ι+ E

[
y2
]1/2)

e−Ω(κ2).

Proof Notice that since the loss is Cρ-Lipschitz and ρ(0) = 0, we have |ρ(ŷ − y)| ≤ Cρ|ŷ − y|.
Recall that we use L for the Lipschitz constant of g, and |ŷ(x;µ)| ≤ 2ι. Then,

J0(µ)− J κ
0 (µ) ≤ E[1(ρ(ŷ(x;µ)− y) ≥ κ)ρ(ŷ(x;µ)− y)]

≤ CρP(ρ(ŷ(x;µ)− y) ≥ κ)1/2 E
[
(ŷ(x;µ)− y)2

]1/2
≤ CρP(2ι+ |y| ≥ κ/Cρ)1/2

(
E
[
ŷ(x;µ)2

]1/2
+ E

[
y2
]1/2)

≤ CρP(2ι+ |g(0)|+ L∥Ux∥+ ξ ≥ κ/Cρ)1/2
(
E
[
ŷ(x;µ)2

]1/2
+ E

[
y2
]1/2)

.

Let κ/Cρ ≥ 4ι + 2|g(0)| + 2Lrx, and recall that L = O(1/rx). Then, by a subGaussian concen-
tration bound, we have

P(2ι+ |g(0)|+ L∥Ux∥+ ξ ≥ κ/Cρ)1/2 ≤ e
−Ω
(

κ2

σ2
uC2

ρ

)
.

We conclude the proof by remarking that by our assumptions, σu and Cρ are absolute constants.

Finally, we combine the steps above to give an upper bound on J0(µ
∗
β), stated in the following

lemma.
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Lemma 19 Suppose λ = λ̃r2x and β = deff+r̃
2
x/r

2
x

ε2λ̃
for ε, λ̃ ≲ 1. Let ε̃ := Õ(λ̃

1
k+2 ) + ε + κ−1.

Suppose n ≳ (deff+r̃
2
x/r

2
x)ι

2

λ̃ε4
and ι ≳ λ̃− k

k+2 (r̃x/rx)
2k2+4k+2

k+2 . Then,

J0(µ
∗
β)− E[ρ(ξ)] ≲ ε̃, and β−1H(µ∗

β | γ) ≲ E[ρ(ξ)] + ε̃ ≲ 1.

Proof By Corollary 15 and a standard concentration bound on ESn [ρ(ξ)] with sufficiently large n
to induce neglibile error in comaprison with the rest of the terms in the corollary, we have

Ĵ0(µ
∗
β) + β−1H(µ∗

β | γ)− E[ρ(ξ)] ≲
r̃x
rx

(
rx∆

r̃x

) −2
k+1

ln

(
rx∆

r̃x

)
+

λ∆2

r̃2x
+

(cx + r̃x)√
λβ

+
1

κ
.

By choosing

∆ =
(r2x
λ

) 1
2
· k+1
k+2
( r̃x
rx

) 1
2
· 3k+5
k+2

,

and assuming cx ≳ r̃x,

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] +

(
λ

r2x

) 1
k+2
(
r̃x
rx

) k+1
k+2

ln

(
r̃xrx
λ

)
+

cx√
λβ

+
1

κ
.

Note that the above choice on ∆ translates to a lower bound on ι in Corollary 15, given by

ι ≳

By choosing λ = λ̃r2x and using the fact that r̃x ≤ Õ(rx) and β = c2x
r2xλ̃ε

2
, we have the simpification,

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] + Õ(λ̃

1
k+2 ) + ε+

1

κ
≲ 1,

and,

Ĵ0(µ
∗
β)− E[ρ(ξ)] ≲ Õ(λ̃

1
k+2 ) + ε+

1

κ
=: ε̃.

Note that Ĵ κ
0 (µ∗

β) ≤ Ĵ0(µ
∗
β). Using the generalization bound of Lemma 17 with the choice of

δ = n−q for some constant q > 0, we have with probability 1−O(n−q),

J κ
0 (µ∗

β)− Ĵ κ
0 (µ∗

β) ≲ ι

√
β

n
+ κ

√
lnn

n

≲ ι

√
deff

nλ̃ε2
+ κ

√
lnn

n
. (B.5)

Furthermore, by Lemma 18 we have

J0(µ
∗
β)− J κ

0 (µ∗
β) ≲ ιe−Ω(κ2).

Combining the above with (B.5) and choosing on κ ≍
√
lnn, we have

J0(µ
∗
β)− E[ρ(ξ)] ≲ ε̃+ ι

√
deff

nλ̃ε2
+

√
ln2 n

n
,

which holds with probability at least 1−O(n−q) over the randomness of Sn.
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B.4. Convergence Analysis

So far, our analysis has only proved properties of µ∗
β . In this section, we relate these properties to

µml via propagation of chaos. In particular, [44] showed that for W ∼ µml , ŷ(x;µml ) converges
to ŷ(x;µ∗

β) in a suitable sense characterized shortly, as long as the objective over µml converges to
Fβ,λ(µ∗

β). Notice that µmℓ is a measure on P(R(2d+2)m) instead of P(R2d+2). Thus, we need to
adjust the definition of objective by defining the following

Fm
β,λ(µ

m) := EW∼µm

[
Ĵ0(W ) +

λ

2
R(W )

]
+

1

mβ
H(µm). (B.6)

We can use the same reformulation introduced earlier in (B.1) to define

F̃m
β,λ(µ

m) := EW∼µm
[
Ĵ0(W )

]
+

1

mβ
H(µm | γ⊗m), (B.7)

which is equivalent to Fm
β,λ up to an additive constant. With these definitions, we can now control

EW∼µml [J0(µ
m
l )] via J0(µ

∗
β). The following lemma is based on [44, Lemma 4], with a more careful

analysis to obtain sharper constants.

Lemma 20 Let r̄x := ∥Σ∥1/2 ∨ r̃x, and suppose ρ is Cρ ≲ 1-Lipschitz. Then,

EW∼µml [J0(W )]− J0(µ
∗
β) ≲

√
r̄2xW

2
2

(
µml , µ

∗
β
⊗m)+ ι2

m
. (B.8)

In particular, combined with [44, Lemma 3], the above implies

EW∼µml [J0(W )]− J0(µ
∗
β) ≲

√
r̄2xβCLSI

m

(
F̃m
β,λ(µ

m
l )− F̃β,λ(µ

∗
β)
)
+

ι2

m
. (B.9)

Proof Notice that

EW∼µml [J0(W )] = EW

[
Ex

[
ρ(ŷ(x;µW )− ŷ(x;µ∗

β) + ŷ(x;µ∗
β)− y)

]]
≤ Ex

[
ρ(ŷ(x;µ∗

β)− y)
]
+ Cρ EW

[
Ex

[∣∣ŷ(x;µW )− ŷ(x;µ∗
β)
∣∣]]

≤ J0(µ
∗
β) + Cρ

√
Ex

[
EW

[
(ŷ(x;µW )− ŷ(x;µ∗

β))
2
]]

Suppose W = (w1, . . . ,wm) ∼ µml and W ′ = (w′
1, . . . ,w

′
m) ∼ µ∗

β
⊗m. Let Γ denote the optimal

W2 coupling between W and W ′, and assume W ,W ′ ∼ Γ. Then,

EW

[
(ŷ(x;µW )− ŷ(x;µ∗))2

]
= EW ,W ′

[
(ŷ(x;µW )− ŷ(x;µW ′) + ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]

≤ 2EW ,W ′
[
(ŷ(x;µW )− ŷ(x;µW ′)2

]
+ 2EW ′

[
(ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]

Moreover, by Jensen’s inequality,

EW ,W ′
[
(ŷ(x;µW )− ŷ(x;µW ′)2

]
≤ 1

m

m∑
i=1

EW ,W ′
[
(Ψ(x;wi)−Ψ(x;w′

i))
2
]

≤ 2

m

m∑
i=1

EW ,W ′

[〈
ωi1 − ω′

i1, x̃
〉2]

+
2

m

m∑
i=1

EW ,W ′

[〈
ωi2 − ω′

i2, x̃
〉2]

.
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Hence,

Ex

[
EW ,W ′

[
(ŷ(x;µW )− ŷ(x;µW ′))2

]]
≤

2
∥∥∥Σ̃∥∥∥
m

EW ,W ′

[∥∥W −W ′∥∥2
F

]
=

2
∥∥∥Σ̃∥∥∥
m

W 2
2

(
µmt , µ

∗
β
⊗m).

For the second term, notice that ŷ(x;µ∗
β) = EW ′ [ŷ(x;µW ′)] = Ew′

i
[Ψ(x;w′

i)] for all 1 ≤ i ≤ m.
By independence of (w′

i) and Jensen’s inequality, we have

EW ′
[
(ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]
=

1

m
Ew′

[
(Ψ(x;w′)− ŷ(x;µ∗))2

]
=

1

m
Ew′

[(∫
(Ψ(x;w′)−Ψ(x;w))dµ∗

β(w)

)2
]

≲
ι2

m
.

Thus, the rest of this section deals with establishing convergence rates for Fm
β,λ(µ

m
l ) → Fβ,λ(µ∗

β).
To use the one-step decay of optimality gap provided by [44], we depend on the following assump-
tion.

Assumption 3 Suppose there exist constants L, CL, and R, such that

1. (Lipschitz gradients of the Gibbs potential) For all µ, µ′ ∈ P2(R2d+2) and w,w′ ∈ R2d+2,∥∥∥∇Ĵ ′
0[µ](w)−∇Ĵ ′

0[µ
′](w′)

∥∥∥ ≤ L(W2(µ, µ
′) +

∥∥w −w′∥∥), (B.10)

where W2 is the 2-Wasserstein distance.

2. (Bounded gradients of the Gibbs potential) For all µ ∈ P2(R2d+2) and w ∈ R2d+2, we
have

∥∥∥∇Ĵ ′
0[µ](w)

∥∥∥ ≤ R.

3. (Bounded second variation) Denote the second variation of Ĵ0(µ) at w via Ĵ ′′
0 [µ](w,w′),

which is defined as the first variation of µ 7→ Ĵ ′
0[µ](w). Then, for all µ ∈ P2(R2d+2) and

w,w′ ∈ R2d+2, ∣∣∣Ĵ ′′
0 [µ](w,w′)

∣∣∣ ≤ L(1 + CL(∥w∥2 +
∥∥w′∥∥2)). (B.11)

We can now state the one-step bound.

Theorem 21 ([44, Theorem 2]) Suppose Ĵ0 satisfies Assumption 3. Assume λ ≲ 1, β, L,R ≳ 1,
and the initialization satisfies E

[∥∥wi
0

∥∥2] ≲ R2 for all 1 ≤ i ≤ m. Then, for all η ≤ 1/4,

Fm
β,λ(µ

m
l+1)−Fβ,λ(µ∗

β) ≤ exp
( −η

2βCLSI

)(
Fm
β,λ(µ

m
l )−Fβ,λ(µ∗

β)
)
+ ηAm,β,λ,η, (B.12)
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where

Am,β,λ,η := C

(
L2
(
d+

R2

λ

)(
η2 +

η

β

)
+

L

mβ

( 1

CLSI
+
(R2

λ2
+

d

λβ

)( CL
CLSI

+
L

β

)))
(B.13)

for some absolute constant C > 0.

We now focus on bounding the constants that appear in Assumption 3.

Lemma 22 (Lipschitzness of ∇Ĵ ′
0) Suppose ρ is either the squared error loss or is Cρ Lipschitz

and has a C ′
ρ Lipschitz derivative. Assume κ ≳ 1. Notice that for the squared error loss, C ′

ρ = 1.
Then, for all µ, ν ∈ P2(R2d+2) and w,w′ ∈ R2d+2, we have∥∥∥∇Ĵ ′

0[µ](w)− Ĵ ′
n[µ

′](w′)
∥∥∥ ≲ κCρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥∥∥w −w′∥∥+ C ′
ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′),

for the Lipschitz loss, and∥∥∥∇Ĵ ′
0[µ](w)− Ĵ ′

n[µ
′](w′)

∥∥∥ ≲ κ
√
Ĵ0(µ)

∥∥ESn

[
x̃⊗4

]∥∥
2→2

∥∥w −w′∥∥+ ∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′),

for the squared error loss, where
∥∥ESn

[
x̃⊗4

]∥∥
2→2

:= sup∥v∥≤1

∥∥∥ESn

[
⟨x̃,v⟩2x̃x̃⊤

]∥∥∥.

Proof Recall that Ĵ ′
0[µ](w) = ESn [ρ

′(ŷ(x;µ)− y)Ψ(x;w)], where Ψ(x;w) = ϕκ,ι(⟨ω1, x̃⟩) −
ϕκ,ι(⟨ω2, x̃⟩). We start with the triangle inequality,∥∥∥∇Ĵ ′

0[µ](w)−∇Ĵ ′
0[µ

′](w′)
∥∥∥ ≤

∥∥∥∇Ĵ ′
0[µ](w)−∇Ĵ ′

0[µ](w
′)
∥∥∥+∥∥∥∇Ĵ ′

0[µ](w
′)−∇Ĵ ′

0[µ
′](w′)

∥∥∥.
We now focus on the first term. For the Lipschitz loss,∥∥∥∇ω1Ĵ ′

0[µ](w)−∇ω1Ĵ ′
0[µ](w

′)
∥∥∥ =

∥∥ESn

[
ρ′(ŷ(x;µ)− y)(ϕ′

κ(⟨ω1, x̃⟩)− ϕ′
κ(
〈
ω′

1, x̃
〉
)x̃
]∥∥

≤ CρESn

[
(ϕ′
κ(⟨ω1, x̃⟩)− ϕ′

κ(
〈
ω′

1, x̃
〉
))2
]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ CρκESn

[〈
ω1 − ω′

1, x̃
〉2]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ Cρκ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥∥∥ω1 − ω′
1

∥∥,
where the first inequality follows from Lemma 12, and the second inequality follows from the fact
that |ϕ′′

κ| ≤ κ. For the squared error loss, we have∥∥∥∇ω1Ĵ ′
0[µ](w)−∇ω1Ĵ ′

0[µ](w
′)
∥∥∥ =

∥∥ESn

[
(ŷ(x;µ)− y)(ϕ′

κ(⟨w, x̃⟩)− ϕ′
κ(
〈
w′, x̃

〉
)x̃
]∥∥

= sup
∥v∥≤1

ESn

[
(ŷ(x;µ)− y)(ϕ′

κ(⟨ω1, x̃⟩)− ϕ′
κ(
〈
ω′

1, x̃
〉
)⟨v, x̃⟩

]
≤ sup

∥v∥≤1

√
ESn [(ŷ(x;µ)− y)2]ESn

[
(ϕ′
κ(⟨ω1, x̃⟩)− ϕ′

κ(⟨ω′
1, x̃⟩))2⟨v, x̃⟩

2
]

≤ κ

√
Ĵ0(µ) sup

∥v∥≤1

〈
v,ESn

[
⟨ω1 − ω′

1, x̃⟩
2x̃x̃⊤

]
v
〉

≤ κ

√
Ĵ0(µ)

∥∥∥ESn

[
⟨ω1 − ω′

1, x̃⟩
2x̃x̃⊤

]∥∥∥
≤ κ

√
Ĵ0(µ)

∥∥ESn

[
x̃⊗4

]∥∥
2→2

∥∥ω1 − ω′
1

∥∥.
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Similar bounds apply to the gradient with respect to ω2, which completes the bound on the first
term of the triangle inequality.

We now consider the second term of the triangle inequality. Here we consider Lipschitz losses
and the squared error loss at the same time since both have a Lipschitz derivative.∥∥∥∇ω1Ĵ ′

0[µ](ω
′)−∇ω1Ĵ ′

0[µ](ω
′)
∥∥∥ =

∥∥(ρ′(ŷ(x;µ)− y)− ρ′(ŷ(x;µ′)− y)
)
ϕ′
κ(
〈
ω′

1, x̃
〉
)x̃
∥∥

≤ ESn

[(
ρ′(ŷ(x;µ)− y)− ρ′(ŷ(x;µ′)− y)

)2]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ C ′

ρESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
(B.14)

where the first inequality follows from Lemma 12. Let γ ∈ P2(R2d+2 ×R2d+2) be a coupling of µ
and µ′ (i.e. the first and second marginals of γ are equal to µ and µ′ respectively). Recall that,

ŷ(x;µ)−ŷ(x;µ′) =

∫ (
ϕκ,ι(⟨ω1, x̃⟩)−ϕκ,ι(⟨ω2, x̃⟩)−ϕκ,ι(

〈
ω′

1, x̃
〉
)+ϕκ,ι(

〈
ω′

2, x̃
〉)
dγ(w,w′).

Therefore by the triangle inequality for the L2 norm ESn

[
(·)2
]1/2 and Jensen’s inequality,

ESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2 ≤ESn

[∫ (
ϕκ,ι(⟨ω1, x̃⟩)− ϕκ,ι(

〈
ω′

1, x̃
〉
)
)2
dγ

]1/2
+ ESn

[∫ (
ϕκ,ι(⟨ω2, x̃⟩)− ϕκ,ι(

〈
ω′

2, x̃
〉
)
)2
dγ

]1/2
≤
∫

ESn

[〈
ω1 − ω′

1, x̃
〉2]1/2

dγ +

∫
ESn

[〈
ω2 − ω′

2, x̃
〉2]1/2

dγ

≤
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2 ∫ (∥∥ω1 − ω′
1

∥∥+ ∥∥ω2 − ω′
2

∥∥)dγ(w1,w2)

≤

√
2
∥∥ESn

[
x̃x̃⊤]∥∥ ∫ ∥w −w′∥2dγ(w,w′).

By choosing γ whose transport cost attains (or converges to) the optimal cost, we have

ESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2 ≤√2
∥∥ESn

[
x̃x̃⊤]∥∥W2(µ, µ

′).

Plugging the above result into (B.14), we have∥∥∥∇ω1Ĵ ′
0[µ](ω

′)−∇ω2Ĵ ′
0[µ

′](ω′)
∥∥∥ ≤

√
2C ′

ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′).

Notice that the same bound holds for gradients with respect to ω2. Thus the bound of the second
term in the triangle inequality and the proof is complete.

Lemma 23 (Boundedness of ∇Ĵ ′
0) In the same setting as Lemma 22, for all µ ∈ P2(R2d+2) and

w ∈ R2d+2, we have ∥∥∥∇Ĵ ′
0[µ](w)

∥∥∥ ≤
√
2C̃ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
where C̃ρ = Cρ when ρ is Lipschitz and C̃ρ =

√
2Ĵ0(µ) when ρ is the squared error loss.
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Proof Notice that |ϕ′
κ| ≤ 1. Therefore,∥∥∥∇ω1Ĵ ′

0[µ](w)
∥∥∥ =

∥∥ESn

[
ρ′(ŷ − y)ϕ′

κ(⟨ω1, x̃⟩)x̃
]∥∥

≤
√

ESn [ρ
′(ŷ − y)2]

∥∥ESn

[
x̃x̃⊤]∥∥

≤ C̃ℓ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
where the first inequality follows from Lemma 12.

Lemma 24 (Boundedness of Ĵ ′′
0 ) In the same setting as Lemma 22, for all µ ∈ P2(R2d+2) and

w,w′ ∈ R2d+2, we have∣∣∣Ĵ ′′
0 [µ](w,w′)

∣∣∣ ≤ C ′
ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥(∥w∥2 +
∥∥w′∥∥2),

where we recall that C ′
ρ = 1 for the squared error loss.

Proof It is straightforward to show that

Ĵ ′′
0 [µ](w,w′) = ESn

[
ρ′′(ŷ(x;µ)− y)Ψ(x;w)Ψ(x;w′)

]
.

Then, by the Cauchy-Schwartz inequality,

Ĵ ′′
0 [µ](w,w′) ≤ C ′

ρESn

[
Ψ(x;w)2

]1/2ESn

[
Ψ(x;w′)2

]1/2
.

Moreover, by the Lipschitzness of ϕκ,ι,

ESn

[
Ψ(x;w)2

]1/2 ≤ ESn

[
⟨ω1, x̃⟩2

]1/2
+ ESn

[
⟨ω2, x̃⟩2

]1/2
≤

√
2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2∥w∥

We can similarly bound the expression for w′, and arrive at the statement of the lemma via Young’s
inequality,

Ĵ ′′
0 [µ](w,w

′) ≤ 2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥C ′
ρ∥w∥

∥∥w′∥∥ ≤
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥(∥w∥2 +
∥∥w′∥∥2).

In particular, the gradient bound of Lemma 23 implies the following LSI estimate, which follows
from [44, Theorem 1].

Proposition 25 ([44, Theorem 1]) Suppose
∥∥∥∇Ĵ ′

0[µ](w)
∥∥∥ ≤ R for all µ ∈ P2 and w ∈ R2d+2.

Then, the family of probability measures νµ ∝ exp(−βG′[µ]) for µ ∈ P2(R2d+2) satisfy a uniform
LSI with constant

CLSI ≲
1

βλ
exp

(
4βR2

√
2d/π

λ

)
∧
{

1

βλ
+ exp

(
βR2

2λ

)(
R2

λ2
+

1

βλ

)(
d+

βR2

λ

)}
. (B.15)
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We collect the smoothness estimates and simplify them under the event of Lemma 10 in the
following Corollary.

Corollary 26 Suppose ρ and ρ′ are Cρ and C ′
ρ Lipschitz respectively, with Cρ, C

′
ρ ≲ 1. Recall that

Σ := E
[
xx⊤]. On the event of Lemma 10, we have

∥∥ESn

[
x̃x̃⊤]∥∥ ≲ ∥Σ∥ ∨ r̃2x, and consequently,

Ĵ ′
0 satisfies Assumption 3 with constants L ≲ κ(∥Σ∥ ∨ r̃2x), R ≲ ∥Σ∥1/2 ∨ r̃x, and CL = κ−1.

Using the estimates above, we can present the following convergence bound Fm
β,λ(µ

∗
β)−Fβ,λ(µ∗

β).

Proposition 27 Let r̄x := ∥Σ∥ ∨ r̃x, and for simplcity assume CLSI ≥ β. For any ε ≲ 1, suppose
the step size satisfies

η ≲
ε

CLSIκ2r̄4x(d+ r̄2x/λ)
,

the width of the network satisfies,

m ≳
κr̄2x

(
1 +

( r̄2x
λ2

+ d
λβ

)(
1
κ + κr̄2xCLSI

β

))
ε

,

and the number of iterations satisfies

l ≳
βCLSI

η
ln
(Fm

β,λ(µ
m
0 )−F∗

β

ε

)
.

Then, we have Fm
β,λ(µ

m
l )−Fβ,λ(µ∗

β) ≤ ε.

Proof Throughout the proof, we will assume the event of Lemma 10 holds. Let F∗
β,λ := Fβ,λ(µ∗

β).
Notice that by iterating the bound of Theorem 21, we have

Fm
β,λ(µ

m
l )−F∗

β,λ ≤ exp
( −lη

2βCLSI

)
(Fm

β,λ(µ
m
0 )−F∗

β,λ) +
ηAm,β,λ,η

1− exp
( −η
2βCLSI

)
≤ exp

( −lη

2βCLSI

)
(Fm

β,λ(µ
m
0 )−F∗

β,λ) + 4βCLSIAm,β,λ,η,

where the second inequality holds for η ≤ 2βCLSI since 1 − e−x ≥ x/2 for x ∈ [0, 1]. We now
bound Am,β,λ,η so that the RHS of the above is less than O(ε) by choosing a sufficiently large m
and a sufficiently small η. Recall that given constants L and R from Assumption 3,

Am,β,λ,η ≍ L2
(
d+

R2

λ

)(
η2 +

η

β

)
+

L

mβ

( 1

CLSI
+
(R2

λ2
+

d

λβ

)( CL
CLSI

+
L

β

))
.

From Corollary 26, L ≍ κ(∥Σ∥ ∨ r̃2x), R ≍ ∥Σ∥1/2 ∨ r̃x, and CL = κ−1. To avoid notational
clutter, let r̄2x := ∥Σ∥ ∨ r̃2x. Then, to control the terms containing η, it suffices to choose

η ≲
√

ε

βCLSIκ2r̄4x(d+ r̄2x/λ)
∧ ε

CLSIκ2r̄4x(d+ r̄2x/λ)
,

for which we can simply choose

η ≲
ε

CLSIκ2r̄4x(d+ r̄2x/λ)
.
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Further, to control the term containing the number of particles m, we need

m ≳
κr̄2x

(
1 +

( r̄2x
λ2

+ d
λβ

)(
1
κ + κr̄2xCLSI

β

))
ε

.

To drive the suboptimality bound below ε, we also need to let the number of iterations l satisfy

l ≳
βCLSI

η
ln
(Fm

β,λ(µ
m
0 )−F∗

β,λ

ε

)
.

With the above conditions, we can guarantee

Fm
β,λ(µ

m
l )−F∗

β,λ ≲ ε,

which finishes the proof.

Finally, we are ready to present the proof of Theorem. Specifically, we will prove the following
theorem which is the more detailed version of Theorem 2. To do so, we introduce the following
assumption, which can be verified by Proposition 25.

Assumption 4 Let W l = (wl
1, . . . ,w

l
m) denote the trajectory of MFLA. Then, the probability

measure νµ
W l

∝ exp(−βĴ ′
λ[µW l ]) satisfies the LSI (A.6) with constant CLSI for all l ≥ 0. For

simplicity, assume CLSI ≥ β.

With the above assumption, we can state the detailed version of Theorem 2.

Theorem 28 Under Assumptions 1, 2 and 4, consider MFLA (2.3) with parameters β = Θ̃(deff),
λ = λ̃r2x and η ≤ Õ

(
1

CLSIκ2d

)
. The algorithm is initialized with the weights sampled i.i.d. from

some distribution w0
j ∼ µ0. Suppose λ̃, κ−1 = on(1), and ι is chosen via the lower bound of

Lemma 19. Then, with the number of samples n, the number of neurons m, and the number of
iterations l that can respectively be bounded by

n ≤ Õ(deff), m ≤ Õ
(CLSIκ

2d

β2λ

)
, l ≤ Õ

(CLSIβ

η

)
, (B.16)

with probability at least 1−O(n−q) for some q > 0, the excess risk satisfies

EW l Ey,x[ρ(y − ŷm(x;W
l))]− Eξ[ρ(ξ)] ≤ on(1). (B.17)

For the statement of Theorem 2, we can choose λ̃−1, κ = polylog(n).

B.5. Proof of Theorem 2

Recall that λ = λ̃r2x, and let β = deff+r̃
2
x/r

2
x

ε2λ̃
and n ≥ (deff+r̃

2
x/r

2
x)ι

2

λ̃ε4
for some ε ≲ 1, where

ε̃ := Õ(λ̃
1

k+2 + ε + κ−1). Then, from Lemma 19, we have J0(µ
∗
β) − E[ρ(ξ)] ≲ ε̃. On the

other hand, given the step size η, width m, and number of iterations l by Proposition 27, we have
Fm
β,λ(µ

m
l )−Fβ,λ(µ∗

β) ≤ ε. Therefore,

EW∼µml [J0(W )]− J0(µ
∗
β) ≲

√
r̄2xβCLSIε

m
+

ι2

m
.

28



LEARNING MULTI-INDEX MODELS WITH MEAN-FIELD NEURAL NETWORKS

Additionally, from Lemma 19, we have

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] + Õ(λ̃

1
k+2 ) + ε+ κ−1 ≲ 1.

Consequently, for m ≥ r̄2x(deff+r̃
2
x/r

2
x)CLSI

λ̃ε3
∨ ι
ε2

, we have EW∼µml [J0(W )]−J0(µ
∗
β) ≤ ε. Therefore,

combining the bounds above, we have

EW∼µml [J0(W )]− E[ρ(ξ)] ≲ Õ(λ̃
1

k+2 ) + ε+ κ−1.

Consequently, we can take λ̃ = on(1), ε = on(1), κ−1 = on(1) to finish the proof.

Appendix C. Comparisons with the Formulation of [39]

Here, we provide a number of comparisons with results of [39]. In Section C.1, we show that the
statistical model (2.1) is more general than their formulation, even for parity learning problems.
In Section C.2, we provide an informal comparison of their effective dimension to our setting,
exhibiting the improvement in our definition of effective dimension.

C.1. Generality of the Formulations

We begin by pointing out that the formulation of k-index model of (2.1) is strictly more general
than that of [39], even for learning k-sparse parities. Recall that in their setting, they consider
inputs of the type x = Σ1/2z for some positive definite Σ, where z ∼ Unif({±1}d) (their original
formulation uses z ∼ Unif({±1/

√
d}d), but we rescale the input to be consistent with the notation

of this paper). The labels are given by

y = sign
( k∏
i=1

⟨ũi, z⟩
)
= sign

( k∏
i=1

〈
Σ−1/2ũi,x

〉)
, (C.1)

where {ũi}ki=1 are orthonormal vectors. Then, we can define an orthonormal set of vectors {ui}ki=1

such that span(u1, . . . ,uk) = span(Σ−1/2ũ1, . . . ,Σ
−1/2ũk), and define g such that

g

(
⟨u1,x⟩√

k
, . . . ,

⟨uk,x⟩√
k

)
= g


〈
Σ1/2u1, z

〉
√
k

, . . . ,

〈
Σ1/2uk, z

〉
√
k

 = sign
( k∏
i=1

⟨ũi, z⟩
)
,

for all z ∈ {±1}d. Therefore, the parity formulation of (C.1) can be seen as a special case of the
k-index model (2.1). Note that g is only defined on 2d points, and we can extend it to all of Rk such
that g : Rk → R is Lipschitz.

In contrast, the k-index model can represent parity problems that cannot be represented by (C.1).
Starting from an orthonormal set of vectors {ui}ki=1 in Rd, let

y = g

(
⟨u1,x⟩√

k
, . . . ,

⟨uk,x⟩√
k

)
= sign

( k∏
i=1

⟨ui,x⟩
)
. (C.2)
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Consider the case where k = 2, then y = sign
(〈

Σ1/2u1, z
〉〈

Σ1/2u2, z
〉)

. To be able to refor-

mulate this to (C.1), we need to be find orthonromal ũ1, ũ2 ∈ Rd such that

sign
(〈

Σ1/2u1, z
〉〈

Σ1/2u2, z
〉)

= sign(⟨ũ1, z⟩⟨ũ2, z⟩), ∀z ∈ {±1}d.

If Σ has rank less than d such that Σ1/2u1 = Σ1/2u2, then the above implies sign(⟨ũ1, z⟩⟨ũ2, z⟩) ≥
0 for all z ∈ {±1}d. In particular, we must have some z where sign(⟨ũ1, z⟩⟨ũ2, z⟩) > 0, which
implies that

2d∑
i=1

⟨ũ1, zi⟩⟨ũ2, zi⟩ =

〈
ũ1,

2d∑
i=1

ziz
⊤
i ũ2

〉
= 2d⟨ũ1, ũ2⟩ > 0,

which is in contradiction with ⟨ũ1, ũ2⟩ = 0. Therefore, for such Σ, we cannot formulate (C.2) as a
special case of (C.1). This argument is robust with respect to small perturbations of Σ which make
it full-rank, implying that (C.2) is strictly more general than (C.1), even when only considering
full-rank covariance matrices.

C.2. Comparison with the Effective Dimension of [39]

A close inspection of the proofs in [39] demonstrates that one can define their effective dimension

in a scale invariant manner as d̃eff := tr(Σ)
∥∥∥∑k

i=1Σ
−1/2ũi

∥∥∥2. From the previous section, we

observed that to reduce their setting to ours, we need to choose a set {ui}ki=1 of normalized vectors
that spans the set of vectors {Σ−1/2ũi}ki=1. In particular, we can choose ui = Σ−1/2ũi

∥Σ−1/2ũi∥ , or

equivalently write ũi =
Σ1/2ui

∥Σ1/2ui∥ . While {ui}ki=1 are not orthogonal, our proofs do not rely on the

orthogonality assumption and it is only made for simplicity. Hence, we have

d̃eff = tr(Σ)

∥∥∥∥∥∥
k∑
i=1

ui∥∥∥Σ1/2ui

∥∥∥
∥∥∥∥∥∥
2

≤ k tr(Σ)
k∑
i=1

∥∥∥Σ1/2ui

∥∥∥−2
.

Note that the above upper bound is sharp when k = 1, and is lower bounded by our definition of
effective dimension stated in Definition 1.
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