
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TRADE-OFF IN ESTIMATING THE NUMBER OF BYZAN-
TINE CLIENTS IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning has attracted increasing attention at recent large-scale opti-
mization and machine learning research and applications, but is also vulnerable
to Byzantine clients that can send any erroneous signals. Robust aggregators are
commonly used to resist Byzantine clients. This usually requires to estimate the un-
known number f of Byzantine clients, and thus accordingly select the aggregators
with proper degree of robustness (i.e., the maximum number f̂ of Byzantine clients
allowed by the aggregator). Such an estimation should have important effect on the
performance, which has not been systematically studied to our knowledge. This
work will fill in the gap by theoretically analyzing the worst-case error of aggrega-
tors as well as its induced federated learning algorithm for any cases of f̂ and f .
Specifically, we will show that underestimation (f̂ < f) can lead to arbitrarily poor
performance for both aggregators and federated learning. For non-underestimation
(f̂ ≥ f), we have proved optimal lower and upper bounds of the same order on
the errors of both aggregators and federated learning. All these optimal bounds
are proportional to f̂/(n− f − f̂) with n clients, which monotonically increases
with larger f̂ . This indicates a fundamental trade-off: while an aggregator with a
larger robustness degree f̂ can solve federated learning problems of wider range
f ∈ [0, f̂], the performance can deteriorate when there are actually fewer or even
no Byzantine clients (i.e., f ∈ [0, f̂)).

1 INTRODUCTION

Federated learning proposed by (McMahan et al., 2017) is an important and popular framework
for large-scale optimization and machine learning where multiple clients (i.e. computing devices)
collaboratively optimize the objective function while keeping their local training data private. The
most fundamental and common algorithm is federated averaging (FedAvg) (McMahan et al., 2017; Li
et al., 2020; Collins et al., 2022), where the clients update their own model by using multiple steps of
gradient-based approach on their own data, upload their updated models to the server, and download
the average of these models from the server.

However, federated learning algorithms such as FedAvg is vulnerable to Byzantine clients (Lamport
et al., 2019) which can upload arbitrary model to the server. A fundamental and popular way to
make federated learning algorithm robust to Byzantine clients is to apply a robust aggregation to the
uploaded models to filter outliers (Li et al., 2021a; 2023; Allouah et al., 2024). Some representative
aggregations include geometric median (GM) (Chen et al., 2017; Pillutla et al., 2022), coordinate-wise
trimmed mean (CWTM) (Yin et al., 2018), coordinate-wise median (CWMed) (Yin et al., 2018),
Krum (Blanchard et al., 2017), centered clipping (Karimireddy et al., 2021), clustering (Sattler et al.,
2020; Li et al., 2021b), etc., as summarized and empirically compared in (Li et al., 2023). Existing
works typically require to estimate the actual number f or the fraction of the Byzantine clients to
select the maximum number f̂ that the aggregator can tolerate (Karimireddy et al., 2022; Gupta et al.,
2023; Allouah et al., 2024; Otsuka et al., 2025), but f is usually unknown in applications. Hence,
an estimation f̂ ≈ f is usually needed, while it still lacks a systematic study on the effect of the
estimation f̂ on the performance of federated learning. Therefore, it is natural to ask the following
fundamental research question:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Q: Applying an algorithm that can resist f̂ Byzantine clients to federated learning prob-
lem with f actual Byzantine clients, what is the effect of the estimated number f̂ on the
performance?

1.1 OUR CONTRIBUTIONS

To our knowledge, this work for the first time systematically investigates the theoretical effect of
the estimated number of Byzantine clients on federated learning performance. In particular, we
theoretically prove that underestimation of f (i.e. f̂ < f) can lead to arbitrarily poor performance
on both aggregation error and convergence of the commonly used Federated Robust Averaging
(FedRo) algorithm, even if the objective function satisfies the Polyak-Łojasiewicz (PŁ) condition
that is amenable to global convergence. When f̂ ≥ f (non-underestimation), we obtain the lower
and upper bounds of the aggregation error and convergence rate of FedRo. Each lower bound is
tight as its order matches the corresponding upper bound. All these tight bounds are proportional
to f̂

n−f−f̂
with n clients, which is monotonically increasing as f̂ increases from f . This indicates

a fundamental trade-off: while an aggregator with a larger robustness degree f̂ can solve federated
learning problems of wider range f ∈ [0, f̂], the performance can deteriorate when there are actually
fewer or even no Byzantine clients (i.e., f ∈ [0, f̂)).

1.2 RELATED WORKS

Some federated learning works (Bagdasaryan et al., 2020; Tolpegin et al., 2020; Wang et al., 2020a;
Xie et al., 2020) focus on targeted attacks (i.e., back-door attacks) that fool the global model to predict
certain samples with some incorrect targeted labels, while this work focuses on untargeted attacks
(i.e., Byzantine attacks) (Li et al., 2023; Allouah et al., 2024; Xu et al., 2025) that hamper the overall
learning performance with no specific focus. In addition to aggregation-based approach of our focus,
various other approaches have been proposed to resist Byzantine clients in federated learning. Xie
et al. (2019); Cao et al. (2021); Park et al. (2021); Kritharakis et al. (2025) allow the server to preserve
some representative data samples to evaluate and select the uploaded models, which is not always
possible in practice since these representative samples can be similar to those on the local clients and
thus raise privacy concern (Xu et al., 2025). Panda et al. (2022); Meng et al. (2023); Zhang & Hu
(2023); Xu et al. (2025) sparsify the model updates to alleviate the effect of Byzantine clients.

2 PRELIMINARIES

Federated Learning Problem with Byzantine Clients: In standard federated learning, there
is a server communicating with n clients. Among the n clients indexed by [n]

def
= {1, 2, . . . , n}

respectively, there are f Byzantine clients sending any erroneous signals (Byzantine attack) to
interfere with the server. Denote H as the set of the other honest clients, with size |H| = n− f . The
server can only communicate model parameters with the clients, but does not know the number and
identity of the Byzantine clients. These honest clients aim to collaboratively solve the following
optimization problem, under the interference of the f Byzantine clients.

min
w∈Rd

{
ℓH(w)

def
=

1

|H|
∑
k∈H

ℓk(w)
}
. (1)

where the loss function ℓk : Rd → R is associated with the local private data in the k-th client, and is
thus unknown to the server and the other clients. Here, we assume that less than half of the clients are
Byzantine (i.e., f < n

2) since this problem has been proved intractable otherwise (Liu et al., 2021).

Federated Robust Averaging (FedRo) Algorithm: The Federated Robust Averaging (FedRo)
algorithm (as shown in Algorithm 1) is commonly used to solve the federated learning problem
(1) with Byzantine clients (Li et al., 2021a; 2023; Allouah et al., 2024). In each communication
round, every client downloads the model wt from the server. Then every honest client k ∈ H
performs local gradient descent updates (2) H times on its local loss function ℓk, while the Byzantine
clients can upload arbitrary vectors to interfere with the learning. At the end of each round, the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

server updates its global parameter by aggregating the uploaded vectors. Since the server does not
know which clients are Byzantine, the selection of the aggregator A : (Rd)n → Rd is essential to
ensure the updated global model is robust to the Byzantine attacks. When selecting the averaging
aggregator A({xk}nk=1) = 1

n

∑n
k=1 xk, the FedRo algorithm reduces to the popular federated

averaging (FedAvg) algorithm (McMahan et al., 2017; Li et al., 2020; Collins et al., 2022) which is
vulnerable to Byzantine clients.

Algorithm 1 FedRo: Federated Robust Averaging Algorithm
Input: The set of honest clients H ⊂ [n] with size |H| = n− f (0 ≤ f < n

2), number of rounds T ,
number of local parameter updates H , initial parameter w0 ∈ Rd, stepsize γt, aggregator A.
for communication rounds j = 0, 1, . . . , T − 1 do

The server sends wt to every clients.
for all clients k ∈ [n] in parallel do

if k ∈ H (honest client) then
Initialize w

(k)
t,0 = wt.

for h = 0, . . . ,H − 1 do
Local Parameter Update:

w
(k)
t,h+1 = w

(k)
t,h − γt∇ℓk(w

(k)
t,h) (2)

end
Upload w

(k)
t = w

(k)
t,H to the server.

else
The Byzantine client k uploads arbitrary w

(k)
t ∈ Rd to the server.

end
end
The server updates the global parameter using aggregator A.

wt+1 = wt +A({w(k)
t − wt}nk=1). (3)

end
Output: Select a parameter from {wt}T−1

t=0 uniformly at random.

3 AGGREGATION ERROR ANALYSIS

The aggregator A is the core of the robust federated learning algorithms such as FedRo (Algorithm
1), so it is essential to select a proper aggregator with certain robustness properties to Byzantine
clients. Multiple robustness metrics have been proposed. This work will focus on the following (f, κ)-
robustness (Allouah et al., 2023) which unifies the other robustness metrics including (f, λ)-resilient
averaging (Farhadkhani et al., 2022) and (δmax, c)-ARAgg (Karimireddy et al., 2022).

Definition 1 ((f, κ)-robust aggregator). For any κ ≥ 0 and integer 0 ≤ f < n
2 , an aggregator A :

(Rd)n → Rd is called (f, κ)-robust if for any x1, . . . , xn ∈ Rd and any S ⊂ [n]
def
= {1, 2, . . . , n}

with size |S| = n− f , we have

∥A({xk}nk=1)− xS∥2 ≤ κ

|S|
∑
i∈S

∥xi − xS∥2 (4)

where xS = 1
|S|

∑
i∈S xi, and ∥A({xk}nk=1)− xS∥2 is called the aggregation error.

Since the server does not know which clients are Byzantine, the aggregation error bound (4) should
hold for any set S after removing f possibly Byzantine clients. Therefore, an (f, κ)-robust aggregator
can resist f Byzantine clients with robustness coefficient κ. Some commonly used aggregators have
been proved (f, κ)-robust, such as geometric median (GM), coordinate-wise trimmed mean (CWTM),
coordinate-wise median (CWMed), Krum, etc. (Allouah et al., 2023), as shown in the first row of
Table 1. Ideally, one can apply an (f, κ)-robust aggregator when there are actually f Byzantine

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

clients. However, f is usually unknown in practice, so we can only use its estimation f̂ and apply
an (f̂ , κ̂) (κ̂ > 0) aggregator. This section will analyze the aggregation error of an (f̂ , κ̂)-robust
aggregator when there are actually f Byzantine clients, for both underestimation (f̂ < f) and
non-underestimation (f̂ ≥ f). To our knowledge, the existing literature has only studied a small
number of special cases, including f = f̂ (exact estimation) (Allouah et al., 2023) and f = 0 (no
Byzantine clients) (Yang et al., 2025) as shown in the first two rows of Table 1. Throughout this work,
we always assume that f̂ , f ∈

[
0, n

2

)
to ensure tractability.

Table 1: The value of κ for (f̂ , κ̂)-robust aggregator that is also (f, κ)-robust. We use the names f̂ -
Krum, f̂ -NNM and TMf̂/n to stress their dependence on the parameter f̂ for clarity, while geometric

median (GM) and coordinate-wise median (CWMed) do not depend on f̂ . The composite aggregator
f̂ -Krum◦f̂ -NNM is defined by Definition 3 with A = f̂ -Krum.

f GM CWTM TMf̂/n CWMed f̂ -Krum f̂ -Krum◦f̂ -NNM Lower bound

f = f̂ (Allouah et al., 2023) 4
(

n−f̂

n−2f̂

)2 6f̂

n−2f̂

(
n−f̂

n−2f̂

)
4
(

n−f̂

n−2f̂

)2
6
(

n−f̂

n−2f̂

)
- f̂

n−2f̂

f = 0 (Yang et al., 2025) 1 f̂

n−f̂

⌊n−1
2 ⌋

n−⌊n−1
2 ⌋ - - f̂

n−f̂

f ≤ f̂ (Theorem 2) - - - - 84f̂

n−f−f̂

f̂

n−f−f̂

3.1 AGGREGATION ERROR FOR UNDERESTIMATION (f̂ < f)

Theorem 1. For any f̂ ∈
(
0, n

2

)
and κ̂ > 0, there exists an (f̂ , κ̂)-robust aggregator that is not

(f, κ)-robust for any f ∈
(
f̂ , n

2

)
and κ > 0.

Remark: Theorem 1 indicates that an (f̂ , κ̂)-robust aggregator does not necessarily tolerate more
than f̂ Byzantine clients. Therefore, if we underestimate the number f of Byzantine clients, the
aggregator can have arbitrarily inaccurate performance.

A typical example of such an aggregator satisfying Theorem 1 is the commonly used coordinate-wise
trimmed mean (CWTM) aggregator (Yin et al., 2018; Allouah et al., 2023; Yang et al., 2025), as
defined below.

Definition 2. For any x1, . . . , xn ∈ Rd, the CWTM aggregator denoted as TMf̂/n : (Rd)n → Rd is
defined as follows

[TMf̂/n(x1, . . . , xn)]j =
1

n− 2f̂

∑
x∈Xj

x, (5)

where [v]j denotes the j-th coordinate of a vector v, and the set Xj is obtained by deleting the f̂

smallest and f̂ largest values from {[xi]j}ni=1.

In other words, TMf̂/n averages the remaining n− 2f̂ samples of each coordinate after removing

the f̂ largest and f̂ smallest samples. TMf̂/n has been proved to be an (f̂ , κ̂)-robust aggregator

(see Proposition 2 of Allouah et al. (2023)) with κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. However, if there are f

(f > f̂) extremely large (or small) xi given by Byzantine clients, then after removing f̂ largest
(smallest) elements, the remaining extreme values can still heavily affect the average (5). This
intuition motivates the counter example for proving Theorem 1 in Appendix A.

3.2 AGGREGATION ERROR FOR NON-UNDERESTIMATION (f̂ ≥ f)

When the estimated number f̂ of Byzantine clients is not less than the true number f , any (f̂ , κ̂)-robust
aggregator satisfies the following important properties.

Theorem 2. For any 0 ≤ f ≤ f̂ < n
2 , an (f̂ , κ̂)-robust aggregator A satisfies:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

1. A is always (f, κ)-robust with κ = κ̂.

2. If A is (f, κ)-robust, then κ ≥ f̂

n−f−f̂
.

3. Furthermore, there exists such an A that is (f, κ)-robust with κ ≤ 84f̂

n−f−f̂
.

Remark: In Theorem 2, Item 1 shows that an (f̂ , κ̂)-robust aggregator is able to tackle any problem
with fewer Byzantine clients f ≤ f̂ . However, the robust coefficient κ has a lower bound f̂

n−f−f̂

by Item 2, which reduces to the existing lower bound f̂
n−2f when f = f̂ (Allouah et al., 2023) and

to f̂

n−2f̂
when f = 0 (Yang et al., 2025). This lower bound f̂

n−f−f̂
is order-optimal since a certain

(f̂ , κ̂)-robust aggregator can achieve the order-matching upper bound κ ≤ O
(

f̂

n−f−f̂

)
by Item 3.

Note that as f̂ increases from f , this order-optimal bound O
(

f̂

n−f−f̂

)
is increasing, which yields a

larger aggregation error.

3.3 PROOF SKETCH FOR ITEM 3 OF THEOREM 2

Item 3 is the most challenging to prove in Theorem 2. One challenge is to find out such a proper
aggregator with order-matching lower bound κ ≤ O

(
f̂

n−f−f̂

)
under f Byzantine clients, partially

since κ of the commonly used aggregators like GM, CWTM, CWMed and Krum do not match the
lower bound even in the simple special case of f = f̂ , as shown in the first row of Table 1. To
improve κ of these aggregators, we will composite them with the nearest neighbor mixing (NNM)
proposed by (Allouah et al., 2023), an aggregator booster defined as follows.

Definition 3. For any f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of

(n− f̂) indexes from [n] such that {xi}i∈Nk
are the (n− f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. The mapping f̂ -NNM: (Rd)n → (Rd)n is defined
as follows.

f̂ -NNM(x1, . . . , xn) = (y1, . . . , yn), where yk =
1

n− f̂

∑
i∈Nk

xi. (6)

For any aggregator A : (Rd)n → Rd, define the composite aggregator (A◦ f̂ -NNM)(x1, . . . , xn) =
A(y1, . . . , yn), with the notations in Eq. (6).

Lemma 1 of (Allouah et al., 2023) has proved that for any (f̂ , κ̂)-robust aggregator A, the composite
aggregator A◦f̂ -NNM is (f̂ , κ′)-robust with improved robustness coefficient κ′ ≤ 8f̂(κ̂+1)

n−f̂
. Selecting

A = f̂ -Krum which is (f̂ , κ̂)-robust with κ̂ = 6
(

n−f̂

n−2f̂

)
, the composite aggregator has κ′ ≤ 56f̂

n−2f̂
,

which matches the lower bound f̂

n−2f̂
when f = f̂ (see the first row of Table 1). Therefore, it is

natural to consider boosting f̂ -Krum with NNM. We extend the boosting property of NNM to the
case of f ≤ f̂ as follows, which preserves the order of κ′ ≤ 8f̂(κ̂+1)

n−f̂
in (Allouah et al., 2023) when

f = f̂ .

Lemma 1. For any 0 ≤ f ≤ f̂ < n
2 and any (f, κ)-robust aggregator A, the composition A ◦

(f̂ -NNM) is an (f, κ′)-robust aggregator with κ′ ≤ 12f̂(κ+1)
n−f .

We will prove Lemma 1 in Appendix B.4.

Then we investigate the following f̂ -Krum aggregator (Blanchard et al., 2017; Allouah et al., 2023;
Yang et al., 2025).

Definition 4. The f̂ -Krum aggregator is defined as the following mapping (Rd)n → Rd.

(f̂ -Krum)(x1, . . . , xn) = xk∗ ,where k∗ = argmin
k∈[n]

∑
i∈Nk

∥xi − xk∥, (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

where Nk ⊂ [n] is the set of (n− f̂) indexes from [n] such that {xi}i∈Nk
are the (n− f̂) nearest

neighbors of xk. In other words, maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥.

In Appendix B.5, we will prove the following property of f̂ -Krum aggregator when applying to the
scenario with f Byzantine clients, which exactly reduces to κ = 6(n−f̂)

n−2f̂
obtained in Proposition 3 of

(Allouah et al., 2023) when f = f̂ .

Lemma 2. For any 0 ≤ f ≤ f̂ < n
2 , f̂ -Krum is an (f, κ)-robust aggregator with κ = 6(n−f)

n−f−f̂
.

Based on Lemmas 1 and 2, for any 0 ≤ f ≤ f̂ < n
2 , (f̂ -Krum) ◦ (f̂ -NNM) is an (f, κ)-robust

aggregator with

κ =
12f̂

n− f

(6(n− f)

n− f − f̂
+ 1

)
≤ 12f̂

n− f
·
(6(n− f)

n− f − f̂
+

n− f

n− f − f̂

)
=

84f̂

n− f − f̂
.

This concludes the proof.

3.4 SUMMARY: TRADE-OFF IN ESTIMATING f FOR AGGREGATORS

We have analyzed the aggregation error in this section when applying (f̂ , κ̂)-robust aggregator to a
setting with f Byzantine clients. Theorem 1 shows we should by no means underestimate the number
of Byzantine clients (i.e. f̂ < f) since that can lead to arbitrarily poor performance. While Theorem
2 shows that non-underestimation (f̂ ≥ f) can tackle this problem, the order-optimal lower bound
of robustness coefficient κ ≥ f̂

n−f−f̂
increases (i.e., increased aggregation error) as f̂ increases.

Therefore, it is recommended to reduce the overestimation amount f̂−f ≥ 0 as much as possible, and
the exact estimation f̂ = f yields the optimal performance. This indicates a fundamental trade-off in
estimating f , while a highly robust aggregator with larger f̂ can tackle a wider range of settings for
any f ≤ f̂ , the aggregation error is also larger for any fixed f . The next section will prove a similar
order-optimal bound and trade-off on federated learning.

4 CONVERGENCE ANALYSIS

To analyze the convergence of Algorithm 1, we adopt the following standard assumptions on the
federated optimization problem (1) below.
Assumption 1 (Loss bound). The objective function (1) admits a finite minimum value denoted as
ℓ∗

def
= infw∈Rd ℓH(w) ∈ R.

Assumption 2 (Smoothness). Each individual function ℓk is L-smooth for some L > 0, that is, for
any w,w′ ∈ Rd, we have ∥∇ℓk(w

′)−∇ℓk(w)∥ ≤ L∥w′ − w∥.
Assumption 3 (Heterogeneity bound). There exists a constant G > 0 such that

1

|H|
∑
k∈H

∥∇ℓk(w)−∇ℓH(w)∥2 ≤ G2. (8)

Assumption 4 (Polyak-Łojasiewicz (PŁ) condition). There exists a constant µ > 0 such that ℓH is
µ-PL gradient dominant, that is, ℓH(w)− ℓ∗ ≤ 1

2µ∥∇ℓH(w)∥2 for any w ∈ Rd.

Assumptions 1-3 are popular in distributed and federated learning (Allouah et al., 2023; Errami &
Bergou, 2024; Allouah et al., 2024; Yang et al., 2025; Otsuka et al., 2025). In particular, a larger
G2 in Assumption 3 means the honest clients have more heterogeneous data, which makes the
federated optimization problem (1) more challenging. The notion of PŁcondition (Assumption 4)
proposed by (Polyak, 1963) is widely used in nonconvex optimization to guarantee global convergence
(Karimi et al., 2016; Chakrabarti & Baranwal, 2024; Yang et al., 2025). With these assumptions,
we will analyze the convergence rate of Algorithm 1 with an (f̂ , κ̂)-robust aggregator on federated
learning with f Byzantine clients. We will discuss in two cases, underestimation (f̂ < f) and
non-underestimation (f̂ ≥ f).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.1 DIVERGENCE FOR UNDERESTIMATION (f̂ < f)

Theorem 3. For any 0 ≤ f̂ < f < n
2 , there exist an (f̂ , κ̂)-robust aggregator A, a set H ⊂ [n] with

size |H| = n− f , Byzantine clients’ strategies and loss functions {ℓi}i∈H satisfying Assumptions 1-4
such that when implementing Algorithm 1 with the aggregator A, any initialization w0 and constant
stepsize γt = γ > 0, the generated sequence wt diverges as follows as T → +∞.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → +∞ (9)

ℓH(wT)− ℓ∗ → +∞ (10)

Remark: Theorem 3 indicates that if the aggregator is only robust to f̂ Byzantine clients that is
fewer than the actual number f of Byzantine clients, then Algorithm 1 with any initialization and
stepsize can diverge in some federated learning problems. Therefore, we should always guarantee the
non-underestimation condition that f̂ ≥ f .

4.2 CONVERGENCE RATE FOR NON-UNDERESTIMATION (f̂ ≥ f)

Theorem 4. For any 0 ≤ f ≤ f̂ < n
2 and any (f̂ , κ̂)-robust aggregator A, there exist H ⊂ [n] with

size |H| = n− f , Byzantine clients’ strategies and loss functions {ℓi}i∈H satisfying Assumptions
1-4 such that for any initialization w0 and constant stepsize γt = γ > 0, the sequence wt generated
from Algorithm 1 with aggregator A either does not change over iteration (i.e., wt ≡ w0) or satisfies
the following convergence lower bounds.

lim sup
T→∞

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≥ f̂G2

n− f − f̂
(11)

lim sup
T→∞

ℓH(wT)− ℓ∗ ≥ f̂G2

2µ(n− f − f̂)
(12)

Remark: In most cases, the heterogeneity G2 > 0. Then regardless of the hyperparameter choices,
Algorithm 1 with an (f̂ , κ̂)-robust aggregator cannot converge to a stationary or optimal point of
some objective functions, since the convergence metric of gradients and function value are lower
bounded by f̂G2

n−f−f̂
> 0 and f̂G2

2µ(n−f−f̂)
> 0 respectively as shown above. These lower bounds

increase as f̂ increases from f . Later, we will show that these lower bounds are tight since their
orders match the upper bounds in the upcoming Theorem 5.

Proof Sketch of Theorem 4: Select the following loss functions with scalar input w ∈ R, which can
be verified to satisfy Assumptions 1-4.

ℓk(w) =

{
cG(w + 1)2, k = 1, 2, . . . , f̂

cGw2, k = f̂ + 1, f̂ + 2, . . . , n
, (13)

where c = n−f

2
√

f̂(n−f−f̂)
. Suppose H = [n− f] = {1, 2, . . . , n− f} and the Byzantine clients adopt

the same honest behavior as the honest clients, i.e., upload the result after H local gradient descent
updates (2). Then the global model updates as follows.

wt+1 = ΓHwt, where Γ = 1− 2cGγ.

Then we can prove Theorem 4 in four cases of the hyperparameters γ and H that respectively satisfy
|ΓH | < 1, ΓH = 1, ΓH = −1 and |ΓH | > 1. See the whole proof in Appendix D.

Theorem 5 (Upper bound). Suppose Assumptions 1-3 hold. Apply Algorithm 1 with an (f, κ)-
aggregator and stepsize γ = 1

c′LHT 1/3 (c′ = max(4
√
2,
√
384κ)) to the federated optimization

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

problem (1) with f Byzantine clients. The algorithm output {wt}T−1
t=0 satisfies the following conver-

gence rate.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≤16c′LH[ℓH(w0)− ℓ∗] +G2

T 2/3
+ 90κG2. (14)

Furthermore, under Assumption 4 (i.e., ℓH satisfies the PŁ condition), we can select stepsize γ =
1

c′LHT 1−β for any β ∈ (0, 1) which yields the following convergence rate.

ℓH(wT)− ℓ∗ ≤ exp
(
− µT β

8c′L

)
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ
. (15)

Remark: As T → +∞, the upper bounds above respectively converge to 90κG2 and 45κG2

µ .

Moreover, if Algorithm 1 uses an (f̂ , κ̂)-robust aggregator with f̂ ≥ f , which is also (f, κ)-robust
that can achieve the order-optimal upper bound κ ≤ O

(
f̂

n−f−f̂

)
by Theorem 2, then the upper

bounds (14) and (15) respectively converge to O
(

f̂G2

n−f−f̂

)
and O

(
f̂G2

µ(n−f−f̂)

)
, which are tight since

they match the orders of the lower bounds in Theorem 4.

4.3 SUMMARY: TRADE-OFF IN ESTIMATING f FOR FEDERATED LEARNING

We have analyzed the convergence of Algorithm 1 with an (f̂ , κ̂)-robust aggregator on federated
learning with f Byzantine clients. Theorem 3 indicates that we should always avoid underestimation
(f̂ < f) as that can lead to divergence. When f̂ ≥ f , Theorem 4 provides convergence lower bounds
that match the orders of the upper bounds in Theorem 5. These results are analogous to those for
the robustness coefficient κ of the aggregator analyzed in Section 3. We summarize all these main
theoretical results in Table 2, which shows that the order-optimal bounds for both κ and the two
federated learning convergence metrics are proportional to f̂

n−f−f̂
which increases as f̂ increases

from f . Therefore, there is a fundamental trade-off in estimating f : Algorithm 1 with aggregators
robust to more Byzantine clients has degraded performance in terms of both aggregation error and
algorithm convergence, when there are actually not that many Byzantine clients.

Table 2: Summary of our main theoretical results. As we apply an (f̂ , κ̂)-robust aggregator to
federated learning with f Byzantine clients, we show three performance metrics: robust coefficient
κ of the aggregator (also (f, κ)-robust) and the two convergence metrics for Algorithm 1, under
Assumptions 1-4. These metrics can be arbitrarily poor when f̂ < f , and have the following lower
bounds that match the order of the corresponding upper bounds when f̂ ≥ f .

κ 1
T

∑T−1
t=0 ∥∇ℓH(wt)∥2 ℓH(wT)− ℓ∗

Underestimation Possibly non-exist Possibly → +∞ Possibly → +∞
(f̂ < f) (Theorem 1) (Theorem 3) (Theorem 3)

Non-underestimation O
(

f̂

n−f−f̂

)
O
(

f̂G2

n−f−f̂

)
O
(

f̂G2

µ(n−f−f̂)

)
(f̂ ≥ f) (Theorem 2) (Theorems 4-5) (Theorems 4-5)

Comparison with Related Works: Two recent works have obtained results that are similar to part
of our results. Allouah et al. (2024) obtains a near-optimal convergence rate of Byzantine-robust
federated learning algorithm where a random subset of n̂ clients participate in each communication
round, which relies on the effect of the estimated number f̂ 1 of Byzantine clients in this subset.
However, their convergence requires overestimation of the fraction of Byzantine clients, i.e., f̂

n̂ > f
n ,

while the cases of underestimation and exact estimation are not studied. In addition, they obtain
the convergence gap κG2, while the optimal lower and upper bound on κ is not studied. Yang et al.
(2025) studies distributed learning with only H = 1 local gradient update and no Byzantine clients

1Allouah et al. (2024) uses b to denote the true number of Byzantine clients and b̂ to denote the estimation of
b. We replace them with f and f̂ respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(f = 0), a small special case of our setting. They found that the performance degrades with f̂ , which
fits our results of non-underestimation in this special case.

5 EXPERIMENTS

To demonstrate the aforementioned trade-off in estimating the number of Byzantine clients in
federated learning, we apply the FedRo algorithm to a classification task on the CIFAR-10 dataset
(Krizhevsky, 2009), using the cross-entropy loss function as the objective function and ResNet-20
(He et al., 2016) as the classifier model.

Data Assignment: CIFAR-10 consists of 10 classes and 5k training images per class. We equally
divide the 50k samples into n = 16 clients. Among the 3125 samples in each client k, suppose
a fraction pk,c belongs to the c-th class. Randomly set [pk,1, . . . , pk,10] from the 10-dimensional
symmetric Dirichlet distribution Dir10(α). A smaller α corresponds to greater heterogeneity among
the clients.

Models and Training Schemes: The batch normalization (BN) layers in ResNet-20 are replaced
with group normalization (GN) layers, since BN performs poorly with heterogeneous data across
clients (Wu & He, 2018). We implement the FedRo algorithm with an f̂ -CWTM aggregator on a
grid of f̂ ∈ {0, 1, . . . , 7}, f ∈ {0, 4} and α ∈ {0.1, 1, 10}. For α = 0.1, we run FedRo for T = 800
total communication rounds with H = 49 local SGD steps per round. For α = 1 and α = 10, we
run FedRo for T = 400 total communication rounds with H = 98 local SGD steps per round. Each
SGD step uses batchsize 64, weight decay 5× 10−4 and an step-wise diminishing stepsize (see Eq.
(46) in Appendix F). Each Byzantine client uploads a vector from normal distribution N (0, 5). More
details on data division, model architectures, and training schemes are provided in Appendix F.

Table 3: Top-1 Accuracies of FedRo Algorithm on CIFAR-10 Data. A smaller α corresponds to
higher heterogeneity G2. When f̂ > f , the accuracy drops compared with the corresponding accuracy
under f̂ = f (bolded) are marked in the parentheses.

f̂
f = 0 f = 4

α = 0.1 α = 1.0 α = 10.0 α = 0.1 α = 1.0 α = 10.0
0 65.61 78.76 80.24 10.01 10.11 10.01
1 62.28(-3.33) 77.31(-1.45) 79.45(-0.79) 12.85 10.04 10.00
2 53.01(-12.60) 77.13(-1.63) 79.63(-0.61) 9.17 10.00 9.85
3 51.87(-13.74) 76.76(-2.00) 78.28(-1.96) 11.46 23.98 25.70
4 48.47(-17.14) 76.80(-1.96) 77.93(-2.31) 54.58 74.19 75.80
5 47.25(-18.36) 76.93(-1.83) 77.67(-2.57) 49.83(-4.75) 73.53(-0.66) 75.77(-0.03)
6 45.27(-20.34) 75.32(-3.44) 77.91(-2.33) 47.65(-6.93) 72.62(-1.57) 74.35(-1.45)
7 43.38(-22.23) 75.01(-3.75) 77.87(-2.37) 43.69(-10.89) 72.45(-1.74) 74.02(-1.78)

Main Results: Table 3 reports the top-1 accuracies for each candidate (f̂ , f, α). When f̂ < f = 4
(underestimation), the accuracies are extremely low, which fits the divergence result in Theorem 3.
When f̂ ≥ f (non-underestimation) in both no-Byzantine (f = 0) and Byzantine (f = 4) settings, the
accuracy decreases in general as f̂ increases from f . Moreover, with larger α (i.e. lower heterogeneity
G2), such an accuracy decrease with larger f̂ slows down. These results fit Theorems 4 and 5 which
indicate that as f̂ increases from f , the tight convergence lower bound f̂G2

n−f−f̂
increases at a rate

proportional to the heterogeneity G2.

6 CONCLUSION

To our knowledge, this is the first work that systematically investigates the theoretical effect of the
estimated number of Byzantine clients on both aggregation error and federated learning performance.
Both theoretical and empirical results demonstrate that while an aggregator with a larger robustness
degree can tolerate more Byzantine clients, the performance can deteriorate when there are actually
fewer or even no Byzantine clients.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and John
Stephan. Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1232–1300, 2023.

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, Geovani
Rizk, and Sasha Voitovych. Byzantine-robust federated learning: Impact of client subsampling
and local updates. In Proceedings of International Conference on Machine Learning (ICML), pp.
1078–1114, 2024.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International conference on artificial intelligence and statistics
(AISTATS), pp. 2938–2948, 2020.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: byzantine tolerant gradient descent. In Proceedings of the International Conference
on Neural Information Processing Systems (Neurips), pp. 118–128, 2017.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Gong. Fltrust: Byzantine-robust federated learning
via trust bootstrapping. In Proceedings of Network and Distributed Systems Security (NDSS)
Symposium, 2021.

Kushal Chakrabarti and Mayank Baranwal. A methodology establishing linear convergence of
adaptive gradient methods under pl inequality. In Proceedings of European Conference on
Artificial Intelligence (ECAI), 2024.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 1(2):1–25, 2017.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Fedavg with fine tuning:
local updates lead to representation learning. In Proceedings of the International Conference on
Neural Information Processing Systems (Neurips), pp. 10572–10586, 2022.

Latifa Errami and El Houcine Bergou. Tolerating outliers: gradient-based penalties for byzantine
robustness and inclusion. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 3935–3943, 2024.

Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John Stephan. Byzantine
machine learning made easy by resilient averaging of momentums. In Proceedings of International
Conference on Machine Learning (ICML), pp. 6246–6283, 2022.

Nirupam Gupta, Thinh T Doan, and Nitin Vaidya. Byzantine fault-tolerance in federated local sgd
under 2f -redundancy. IEEE Transactions on Control of Network Systems, 10(4):1669–1681, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on
machine learning and knowledge discovery in databases, pp. 795–811, 2016.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In Proceedings of International Conference on Machine Learning (ICML), pp.
5311–5319, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing. In Proceedings of International Conference on Learning Representations
(ICLR), 2022.

10

https://doi.org/10.1109/CVPR.2016.90

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Emmanouil Kritharakis, Antonios Makris, Dusan Jakovetic, and Konstantinos Tserpes. Fedgreed: A
byzantine-robust loss-based aggregation method for federated learning. ArXiv:2508.18060, 2025.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Technical Report.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In Concur-
rency: the works of leslie lamport, pp. 203–226. 2019.

Shenghui Li, Edith Ngai, and Thiemo Voigt. Byzantine-robust aggregation in federated learning
empowered industrial iot. IEEE Transactions on Industrial Informatics, 19(2):1165–1175, 2021a.

Shenghui Li, Edith C-H Ngai, and Thiemo Voigt. An experimental study of byzantine-robust
aggregation schemes in federated learning. IEEE Transactions on Big Data, 10(6):975–988, 2023.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fe-
davg on non-iid data. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

Zhuohang Li, Luyang Liu, Jiaxin Zhang, and Jian Liu. Byzantine-robust federated learning through
spatial-temporal analysis of local model updates. In 2021 IEEE 27th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 372–379, 2021b.

Shuo Liu, Nirupam Gupta, and Nitin H Vaidya. Approximate byzantine fault-tolerance in distributed
optimization. In Proceedings of the ACM Symposium on Principles of Distributed Computing, pp.
379–389, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282, 2017.

Mark Huasong Meng, Sin G Teo, Guangdong Bai, Kailong Wang, and Jin Song Dong. Enhancing
federated learning robustness using data-agnostic model pruning. In Pacific-Asia conference on
knowledge discovery and data mining (PAKDD), pp. 441–453, 2023.

Kaoru Otsuka, Yuki Takezawa, and Makoto Yamada. Delayed momentum aggrega-
tion: Communication-efficient byzantine-robust federated learning with partial participation.
ArXiv:2509.02970, 2025.

Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, and Prateek Mittal.
Sparsefed: Mitigating model poisoning attacks in federated learning with sparsification. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 7587–7624, 2022.

Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. Sageflow: robust federated
learning against both stragglers and adversaries. In Proceedings of the International Conference
on Neural Information Processing Systems (Neurips), pp. 840–851, 2021.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

B. T. Polyak. Gradient methods for minimizing functionals (in russian). Zh. Vychisl. Mat. Mat. Fiz.,
3:643–653, 1963.

Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. On the byzantine
robustness of clustered federated learning. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8861–8865, 2020.

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks against
federated learning systems. In European symposium on research in computer security, pp. 480–501,
2020.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-
yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: yes, you really can
backdoor federated learning. In Proceedings of the International Conference on Neural Information
Processing Systems (Neurips), pp. 16070–16084, 2020a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020b. URL
https://openreview.net/forum?id=BkluqlSFDS.

Yuxin Wu and Kaiming He. Group normalization. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XIII, volume 11217 of Lecture Notes
in Computer Science, pp. 3–19. Springer, 2018. doi: 10.1007/978-3-030-01261-8_1. URL
https://doi.org/10.1007/978-3-030-01261-8_1.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against federated
learning. In Proceedings of the International Conference on Learning Representations (ICLR),
2020.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In Proceedings of International Conference on Machine Learning
(ICML), pp. 6893–6901, 2019.

Jiahao Xu, Zikai Zhang, and Rui Hu. Achieving byzantine-resilient federated learning via layer-
adaptive sparsified model aggregation. In 2025 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 1508–1517, 2025.

Yi-Rui Yang, Chang-Wei Shi, and Wu-Jun Li. On the tension between byzantine robustness and
no-attack accuracy in distributed learning. In Proceedings of International Conference on Machine
Learning (ICML), 2025.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Proceedings of International Conference on Machine
Learning (ICML), pp. 5650–5659, 2018.

Zikai Zhang and Rui Hu. Byzantine-robust federated learning with variance reduction and differential
privacy. In 2023 IEEE Conference on Communications and Network Security (CNS), pp. 1–9,
2023.

12

https://openreview.net/forum?id=BkluqlSFDS
https://doi.org/10.1007/978-3-030-01261-8_1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Appendix

Table of Contents
A Proof of Theorem 1 13

B Proof of Theorem 2 14
B.1 Proof of Item 1 . 14
B.2 Proof of Item 2 . 14
B.3 Proof of Item 3 . 15
B.4 Proof of Lemma 1 for NNM . 15
B.5 Proof of Lemma 2 for Krum Aggregator . 17

C Proof of Theorem 3 18

D Proof of Theorem 4 19

E Proof of Theorem 5 21
E.1 Supporting Lemmas for Theorem 5 . 21
E.2 Remaining Proof of Theorem 5 . 23

F Experiment Details 25
F.1 Dirichlet-based partition strategies . 25
F.2 Model Details . 25
F.3 Train Schemes . 25

A PROOF OF THEOREM 1

The commonly used coordinate-wise trimmed mean (CWTM) aggregator TMf̂/n defined by Eq.

(5) has been proved to be an (f̂ , κ̂)-robust aggregator (see Proposition 2 of Allouah et al. (2023))
with κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. Hence, it remains to prove that TMf̂/n is not (f, κ)-robust for any

f̂ < f < n
2 and κ > 0.

Select the scalars {xk}nk=1 ⊂ R as follows.

x1 = x2 = · · · = xn−f = 0, xn−f+1 = xn−f+2 = · · · = xn = 1. (16)

For S = [n− f] = {1, 2, . . . , n− f} with |S| = n− f , we have

xS =
1

|S|
∑
k∈S

xk = 0,
1

|S|
∑
k∈S

(xk − xS)
2 = 0.

Suppose TMf̂/n is (f, κ)-robust for some κ > 0, which implies that

|TMf̂/n(x1, . . . , xn)− xS | ≤ κ′ · 1

|S|
∑
k∈S

(xk − xS)
2 = 0, (17)

so TMf̂/n(x1, . . . , xn) = xS = 0. This contradicts with the definition (5) of TMf̂/n which along
with the scalars (16) implies that

TMf̂/n(x1, . . . , xn) =
1

n− 2f̂

n−f̂∑
k=f̂+1

xk =
f − f̂

n− 2f̂
> 0. (18)

Therefore, TMf̂/n is not (f, κ)-robust for any f̂ < f < n
2 and κ > 0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B PROOF OF THEOREM 2

B.1 PROOF OF ITEM 1

The conclusion is obvious when f = f̂ , so we consider the case where 0 < f < f̂ .

For any set S ⊂ [n] with size |S| = n − f , S contains q = (n−f)!

(n−f̂)!(f̂−f)!
subsets S1, . . . , Sq ⊂ S

with the same size |S1| = . . . = |Sq| = n− f̂ . Then for any x1, . . . , xn ∈ Rd and E ⊂ [n], denote
xE = 1

|E|
∑

k∈E xk. Then, we prove that A is (f, κ̂)-robust as follows.

∥A(x1, . . . , xn)− xS∥2

=
∥∥∥A(x1, . . . , xn)−

1

q

q∑
i=1

xSi

∥∥∥2
(a)

≤ 1

q

q∑
i=1

∥A(x1, . . . , xn)− xSi
∥2

(b)

≤ 1

q

q∑
i=1

κ̂

n− f̂

∑
k∈Si

∥xk − xSi∥2

=
κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

∥(xk − xS)− (xSi
− xS)∥2

=
κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

[
∥xk − xS∥2 + ∥xSi

− xS∥2 − 2⟨xk − xS , xSi
− xS⟩

]
=

κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

[
∥xk − xS∥2

]
+

κ̂

q

q∑
i=1

[
∥xSi

− xS∥2
]

− 2κ̂

q(n− f̂)

q∑
i=1

⟨|Si|xSi
− |Si|xS , xSi

− xS⟩

(c)
=

κ̂(n− f̂)!(f̂ − f)!

(n− f̂)(n− f)!

(n− f − 1)!

(n− f̂ − 1)!(f̂ − f)!

∑
k∈S

[
∥xk − xS∥2

]
+

κ̂

q

q∑
i=1

[
∥xSi

− xS∥2
]

− 2κ̂

q

q∑
i=1

[
∥xSi − xS∥2

]
≤ κ̂

n− f

∑
k∈S

[
∥xk − xS∥2

]
.

where (a) applies Jensen’s inequality to the convex function ∥ · ∥2, (b) applies the (f̂ , κ̂)-robust
aggregator A to the set Si of size |Si| = n − f̂ , (c) uses q = (n−f)!

(n−f̂)!(f̂−f)!
and the fact that each

k ∈ S is contained by (n−f−1)!

(n−f̂−1)!(f̂−f)!
sets of {Si}qi=1 (since these sets for a certain k ∈ S can be

obtained by removing (f̂ − f) elements from S\{k} with size |S\{k}| = n− f − 1).

B.2 PROOF OF ITEM 2

Suppose an aggregator A : (Rd)n → Rd is (f̂ , κ̂)-robust and (f, κ)-robust. Select the scalars
{xk}nk=1 ⊂ R as follows.

x1 = x2 = . . . = xn−f̂ = 0, xn−f̂+1 = . . . = xn = 1. (19)

Since A is (f̂ , κ̂)-robust, for S′ = [n− f̂] = {1, 2, . . . , n− f̂} we have

xS′ =
1

|S′|
∑
k∈S′

xk = 0, |A(x1, . . . , xn)− xS′ |2 ≤ κ

|S′|
∑
k∈S′

|xk − xS′ |2 = 0,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

so A(x1, . . . , xn) = xS′ = 0.

Denote the set S = {f + 1, f + 2, . . . , n} which contains n− f̂ + 1, . . . , n as 0 ≤ f ≤ f̂ < n
2 , so

xS = 1
|S|

∑
k∈S xk = f̂

n−f . Then since |S| = n− f and A is (f, κ)-robust, we have

|A(x1, . . . , xn)− xS |2 ≤ κ

|S|
∑
k∈S

|xk − xS |2.

Substituting A(x1, . . . , xn) = 0, xS = f̂
n−f , |S| = n− f and Eq. (19) into the inequality above, we

have

f̂2

(n− f)2
≤ κ

n− f

[
f̂
(
1− f̂

n− f

)2

+ (n− f − f̂)
(f̂

n− f

)2]
=

κ

(n− f)3

[
f̂(n− f − f̂)2 + (n− f − f̂)f̂2

]
=
κf̂(n− f − f̂)

(n− f)3
[(n− f − f̂) + f̂]

=
κf̂(n− f − f̂)

(n− f)2
,

which implies κ ≥ f̂

n−f−f̂
.

B.3 PROOF OF ITEM 3

We use the composite aggregator f̂ -Krum◦f̂ -NNM is defined by Definition 3 with A = f̂ -Krum.
Based on Lemmas 1 and 2, for any 0 ≤ f ≤ f̂ < n

2 , (f̂ -Krum) ◦ (f̂ -NNM) is an (f, κ)-robust
aggregator with

κ =
12f̂

n− f

(6(n− f)

n− f − f̂
+ 1

)
≤ 12f̂

n− f
·
(6(n− f)

n− f − f̂
+

n− f

n− f − f̂

)
=

84f̂

n− f − f̂
.

This concludes the proof of Item 3. It remains to prove Lemmas 1 and 2 in the next two subsections.

B.4 PROOF OF LEMMA 1 FOR NNM

For any n ≥ 1, f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of (n − f̂)

indexes from [n] such that {xi}i∈Nk
are the (n − f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. Then, for any set S ⊂ [n] with size |S| = n − f ,
we have

1

|Nk|
∑
i∈Nk

∥xi − xk∥2 ≤ 1

|S|
∑
i∈S

∥xi − xk∥2, (20)

since 1
|Nk|

∑
i∈Nk

∥xk−xi∥2 is the average of the |Nk| = n−f̂ smallest numbers in {∥xk−xi∥2}ni=1,
while 1

|S|
∑

i∈S ∥xk −xi∥2 is the average of |S| = n− f (|S| ≥ |Nk|) numbers in {∥xk −xi∥2}ni=1.
Then we have

∥yk − xS∥2

=
∥∥∥ 1

n− f̂

∑
i∈Nk

xi −
1

n− f

∑
i∈S

xi

∥∥∥2
=
∥∥∥(1

n− f̂
− 1

n− f

) ∑
i∈S∩Nk

(xi − xk) +
1

n− f̂

∑
i∈Nk\S

(xi − xk)−
1

n− f

∑
i∈S\Nk

(xi − xk)
∥∥∥2

≤3
∥∥∥ f̂ − f

(n− f̂)(n− f)

∑
i∈S∩Nk

(xi − xk)
∥∥∥2 + 3

∥∥∥ 1

n− f̂

∑
i∈Nk\S

(xi − xk)
∥∥∥2

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

+ 3
∥∥∥− 1

n− f

∑
i∈S\Nk

(xi − xk)
∥∥∥2

≤3|S ∩Nk|(f̂ − f)2

(n− f̂)2(n− f)2

∑
i∈S∩Nk

∥xi − xk∥2 +
3|Nk\S|
(n− f̂)2

∑
i∈Nk\S

∥xi − xk∥2

+
3|S\Nk|
(n− f)2

∑
i∈S\Nk

∥xi − xk∥2

(a)

≤ 3(f̂ − f)2

(n− f̂)(n− f)2

∑
i∈S∩Nk

∥xi − xk∥2 +
3f

(n− f̂)2

∑
i∈Nk

∥xi − xk∥2

+
3f̂

(n− f)2

∑
i∈S\Nk

∥xi − xk∥2

(b)

≤ 3f̂

|S|(n− f)

∑
i∈S∩Nk

∥xi − xk∥2 +
3f |Nk|

|S|(n− f̂)2

∑
i∈S

∥xi − xk∥2 +
3f̂

|S|(n− f)

∑
i∈S\Nk

∥xi − xk∥2

(c)

≤
[3f̂

|S|(n− f)
+

3f

|S|(n− f̂)

]∑
i∈S

∥xi − xk∥2

(d)

≤ 6f̂

|S|(n− f)

∑
i∈S

∥xi − xk∥2, (21)

where (a) uses |S ∩ Nk| ≤ |Nk| = n − f̂ , |Nk\S| ≤ n − |S| = f , |S\Nk| ≤ n − |Nk| = f̂ , (b)
uses Eq. (20), 0 ≤ f ≤ f̂ < n

2 (so f̂ − f ≤ f̂ ≤ n− f̂) and |S| = n− f , (c) uses |Nk| = n− f̂ ,
and (d) uses the following inequality.

3f̂

|S|(n− f)
− 3f

|S|(n− f̂)
=

3f̂(n− f̂)− 3f(n− f)

|S|(n− f)(n− f̂)
=

3(f̂ − f)(n− f̂ − f)

|S|(n− f)(n− f̂)
≥ 0.

Denote (y1, . . . , yn) = f̂ -NNM(x1, . . . , xn) where yk = 1
n−f̂

∑
i∈N (xk)

xi as defined in Eq. (6).

Then denote xS = 1
S

∑
k∈S xk and yS = 1

S

∑
k∈S yk. We obtain that

∥yS − xS∥2 +
1

|S|
∑
k∈S

∥yk − yS∥2

=
1

|S|
∑
k∈S

(
∥yk − yS∥2 + ∥yS − xS∥2

)
=

1

|S|
∑
k∈S

[
∥(yk − yS) + (yS − xS)∥2 − 2⟨yk − yS , yS − xS⟩

]
=

1

|S|
∑
k∈S

∥yk − xS∥2 − 2
〈
yS − xS ,

1

|S|
∑
k∈S

(yk − yS)
〉

(a)

≤ 1

|S|
∑
k∈S

6f̂

|S|(n− f)

∑
i∈S

∥xi − xk∥2 − 2⟨yS − xS , yS − yS⟩

=
6f̂

|S|2(n− f)

∑
i,k∈S

(∥xi − xS∥2 + ∥xk − xS∥2 − 2⟨xi − xS , xk − xS⟩)

=
6f̂

|S|2(n− f)

[
|S|

∑
i∈S

(∥xi − xS∥2) + |S|
∑
k∈S

(∥xk − xS∥2)− 2
〈
|S|xS − |S|xS , |S|xS − |S|xS

〉]
=

12f̂

n− f
· 1

|S|
∑
i∈S

∥xi − xS∥2, (22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

where (a) uses Eq. (21).

For any S ⊂ [n] with size |S| = n − f , we prove below that the composite aggregator A ◦
f̂ -NNM(x1, . . . , xn) = A(y1, . . . , yn) is (f, κ)-robust with κ = 12f̂(1+κ)

n−f .

∥A ◦ f̂ -NNM(x1, . . . , xn)− xS∥2

≤(1 + κ−1)∥A(y1, . . . , yn)− yS∥2 + (1 + κ)∥yS − xS∥2

(a)

≤ 1 + κ

|S|

n∑
k=1

∥yk − yS∥2 + (1 + κ)∥yS − xS∥2

(b)

≤ 12f̂(1 + κ)

n− f
· 1

|S|
∑
i∈S

∥xi − xS∥2 (23)

where (a) uses the fact that A is an (f, κ)-robust aggregator, (b) uses Eq. (22).

B.5 PROOF OF LEMMA 2 FOR KRUM AGGREGATOR

For any n ≥ 1, f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of (n − f̂)

indexes from [n] such that {xi}i∈Nk
are the (n − f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. Then, for any set S ⊂ [n] with size |S| = n − f ,
Eq. (20) has been proved as repeated below.

1

|Nk|
∑
i∈Nk

∥xk − xi∥2 ≤ 1

|S|
∑
i∈S

∥xk − xi∥2. (24)

Then for k∗ ∈ [n] defined in the f̂ -Krum (7), we have∑
i∈Nk∗

∥xk∗ − xi∥2

= min
k∈[n]

∑
i∈Nk

∥xk − xi∥2

≤ 1

|S|
∑
k∈S

∑
i∈Nk

∥xk − xi∥2

(a)

≤ n− f̂

|S|2
∑
i,k∈S

∥xk − xS − (xi − xS)∥2

=
n− f̂

|S|2
∑
i,k∈S

(
∥xk − xS∥2 + ∥xi − xS∥2 − 2 ⟨xk − xS , xi − xS⟩

)
=
n− f̂

|S|2
[∑
i,k∈S

∥xk − xS∥2 +
∑
i,k∈S

∥xi − xS∥2 − 2
∑
i,k∈S

⟨xk − xS , xi − xS⟩
]

=
n− f̂

|S|2
[
2|S|

∑
i∈S

∥xi − xS∥2 − 2
∑
i∈S

〈∑
k∈S

(xk − xS)︸ ︷︷ ︸
=0

, xi − xS

〉]

(b)

≤2
∑
i∈S

∥xi − xS∥2. (25)

where (a) uses Eq. (24) and |Nk| = n− f̂ , and (b) uses |S| = n− f ≥ n− f̂ . Note that

∥xk∗ − xS∥2 ≤ 2∥xk∗ − xi∥2 + 2∥xi − xS∥2,∀i ∈ S (26)

which can be rearranged into

∥xk∗ − xi∥2 ≥ 1

2
∥xk∗ − xS∥2 − ∥xi − xS∥2,∀i ∈ S. (27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Then, we have∑
i∈Nk∗

∥xk∗ − xi∥2 ≥
∑

i∈S∩Nk∗

∥xk∗ − xi∥2

(a)

≥ |S ∩Nk∗ |
2

∥xk∗ − x̄S∥2 −
∑

i∈S∩Nk∗

∥xi − x̄S∥2

(b)

≥ n− f − f̂

2
∥xk∗ − x̄S∥2 −

∑
i∈S∩Nk∗

∥xi − x̄S∥2 ,

where (a) uses Eq. (27) and (b) uses |S∩Nk∗ | = |S|+ |Nk∗ |−|S∪Nk∗ | ≥ (n−f)+(n− f̂)−n =

n− f − f̂ . By rearranging the inequality above, we have

∥xk∗ − x̄S∥2 ≤ 2

n− f − f̂

[∑
i∈Nk∗

∥xk∗ − xi∥2 +
∑

i∈S∩Nk∗

∥xi − x̄S∥2
]

(a)

≤ 2

n− f − f̂

[
2
∑
i∈S

∥xi − xS∥2 +
∑
i∈S

∥xi − xS∥2
]

≤ 6

n− f − f̂

∑
i∈S

∥xi − xS∥2 =
6(n− f)

n− f − f̂
· 1

|S|
∑
i∈S

∥xi − xS∥2,

where (a) uses Eq. (25). Therefore, (f̂ -Krum)(x1, . . . , xn) = xk∗ defined by Eq. (7) is (f, κ)-robust
with κ ≤ 6(n−f)

n−f−f̂

C PROOF OF THEOREM 3

Without loss of generality, use H = [n− f] = {1, 2, . . . , n− f} as the set of honest clients. Select
the loss function ℓk(w) =

w2

2 (w ∈ R) for every client k ∈ [n], which satisfies Assumptions 1-4.

In Algorithm 1, use the coordinate-wise trimmed mean (CWTM) aggregator defined by Eq. (5) which
has been proved to be an (f̂ , κ̂)-robust aggregator (see Proposition 2 of Allouah et al. (2023)) with
κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. All the honest clients k ∈ H = [n− f] perform the local gradient descent

updates (2) as follows.

w
(k)
t,h+1 = w

(k)
t,h − γℓ′k(w

(k)
t,h) = (1− γ)w

(k)
t,h , k ∈ H = [n− f]. (28)

Iterating the update rule above yields that

w
(k)
t = w

(k)
t,H = (1− γ)Hw

(k)
t,0 = (1− γ)Hwt, k ∈ H = [n− f].

In contrast, we let the Byzantine clients k ∈ [n]\H = {n − f + 1, n − f + 2, . . . , n} upload
w

(k)
t = n|(1− γ)Hwt|+ t. Therefore, the global parameter update rule (3) becomes

wt+1 =wt +A({w(k)
t − wt}nk=1)

=wt +
(n− f − f̂)[(1− γ)Hwt − wt] + (f − f̂)[n|(1− γ)Hwt| − wt + t]

n− 2f̂

=
n(f − f̂)|(1− γ)Hwt| − (n− f − f̂)|(1− γ)Hwt|+ t(f − f̂)

n− 2f̂

(a)

≥ t(f − f̂)

n− 2f̂
,

where (a) uses the CWTM aggregator A defined by Eq. (5) as well as the fact that {w(k)
t − wt}nk=1

contains n − f scalars (1 − γ)Hwt − wt and f larger scalars n|(1 − γ)Hwt| − wt + t, and (b)
uses n(f − f̂) − (n − f − f̂) > f + f̂ > 0 and n − 2f̂ > 0 since the integers f̂ , f , n satisfy

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

0 ≤ f̂ < f < n
2 . Since (f−f̂)

n−2f̂
> 0, the inequality above implies that |wt| → +∞ as t → +∞. Note

that the objective function (1) in this example is ℓH(w) = w2

2 . Hence, Eqs. (9) and (10) can be
proved as follows as T → +∞.

1

T

T−1∑
t=0

|ℓ′H(wt)|2 =
1

T

T−1∑
t=0

|wt|2 → +∞.

ℓH(wT)− ℓ∗ =
w2

T

2
− 0 → +∞.

D PROOF OF THEOREM 4

Without loss of generality, use H = [n − f] = {1, 2, . . . , n − f}. Let the Byzantine clients adopt
the same honest behavior as the honest clients, i.e., upload the result after H local gradient descent
updates. This is valid since Byzantine clients can upload any vectors.

Select the following loss functions.

ℓk(w) =

{
cG(w + 1)2, k = 1, 2, . . . , f̂

cGw2, k = f̂ + 1, f̂ + 2, . . . , n
, (29)

where w ∈ R and the constant c > 0 is to be selected later. The derivatives of these loss functions are
shown below.

ℓ′k(w) =

{
2cG(w + 1), k = 1, 2, . . . , f̂

2cGw, k = f̂ + 1, f̂ + 2, . . . , n
. (30)

It is straightforward to check that these loss functions (29) satisfy Assumption 2, i.e., L-smoothness
with Lipschitz constant L = 2cG. Then the objective function (1) is

ℓH(w) =
1

|H|
∑
k∈H

ℓk(w)

=
1

n− f
[f̂ · cG(w + 1)2 + (n− f − f̂) · cGw2]

=
cG

n− f

[
(n− f)w2 + 2f̂w + f̂

]
=cG

[(
w +

f̂

n− f

)2

+
f̂(n− f − f̂)

(n− f)2

]
, (31)

which has the following derivative.

ℓ′H(w) = 2cG
(
w +

f̂

n− f

)
, (32)

The objective function (31) satisfies Assumption 1 with ℓ∗ = infw∈Rd ℓH(w) = cGf̂(n−f−f̂)
(n−f)2 , and

also satisfies Assumption 4 with µ = 2cG since

ℓH(w)− ℓ∗ − 1

2µ
∥∇ℓH(w)∥2 = cG

(
w +

f̂

n− f

)2

− 1

4cG
· 4c2G2

(
w +

f̂

n− f

)2

= 0.

Next, we will check Assumption 3 as follows.

1

|H|
∑
k∈H

|ℓ′k(w)− ℓ′H(w)|2

=
1

n− f

[
f̂ · (2cG)2

(n− f − f̂

n− f

)2

+ (n− f − f̂) · (2cG)2
(f̂

n− f

)2]
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

=
(2cG)2

(n− f)3
[
f̂(n− f − f̂)2 + (n− f − f̂)f̂2

]
=
f̂(n− f − f̂)(2cG)2

(n− f)2
(33)

By letting the equation above equal to G2 to ensure Assumption 3, we can select

c =
n− f

2

√
f̂(n− f − f̂)

. (34)

Suppose all the Byzantine clients behaves in the same way as the honest clients. Then every client
k ∈ S := {f̂ + 1, . . . , n} adopts the following local gradient descent update.

w
(k)
t,h+1 = w

(k)
t,h − γℓ′k(w

(k)
t,h) = (1− 2cGγ)w

(k)
t,h ,∀k ∈ S.

Iterating the update rule above yields that

w
(k)
t = w

(k)
t,H = (1− 2cGγ)Hw

(k)
t,0 = (1− 2cGγ)Hwt,∀k ∈ S.

Since |S| = n − f̂ , 1
|S|

∑
k∈S(w

(k)
t − wt) = [(1 − 2cGγ)H − 1]wt and A is an (f̂ , κ̂)-robust

aggregator, we have ∣∣A({w(k)
t − wt}nk=1)− [(1− 2cGγ)H − 1]wt

∣∣2
≤κ̂ · 1

|S|
∑
k∈S

∣∣w(k)
t − wt − [(1− 2cGγ)H − 1]wt

∣∣2 = 0,

so the global parameter update rule (3) becomes

wt+1 = wt +A({w(k)
t − wt}nk=1) = wt + [(1− 2cGγ)H − 1]wt = (1− 2cGγ)Hwt. (35)

We consider the following cases of hyperparameter choices.

(Case 1): When 0 < γ < 1
cG , we have |(1 − 2cGγ)H | < 1 and thus wt → 0 by Eq. (35). This

implies that as T → +∞, we have

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → |ℓ′H(0)|2 =
4c2G2f̂2

(n− f)2
=

f̂G2

n− f − f̂

and

ℓH(wT)− ℓ∗ → ℓH(0)− ℓ∗ = cG
(f̂

n− f

)2

=
2c2G2

µ

(f̂

n− f

)2

=
f̂G2

2µ(n− f − f̂)

where we use µ = 2cG and the choice of c in Eq. (34). Hence, Eqs. (11) and (12) hold in this case.

(Case 2): When γ = 1
cG and H is an even number, Eq. (35) implies that wt = wt−1 and thus

wt ≡ w0.

(Case 3): When γ = 1
cG and H is an odd number, Eq. (35) implies that wt = −wt−1. Then for any

even number T , we have

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 =
1

2

[
|ℓ′H(w0)|2 + |ℓ′H(−w0)|2

]
=
1

2

[
4c2G2

(
w0 +

f̂

n− f

)2

+ 4c2G2
(
− w0 +

f̂

n− f

)2]
=4 · (n− f)2

4f̂(n− f − f̂)
·G2

(
w2

0 +
f̂2

(n− f)2

)
≥ f̂G2

n− f − f̂
.

and

lim sup
T→∞

ℓH(wT)− ℓ∗ =cGmax
[(

w0 +
f̂

n− f

)2

,
(
− w0 +

f̂

n− f

)2]
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

≥2c2G2

µ

f̂2

(n− f)2
=

f̂G2

2µ(n− f − f̂)
,

where we use µ = 2cG and the choice of c in Eq. (34). Hence, Eqs. (11) and (12) hold in this case.

(Case 4): When γ > 1
cG , we have |(1 − 2cGγ)H | > 1 and thus |wt| → +∞ by Eq. (35). This

implies that as T → +∞, we have

|ℓ′H(wT)|2 = 4c2G2
(
wT +

f̂

n− f

)2

→ +∞ ⇒ 1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → +∞

and

ℓH(wT)− ℓ∗ = cG
(
wT +

f̂

n− f

)2

→ +∞.

Hence, Eqs. (11) and (12) hold in this case.

E PROOF OF THEOREM 5

E.1 SUPPORTING LEMMAS FOR THEOREM 5

Lemma 3. Suppose L2γ2
tHt(Ht − 1) ≤ 1

2 and Assumption 3 holds. Then Vt,k
def
=

∑Ht−1
h=0 ∥w(k)

t,h −
wt∥2 obtained from Algorithm 1 has the following upper bounds.

Vt,k ≤2γ2
tH

2
t (Ht − 1)∥∇ℓk(wt)∥2 (36)∑

k∈H

Vt,k ≤4γ2
t |H|H2

t (Ht − 1)
[
G2 + ∥∇ℓH(wt)∥2

]
(37)

Proof.

Vt,k
def
=

Ht−1∑
h=0

∥w(k)
t,h − wt∥2

(a)
=

Ht−1∑
h=0

∥∥∥ h−1∑
h′=0

γt∇ℓk(w
(k)
t,h′)

∥∥∥2
≤γ2

t

Ht−1∑
h=0

h−1∑
h′=0

h∥∇ℓk(w
(k)
t,h′)∥2

=γ2
t

Ht−2∑
h′=0

Ht−1∑
h=h′+1

h∥∇ℓk(w
(k)
t,h′)∥2

(b)

≤ γ2
tHt(Ht − 1)

2

Ht−1∑
h′=0

∥∇ℓk(w
(k)
t,h′)∥2

≤γ2
tHt(Ht − 1)

Ht−1∑
h=0

[
∥∇ℓk(w

(k)
t,h)−∇ℓk(wt)∥2 + ∥∇ℓk(wt)∥2

]
≤L2γ2

tHt(Ht − 1)

Ht−1∑
h=0

[
∥w(k)

t,h − wt∥2
]
+ γ2

tH
2
t (Ht − 1)∥∇ℓk(wt)∥2

(c)

≤ 1

2
Vt,k + γ2

tH
2
t (Ht − 1)∥∇ℓk(wt)∥2 (38)

where (a) uses the local update rule (2), (b) uses
∑Ht−1

h=h′+1 h ≤
∑Ht−1

h=1 h = Ht(Ht−1)
2 , and (c) uses

L2γ2
tHt(Ht − 1) ≤ 1

2 . Hence, Eq. (36) can be proved by rearranging the inequality above.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Therefore, we can prove Eq. (37) by summing Eq. (36) over k ∈ H as follows.∑
k∈H

Vt,k ≤2γ2
tH

2
t (Ht − 1)

∑
k∈H

∥∇ℓk(wt)∥2

≤4γ2
tH

2
t (Ht − 1)

∑
k∈H

[
∥∇ℓk(wt)−∇ℓH(wt)∥2 + ∥∇ℓH(wt)∥2

]
≤4γ2

t |H|H2
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
,

where the final ≤ uses Assumption 3.

Lemma 4. Define the following quantity obtained from Algorithm 1.

∆t
def
=

1

|H|
∑
k∈H

(w
(k)
t − wt)

Eq.(2)
= − γt

|H|
∑
k∈H

Ht−1∑
h=0

∇ℓk(w
(k)
t,h). (39)

Suppose L2γ2
tHt(Ht − 1) ≤ 1

2 , the aggregator used in Algorithm 1 is (f, κ)-robust and Assumptions
2-3 hold. Then ∆t above satisfies the following two bounds.

∥wt+1 − wt −∆t∥2 ≤3κH2
t γ

2
tG

2[1 + 8L2Ht(Ht − 1)γ2
t]

+ 24κL2H3
t (Ht − 1)γ4

t ∥∇ℓH(wt)∥2, (40)

∥∆t +Htγt∇ℓH(wt)∥2 ≤4L2γ4
tH

3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
, (41)

Proof. Since A is an (f, κ)-robust aggregator (f = n− |H|) by Definition 1, we can prove Eq. (40)
as follows.

∥wt+1 − wt −∆t∥2

=∥A({w(k)
t − wt}nk=1)−∆t∥2

≤ κ

|H|
∑
k∈H

∥w(k)
t − wt −∆t∥2

(a)
=

κ

|H|
∑
k∈H

∥∥∥− γt

Ht−1∑
h=0

∇ℓk(w
(k)
t,h) +

γt
|H|

∑
k′∈H

Ht−1∑
h=0

∇ℓk′(w
(k′)
t,h)

∥∥∥2
=
κγ2

t

|H|
∑
k∈H

∥∥∥Ht−1∑
h=0

[
∇ℓk(w

(k)
t,h)−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h)

]∥∥∥2
≤κHtγ

2
t

|H|
∑
k∈H

Ht−1∑
h=0

∥∥∥∇ℓk(w
(k)
t,h)−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h)

∥∥∥2
=κHtγ

2
t

Ht−1∑
h=0

1

|H|
∑
k∈H

∥∥∥∇ℓk(w
(k)
t,h)−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h)

∥∥∥2
≤3κHtγ

2
t

Ht−1∑
h=0

1

|H|
∑
k∈H

[∥∥∥∇ℓk(wt)−
1

|H|
∑
k′∈H

∇ℓk′(wt)
∥∥∥2

+
∥∥∥∇ℓk(w

(k)
t,h)−∇ℓk(wt)

∥∥∥2 + ∥∥∥ 1

|H|
∑
k′∈H

[∇ℓk′(wt)−∇ℓk′(w
(k′)
t,h)]

∥∥∥2]
(b)

≤3κH2
t γ

2
tG

2 +
3L2κHtγ

2
t

|H|

Ht−1∑
h=0

∑
k∈H

∥w(k)
t,h − wt∥2

+ 3κHtγ
2
t

Ht−1∑
h=0

1

|H|
∑
k′∈H

∥∇ℓk′(wt)−∇ℓk′(w
(k′)
t,h)∥2

(c)

≤3κH2
t γ

2
tG

2 +
6L2κHtγ

2
t

|H|
∑
k∈H

Vt,k

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(d)

≤3κH2
t γ

2
tG

2 +
6L2κHtγ

2
t

|H|
· 4γ2

t |H|H2
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
=3κH2

t γ
2
tG

2[1 + 8L2Ht(Ht − 1)γ2
t] + 24κL2H3

t (Ht − 1)γ4
t ∥∇ℓH(wt)∥2,

where (a) uses Eqs. (2) and (39), (b) uses Assumptions 2-3, (c) uses Assumption 2 and defines
Vt,k

def
=

∑Ht−1
h=0 ∥w(k)

t,h − wt∥2, (d) uses Eq. (37).

Then we prove Eq. (41) as follows.

∥∆t +Htγt∇ℓH(wt)∥2

(a)
=
∥∥∥Htγt
|H|

∑
k∈H

∇ℓk(wt)−
γt
|H|

∑
k∈H

Ht−1∑
h=0

∇ℓk(w
(k)
t,h)

∥∥∥2
=H2

t γ
2
t

∥∥∥ 1

Ht|H|
∑
k∈H

Ht−1∑
h=0

[∇ℓk(wt)−∇ℓk(w
(k)
t,h)]

∥∥∥2
≤H2

t γ
2
t · 1

Ht|H|
∑
k∈H

Ht−1∑
h=0

∥∇ℓk(wt)−∇ℓk(w
(k)
t,h)∥

2

(b)

≤ L2Htγ
2
t

|H|
∑
k∈H

Ht−1∑
h=0

∥w(k)
t,h − wt∥2

(c)
=
L2Htγ

2
t

|H|
∑
k∈H

Vt,k

(d)

≤4L2γ4
tH

3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
,

where (a) uses Eqs. (1) and (39), (b) uses Assumption 2, (c) defines Vt,k
def
=

∑Ht−1
h=0 ∥w(k)

t,h − wt∥2,
and (d) uses Eq. (37).

Lemma 5. For any 0 ≤ x < 1, we have

log(1− x) ≤ −x (42)

Proof. Denote the function g(x) = log(1 − x), which has derivatives g′(x) = (x − 1)−1 and
g′′(x) = −(x− 1)−2. Then based on the Taylor’s theorem, there exists θ ∈ [0, 1] such that

log(1− x) = g(x) = g(0) + g′(0)x+
1

2
g′′(θx)x2 = −x− x2

2(1− θx)2
≤ −x.

E.2 REMAINING PROOF OF THEOREM 5

Using L-smoothness of ℓH, we have

ℓH(wt+1)

≤ℓH(wt) + ⟨∇ℓH(wt), wt+1 − wt⟩+
L

2
∥wt+1 − wt∥2

≤ℓH(wt)+⟨∇ℓH(wt), wt+1−wt−∆t⟩+⟨∇ℓH(wt),∆t⟩+L∥wt+1−wt−∆t∥2+L∥∆t∥2

(a)

≤ ℓH(wt) +
Htγt
4

∥∇ℓH(wt)∥2 +
1

Htγt
∥wt+1 − wt −∆t∥2 +

1

2Htγt
∥∆t +Htγt∇ℓH(wt)∥2

− Htγt
2

∥∇ℓH(wt)∥2 −
1

2Htγt
∥∆t∥2 + L∥wt+1 − wt −∆t∥2 + L∥∆t∥2

(b)

≤ℓH(wt)−
Htγt
4

∥∇ℓH(wt)∥2 −
(1

2Htγt
− L

)
∥∆t∥2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

+
1

2Htγt
· 4L2γ4

tH
3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
+
(
L+

1

Htγt

){
3κH2

t γ
2
tG

2[1 + 8L2Ht(Ht−1)γ2
t] + 24κL2H3

t (Ht−1)γ4
t ∥∇ℓH(wt)∥2

}
(c)

≤ℓH(wt)−
Htγt
4

[
1− 8L2γ2

tHt(Ht − 1)− 96κL2Ht(Ht − 1)γ2
t

]
∥∇ℓH(wt)∥2

+G2Htγt{2L2γ2
tHt(Ht − 1) + 3κ(1 + LHtγt)[1 + 8L2Ht(Ht − 1)γ2

t]}, (43)

where (a) uses ⟨u, v⟩ ≤ Htγt

4 ∥u∥2 + 1
Htγt

∥v∥2 for u = ∇ℓH(wt) and v = wt+1 −wt −∆t, as well
as ⟨∇ℓH(wt),∆t⟩ = ⟨u, v⟩ = 1

2 (∥u+v∥2−∥u∥2−∥v∥2) for u =
√
Htγt∇ℓH(wt) and v = ∆t√

Htγt
,

(b) uses Eqs. (40)-(41), (c) uses γt ≤ 1
2LHt

.

Select constant hyperparameters γt = γ and Ht = H such that

L2γ2H(H − 1) ≤ min
(1

32
,

1

384κ

)
, γ ≤ 1

2LH
. (44)

Then Eq. (43) simplifies into

ℓH(wt+1) ≤ ℓH(wt)−
Hγ

16
∥∇ℓH(wt)∥2+G2Hγ

[
2L2γ2H(H−1) + 3κ

(
1+

1

2

)(
1+

1

4

)]
. (45)

Telescoping Eq. (45) above over t = 0, 1, . . . , T − 1, we have

ℓ∗ ≤ ℓH(wT) ≤ ℓH(w0)−
Hγ

16

T−1∑
t=0

∥∇ℓH(wt)∥2 + TG2Hγ
[
2L2γ2H(H − 1) +

45κ

8

]
.

Rearranging the inequality above, we prove the convergence rate (14) as follows.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≤ 16

THγ
[ℓH(w0)− ℓ∗] +G2[32L2γ2H(H − 1) + 90κ]

≤16cLH

T 2/3
[ℓH(w0)− ℓ∗] +G2

[32(H − 1)

c2HT 2/3
+ 90κ

]
≤16cLH[ℓH(w0)− ℓ∗] +G2

T 2/3
+ 90κG2,

where we select the stepsize γ = 1
c′LHT 1/3 with c′ = max(4

√
2,
√
384κ) which satisfies the

conditions in Eq. (44).

Furthermore, suppose Assumption 4 holds, that is,

∥∇ℓH(w)∥2 ≥ 2µ(ℓH(w)− ℓ∗).

Substituting the inequality above into Eq. (45).

ℓH(wt+1)− ℓ∗ ≤
(
1− Hγµ

8

)
[ℓH(wt)− ℓ∗] +G2Hγ

[
2L2γ2H(H − 1) +

45κ

8

]
.

Iterating the inequality above over t = 0, 1, . . . , T − 1, we have

ℓH(wT)− ℓ∗ ≤
(
1− Hγµ

8

)T

[ℓH(w0)− ℓ∗] +
G2

µ

[
16L2γ2H(H − 1) + 45κ

]
(a)

≤ exp
[
T log

(
1− µ

8c′LT 1−β

)]
[ℓH(w0)− ℓ∗] +

16G2

µc′2T 2−2β
+

45κG2

µ
(b)

≤ exp
[
T
(
− µ

8c′LT 1−β

)]
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ

≤ exp
(
− µT β

8c′L

)
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ
,

where (a) uses the stepsize γ = 1
c′LHT 1−β , (b) uses Lemma 5 and c′ ≥ 4

√
2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 4: Architecture of ResNet-20 with Group Normalization (GN) for CIFAR-10

Stage Output Size Layers

Input 32× 32 3× 3 conv, 16 filters, stride 1

Stage 1 32× 32 3 × [3× 3 conv, 16 filters + GN(G = 4) + ReLU]
Stage 2 16× 16 3 × [3× 3 conv, 32 filters + GN(G = 8) + ReLU]
Stage 3 8× 8 3 × [3× 3 conv, 64 filters + GN(G = 8) + ReLU]

Output 1× 1 Global average pooling, FC-10, softmax

F EXPERIMENT DETAILS

F.1 DIRICHLET-BASED PARTITION STRATEGIES

We adopt the Dirichlet-based partitioning scheme (Wang et al., 2020b) to simulate heterogeneous
client data distributions for CIFAR-10. Specifically, we partition each dataset across clients using a
Dirichlet-based distribution over class labels. In this setting, both the number of data points and the
class proportions are imbalanced across clients. Specifically, we simulate a heterogeneous partition
into n clients by drawing class proportions from a Dirichlet distribution:

(p1,k, p2,k, . . . , p10,k) ∼ Dir(α1, α2, . . . , α10),

where pc,k denotes the proportion of training instances of class c ∈ {1, 2, . . . , 10} assigned to client
k.The distribution Dir10(·) is the 10-dimensional Dirichlet distribution. We set α1 = α2 = · · · =
αK = α to induce heterogeneity.

As a property of the Dirichlet distribution, when αk < 1, the sampled class proportions tend to concen-
trate near the corners and edges of the probability simplex, so that clients receive data from only a few
dominant classes, thereby simulating severe label imbalance and statistical heterogeneity—common
characteristics of practical federated learning environments.

Based on the sampled proportions {pc,k}, we allocate the training data to each client accordingly.
For evaluation, we use the original test set from each dataset as a global test set to ensure a fair
comparison across all methods.

The number of training samples per client is the same across 16 clients. Since CIFAR-10 has 50,000
training examples, we assign each client 50, 000/16 = 3, 125 training samples.

F.2 MODEL DETAILS

Table 4 presents the detailed architecture of ResNet-20 with group normalization.

F.3 TRAIN SCHEMES

Preprocess of CIFAR-10: For preprocessing the images in the CIFAR-10 datasets, we follow the
standard data augmentation and normalization procedures. Specifically, we apply random cropping
and horizontal flipping for data augmentation. For normalization, each color channel is standardized
by subtracting the mean and dividing by the standard deviation of that channel. This ensures that the
input images have zero mean and unit variance per channel, which is a common practice to stabilize
and accelerate training.

Local Update: We perform one epoch of local updates per client when α = 0.1, and two epochs of
local updates per client when α = 1, 10. Note that each epoch consists of multiple mini-batch SGD
iterations, where each SGD step uses a batch size of 64. Therefore, we run FedRo with

H =
⌊
1×3125

64

⌋
= 49

local SGD steps per round for α = 0.1, and with
H =

⌊
2×3125

64

⌋
= 98

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

local SGD steps per round for α = 1, 10.

Weight Decay: We use L2 weight decay, i.e., and apply SGD to the cross-entropy loss with L2
regularizer µ

2 ∥w∥
2
2 of the model parameter w ∈ Rd. In our experiments, we set µ = 5× 10−4.

Learning Rate Schedule: We use a step-wise diminishing learning rate schedule as follows.

γt =


γ0, 0 ≤ t < T

2 ,

0.1 γ0,
T
2 ≤ t < 3T

4 ,

0.01 γ0,
3T
4 ≤ t ≤ T,

(46)

where T denotes the total number of communication rounds, and γ0 is fine-tuned from
{0.5, 0.2, 0.1, 0.05}.

26

	Introduction
	Our Contributions
	Related Works

	Preliminaries
	Aggregation Error Analysis
	Aggregation Error for Underestimation (<f)
	Aggregation Error for Non-underestimation (f)
	Proof Sketch for Item 3 of Theorem 2
	Summary: Trade-off in Estimating f for Aggregators

	Convergence Analysis
	Divergence For Underestimation (<f)
	Convergence Rate For Non-underestimation (f)
	Summary: Trade-off in Estimating f for Federated Learning

	Experiments
	Conclusion
	Appendix
	 Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Item 1
	Proof of Item 2
	Proof of Item 3
	Proof of Lemma 1 for NNM
	Proof of Lemma 2 for Krum Aggregator

	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Supporting Lemmas for Theorem 5
	Remaining Proof of Theorem 5

	Experiment Details
	Dirichlet-based partition strategies
	Model Details
	Train Schemes

