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RVR [34] SteReFo [1] DeepLens [28]

MPIB [17] BokehMe [16] Ours

Figure 1: Given an all-in-focus video, we aim to render the refocusable video with a shallow depth of field, yielding aesthetically
appealing results. Single-image-based methods [1, 16, 17, 28, 34] often suffer from flicker between frames and artifacts at edges.
In contrast, our approach generates a temporally consistent video free from such artifacts. We encourage readers to experience
the animations by viewing them with Adobe Acrobat or KDE Okular.

ABSTRACT
Bokeh is a wide-aperture optical effect that creates aesthetic blur-
ring in photography. However, achieving this effect typically de-
mands expensive professional equipment and expertise. To make
such cinematic techniques more accessible, bokeh rendering aims to
generate the desired bokeh effects from all-in-focus inputs captured
by smartphones. Previous efforts in bokeh rendering primarily fo-
cus on static images. However, when extended to video inputs,
these methods exhibit flicker and artifacts due to a lack of temporal
consistency modeling. Meanwhile, they cannot utilize information
like occluded objects from adjacent frames, which are necessary
for bokeh rendering. Moreover, the difficulties of capturing all-in-
focus and bokeh video pairs result in a shortage of data for training
video bokeh models. To tackle these challenges, we propose the
Video Bokeh Renderer (VBR), the model designed specifically for
video bokeh rendering. VBR leverages implicit feature space align-
ment and aggregation to model temporal consistency and exploit
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complementary information from adjacent frames. On the data
front, we introduce the first Synthetic Video Bokeh (SVB) dataset,
synthesizing authentic bokeh effects using ray-tracing techniques.
Furthermore, to improve the robustness of the model to inaccu-
rate disparity maps, we employ a set of augmentation strategies
to simulate corrupted disparity inputs during training. Experimen-
tal results on both synthetic and real-world data demonstrate the
effectiveness of our method. Code and dataset will be released.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; Image ma-
nipulation; Computational photography;

KEYWORDS
Video bokeh rendering, Temporal consistency, Synthetic dataset

1 INTRODUCTION
The bokeh effect is a popular photographic technique that cre-
ates aesthetic blur in out-of-focus areas, commonly used in movie
shooting to highlight emphasized subjects. While DSLR cameras
naturally produce a shallow depth of field effect, they are expensive,
lack portability, and require expertise, making them less accessi-
ble for casual users. Smartphones, on the other hand, are widely
used in our daily lives. However, limited by their small aperture
sizes, they often produce videos with deep depth of field, lacking
the aesthetically pleasing bokeh effects. Our work aims to bridge

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the gap between smartphones and cameras, by rendering refocus-
able videos from all-in-focus videos, making casual videography
cinematic.

Compared to video bokeh rendering, single-image-based bokeh
rendering has been extensively studied, beginning with the classical
rendering approaches [1, 19, 24, 27, 33, 34] that determine the blur
radius from disparity map and focal point. However, disparity maps
often contain errors, especially in regions with discontinuous depth,
resulting in artifacts in the rendering results. To address this issue,
neural rendering methods [16, 17, 28, 31] have been proposed to
generate authentic bokeh rendering effects by learning from data.

Nevertheless, these methods are designed for single-image in-
puts, and applying them directly to each frame of the video often
results in the following issues: (i) Flicker between frames arises
due to the absence of spatial-temporal constraints; (ii) The inability
to handle the disocclusion phenomenon (Fig. 2). The disocclusion
phenomenon occurs when occluded objects in an all-in-focus im-
age reappear during bokeh rendering with a large aperture. In a
video sequence, the potential exists to recover information about
occluded objects near the edge, which is necessary for bokeh ren-
dering. Moreover, disparity maps for video sequences often contain
flaws and temporal flickers, even when generated by state-of-the-
art depth estimationmethods. However, current single-image-based
methods lack robustness to disparity maps, making them suscep-
tible to producing artifacts. While a previous work, RVR [34], has
proposed a video bokeh rendering system, they utilize optical flow
to smooth the inputs of the disparity map. However, they still
achieve bokeh rendering frame-by-frame using single-image-based
models, thereby leaving inter-frame interactions and correlations
untouched, as shown in Fig. 1.

To address the aforementioned issues, from a model design per-
spective, we present an end-to-end model for video bokeh render-
ing, termed Video Bokeh Renderer (VBR). The primary distinction
between VBR and previous single-image-based bokeh rendering
models lies in the capability to enforce temporal consistency and re-
cover occluded information through a temporal fusion mechanism.
To handle high resolution and large blur sizes, VBR adopts a coarse-
to-fine framework comprising two sub-modules: a coarse bokeh
generator and an iterative bokeh refiner. The coarse bokeh genera-
tor initially renders bokeh effects at a low resolution, and then the
iterative bokeh refiner improves the result gradually. To harness
information from adjacent frames for achieving aesthetically pleas-
ing and temporally consistent video bokeh rendering results, we
introduce the Temporal Fusion Block (TFB) into our model. Due
to camera and object motions, identical spatial positions may not
correspond to the same object across frames. Thus, in TFB, we first
use deformable convolutions to align multiple features from adja-
cent frames and then utilize stacked convolution layers to merge
the aligned features. Moreover, since disparity maps inevitably con-
tain errors and flaws, we employ augmentation strategies during
training to mimic inaccurate disparity maps. This enhances the
robustness of our model to inaccuracies in disparity maps.

From the data perspective, due to the lack of paired all-in-focus
and bokeh video data for training, we elaborate a video bokeh data
synthesizing pipeline to generate the first video bokeh rendering
dataset called Synthetic Video Bokeh (SVB). The training set of
SVB comprises 3, 000 videos, each containing 16 frames, resulting

in a total of 144, 000 frames. When generating video bokeh data,
we mimic different shooting techniques, such as adjusting the fo-
cal plane, focusing on a moving target, or modifying the size of
the aperture. Additionally, we synthesize a test set for validation
purposes, comprising 300 videos and a total of 14, 400 frames.

We evaluate our methods on both real-world data and the syn-
thetic test set in the SVB dataset. The results demonstrate the
advantages of the proposed video bokeh renderer. Our method
achieves state-of-the-art results in rendering quality and temporal
consistency on the synthetic test set. Moreover, our method shows
robustness to inaccurate disparity maps and more stable perfor-
mance compared with other methods. To further assess the quality
of bokeh rendering from a subjective aspect, we also conduct a
user study involving 55 participants on 20 videos collected from the
internet. The comparison with other models reveals a preference
among users for the rendering effects produced by our model.

In summary, our main contributions are as follows:
• We introduce VBR, the video bokeh rendering model that
first leverages information from multiple frames to generate
refocusable videos from all-in-focus videos.

• We propose the first synthetic video bokeh rendering dataset
(SVB) using our ray-tracing-based video bokeh data synthe-
sis method.

• Experimental results demonstrate that our method produces
rendering results with better temporal consistency, enhanced
edge rendering effects, and increased robustness to low-
quality disparity maps.

2 RELATEDWORK
2.1 Bokeh Rendering
Image-space-based methods [1, 16, 24, 28] operate on single RGB-
D input in a post-processing manner and are typically divided
into classical rendering methods [19, 27, 34] and neural rendering
methods [16, 28, 31].
Classical rendering methods. Classical rendering methods [11,
19, 27, 34] determine the blur radius at different spatial positions
based on the depth map and focal position. SteReFo [1] proposes a
layer-based rendering method, dividing the input image into layers
and applying a fixed convolution kernel to blur each layer. Although
classical methods are efficient and can generate authentic bokeh
effects in regions with smooth depth variations, they often produce
artifacts in areas with discontinuous depth, such as edges.
Neural rendering methods. To address the artifacts at edges,
neural rendering methods [16, 17, 28, 31] have been proposed to
generate bokeh effects by learning from data. BokehMe [16] pro-
poses a hybrid network to combine the classical renderer and neural
renderer, leveraging the advantages of both techniques to address
artifacts commonly encountered at edges in classical methods. To
tackle the disocclusion phenomenon (Fig. 2), MPIB [17] employs an
inpainting network to recover information of occluded objects in
the all-in-focus image. However, relying on an inpainting network
to fill in occluded information can introduce instability, potentially
causing the model to collapse when the inpainting module fails.

While RVR [34] is the first work to introduce the notion of video
bokeh rendering, it uses optical flow to smooth the disparity maps
of input and renders the video frame by frame using a layer-based
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classical method, overlooking the relationship between adjacent
frames during rendering. In contrast, our approach addresses these
challenges by leveraging information from neighboring frames to
generate temporally consistent bokeh rendering results and miti-
gate artifacts at edges.

2.2 Temporal Fusion
Different from single-image bokeh rendering, achieving a satis-
factory video bokeh rendering requires not only high rendering
performance per frame but also temporal consistency. Moreover,
bokeh rendering with a large aperture needs occluded information,
further emphasizing the necessity of temporal fusion. Actually,
leveraging and fusing information from adjacent frames has been a
long-standing video understanding and processing [22, 25, 26]. 3D
convolution [22] is used to learn spatial-temporal features. How-
ever, since adjacent frames are usually misaligned due to camera
and object motions, directly fusing unaligned features may result
in artifacts. Transformer-based temporal fusion [3, 23, 25] can by-
pass the feature alignment due to the global receptive field, but
they often entail high computational costs. Another stream of work
involves leveraging deformable convolutions to align frames before
fusing them. Deformable convolutions [6] are widely employed for
implicit feature alignment, as the learned offsets can overcome the
fixed sampling position limitations in traditional convolutions and
offer more flexible modeling capabilities. TDAN [26] introduces
deformable convolutions into the network to align the reference
frame and target frames at the feature level. Inspired by TDAN [26],
subsequent works [4, 5, 29] start to align and fuse information from
adjacent frames. Although they have shown promising ability in
feature alignment and fusion, the heavy complexity and workload
brought by the addition priors and complex structures remain unde-
sirable. Additionally, inaccurate optical flow estimation can further
compromise feature alignment. In this work, we also modulate
cross-frame relationships with deformable convolution, but opt to
discard the cascade structure and additional priors for a simpler
and lighter-weight implementation.

3 PRELIMINARY
In this section, we illustrate some preliminary concepts related to
video bokeh rendering. First, we analyze the disocclusion phenom-
enon employing a camera model. Then, we introduce the defocus
map, which is used as input in our model to control the amount of
blur at different spatial positions.

3.1 Disocclusion phenomenon
The disocclusion phenomenon refers that the occluded objects in
an all-in-focus image can “re-appear” under a large aperture, i.e.,
the occluded object can also contribute to the imaging process,
indicating that the occluded information is necessary for rendering
bokeh effects. As depicted in Fig. 2, the first row illustrates the
imaging process of an all-in-focus image with a pinhole camera.
As all the light must travel through the pinhole in a straight line,
the blue object is blocked by the green foreground object. However,
things are different when it comes to a large aperture, as shown in
the second row. The rays from the occluded blue object can reach
the green dot on the image plane because light can travel along other

Image plane

Foreground object

Background object

Occluded object

Foreground rays

Disoccluded rays

Background rays

3D scene 
information All-in-focus 

Focal plane

Figure 2: Illustration of the disocclusion phenomenon. The
first row depicts the imaging process of an all-in-focus im-
age. Due to the occlusion by the foreground object (green),
some information of the background object (blue) is lost.
The second row of images illustrates the process of imaging
with a large-aperture lens during bokeh rendering. Occluded
areas become visible during light propagation, revealing in-
formation (disoccluded rays) that was previously lost in the
all-in-focus image.

routes within the large aperture lens. Hence, perfectly achieving
bokeh rendering from a single image is an ill-posed problem, as the
occluded information is necessary but absent, resulting in artifacts
at edges. Fortunately, with a video sequence, there is potential to
restore the occluded information from other frames. Therefore, our
model utilizes the temporal fusion block to integrate information
from multiple frames to deal with the disocclusion phenomenon,
mitigating the artifacts at edges.

3.2 Defocus map
The defocus map provides the blur radius of each pixel, where any
neighboring pixels within this radius contribute to the rendering
result of the center pixel. The blur radius is determined by the depth
and the focus point [27, 33]. Given the disparity of a pixel, its blur
radius can be calculated by

𝑟 = 𝐾
��𝑑 − 𝑑𝑓

�� , (1)

where 𝑑 denotes the disparity of the pixel, 𝑑𝑓 represents the dis-
parity of the focal position, 𝐾 indicates the degree of blur, and 𝑟
denotes the blur radius of the pixel. Each element in the defocus
map corresponds to the size of the blur radius. The defocus maps 𝑆
can be calculated by the disparity maps 𝐷 and control parameters
𝐾 and 𝑑𝑓 :

𝑆 = 𝐾

(
𝐷 − 𝑑𝑓

)
. (2)

4 METHOD
4.1 Overview
As illustrated in Fig. 3, the core of the video bokeh renderer is a
cascaded model comprising: (i) a coarse bokeh generator that pro-
duces low-resolution coarse bokeh rendering results, (ii) an iterative
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Figure 3: Illustration of the Video Bokeh Renderer (VBR). VBR adopts a cascaded architecture to generate high-resolution
results. First, a coarse bokeh generator renders bokeh effects in low resolution. Subsequently, the iterative bokeh refiner takes
the all-in-focus frames, defocus maps, and the coarsely rendered results as inputs and gradually refines the coarse results into
high-resolution outputs. To utilize information from multiple frames, we employ a temporal fusion block at the bottleneck of
the sub-modules to fuse features from adjacent frames.

refiner that progressively upscales and refines the coarse bokeh
rendering results to high resolution. To leverage information from
adjacent frames, we design a temporal fusion block positioned at
the bottleneck of both the coarse bokeh generator and the iterative
bokeh refiner. Our framework generates a bokeh video 𝐵 from an
all-in-focus video 𝐼 , a disparity video 𝐷 , and controlling parameters.
The controlling parameters comprise blur parameters𝐾 and refocus
disparities 𝑑𝑓 , which respectively determine the overall amount of
blur and the focal plane of each frame. Instead of directly inputting
the disparity map and controlling parameters into the network, we
utilize defocus maps to integrate the controlling parameters and
disparity information, serving as inputs to the network.

4.2 Sub-modules for video rendering
Coarse Bokeh Generator. The coarse bokeh generator initially
downsamples both the all-in-focus frames and defocus maps, si-
multaneously decreasing the numerical range of the defocus maps.
This process yields rendering results with equivalent blur levels
but at a lower resolution. The downsampling rate, denoted as 𝛼 (0) ,
depends on maximum absolute value within the defocus map 𝑆 and
the maximum blur capability 𝑅𝑚 of the module:

𝛼 (0) =𝑚𝑖𝑛(1, 𝑅𝑚

𝑚𝑎𝑥 ( |𝑆 |) ) . (3)

To preserve low-level details effectively, we integrate pixel un-
shuffle and pixel shuffle [20] within the sub-modules for down-
sampling and upsampling. Following the encoding of the input se-
quence into high-level features, the coarse bokeh generator utilizes
a proposed temporal fusion block to integrate temporal information
extracted from adjacent frames. Subsequently, the fused spatial-
temporal features are passed into the decoder to obtain the coarsely
rendered bokeh effects. We denote the output of the coarse bokeh
generator as 𝐵 (0) .
Iterative Bokeh Refiner. To achieve aesthetic rendering results in
high resolution, we design the iterative bokeh refiner to gradually
enhance the rendered output. At the 𝑡-th iteration, the iterative

bokeh refiner improves and upscales coarse bokeh result 𝐵 (𝑡−1) to
double the resolution. We also use the video sequence 𝐼 and the
disparity maps 𝑆 as additional inputs to provide information. Before
each iteration, we will resize the video sequence 𝐼 and the disparity
maps 𝑆 to twice resolution of the coarse bokeh result 𝐵 (𝑡−1) . The
scale factor can be determined as follows:

𝛼 (𝑡 ) =𝑚𝑖𝑛(1, 2𝛼 (𝑡−1) ) . (4)

In the first iteration, the coarse bokeh rendering results 𝐵 (0) gener-
ated by the coarse bokeh generator are inputted into the iterative
bokeh refiner. In each subsequent iteration, the bokeh rendering re-
sults 𝐵 (𝑡−1) from the iterative bokeh refiner become the inputs for
the next iteration. The iteration ceases when the 𝛼 (𝑡 ) in Eq. 4 equals
1, resulting in the final rendering result with the same resolution
as the input.

4.3 Temporal Fusion Block
To enforce temporal consistency and mitigate disocclusion, we de-
sign a temporal fusion block to leverage information from adjacent
frames. Due to the movement of the objects and the camera, the
same spatial position in different frames may not correspond to the
same object. Therefore, in the temporal fusion block, we employ
deformable convolution [6] to align features from adjacent frames
before applying stacked convolution layers to fuse them.

The detailed architecture is illustrated in Fig. 4. The temporal
fusion block utilizes features extracted by the encoder as inputs.
Given the features 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, we concatenate the target frame
and reference frames and pass them forward through convolutional
layers to obtain offsets, which are then used to align the features:

△𝑂𝑡+𝑖 = 𝑔( [𝑓𝑡+𝑖 , 𝑓𝑡 ]), 𝑖 ∈ {−1, 1} , (5)

where [·] denotes the concatenation operation, 𝑔 denotes the con-
volutional layers responsible for predicting the offsets, and △𝑂𝑡+𝑖
represents the predicted offsets used for feature alignment.
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Figure 4: Architecture of the Temporal Fusion Block. De-
formable convolutions are employed to align features from
adjacent frames, followed by fusion through stacked convo-
lutional and activation layers.

Then, the adjacent frames are aligned by deformable convolu-
tions with the predicted offset:

𝑓𝑡+𝑖 = DCN( [𝑓𝑡+𝑖 , 𝑓𝑡 ], △𝑂𝑡+𝑖 ), 𝑖 ∈ {−1, 1} , (6)

where DCN denotes the deformable convolutional layers utilized
to align the features.

The temporal fusion block serves the purpose of aligning and
merging information from adjacent frames, thereby reducing inter-
frame flicker to maintain temporal consistency. Additionally, it en-
ables the utilization of information from multiple frames to recover
details in occluded regions, mitigating artifacts at edges caused by
the disocclusion phenomenon.

4.4 Loss functions
We adopt the widely-used l1 loss and gradient loss as the spatial
loss, where 𝑛 represents the position of the frame:

𝐿𝑠 (𝑛) = 𝐿1 (𝐵𝑛, 𝐵∗𝑛) + 𝐿1 (▽𝐵𝑛, ▽𝐵∗𝑛) . (7)

As for the temporal loss, we adopt the basic relation loss [7] to
supervise temporal consistency:

𝐿𝑟 (𝑛, 𝑛 + 1) =
(𝐵𝑛+1 − 𝐵𝑛) − (𝐵∗𝑛+1 − 𝐵

∗
𝑛)

1 , (8)

where 𝐵∗, 𝐵 indicate the ground-truth bokeh video and predicted
video, respectively. The temporal constraint ensures temporal con-
sistency by enforcing that the change values between consecutive
frames in the rendering results match those in the ground truth.

The total loss is defined by Eq. 9, where 𝑇 represents the size of
the sliding window,

𝐿 =

𝑇∑︁
𝑖=1

𝐿𝑠 (𝑖) +
𝜆

𝑇 − 1

𝑇∑︁
𝑖=2

𝐿𝑟 (𝑖, 𝑖 − 1) , (9)

where 𝜆 is the weight factor and is empirically set to 5.

5 DATASET
Due to the challenges in capturing paired video data using DSLR
cameras, currently, there is no dataset for video bokeh rendering. Ex-
isting datasets [8, 17, 34] for bokeh rendering only comprise image
pairs and lack temporal information. To acquire paired bokeh videos
for model training, we employ a synthetic method to generate pairs
of all-in-focus and bokeh videos. In each video, we randomly se-
lect a background and some foreground objects, such as people
or animals. Then, each foreground object will move along a ran-
dom trajectory in the 3D world. Since the 3D coordinates of all the
foreground objects and the background are known, following [17],
we use the ray-tracing-based method to accurately produce bokeh
effects in each frame, ensuring precise relation between adjacent
frames.
SVB Dataset Construction.We utilize a landscape dataset [21] as
the background and choose foreground objects from alpha matting
datasets [9, 12–15, 18, 32]. To ensure data quality, we manually filter
poorly annotated foreground objects and retain 1, 044 objects. The
training set of SVB dataset consists of 3, 000 videos with accurate
depth and bokeh rendering results, each containing 16 frames. In
each video, 4 foreground objects are randomly chosen. To evaluate
different models, we also synthesize a test set comprising 300 videos.
To assess the ability ofmodels to render complex scenes, we increase
the number of foreground objects to 9, adding complexity to the
test set. All the videos in the SVB dataset have a resolution of
256×256 pixels. In addition to the movement of the objects, we also
mimic the process of changing camera parameters found in real-life
scenarios, such as altering the focal plane and adjusting aperture
sizes. Specifically, we achieve three types of bokeh techniques: (i)
maintaining the focus target while varying the degree of blur, (ii)
keeping the degree of blur constant while adjusting the focal plane,
and (iii) maintaining the degree of blur while varying the focal
plane from the farthest to the nearest or vice versa. These three
control parameters encompass most bokeh effects observed in our
daily lives. Please refer to the supplementary materials for detailed
information and examples of the dataset.

6 EXPERIMENTS
6.1 Implementation Details
Data Augmentation. To enhance the robustness of our model, we
introduce a set of augmentation strategies to simulate corrupted
disparity maps during training. Specifically, we randomly apply
Gaussian blur, dilation, erosion, and elastic transformation [2] to
the disparity maps.
Training. We train the coarse bokeh generator and the iterative
bokeh refiner sequentially. Each training sample is a video sequence
with 4 consecutive frames, and the training batch size is set to 8. All
the modules are trained for 10 epochs with Adam optimizer [10].
The learning rate is set to 10−4. We conduct all the experiments
with Pytorch framework on two NVIDIA A6000 GPUs.
Evaluation Metrics.We evaluate both the video rendering quality
and temporal consistency of different methods. Following [1, 16],
we use PSNR and SSIM as the video rendering quality metrics.
Moreover, we use PSNR𝑜𝑏 and SSIM𝑜𝑏 to evaluate the rendering
quality at edges following [17]. For temporal consistency, we apply
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Figure 5: Evaluation on the synthetic test set with corrupted disparity maps. Detailed information regarding the levels of
disparity corruption is provided in Table. 2. Normal denotes that no noise is added.

Table 1: Quantitative results on the synthetic test set. The best
performance is in boldface, while the second is underlined.
Consistency denotes the temporal consistency defined in
Sec. 6.1, here and after.

Methods PSNR↑ SSIM ↑ PSNR𝑜𝑏 ↑ SSIM𝑜𝑏 ↑ Consistency↓
RVR[34] 23.8 0.859 22.3 0.878 0.540
SteReFo[1] 27.5 0.923 25.6 0.882 0.294

DeepLens[28] 24.6 0.857 27.0 0.944 0.361
DeepFocus† 32.3 0.958 28.2 0.939 0.143
MPIB[17] 27.5 0.934 23.6 0.875 0.284

BokehMe[16] 34.7 0.975 28.9 0.925 0.084

Ours 35.6 0.978 30.6 0.951 0.056

the basic relation loss defined in Eq. 8 on the whole video as:

1
𝑁 − 1

𝑁∑︁
𝑖=2

𝐿𝑟 (𝑖, 𝑖 − 1) , (10)

where 𝑁 denotes the length of the video.

6.2 Results on Synthetic Video Bokeh Dataset
To verify the performance of our proposed method, we compare
the effectiveness and the robustness of our model, VBR, with two
classical bokeh rendering methods: RVR [34] and SteReFo [1], and
four neural rendering methods: DeepFocus [31], DeepLens [28],
MPIB [17] and BokehMe [16] on the proposed synthetic test set.
We found that DeepFocus [31] sometimes collapses under param-
eter settings with large blur size. Therefore, we resize the inputs
of DeepFocus [31] to a range that the network can handle, and
then upscale it back to the original resolution for evaluation. This
modified method is marked with a superscript †.
Quantitative experiment.As shown in Table. 1, ourmodel achieves
the highest PSNR and SSIM scores, indicating better rendering qual-
ity. Moreover, our method shows better rendering quality at edges
compared with BokehMe, according to PSNR𝑜𝑏 and SSIM𝑜𝑏 . These
results further demonstrate that extracting occluded information

Table 2: Levels of disparity corruption. The scale shift is de-
signed to mimic the disparity’s flicker on the overall scale.
We randomly choose a scale factor within [0.9, 1.1] and mul-
tiply the disparity with this scale factor.

Level Gaussian
blur Erosion/Dilation Elastic

Transformation[2]
Scale
Shift

I ✓
II ✓ ✓
III ✓ ✓ ✓
IV ✓ ✓ ✓ ✓

from adjacent frames can help mitigate artifacts at edges, e.g., ad-
dressing the disocclusion phenomenon proposed in Sec. 3.1. Our
method also achieves the best temporal consistency, with a 33%
relative improvement compared to BokehMe. This result further
reveals the benefits of temporal fusion in reducing flicker between
frames to generate temporal consistent results.
Robustness. To validate the model’s robustness to inaccurate dis-
parity maps, we test various methods with impaired disparity maps
as inputs. Further details regarding the disparity corruption can be
found in Table. 2. As illustrated in Fig. 5, VBR outperforms other
methods in all metrics under different levels of corrupted dispar-
ity settings, indicating its superior robustness to disparity maps.
Additionally, in Fig. 6, even in zones with inaccurate disparity, our
method can still generate aesthetic bokeh effects.

6.3 User Study on Real-World Videos
Due to the subjective nature of perception towards video bokeh
rendering results, we conduct a user study on real-world videos to
better evaluate different methods from the subjective perspective.
We collect 20 all-in-focus videos from the internet with a resolution
of 1080 × 1920, featuring people, natural landscapes, and other
diverse themes. Since there is no ground-truth of the disparity, we
obtain the disparity maps by a depth prediction model [30].
Quantitative results. We use different methods to render the
videos under the same controlling parameters. During the test,



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Video Bokeh Rendering: Make Casual Videography Cinematic ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

All-in-Focus RVR [34] SteReFo [1] DeepLens [28] DeepFocus† [31]

Disparity MPIB [17] BokehMe [16] Ours GT
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Table 3: Comparison results of the user study.

Comparison Human preference

Ours vs. RVR [34] 87.63% / 12.37%
Ours vs. SteReFo [1] 83.16% / 16.84%
Ours vs. DeepLens [28] 71.71% / 28.29%
Ours vs. MPIB [17] 82.32% / 17.68%
Ours vs. BokehMe [16] 64.04% / 35.96%

each participant is shown 2 videos at a time, comprising two bokeh-
rendered videos produced by our approach and a method randomly
chosen from RVR [34], SteReFo [1], DeepLens [28], MPIB [17],
BokehMe [16], in random order. Participants are asked to choose the
method with more consistent and aesthetic bokeh effects or choose
none if it was difficult to judge. Additionally, each participant needs
to complete at least 10 tests before submitting results. The user
study involves 55 participants, and the results in Table. 3 indicate
that our method is consistently preferred by most users.
Qualitative results. To intuitively show why our method is more
frequently preferred by the users, we showcase some examples
in Fig. 7. In the first row, the focal plane is on the woman. Other
methods mistakenly blur the edges of the hand and lipstick as
they are considered as the background in the disparity map(The
disparity maps are shown in supplementary materials). Instead, the
generated video of VBR perfectly preserves the details on the edges
of the hand and the lipstick, demonstrating its robustness against

inaccurate disparity maps. In the second row, the focal plane is on
the boy in the mirror. All the other methods produce abnormal
artifacts at edges, especially on the boy’s hair. Our model generates
correct blur results while keeping the edge of the focused object
clear. The single-image-based methods can not produce satisfying
results as they either overlook the disocclusion phenomenon or
utilize an inpainting network (MPIB [17]) to address it in an unstable
manner. The results further verify that leveraging information from
adjacent frames benefits our model in mitigating the disocclusion
phenomenon. See supplementary materials for more visualization
and video results.

6.4 Ablation Studies
In this section, we explore the effectiveness of each component in
the VBR framework, from modules tailored to temporal consistency
to augmentation strategies for robustness.
Effects of Temporal Designs. Since the main difference between
the image-based and the video-based renderingmethods lies in their
capability to leverage the information from neighboring frames, we
explore whether our design can truly benefit video-based rendering.
we implement a plain model with only spatial loss (row 1). Under
this setting, our model degrades to a single-image-based model,
neglecting information from adjacent frames.

As illustrated in Table. 4, through comparing row 1 with row 3
and row 2with row 5, utilizing the temporal fusion block enables
the model to achieve superior render quality and temporal consis-
tency. This result demonstrates the effectiveness of the temporal
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Table 4: Ablation studies on temporal modeling.

Settings PSNR↑ SSIM↑ PSNR𝑜𝑏 ↑ SSIM𝑜𝑏 ↑ Consistency↓
w/o TFB & 𝐿𝑟 34.8 0.975 29.9 0.946 0.069

w/o TFB 34.9 0.975 30.1 0.947 0.066
w/o 𝐿𝑟 35.4 0.977 30.5 0.950 0.059

w/o DCN 34.7 0.973 29.7 0.943 0.072

Full model 35.6 0.978 30.6 0.951 0.056

All-in-focus W/o TFB & 𝐿𝑟

W/o 𝐿𝑟 W/o TFB

W/o DCN Full model

Figure 8: Quantitative result of the ablation study.

fusion block in mitigating flicker between frames and addressing
disocclusion issues. Furthermore, we conduct an ablation study on
the deformable convolution (row 4 vs. row 5) within the temporal
fusion block, replacing it with standard convolution to assess the
necessity of alignment. The results show that unaligned features
pose challenges for integrating information from adjacent frames,
highlighting the importance of feature alignment.

To evaluate the effectiveness of temporal loss, from Table. 4,
one can see that incorporating temporal consistency loss enhances
performance across all metrics (row 3 vs. row 5) and can reach
a synergy with the temporal fusion block. To intuitively explore
the significance of each component, we provide visual examples
in Fig. 8. As shown in the figure, the full model yields superior
rendering outcomes, especially in edge regions (zoomed-in areas),
highlighting the necessity of using the temporal fusion block to
leverage temporal information. Furthermore, by constraining tem-
poral consistency with the temporal loss, the output exhibits more
evenly distributed blur circles.
Effects of disparity augmentation. As depicted in Fig. 5, dis-
parity augmentation strategy plays a crucial role in enhancing the
model’s robustness to inaccurate disparity maps. Please refer to
the supplementary materials for a more in-depth ablation study on
disparity augmentation.

7 CONCLUSION
In this work, we propose a novel framework named Video Bokeh
Renderer (VBR) to generate aesthetic bokeh effects from all-in-focus
videos. The framework consists of two sub-modules: a coarse bokeh
generator and an iterative bokeh refiner. To mitigate rendering
flicker between frames and address the disocclusion phenomenon,
we introduce a temporal fusion block into our sub-modules to align
and fuse features from adjacent frames. Experimental results show
that our method produces rendering results with better temporal
consistency, enhanced edge rendering quality, and increased robust-
ness to low-quality disparity maps. This work also contributes a
video bokeh rendering dataset, SVB, to alleviate data shortages. To
the best of our knowledge, VBR is the first framework to consider
temporal information in video bokeh rendering. We hope our work
can serve as a solid baseline and inspire further research.
Limitations and future work. Although the synthetic bokeh
rendering dataset captures authentic bokeh effects, which can be
utilized for training video bokeh models, it still exhibits a gap
compared to real-world datasets. In our future work, we intend
to explore additional methods to generate more realistic datasets.
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