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ABSTRACT

Federated learning has attracted increasing attention at recent large-scale opti-
mization and machine learning research and applications, but is also vulnerable
to Byzantine clients that can send any erroneous signals. Robust aggregators are
commonly used to resist Byzantine clients. This usually requires to estimate the un-
known number f of Byzantine clients, and thus accordingly select the aggregators
with proper degree of robustness (i.e., the maximum number f̂ of Byzantine clients
allowed by the aggregator). Such an estimation should have important effect on the
performance, which has not been systematically studied to our knowledge. This
work will fill in the gap by theoretically analyzing the worst-case error of aggrega-
tors as well as its induced federated learning algorithm for any cases of f̂ and f .
Specifically, we will show that underestimation (f̂ < f ) can lead to arbitrarily poor
performance for both aggregators and federated learning. For non-underestimation
(f̂ ≥ f ), we have proved optimal lower and upper bounds of the same order on
the errors of both aggregators and federated learning. All these optimal bounds
are proportional to f̂/(n− f − f̂) with n clients, which monotonically increases
with larger f̂ . This indicates a fundamental trade-off: while an aggregator with a
larger robustness degree f̂ can solve federated learning problems of wider range
f ∈ [0, f̂ ], the performance can deteriorate when there are actually fewer or even
no Byzantine clients (i.e., f ∈ [0, f̂)).

1 INTRODUCTION

Federated learning proposed by (McMahan et al., 2017) is an important and popular framework
for large-scale optimization and machine learning where multiple clients (i.e. computing devices)
collaboratively optimize the objective function while keeping their local training data private. The
most fundamental and common algorithm is federated averaging (FedAvg) (McMahan et al., 2017; Li
et al., 2020; Collins et al., 2022), where the clients update their own model by using multiple steps of
gradient-based approach on their own data, upload their updated models to the server, and download
the average of these models from the server.

However, federated learning algorithms such as FedAvg is vulnerable to Byzantine clients (Lamport
et al., 2019) which can upload arbitrary model to the server. A fundamental and popular way to
make federated learning algorithm robust to Byzantine clients is to apply a robust aggregation to the
uploaded models to filter outliers (Li et al., 2021a; 2023; Allouah et al., 2024). Some representative
aggregations include geometric median (GM) (Chen et al., 2017; Pillutla et al., 2022), coordinate-wise
trimmed mean (CWTM) (Yin et al., 2018), coordinate-wise median (CWMed) (Yin et al., 2018),
Krum (Blanchard et al., 2017), centered clipping (Karimireddy et al., 2021), clustering (Sattler et al.,
2020; Li et al., 2021b), etc., as summarized and empirically compared in (Li et al., 2023). Existing
works typically require to estimate the actual number f or the fraction of the Byzantine clients to
select the maximum number f̂ that the aggregator can tolerate (Karimireddy et al., 2022; Gupta et al.,
2023; Allouah et al., 2024; Otsuka et al., 2025), but f is usually unknown in applications. Hence,
an estimation f̂ ≈ f is usually needed, while it still lacks a systematic study on the effect of the
estimation f̂ on the performance of federated learning. Therefore, it is natural to ask the following
fundamental research question:
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Q: Applying an algorithm that can resist f̂ Byzantine clients to federated learning prob-
lem with f actual Byzantine clients, what is the effect of the estimated number f̂ on the
performance?

1.1 OUR CONTRIBUTIONS

To our knowledge, this work for the first time systematically investigates the theoretical effect of
the estimated number of Byzantine clients on federated learning performance. In particular, we
theoretically prove that underestimation of f (i.e. f̂ < f ) can lead to arbitrarily poor performance
on both aggregation error and convergence of the commonly used Federated Robust Averaging
(FedRo) algorithm, even if the objective function satisfies the Polyak-Łojasiewicz (PŁ) condition
that is amenable to global convergence. When f̂ ≥ f (non-underestimation), we obtain the lower
and upper bounds of the aggregation error and convergence rate of FedRo. Each lower bound is
tight as its order matches the corresponding upper bound. All these tight bounds are proportional
to f̂

n−f−f̂
with n clients, which is monotonically increasing as f̂ increases from f . This indicates

a fundamental trade-off: while an aggregator with a larger robustness degree f̂ can solve federated
learning problems of wider range f ∈ [0, f̂ ], the performance can deteriorate when there are actually
fewer or even no Byzantine clients (i.e., f ∈ [0, f̂)).

1.2 RELATED WORKS

Some federated learning works (Bagdasaryan et al., 2020; Tolpegin et al., 2020; Wang et al., 2020a;
Xie et al., 2020) focus on targeted attacks (i.e., back-door attacks) that fool the global model to predict
certain samples with some incorrect targeted labels, while this work focuses on untargeted attacks
(i.e., Byzantine attacks) (Li et al., 2023; Allouah et al., 2024; Xu et al., 2025) that hamper the overall
learning performance with no specific focus. In addition to aggregation-based approach of our focus,
various other approaches have been proposed to resist Byzantine clients in federated learning. Xie
et al. (2019); Cao et al. (2021); Park et al. (2021); Kritharakis et al. (2025) allow the server to preserve
some representative data samples to evaluate and select the uploaded models, which is not always
possible in practice since these representative samples can be similar to those on the local clients and
thus raise privacy concern (Xu et al., 2025). Panda et al. (2022); Meng et al. (2023); Zhang & Hu
(2023); Xu et al. (2025) sparsify the model updates to alleviate the effect of Byzantine clients.

2 PRELIMINARIES

Federated Learning Problem with Byzantine Clients: In standard federated learning, there
is a server communicating with n clients. Among the n clients indexed by [n]

def
= {1, 2, . . . , n}

respectively, there are f Byzantine clients sending any erroneous signals (Byzantine attack) to
interfere with the server. Denote H as the set of the other honest clients, with size |H| = n− f . The
server can only communicate model parameters with the clients, but does not know the number and
identity of the Byzantine clients. These honest clients aim to collaboratively solve the following
optimization problem, under the interference of the f Byzantine clients.

min
w∈Rd

{
ℓH(w)

def
=

1

|H|
∑
k∈H

ℓk(w)
}
. (1)

where the loss function ℓk : Rd → R is associated with the local private data in the k-th client, and is
thus unknown to the server and the other clients. Here, we assume that less than half of the clients are
Byzantine (i.e., f < n

2 ) since this problem has been proved intractable otherwise (Liu et al., 2021).

Federated Robust Averaging (FedRo) Algorithm: The Federated Robust Averaging (FedRo)
algorithm (as shown in Algorithm 1) is commonly used to solve the federated learning problem
(1) with Byzantine clients (Li et al., 2021a; 2023; Allouah et al., 2024). In each communication
round, every client downloads the model wt from the server. Then every honest client k ∈ H
performs local gradient descent updates (2) H times on its local loss function ℓk, while the Byzantine
clients can upload arbitrary vectors to interfere with the learning. At the end of each round, the
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server updates its global parameter by aggregating the uploaded vectors. Since the server does not
know which clients are Byzantine, the selection of the aggregator A : (Rd)n → Rd is essential to
ensure the updated global model is robust to the Byzantine attacks. When selecting the averaging
aggregator A({xk}nk=1) = 1

n

∑n
k=1 xk, the FedRo algorithm reduces to the popular federated

averaging (FedAvg) algorithm (McMahan et al., 2017; Li et al., 2020; Collins et al., 2022) which is
vulnerable to Byzantine clients.

Algorithm 1 FedRo: Federated Robust Averaging Algorithm
Input: The set of honest clients H ⊂ [n] with size |H| = n− f (0 ≤ f < n

2 ), number of rounds T ,
number of local parameter updates H , initial parameter w0 ∈ Rd, stepsize γt, aggregator A.
for communication rounds j = 0, 1, . . . , T − 1 do

The server sends wt to every clients.
for all clients k ∈ [n] in parallel do

if k ∈ H (honest client) then
Initialize w

(k)
t,0 = wt.

for h = 0, . . . ,H − 1 do
Local Parameter Update:

w
(k)
t,h+1 = w

(k)
t,h − γt∇ℓk(w

(k)
t,h ) (2)

end
Upload w

(k)
t = w

(k)
t,H to the server.

else
The Byzantine client k uploads arbitrary w

(k)
t ∈ Rd to the server.

end
end
The server updates the global parameter using aggregator A.

wt+1 = wt +A({w(k)
t − wt}nk=1). (3)

end
Output: Select a parameter from {wt}T−1

t=0 uniformly at random.

3 AGGREGATION ERROR ANALYSIS

The aggregator A is the core of the robust federated learning algorithms such as FedRo (Algorithm
1), so it is essential to select a proper aggregator with certain robustness properties to Byzantine
clients. Multiple robustness metrics have been proposed. This work will focus on the following (f, κ)-
robustness (Allouah et al., 2023) which unifies the other robustness metrics including (f, λ)-resilient
averaging (Farhadkhani et al., 2022) and (δmax, c)-ARAgg (Karimireddy et al., 2022).

Definition 1 ((f, κ)-robust aggregator). For any κ ≥ 0 and integer 0 ≤ f < n
2 , an aggregator A :

(Rd)n → Rd is called (f, κ)-robust if for any x1, . . . , xn ∈ Rd and any S ⊂ [n]
def
= {1, 2, . . . , n}

with size |S| = n− f , we have

∥A({xk}nk=1)− xS∥2 ≤ κ

|S|
∑
i∈S

∥xi − xS∥2 (4)

where xS = 1
|S|

∑
i∈S xi, and ∥A({xk}nk=1)− xS∥2 is called the aggregation error.

Since the server does not know which clients are Byzantine, the aggregation error bound (4) should
hold for any set S after removing f possibly Byzantine clients. Therefore, an (f, κ)-robust aggregator
can resist f Byzantine clients with robustness coefficient κ. Some commonly used aggregators have
been proved (f, κ)-robust, such as geometric median (GM), coordinate-wise trimmed mean (CWTM),
coordinate-wise median (CWMed), Krum, etc. (Allouah et al., 2023), as shown in the first row of
Table 1. Ideally, one can apply an (f, κ)-robust aggregator when there are actually f Byzantine
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clients. However, f is usually unknown in practice, so we can only use its estimation f̂ and apply
an (f̂ , κ̂) (κ̂ > 0) aggregator. This section will analyze the aggregation error of an (f̂ , κ̂)-robust
aggregator when there are actually f Byzantine clients, for both underestimation (f̂ < f ) and
non-underestimation (f̂ ≥ f ). To our knowledge, the existing literature has only studied a small
number of special cases, including f = f̂ (exact estimation) (Allouah et al., 2023) and f = 0 (no
Byzantine clients) (Yang et al., 2025) as shown in the first two rows of Table 1. Throughout this work,
we always assume that f̂ , f ∈

[
0, n

2

)
to ensure tractability.

Table 1: The value of κ for (f̂ , κ̂)-robust aggregator that is also (f, κ)-robust. We use the names f̂ -
Krum, f̂ -NNM and TMf̂/n to stress their dependence on the parameter f̂ for clarity, while geometric

median (GM) and coordinate-wise median (CWMed) do not depend on f̂ . The composite aggregator
f̂ -Krum◦f̂ -NNM is defined by Definition 3 with A = f̂ -Krum.

f GM CWTM TMf̂/n CWMed f̂ -Krum f̂ -Krum◦f̂ -NNM Lower bound

f = f̂ (Allouah et al., 2023) 4
(

n−f̂

n−2f̂

)2 6f̂

n−2f̂

(
n−f̂

n−2f̂

)
4
(

n−f̂

n−2f̂

)2
6
(

n−f̂

n−2f̂

)
- f̂

n−2f̂

f = 0 (Yang et al., 2025) 1 f̂

n−f̂

⌊n−1
2 ⌋

n−⌊n−1
2 ⌋ - - f̂

n−f̂

f ≤ f̂ (Theorem 2) - - - - 84f̂

n−f−f̂

f̂

n−f−f̂

3.1 AGGREGATION ERROR FOR UNDERESTIMATION (f̂ < f )

Theorem 1. For any f̂ ∈
(
0, n

2

)
and κ̂ > 0, there exists an (f̂ , κ̂)-robust aggregator that is not

(f, κ)-robust for any f ∈
(
f̂ , n

2

)
and κ > 0.

Remark: Theorem 1 indicates that an (f̂ , κ̂)-robust aggregator does not necessarily tolerate more
than f̂ Byzantine clients. Therefore, if we underestimate the number f of Byzantine clients, the
aggregator can have arbitrarily inaccurate performance.

A typical example of such an aggregator satisfying Theorem 1 is the commonly used coordinate-wise
trimmed mean (CWTM) aggregator (Yin et al., 2018; Allouah et al., 2023; Yang et al., 2025), as
defined below.

Definition 2. For any x1, . . . , xn ∈ Rd, the CWTM aggregator denoted as TMf̂/n : (Rd)n → Rd is
defined as follows

[TMf̂/n(x1, . . . , xn)]j =
1

n− 2f̂

∑
x∈Xj

x, (5)

where [v]j denotes the j-th coordinate of a vector v, and the set Xj is obtained by deleting the f̂

smallest and f̂ largest values from {[xi]j}ni=1.

In other words, TMf̂/n averages the remaining n− 2f̂ samples of each coordinate after removing

the f̂ largest and f̂ smallest samples. TMf̂/n has been proved to be an (f̂ , κ̂)-robust aggregator

(see Proposition 2 of Allouah et al. (2023)) with κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. However, if there are f

(f > f̂ ) extremely large (or small) xi given by Byzantine clients, then after removing f̂ largest
(smallest) elements, the remaining extreme values can still heavily affect the average (5). This
intuition motivates the counter example for proving Theorem 1 in Appendix A.

3.2 AGGREGATION ERROR FOR NON-UNDERESTIMATION (f̂ ≥ f )

When the estimated number f̂ of Byzantine clients is not less than the true number f , any (f̂ , κ̂)-robust
aggregator satisfies the following important properties.

Theorem 2. For any 0 ≤ f ≤ f̂ < n
2 , an (f̂ , κ̂)-robust aggregator A satisfies:

4
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1. A is always (f, κ)-robust with κ = κ̂.

2. If A is (f, κ)-robust, then κ ≥ f̂

n−f−f̂
.

3. Furthermore, there exists such an A that is (f, κ)-robust with κ ≤ 84f̂

n−f−f̂
.

Remark: In Theorem 2, Item 1 shows that an (f̂ , κ̂)-robust aggregator is able to tackle any problem
with fewer Byzantine clients f ≤ f̂ . However, the robust coefficient κ has a lower bound f̂

n−f−f̂

by Item 2, which reduces to the existing lower bound f̂
n−2f when f = f̂ (Allouah et al., 2023) and

to f̂

n−2f̂
when f = 0 (Yang et al., 2025). This lower bound f̂

n−f−f̂
is order-optimal since a certain

(f̂ , κ̂)-robust aggregator can achieve the order-matching upper bound κ ≤ O
(

f̂

n−f−f̂

)
by Item 3.

Note that as f̂ increases from f , this order-optimal bound O
(

f̂

n−f−f̂

)
is increasing, which yields a

larger aggregation error.

3.3 PROOF SKETCH FOR ITEM 3 OF THEOREM 2

Item 3 is the most challenging to prove in Theorem 2. One challenge is to find out such a proper
aggregator with order-matching lower bound κ ≤ O

(
f̂

n−f−f̂

)
under f Byzantine clients, partially

since κ of the commonly used aggregators like GM, CWTM, CWMed and Krum do not match the
lower bound even in the simple special case of f = f̂ , as shown in the first row of Table 1. To
improve κ of these aggregators, we will composite them with the nearest neighbor mixing (NNM)
proposed by (Allouah et al., 2023), an aggregator booster defined as follows.

Definition 3. For any f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of

(n− f̂) indexes from [n] such that {xi}i∈Nk
are the (n− f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. The mapping f̂ -NNM: (Rd)n → (Rd)n is defined
as follows.

f̂ -NNM(x1, . . . , xn) = (y1, . . . , yn), where yk =
1

n− f̂

∑
i∈Nk

xi. (6)

For any aggregator A : (Rd)n → Rd, define the composite aggregator (A◦ f̂ -NNM)(x1, . . . , xn) =
A(y1, . . . , yn), with the notations in Eq. (6).

Lemma 1 of (Allouah et al., 2023) has proved that for any (f̂ , κ̂)-robust aggregator A, the composite
aggregator A◦f̂ -NNM is (f̂ , κ′)-robust with improved robustness coefficient κ′ ≤ 8f̂(κ̂+1)

n−f̂
. Selecting

A = f̂ -Krum which is (f̂ , κ̂)-robust with κ̂ = 6
(

n−f̂

n−2f̂

)
, the composite aggregator has κ′ ≤ 56f̂

n−2f̂
,

which matches the lower bound f̂

n−2f̂
when f = f̂ (see the first row of Table 1). Therefore, it is

natural to consider boosting f̂ -Krum with NNM. We extend the boosting property of NNM to the
case of f ≤ f̂ as follows, which preserves the order of κ′ ≤ 8f̂(κ̂+1)

n−f̂
in (Allouah et al., 2023) when

f = f̂ .

Lemma 1. For any 0 ≤ f ≤ f̂ < n
2 and any (f, κ)-robust aggregator A, the composition A ◦

(f̂ -NNM) is an (f, κ′)-robust aggregator with κ′ ≤ 12f̂(κ+1)
n−f .

We will prove Lemma 1 in Appendix B.4.

Then we investigate the following f̂ -Krum aggregator (Blanchard et al., 2017; Allouah et al., 2023;
Yang et al., 2025).

Definition 4. The f̂ -Krum aggregator is defined as the following mapping (Rd)n → Rd.

(f̂ -Krum)(x1, . . . , xn) = xk∗ ,where k∗ = argmin
k∈[n]

∑
i∈Nk

∥xi − xk∥, (7)

5
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where Nk ⊂ [n] is the set of (n− f̂) indexes from [n] such that {xi}i∈Nk
are the (n− f̂) nearest

neighbors of xk. In other words, maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥.

In Appendix B.5, we will prove the following property of f̂ -Krum aggregator when applying to the
scenario with f Byzantine clients, which exactly reduces to κ = 6(n−f̂)

n−2f̂
obtained in Proposition 3 of

(Allouah et al., 2023) when f = f̂ .

Lemma 2. For any 0 ≤ f ≤ f̂ < n
2 , f̂ -Krum is an (f, κ)-robust aggregator with κ = 6(n−f)

n−f−f̂
.

Based on Lemmas 1 and 2, for any 0 ≤ f ≤ f̂ < n
2 , (f̂ -Krum) ◦ (f̂ -NNM) is an (f, κ)-robust

aggregator with

κ =
12f̂

n− f

( 6(n− f)

n− f − f̂
+ 1

)
≤ 12f̂

n− f
·
( 6(n− f)

n− f − f̂
+

n− f

n− f − f̂

)
=

84f̂

n− f − f̂
.

This concludes the proof.

3.4 SUMMARY: TRADE-OFF IN ESTIMATING f FOR AGGREGATORS

We have analyzed the aggregation error in this section when applying (f̂ , κ̂)-robust aggregator to a
setting with f Byzantine clients. Theorem 1 shows we should by no means underestimate the number
of Byzantine clients (i.e. f̂ < f ) since that can lead to arbitrarily poor performance. While Theorem
2 shows that non-underestimation (f̂ ≥ f ) can tackle this problem, the order-optimal lower bound
of robustness coefficient κ ≥ f̂

n−f−f̂
increases (i.e., increased aggregation error) as f̂ increases.

Therefore, it is recommended to reduce the overestimation amount f̂−f ≥ 0 as much as possible, and
the exact estimation f̂ = f yields the optimal performance. This indicates a fundamental trade-off in
estimating f , while a highly robust aggregator with larger f̂ can tackle a wider range of settings for
any f ≤ f̂ , the aggregation error is also larger for any fixed f . The next section will prove a similar
order-optimal bound and trade-off on federated learning.

4 CONVERGENCE ANALYSIS

To analyze the convergence of Algorithm 1, we adopt the following standard assumptions on the
federated optimization problem (1) below.
Assumption 1 (Loss bound). The objective function (1) admits a finite minimum value denoted as
ℓ∗

def
= infw∈Rd ℓH(w) ∈ R.

Assumption 2 (Smoothness). Each individual function ℓk is L-smooth for some L > 0, that is, for
any w,w′ ∈ Rd, we have ∥∇ℓk(w

′)−∇ℓk(w)∥ ≤ L∥w′ − w∥.
Assumption 3 (Heterogeneity bound). There exists a constant G > 0 such that

1

|H|
∑
k∈H

∥∇ℓk(w)−∇ℓH(w)∥2 ≤ G2. (8)

Assumption 4 (Polyak-Łojasiewicz (PŁ) condition). There exists a constant µ > 0 such that ℓH is
µ-PL gradient dominant, that is, ℓH(w)− ℓ∗ ≤ 1

2µ∥∇ℓH(w)∥2 for any w ∈ Rd.

Assumptions 1-3 are popular in distributed and federated learning (Allouah et al., 2023; Errami &
Bergou, 2024; Allouah et al., 2024; Yang et al., 2025; Otsuka et al., 2025). In particular, a larger
G2 in Assumption 3 means the honest clients have more heterogeneous data, which makes the
federated optimization problem (1) more challenging. The notion of PŁcondition (Assumption 4)
proposed by (Polyak, 1963) is widely used in nonconvex optimization to guarantee global convergence
(Karimi et al., 2016; Chakrabarti & Baranwal, 2024; Yang et al., 2025). With these assumptions,
we will analyze the convergence rate of Algorithm 1 with an (f̂ , κ̂)-robust aggregator on federated
learning with f Byzantine clients. We will discuss in two cases, underestimation (f̂ < f ) and
non-underestimation (f̂ ≥ f ).
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4.1 DIVERGENCE FOR UNDERESTIMATION (f̂ < f )

Theorem 3. For any 0 ≤ f̂ < f < n
2 , there exist an (f̂ , κ̂)-robust aggregator A, a set H ⊂ [n] with

size |H| = n− f , Byzantine clients’ strategies and loss functions {ℓi}i∈H satisfying Assumptions 1-4
such that when implementing Algorithm 1 with the aggregator A, any initialization w0 and constant
stepsize γt = γ > 0, the generated sequence wt diverges as follows as T → +∞.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → +∞ (9)

ℓH(wT )− ℓ∗ → +∞ (10)

Remark: Theorem 3 indicates that if the aggregator is only robust to f̂ Byzantine clients that is
fewer than the actual number f of Byzantine clients, then Algorithm 1 with any initialization and
stepsize can diverge in some federated learning problems. Therefore, we should always guarantee the
non-underestimation condition that f̂ ≥ f .

4.2 CONVERGENCE RATE FOR NON-UNDERESTIMATION (f̂ ≥ f )

Theorem 4. For any 0 ≤ f ≤ f̂ < n
2 and any (f̂ , κ̂)-robust aggregator A, there exist H ⊂ [n] with

size |H| = n− f , Byzantine clients’ strategies and loss functions {ℓi}i∈H satisfying Assumptions
1-4 such that for any initialization w0 and constant stepsize γt = γ > 0, the sequence wt generated
from Algorithm 1 with aggregator A either does not change over iteration (i.e., wt ≡ w0) or satisfies
the following convergence lower bounds.

lim sup
T→∞

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≥ f̂G2

n− f − f̂
(11)

lim sup
T→∞

ℓH(wT )− ℓ∗ ≥ f̂G2

2µ(n− f − f̂)
(12)

Remark: In most cases, the heterogeneity G2 > 0. Then regardless of the hyperparameter choices,
Algorithm 1 with an (f̂ , κ̂)-robust aggregator cannot converge to a stationary or optimal point of
some objective functions, since the convergence metric of gradients and function value are lower
bounded by f̂G2

n−f−f̂
> 0 and f̂G2

2µ(n−f−f̂)
> 0 respectively as shown above. These lower bounds

increase as f̂ increases from f . Later, we will show that these lower bounds are tight since their
orders match the upper bounds in the upcoming Theorem 5.

Proof Sketch of Theorem 4: Select the following loss functions with scalar input w ∈ R, which can
be verified to satisfy Assumptions 1-4.

ℓk(w) =

{
cG(w + 1)2, k = 1, 2, . . . , f̂

cGw2, k = f̂ + 1, f̂ + 2, . . . , n
, (13)

where c = n−f

2
√

f̂(n−f−f̂)
. Suppose H = [n− f ] = {1, 2, . . . , n− f} and the Byzantine clients adopt

the same honest behavior as the honest clients, i.e., upload the result after H local gradient descent
updates (2). Then the global model updates as follows.

wt+1 = ΓHwt, where Γ = 1− 2cGγ.

Then we can prove Theorem 4 in four cases of the hyperparameters γ and H that respectively satisfy
|ΓH | < 1, ΓH = 1, ΓH = −1 and |ΓH | > 1. See the whole proof in Appendix D.

Theorem 5 (Upper bound). Suppose Assumptions 1-3 hold. Apply Algorithm 1 with an (f, κ)-
aggregator and stepsize γ = 1

c′LHT 1/3 (c′ = max(4
√
2,
√
384κ)) to the federated optimization

7
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problem (1) with f Byzantine clients. The algorithm output {wt}T−1
t=0 satisfies the following conver-

gence rate.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≤16c′LH[ℓH(w0)− ℓ∗] +G2

T 2/3
+ 90κG2. (14)

Furthermore, under Assumption 4 (i.e., ℓH satisfies the PŁ condition), we can select stepsize γ =
1

c′LHT 1−β for any β ∈ (0, 1) which yields the following convergence rate.

ℓH(wT )− ℓ∗ ≤ exp
(
− µT β

8c′L

)
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ
. (15)

Remark: As T → +∞, the upper bounds above respectively converge to 90κG2 and 45κG2

µ .

Moreover, if Algorithm 1 uses an (f̂ , κ̂)-robust aggregator with f̂ ≥ f , which is also (f, κ)-robust
that can achieve the order-optimal upper bound κ ≤ O

(
f̂

n−f−f̂

)
by Theorem 2, then the upper

bounds (14) and (15) respectively converge to O
(

f̂G2

n−f−f̂

)
and O

(
f̂G2

µ(n−f−f̂)

)
, which are tight since

they match the orders of the lower bounds in Theorem 4.

4.3 SUMMARY: TRADE-OFF IN ESTIMATING f FOR FEDERATED LEARNING

We have analyzed the convergence of Algorithm 1 with an (f̂ , κ̂)-robust aggregator on federated
learning with f Byzantine clients. Theorem 3 indicates that we should always avoid underestimation
(f̂ < f ) as that can lead to divergence. When f̂ ≥ f , Theorem 4 provides convergence lower bounds
that match the orders of the upper bounds in Theorem 5. These results are analogous to those for
the robustness coefficient κ of the aggregator analyzed in Section 3. We summarize all these main
theoretical results in Table 2, which shows that the order-optimal bounds for both κ and the two
federated learning convergence metrics are proportional to f̂

n−f−f̂
which increases as f̂ increases

from f . Therefore, there is a fundamental trade-off in estimating f : Algorithm 1 with aggregators
robust to more Byzantine clients has degraded performance in terms of both aggregation error and
algorithm convergence, when there are actually not that many Byzantine clients.

Table 2: Summary of our main theoretical results. As we apply an (f̂ , κ̂)-robust aggregator to
federated learning with f Byzantine clients, we show three performance metrics: robust coefficient
κ of the aggregator (also (f, κ)-robust) and the two convergence metrics for Algorithm 1, under
Assumptions 1-4. These metrics can be arbitrarily poor when f̂ < f , and have the following lower
bounds that match the order of the corresponding upper bounds when f̂ ≥ f .

κ 1
T

∑T−1
t=0 ∥∇ℓH(wt)∥2 ℓH(wT )− ℓ∗

Underestimation Possibly non-exist Possibly → +∞ Possibly → +∞
(f̂ < f ) (Theorem 1) (Theorem 3) (Theorem 3)

Non-underestimation O
(

f̂

n−f−f̂

)
O
(

f̂G2

n−f−f̂

)
O
(

f̂G2

µ(n−f−f̂)

)
(f̂ ≥ f ) (Theorem 2) (Theorems 4-5) (Theorems 4-5)

Comparison with Related Works: Two recent works have obtained results that are similar to part
of our results. Allouah et al. (2024) obtains a near-optimal convergence rate of Byzantine-robust
federated learning algorithm where a random subset of n̂ clients participate in each communication
round, which relies on the effect of the estimated number f̂ 1 of Byzantine clients in this subset.
However, their convergence requires overestimation of the fraction of Byzantine clients, i.e., f̂

n̂ > f
n ,

while the cases of underestimation and exact estimation are not studied. In addition, they obtain
the convergence gap κG2, while the optimal lower and upper bound on κ is not studied. Yang et al.
(2025) studies distributed learning with only H = 1 local gradient update and no Byzantine clients

1Allouah et al. (2024) uses b to denote the true number of Byzantine clients and b̂ to denote the estimation of
b. We replace them with f and f̂ respectively.
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(f = 0), a small special case of our setting. They found that the performance degrades with f̂ , which
fits our results of non-underestimation in this special case.

5 EXPERIMENTS

To demonstrate the aforementioned trade-off in estimating the number of Byzantine clients in
federated learning, we apply the FedRo algorithm to a classification task on the CIFAR-10 dataset
(Krizhevsky, 2009), using the cross-entropy loss function as the objective function and ResNet-20
(He et al., 2016) as the classifier model.

Data Assignment: CIFAR-10 consists of 10 classes and 5k training images per class. We equally
divide the 50k samples into n = 16 clients. Among the 3125 samples in each client k, suppose
a fraction pk,c belongs to the c-th class. Randomly set [pk,1, . . . , pk,10] from the 10-dimensional
symmetric Dirichlet distribution Dir10(α). A smaller α corresponds to greater heterogeneity among
the clients.

Models and Training Schemes: The batch normalization (BN) layers in ResNet-20 are replaced
with group normalization (GN) layers, since BN performs poorly with heterogeneous data across
clients (Wu & He, 2018). We implement the FedRo algorithm with an f̂ -CWTM aggregator on a
grid of f̂ ∈ {0, 1, . . . , 7}, f ∈ {0, 4} and α ∈ {0.1, 1, 10}. For α = 0.1, we run FedRo for T = 800
total communication rounds with H = 49 local SGD steps per round. For α = 1 and α = 10, we
run FedRo for T = 400 total communication rounds with H = 98 local SGD steps per round. Each
SGD step uses batchsize 64, weight decay 5× 10−4 and an step-wise diminishing stepsize (see Eq.
(46) in Appendix F). Each Byzantine client uploads a vector from normal distribution N (0, 5). More
details on data division, model architectures, and training schemes are provided in Appendix F.

Table 3: Top-1 Accuracies of FedRo Algorithm on CIFAR-10 Data. A smaller α corresponds to
higher heterogeneity G2. When f̂ > f , the accuracy drops compared with the corresponding accuracy
under f̂ = f (bolded) are marked in the parentheses.

f̂
f = 0 f = 4

α = 0.1 α = 1.0 α = 10.0 α = 0.1 α = 1.0 α = 10.0
0 65.61 78.76 80.24 10.01 10.11 10.01
1 62.28(-3.33) 77.31(-1.45) 79.45(-0.79) 12.85 10.04 10.00
2 53.01(-12.60) 77.13(-1.63) 79.63(-0.61) 9.17 10.00 9.85
3 51.87(-13.74) 76.76(-2.00) 78.28(-1.96) 11.46 23.98 25.70
4 48.47(-17.14) 76.80(-1.96) 77.93(-2.31) 54.58 74.19 75.80
5 47.25(-18.36) 76.93(-1.83) 77.67(-2.57) 49.83(-4.75) 73.53(-0.66) 75.77(-0.03)
6 45.27(-20.34) 75.32(-3.44) 77.91(-2.33) 47.65(-6.93) 72.62(-1.57) 74.35(-1.45)
7 43.38(-22.23) 75.01(-3.75) 77.87(-2.37) 43.69(-10.89) 72.45(-1.74) 74.02(-1.78)

Main Results: Table 3 reports the top-1 accuracies for each candidate (f̂ , f, α). When f̂ < f = 4
(underestimation), the accuracies are extremely low, which fits the divergence result in Theorem 3.
When f̂ ≥ f (non-underestimation) in both no-Byzantine (f = 0) and Byzantine (f = 4) settings, the
accuracy decreases in general as f̂ increases from f . Moreover, with larger α (i.e. lower heterogeneity
G2), such an accuracy decrease with larger f̂ slows down. These results fit Theorems 4 and 5 which
indicate that as f̂ increases from f , the tight convergence lower bound f̂G2

n−f−f̂
increases at a rate

proportional to the heterogeneity G2.

6 CONCLUSION

To our knowledge, this is the first work that systematically investigates the theoretical effect of the
estimated number of Byzantine clients on both aggregation error and federated learning performance.
Both theoretical and empirical results demonstrate that while an aggregator with a larger robustness
degree can tolerate more Byzantine clients, the performance can deteriorate when there are actually
fewer or even no Byzantine clients.
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A PROOF OF THEOREM 1

The commonly used coordinate-wise trimmed mean (CWTM) aggregator TMf̂/n defined by Eq.

(5) has been proved to be an (f̂ , κ̂)-robust aggregator (see Proposition 2 of Allouah et al. (2023))
with κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. Hence, it remains to prove that TMf̂/n is not (f, κ)-robust for any

f̂ < f < n
2 and κ > 0.

Select the scalars {xk}nk=1 ⊂ R as follows.

x1 = x2 = · · · = xn−f = 0, xn−f+1 = xn−f+2 = · · · = xn = 1. (16)

For S = [n− f ] = {1, 2, . . . , n− f} with |S| = n− f , we have

xS =
1

|S|
∑
k∈S

xk = 0,
1

|S|
∑
k∈S

(xk − xS)
2 = 0.

Suppose TMf̂/n is (f, κ)-robust for some κ > 0, which implies that

|TMf̂/n(x1, . . . , xn)− xS | ≤ κ′ · 1

|S|
∑
k∈S

(xk − xS)
2 = 0, (17)

so TMf̂/n(x1, . . . , xn) = xS = 0. This contradicts with the definition (5) of TMf̂/n which along
with the scalars (16) implies that

TMf̂/n(x1, . . . , xn) =
1

n− 2f̂

n−f̂∑
k=f̂+1

xk =
f − f̂

n− 2f̂
> 0. (18)

Therefore, TMf̂/n is not (f, κ)-robust for any f̂ < f < n
2 and κ > 0.
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B PROOF OF THEOREM 2

B.1 PROOF OF ITEM 1

The conclusion is obvious when f = f̂ , so we consider the case where 0 < f < f̂ .

For any set S ⊂ [n] with size |S| = n − f , S contains q = (n−f)!

(n−f̂)!(f̂−f)!
subsets S1, . . . , Sq ⊂ S

with the same size |S1| = . . . = |Sq| = n− f̂ . Then for any x1, . . . , xn ∈ Rd and E ⊂ [n], denote
xE = 1

|E|
∑

k∈E xk. Then, we prove that A is (f, κ̂)-robust as follows.

∥A(x1, . . . , xn)− xS∥2

=
∥∥∥A(x1, . . . , xn)−

1

q

q∑
i=1

xSi

∥∥∥2
(a)

≤ 1

q

q∑
i=1

∥A(x1, . . . , xn)− xSi
∥2

(b)

≤ 1

q

q∑
i=1

κ̂

n− f̂

∑
k∈Si

∥xk − xSi∥2

=
κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

∥(xk − xS)− (xSi
− xS)∥2

=
κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

[
∥xk − xS∥2 + ∥xSi

− xS∥2 − 2⟨xk − xS , xSi
− xS⟩

]
=

κ̂

q(n− f̂)

q∑
i=1

∑
k∈Si

[
∥xk − xS∥2

]
+

κ̂

q

q∑
i=1

[
∥xSi

− xS∥2
]

− 2κ̂

q(n− f̂)

q∑
i=1

⟨|Si|xSi
− |Si|xS , xSi

− xS⟩

(c)
=

κ̂(n− f̂)!(f̂ − f)!

(n− f̂)(n− f)!

(n− f − 1)!

(n− f̂ − 1)!(f̂ − f)!

∑
k∈S

[
∥xk − xS∥2

]
+

κ̂

q

q∑
i=1

[
∥xSi

− xS∥2
]

− 2κ̂

q

q∑
i=1

[
∥xSi − xS∥2

]
≤ κ̂

n− f

∑
k∈S

[
∥xk − xS∥2

]
.

where (a) applies Jensen’s inequality to the convex function ∥ · ∥2, (b) applies the (f̂ , κ̂)-robust
aggregator A to the set Si of size |Si| = n − f̂ , (c) uses q = (n−f)!

(n−f̂)!(f̂−f)!
and the fact that each

k ∈ S is contained by (n−f−1)!

(n−f̂−1)!(f̂−f)!
sets of {Si}qi=1 (since these sets for a certain k ∈ S can be

obtained by removing (f̂ − f) elements from S\{k} with size |S\{k}| = n− f − 1).

B.2 PROOF OF ITEM 2

Suppose an aggregator A : (Rd)n → Rd is (f̂ , κ̂)-robust and (f, κ)-robust. Select the scalars
{xk}nk=1 ⊂ R as follows.

x1 = x2 = . . . = xn−f̂ = 0, xn−f̂+1 = . . . = xn = 1. (19)

Since A is (f̂ , κ̂)-robust, for S′ = [n− f̂ ] = {1, 2, . . . , n− f̂} we have

xS′ =
1

|S′|
∑
k∈S′

xk = 0, |A(x1, . . . , xn)− xS′ |2 ≤ κ

|S′|
∑
k∈S′

|xk − xS′ |2 = 0,
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so A(x1, . . . , xn) = xS′ = 0.

Denote the set S = {f + 1, f + 2, . . . , n} which contains n− f̂ + 1, . . . , n as 0 ≤ f ≤ f̂ < n
2 , so

xS = 1
|S|

∑
k∈S xk = f̂

n−f . Then since |S| = n− f and A is (f, κ)-robust, we have

|A(x1, . . . , xn)− xS |2 ≤ κ

|S|
∑
k∈S

|xk − xS |2.

Substituting A(x1, . . . , xn) = 0, xS = f̂
n−f , |S| = n− f and Eq. (19) into the inequality above, we

have

f̂2

(n− f)2
≤ κ

n− f

[
f̂
(
1− f̂

n− f

)2

+ (n− f − f̂)
( f̂

n− f

)2]
=

κ

(n− f)3

[
f̂(n− f − f̂)2 + (n− f − f̂)f̂2

]
=
κf̂(n− f − f̂)

(n− f)3
[(n− f − f̂) + f̂ ]

=
κf̂(n− f − f̂)

(n− f)2
,

which implies κ ≥ f̂

n−f−f̂
.

B.3 PROOF OF ITEM 3

We use the composite aggregator f̂ -Krum◦f̂ -NNM is defined by Definition 3 with A = f̂ -Krum.
Based on Lemmas 1 and 2, for any 0 ≤ f ≤ f̂ < n

2 , (f̂ -Krum) ◦ (f̂ -NNM) is an (f, κ)-robust
aggregator with

κ =
12f̂

n− f

( 6(n− f)

n− f − f̂
+ 1

)
≤ 12f̂

n− f
·
( 6(n− f)

n− f − f̂
+

n− f

n− f − f̂

)
=

84f̂

n− f − f̂
.

This concludes the proof of Item 3. It remains to prove Lemmas 1 and 2 in the next two subsections.

B.4 PROOF OF LEMMA 1 FOR NNM

For any n ≥ 1, f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of (n − f̂)

indexes from [n] such that {xi}i∈Nk
are the (n − f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. Then, for any set S ⊂ [n] with size |S| = n − f ,
we have

1

|Nk|
∑
i∈Nk

∥xi − xk∥2 ≤ 1

|S|
∑
i∈S

∥xi − xk∥2, (20)

since 1
|Nk|

∑
i∈Nk

∥xk−xi∥2 is the average of the |Nk| = n−f̂ smallest numbers in {∥xk−xi∥2}ni=1,
while 1

|S|
∑

i∈S ∥xk −xi∥2 is the average of |S| = n− f (|S| ≥ |Nk|) numbers in {∥xk −xi∥2}ni=1.
Then we have

∥yk − xS∥2

=
∥∥∥ 1

n− f̂

∑
i∈Nk

xi −
1

n− f

∑
i∈S

xi

∥∥∥2
=
∥∥∥( 1

n− f̂
− 1

n− f

) ∑
i∈S∩Nk

(xi − xk) +
1

n− f̂

∑
i∈Nk\S

(xi − xk)−
1

n− f

∑
i∈S\Nk

(xi − xk)
∥∥∥2

≤3
∥∥∥ f̂ − f

(n− f̂)(n− f)

∑
i∈S∩Nk

(xi − xk)
∥∥∥2 + 3

∥∥∥ 1

n− f̂

∑
i∈Nk\S

(xi − xk)
∥∥∥2

15
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+ 3
∥∥∥− 1

n− f

∑
i∈S\Nk

(xi − xk)
∥∥∥2

≤3|S ∩Nk|(f̂ − f)2

(n− f̂)2(n− f)2

∑
i∈S∩Nk

∥xi − xk∥2 +
3|Nk\S|
(n− f̂)2

∑
i∈Nk\S

∥xi − xk∥2

+
3|S\Nk|
(n− f)2

∑
i∈S\Nk

∥xi − xk∥2

(a)

≤ 3(f̂ − f)2

(n− f̂)(n− f)2

∑
i∈S∩Nk

∥xi − xk∥2 +
3f

(n− f̂)2

∑
i∈Nk

∥xi − xk∥2

+
3f̂

(n− f)2

∑
i∈S\Nk

∥xi − xk∥2

(b)

≤ 3f̂

|S|(n− f)

∑
i∈S∩Nk

∥xi − xk∥2 +
3f |Nk|

|S|(n− f̂)2

∑
i∈S

∥xi − xk∥2 +
3f̂

|S|(n− f)

∑
i∈S\Nk

∥xi − xk∥2

(c)

≤
[ 3f̂

|S|(n− f)
+

3f

|S|(n− f̂)

]∑
i∈S

∥xi − xk∥2

(d)

≤ 6f̂

|S|(n− f)

∑
i∈S

∥xi − xk∥2, (21)

where (a) uses |S ∩ Nk| ≤ |Nk| = n − f̂ , |Nk\S| ≤ n − |S| = f , |S\Nk| ≤ n − |Nk| = f̂ , (b)
uses Eq. (20), 0 ≤ f ≤ f̂ < n

2 (so f̂ − f ≤ f̂ ≤ n− f̂ ) and |S| = n− f , (c) uses |Nk| = n− f̂ ,
and (d) uses the following inequality.

3f̂

|S|(n− f)
− 3f

|S|(n− f̂)
=

3f̂(n− f̂)− 3f(n− f)

|S|(n− f)(n− f̂)
=

3(f̂ − f)(n− f̂ − f)

|S|(n− f)(n− f̂)
≥ 0.

Denote (y1, . . . , yn) = f̂ -NNM(x1, . . . , xn) where yk = 1
n−f̂

∑
i∈N (xk)

xi as defined in Eq. (6).

Then denote xS = 1
S

∑
k∈S xk and yS = 1

S

∑
k∈S yk. We obtain that

∥yS − xS∥2 +
1

|S|
∑
k∈S

∥yk − yS∥2

=
1

|S|
∑
k∈S

(
∥yk − yS∥2 + ∥yS − xS∥2

)
=

1

|S|
∑
k∈S

[
∥(yk − yS) + (yS − xS)∥2 − 2⟨yk − yS , yS − xS⟩

]
=

1

|S|
∑
k∈S

∥yk − xS∥2 − 2
〈
yS − xS ,

1

|S|
∑
k∈S

(yk − yS)
〉

(a)

≤ 1

|S|
∑
k∈S

6f̂

|S|(n− f)

∑
i∈S

∥xi − xk∥2 − 2⟨yS − xS , yS − yS⟩

=
6f̂

|S|2(n− f)

∑
i,k∈S

(∥xi − xS∥2 + ∥xk − xS∥2 − 2⟨xi − xS , xk − xS⟩)

=
6f̂

|S|2(n− f)

[
|S|

∑
i∈S

(∥xi − xS∥2) + |S|
∑
k∈S

(∥xk − xS∥2)− 2
〈
|S|xS − |S|xS , |S|xS − |S|xS

〉]
=

12f̂

n− f
· 1

|S|
∑
i∈S

∥xi − xS∥2, (22)
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where (a) uses Eq. (21).

For any S ⊂ [n] with size |S| = n − f , we prove below that the composite aggregator A ◦
f̂ -NNM(x1, . . . , xn) = A(y1, . . . , yn) is (f, κ)-robust with κ = 12f̂(1+κ)

n−f .

∥A ◦ f̂ -NNM(x1, . . . , xn)− xS∥2

≤(1 + κ−1)∥A(y1, . . . , yn)− yS∥2 + (1 + κ)∥yS − xS∥2

(a)

≤ 1 + κ

|S|

n∑
k=1

∥yk − yS∥2 + (1 + κ)∥yS − xS∥2

(b)

≤ 12f̂(1 + κ)

n− f
· 1

|S|
∑
i∈S

∥xi − xS∥2 (23)

where (a) uses the fact that A is an (f, κ)-robust aggregator, (b) uses Eq. (22).

B.5 PROOF OF LEMMA 2 FOR KRUM AGGREGATOR

For any n ≥ 1, f̂ ∈
[
0, n

2

)
, k ∈ [n] and x1, . . . , xn ∈ Rd, denote Nk ⊂ [n] as the set of (n − f̂)

indexes from [n] such that {xi}i∈Nk
are the (n − f̂) nearest neighbors of xk. In other words,

maxi∈Nk
∥xi − xk∥ ≤ minj∈[n]\Nk

∥xj − xk∥. Then, for any set S ⊂ [n] with size |S| = n − f ,
Eq. (20) has been proved as repeated below.

1

|Nk|
∑
i∈Nk

∥xk − xi∥2 ≤ 1

|S|
∑
i∈S

∥xk − xi∥2. (24)

Then for k∗ ∈ [n] defined in the f̂ -Krum (7), we have∑
i∈Nk∗

∥xk∗ − xi∥2

= min
k∈[n]

∑
i∈Nk

∥xk − xi∥2

≤ 1

|S|
∑
k∈S

∑
i∈Nk

∥xk − xi∥2

(a)

≤ n− f̂

|S|2
∑
i,k∈S

∥xk − xS − (xi − xS)∥2

=
n− f̂

|S|2
∑
i,k∈S

(
∥xk − xS∥2 + ∥xi − xS∥2 − 2 ⟨xk − xS , xi − xS⟩

)
=
n− f̂

|S|2
[ ∑
i,k∈S

∥xk − xS∥2 +
∑
i,k∈S

∥xi − xS∥2 − 2
∑
i,k∈S

⟨xk − xS , xi − xS⟩
]

=
n− f̂

|S|2
[
2|S|

∑
i∈S

∥xi − xS∥2 − 2
∑
i∈S

〈∑
k∈S

(xk − xS)︸ ︷︷ ︸
=0

, xi − xS

〉]

(b)

≤2
∑
i∈S

∥xi − xS∥2. (25)

where (a) uses Eq. (24) and |Nk| = n− f̂ , and (b) uses |S| = n− f ≥ n− f̂ . Note that

∥xk∗ − xS∥2 ≤ 2∥xk∗ − xi∥2 + 2∥xi − xS∥2,∀i ∈ S (26)

which can be rearranged into

∥xk∗ − xi∥2 ≥ 1

2
∥xk∗ − xS∥2 − ∥xi − xS∥2,∀i ∈ S. (27)
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Then, we have∑
i∈Nk∗

∥xk∗ − xi∥2 ≥
∑

i∈S∩Nk∗

∥xk∗ − xi∥2

(a)

≥ |S ∩Nk∗ |
2

∥xk∗ − x̄S∥2 −
∑

i∈S∩Nk∗

∥xi − x̄S∥2

(b)

≥ n− f − f̂

2
∥xk∗ − x̄S∥2 −

∑
i∈S∩Nk∗

∥xi − x̄S∥2 ,

where (a) uses Eq. (27) and (b) uses |S∩Nk∗ | = |S|+ |Nk∗ |−|S∪Nk∗ | ≥ (n−f)+(n− f̂)−n =

n− f − f̂ . By rearranging the inequality above, we have

∥xk∗ − x̄S∥2 ≤ 2

n− f − f̂

[ ∑
i∈Nk∗

∥xk∗ − xi∥2 +
∑

i∈S∩Nk∗

∥xi − x̄S∥2
]

(a)

≤ 2

n− f − f̂

[
2
∑
i∈S

∥xi − xS∥2 +
∑
i∈S

∥xi − xS∥2
]

≤ 6

n− f − f̂

∑
i∈S

∥xi − xS∥2 =
6(n− f)

n− f − f̂
· 1

|S|
∑
i∈S

∥xi − xS∥2,

where (a) uses Eq. (25). Therefore, (f̂ -Krum)(x1, . . . , xn) = xk∗ defined by Eq. (7) is (f, κ)-robust
with κ ≤ 6(n−f)

n−f−f̂

C PROOF OF THEOREM 3

Without loss of generality, use H = [n− f ] = {1, 2, . . . , n− f} as the set of honest clients. Select
the loss function ℓk(w) =

w2

2 (w ∈ R) for every client k ∈ [n], which satisfies Assumptions 1-4.

In Algorithm 1, use the coordinate-wise trimmed mean (CWTM) aggregator defined by Eq. (5) which
has been proved to be an (f̂ , κ̂)-robust aggregator (see Proposition 2 of Allouah et al. (2023)) with
κ̂ = 6f̂

n−2f̂

(
1 + f̂

n−2f̂

)
. All the honest clients k ∈ H = [n− f ] perform the local gradient descent

updates (2) as follows.

w
(k)
t,h+1 = w

(k)
t,h − γℓ′k(w

(k)
t,h ) = (1− γ)w

(k)
t,h , k ∈ H = [n− f ]. (28)

Iterating the update rule above yields that

w
(k)
t = w

(k)
t,H = (1− γ)Hw

(k)
t,0 = (1− γ)Hwt, k ∈ H = [n− f ].

In contrast, we let the Byzantine clients k ∈ [n]\H = {n − f + 1, n − f + 2, . . . , n} upload
w

(k)
t = n|(1− γ)Hwt|+ t. Therefore, the global parameter update rule (3) becomes

wt+1 =wt +A({w(k)
t − wt}nk=1)

=wt +
(n− f − f̂)[(1− γ)Hwt − wt] + (f − f̂)[n|(1− γ)Hwt| − wt + t]

n− 2f̂

=
n(f − f̂)|(1− γ)Hwt| − (n− f − f̂)|(1− γ)Hwt|+ t(f − f̂)

n− 2f̂

(a)

≥ t(f − f̂)

n− 2f̂
,

where (a) uses the CWTM aggregator A defined by Eq. (5) as well as the fact that {w(k)
t − wt}nk=1

contains n − f scalars (1 − γ)Hwt − wt and f larger scalars n|(1 − γ)Hwt| − wt + t, and (b)
uses n(f − f̂) − (n − f − f̂) > f + f̂ > 0 and n − 2f̂ > 0 since the integers f̂ , f , n satisfy
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0 ≤ f̂ < f < n
2 . Since (f−f̂)

n−2f̂
> 0, the inequality above implies that |wt| → +∞ as t → +∞. Note

that the objective function (1) in this example is ℓH(w) = w2

2 . Hence, Eqs. (9) and (10) can be
proved as follows as T → +∞.

1

T

T−1∑
t=0

|ℓ′H(wt)|2 =
1

T

T−1∑
t=0

|wt|2 → +∞.

ℓH(wT )− ℓ∗ =
w2

T

2
− 0 → +∞.

D PROOF OF THEOREM 4

Without loss of generality, use H = [n − f ] = {1, 2, . . . , n − f}. Let the Byzantine clients adopt
the same honest behavior as the honest clients, i.e., upload the result after H local gradient descent
updates. This is valid since Byzantine clients can upload any vectors.

Select the following loss functions.

ℓk(w) =

{
cG(w + 1)2, k = 1, 2, . . . , f̂

cGw2, k = f̂ + 1, f̂ + 2, . . . , n
, (29)

where w ∈ R and the constant c > 0 is to be selected later. The derivatives of these loss functions are
shown below.

ℓ′k(w) =

{
2cG(w + 1), k = 1, 2, . . . , f̂

2cGw, k = f̂ + 1, f̂ + 2, . . . , n
. (30)

It is straightforward to check that these loss functions (29) satisfy Assumption 2, i.e., L-smoothness
with Lipschitz constant L = 2cG. Then the objective function (1) is

ℓH(w) =
1

|H|
∑
k∈H

ℓk(w)

=
1

n− f
[f̂ · cG(w + 1)2 + (n− f − f̂) · cGw2]

=
cG

n− f

[
(n− f)w2 + 2f̂w + f̂

]
=cG

[(
w +

f̂

n− f

)2

+
f̂(n− f − f̂)

(n− f)2

]
, (31)

which has the following derivative.

ℓ′H(w) = 2cG
(
w +

f̂

n− f

)
, (32)

The objective function (31) satisfies Assumption 1 with ℓ∗ = infw∈Rd ℓH(w) = cGf̂(n−f−f̂)
(n−f)2 , and

also satisfies Assumption 4 with µ = 2cG since

ℓH(w)− ℓ∗ − 1

2µ
∥∇ℓH(w)∥2 = cG

(
w +

f̂

n− f

)2

− 1

4cG
· 4c2G2

(
w +

f̂

n− f

)2

= 0.

Next, we will check Assumption 3 as follows.

1

|H|
∑
k∈H

|ℓ′k(w)− ℓ′H(w)|2

=
1

n− f

[
f̂ · (2cG)2

(n− f − f̂

n− f

)2

+ (n− f − f̂) · (2cG)2
( f̂

n− f

)2]
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=
(2cG)2

(n− f)3
[
f̂(n− f − f̂)2 + (n− f − f̂)f̂2

]
=
f̂(n− f − f̂)(2cG)2

(n− f)2
(33)

By letting the equation above equal to G2 to ensure Assumption 3, we can select

c =
n− f

2

√
f̂(n− f − f̂)

. (34)

Suppose all the Byzantine clients behaves in the same way as the honest clients. Then every client
k ∈ S := {f̂ + 1, . . . , n} adopts the following local gradient descent update.

w
(k)
t,h+1 = w

(k)
t,h − γℓ′k(w

(k)
t,h ) = (1− 2cGγ)w

(k)
t,h ,∀k ∈ S.

Iterating the update rule above yields that

w
(k)
t = w

(k)
t,H = (1− 2cGγ)Hw

(k)
t,0 = (1− 2cGγ)Hwt,∀k ∈ S.

Since |S| = n − f̂ , 1
|S|

∑
k∈S(w

(k)
t − wt) = [(1 − 2cGγ)H − 1]wt and A is an (f̂ , κ̂)-robust

aggregator, we have ∣∣A({w(k)
t − wt}nk=1)− [(1− 2cGγ)H − 1]wt

∣∣2
≤κ̂ · 1

|S|
∑
k∈S

∣∣w(k)
t − wt − [(1− 2cGγ)H − 1]wt

∣∣2 = 0,

so the global parameter update rule (3) becomes

wt+1 = wt +A({w(k)
t − wt}nk=1) = wt + [(1− 2cGγ)H − 1]wt = (1− 2cGγ)Hwt. (35)

We consider the following cases of hyperparameter choices.

(Case 1): When 0 < γ < 1
cG , we have |(1 − 2cGγ)H | < 1 and thus wt → 0 by Eq. (35). This

implies that as T → +∞, we have

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → |ℓ′H(0)|2 =
4c2G2f̂2

(n− f)2
=

f̂G2

n− f − f̂

and

ℓH(wT )− ℓ∗ → ℓH(0)− ℓ∗ = cG
( f̂

n− f

)2

=
2c2G2

µ

( f̂

n− f

)2

=
f̂G2

2µ(n− f − f̂)

where we use µ = 2cG and the choice of c in Eq. (34). Hence, Eqs. (11) and (12) hold in this case.

(Case 2): When γ = 1
cG and H is an even number, Eq. (35) implies that wt = wt−1 and thus

wt ≡ w0.

(Case 3): When γ = 1
cG and H is an odd number, Eq. (35) implies that wt = −wt−1. Then for any

even number T , we have

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 =
1

2

[
|ℓ′H(w0)|2 + |ℓ′H(−w0)|2

]
=
1

2

[
4c2G2

(
w0 +

f̂

n− f

)2

+ 4c2G2
(
− w0 +

f̂

n− f

)2]
=4 · (n− f)2

4f̂(n− f − f̂)
·G2

(
w2

0 +
f̂2

(n− f)2

)
≥ f̂G2

n− f − f̂
.

and

lim sup
T→∞

ℓH(wT )− ℓ∗ =cGmax
[(

w0 +
f̂

n− f

)2

,
(
− w0 +

f̂

n− f

)2]
20
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≥2c2G2

µ

f̂2

(n− f)2
=

f̂G2

2µ(n− f − f̂)
,

where we use µ = 2cG and the choice of c in Eq. (34). Hence, Eqs. (11) and (12) hold in this case.

(Case 4): When γ > 1
cG , we have |(1 − 2cGγ)H | > 1 and thus |wt| → +∞ by Eq. (35). This

implies that as T → +∞, we have

|ℓ′H(wT )|2 = 4c2G2
(
wT +

f̂

n− f

)2

→ +∞ ⇒ 1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 → +∞

and

ℓH(wT )− ℓ∗ = cG
(
wT +

f̂

n− f

)2

→ +∞.

Hence, Eqs. (11) and (12) hold in this case.

E PROOF OF THEOREM 5

E.1 SUPPORTING LEMMAS FOR THEOREM 5

Lemma 3. Suppose L2γ2
tHt(Ht − 1) ≤ 1

2 and Assumption 3 holds. Then Vt,k
def
=

∑Ht−1
h=0 ∥w(k)

t,h −
wt∥2 obtained from Algorithm 1 has the following upper bounds.

Vt,k ≤2γ2
tH

2
t (Ht − 1)∥∇ℓk(wt)∥2 (36)∑

k∈H

Vt,k ≤4γ2
t |H|H2

t (Ht − 1)
[
G2 + ∥∇ℓH(wt)∥2

]
(37)

Proof.

Vt,k
def
=

Ht−1∑
h=0

∥w(k)
t,h − wt∥2

(a)
=

Ht−1∑
h=0

∥∥∥ h−1∑
h′=0

γt∇ℓk(w
(k)
t,h′)

∥∥∥2
≤γ2

t

Ht−1∑
h=0

h−1∑
h′=0

h∥∇ℓk(w
(k)
t,h′)∥2

=γ2
t

Ht−2∑
h′=0

Ht−1∑
h=h′+1

h∥∇ℓk(w
(k)
t,h′)∥2

(b)

≤ γ2
tHt(Ht − 1)

2

Ht−1∑
h′=0

∥∇ℓk(w
(k)
t,h′)∥2

≤γ2
tHt(Ht − 1)

Ht−1∑
h=0

[
∥∇ℓk(w

(k)
t,h )−∇ℓk(wt)∥2 + ∥∇ℓk(wt)∥2

]
≤L2γ2

tHt(Ht − 1)

Ht−1∑
h=0

[
∥w(k)

t,h − wt∥2
]
+ γ2

tH
2
t (Ht − 1)∥∇ℓk(wt)∥2

(c)

≤ 1

2
Vt,k + γ2

tH
2
t (Ht − 1)∥∇ℓk(wt)∥2 (38)

where (a) uses the local update rule (2), (b) uses
∑Ht−1

h=h′+1 h ≤
∑Ht−1

h=1 h = Ht(Ht−1)
2 , and (c) uses

L2γ2
tHt(Ht − 1) ≤ 1

2 . Hence, Eq. (36) can be proved by rearranging the inequality above.
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Therefore, we can prove Eq. (37) by summing Eq. (36) over k ∈ H as follows.∑
k∈H

Vt,k ≤2γ2
tH

2
t (Ht − 1)

∑
k∈H

∥∇ℓk(wt)∥2

≤4γ2
tH

2
t (Ht − 1)

∑
k∈H

[
∥∇ℓk(wt)−∇ℓH(wt)∥2 + ∥∇ℓH(wt)∥2

]
≤4γ2

t |H|H2
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
,

where the final ≤ uses Assumption 3.

Lemma 4. Define the following quantity obtained from Algorithm 1.

∆t
def
=

1

|H|
∑
k∈H

(w
(k)
t − wt)

Eq.(2)
= − γt

|H|
∑
k∈H

Ht−1∑
h=0

∇ℓk(w
(k)
t,h ). (39)

Suppose L2γ2
tHt(Ht − 1) ≤ 1

2 , the aggregator used in Algorithm 1 is (f, κ)-robust and Assumptions
2-3 hold. Then ∆t above satisfies the following two bounds.

∥wt+1 − wt −∆t∥2 ≤3κH2
t γ

2
tG

2[1 + 8L2Ht(Ht − 1)γ2
t ]

+ 24κL2H3
t (Ht − 1)γ4

t ∥∇ℓH(wt)∥2, (40)

∥∆t +Htγt∇ℓH(wt)∥2 ≤4L2γ4
tH

3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
, (41)

Proof. Since A is an (f, κ)-robust aggregator (f = n− |H|) by Definition 1, we can prove Eq. (40)
as follows.

∥wt+1 − wt −∆t∥2

=∥A({w(k)
t − wt}nk=1)−∆t∥2

≤ κ

|H|
∑
k∈H

∥w(k)
t − wt −∆t∥2

(a)
=

κ

|H|
∑
k∈H

∥∥∥− γt

Ht−1∑
h=0

∇ℓk(w
(k)
t,h ) +

γt
|H|

∑
k′∈H

Ht−1∑
h=0

∇ℓk′(w
(k′)
t,h )

∥∥∥2
=
κγ2

t

|H|
∑
k∈H

∥∥∥Ht−1∑
h=0

[
∇ℓk(w

(k)
t,h )−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h )

]∥∥∥2
≤κHtγ

2
t

|H|
∑
k∈H

Ht−1∑
h=0

∥∥∥∇ℓk(w
(k)
t,h )−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h )

∥∥∥2
=κHtγ

2
t

Ht−1∑
h=0

1

|H|
∑
k∈H

∥∥∥∇ℓk(w
(k)
t,h )−

1

|H|
∑
k′∈H

∇ℓk′(w
(k′)
t,h )

∥∥∥2
≤3κHtγ

2
t

Ht−1∑
h=0

1

|H|
∑
k∈H

[∥∥∥∇ℓk(wt)−
1

|H|
∑
k′∈H

∇ℓk′(wt)
∥∥∥2

+
∥∥∥∇ℓk(w

(k)
t,h )−∇ℓk(wt)

∥∥∥2 + ∥∥∥ 1

|H|
∑
k′∈H

[∇ℓk′(wt)−∇ℓk′(w
(k′)
t,h )]

∥∥∥2]
(b)

≤3κH2
t γ

2
tG

2 +
3L2κHtγ

2
t

|H|

Ht−1∑
h=0

∑
k∈H

∥w(k)
t,h − wt∥2

+ 3κHtγ
2
t

Ht−1∑
h=0

1

|H|
∑
k′∈H

∥∇ℓk′(wt)−∇ℓk′(w
(k′)
t,h )∥2

(c)

≤3κH2
t γ

2
tG

2 +
6L2κHtγ

2
t

|H|
∑
k∈H

Vt,k
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(d)

≤3κH2
t γ

2
tG

2 +
6L2κHtγ

2
t

|H|
· 4γ2

t |H|H2
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
=3κH2

t γ
2
tG

2[1 + 8L2Ht(Ht − 1)γ2
t ] + 24κL2H3

t (Ht − 1)γ4
t ∥∇ℓH(wt)∥2,

where (a) uses Eqs. (2) and (39), (b) uses Assumptions 2-3, (c) uses Assumption 2 and defines
Vt,k

def
=

∑Ht−1
h=0 ∥w(k)

t,h − wt∥2, (d) uses Eq. (37).

Then we prove Eq. (41) as follows.

∥∆t +Htγt∇ℓH(wt)∥2

(a)
=
∥∥∥Htγt
|H|

∑
k∈H

∇ℓk(wt)−
γt
|H|

∑
k∈H

Ht−1∑
h=0

∇ℓk(w
(k)
t,h )

∥∥∥2
=H2

t γ
2
t

∥∥∥ 1

Ht|H|
∑
k∈H

Ht−1∑
h=0

[∇ℓk(wt)−∇ℓk(w
(k)
t,h )]

∥∥∥2
≤H2

t γ
2
t · 1

Ht|H|
∑
k∈H

Ht−1∑
h=0

∥∇ℓk(wt)−∇ℓk(w
(k)
t,h )∥

2

(b)

≤ L2Htγ
2
t

|H|
∑
k∈H

Ht−1∑
h=0

∥w(k)
t,h − wt∥2

(c)
=
L2Htγ

2
t

|H|
∑
k∈H

Vt,k

(d)

≤4L2γ4
tH

3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
,

where (a) uses Eqs. (1) and (39), (b) uses Assumption 2, (c) defines Vt,k
def
=

∑Ht−1
h=0 ∥w(k)

t,h − wt∥2,
and (d) uses Eq. (37).

Lemma 5. For any 0 ≤ x < 1, we have

log(1− x) ≤ −x (42)

Proof. Denote the function g(x) = log(1 − x), which has derivatives g′(x) = (x − 1)−1 and
g′′(x) = −(x− 1)−2. Then based on the Taylor’s theorem, there exists θ ∈ [0, 1] such that

log(1− x) = g(x) = g(0) + g′(0)x+
1

2
g′′(θx)x2 = −x− x2

2(1− θx)2
≤ −x.

E.2 REMAINING PROOF OF THEOREM 5

Using L-smoothness of ℓH, we have

ℓH(wt+1)

≤ℓH(wt) + ⟨∇ℓH(wt), wt+1 − wt⟩+
L

2
∥wt+1 − wt∥2

≤ℓH(wt)+⟨∇ℓH(wt), wt+1−wt−∆t⟩+⟨∇ℓH(wt),∆t⟩+L∥wt+1−wt−∆t∥2+L∥∆t∥2

(a)

≤ ℓH(wt) +
Htγt
4

∥∇ℓH(wt)∥2 +
1

Htγt
∥wt+1 − wt −∆t∥2 +

1

2Htγt
∥∆t +Htγt∇ℓH(wt)∥2

− Htγt
2

∥∇ℓH(wt)∥2 −
1

2Htγt
∥∆t∥2 + L∥wt+1 − wt −∆t∥2 + L∥∆t∥2

(b)

≤ℓH(wt)−
Htγt
4

∥∇ℓH(wt)∥2 −
( 1

2Htγt
− L

)
∥∆t∥2
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+
1

2Htγt
· 4L2γ4

tH
3
t (Ht − 1)

[
G2 + ∥∇ℓH(wt)∥2

]
+
(
L+

1

Htγt

){
3κH2

t γ
2
tG

2[1 + 8L2Ht(Ht−1)γ2
t ] + 24κL2H3

t (Ht−1)γ4
t ∥∇ℓH(wt)∥2

}
(c)

≤ℓH(wt)−
Htγt
4

[
1− 8L2γ2

tHt(Ht − 1)− 96κL2Ht(Ht − 1)γ2
t

]
∥∇ℓH(wt)∥2

+G2Htγt{2L2γ2
tHt(Ht − 1) + 3κ(1 + LHtγt)[1 + 8L2Ht(Ht − 1)γ2

t ]}, (43)

where (a) uses ⟨u, v⟩ ≤ Htγt

4 ∥u∥2 + 1
Htγt

∥v∥2 for u = ∇ℓH(wt) and v = wt+1 −wt −∆t, as well
as ⟨∇ℓH(wt),∆t⟩ = ⟨u, v⟩ = 1

2 (∥u+v∥2−∥u∥2−∥v∥2) for u =
√
Htγt∇ℓH(wt) and v = ∆t√

Htγt
,

(b) uses Eqs. (40)-(41), (c) uses γt ≤ 1
2LHt

.

Select constant hyperparameters γt = γ and Ht = H such that

L2γ2H(H − 1) ≤ min
( 1

32
,

1

384κ

)
, γ ≤ 1

2LH
. (44)

Then Eq. (43) simplifies into

ℓH(wt+1) ≤ ℓH(wt)−
Hγ

16
∥∇ℓH(wt)∥2+G2Hγ

[
2L2γ2H(H−1) + 3κ

(
1+

1

2

)(
1+

1

4

)]
. (45)

Telescoping Eq. (45) above over t = 0, 1, . . . , T − 1, we have

ℓ∗ ≤ ℓH(wT ) ≤ ℓH(w0)−
Hγ

16

T−1∑
t=0

∥∇ℓH(wt)∥2 + TG2Hγ
[
2L2γ2H(H − 1) +

45κ

8

]
.

Rearranging the inequality above, we prove the convergence rate (14) as follows.

1

T

T−1∑
t=0

∥∇ℓH(wt)∥2 ≤ 16

THγ
[ℓH(w0)− ℓ∗] +G2[32L2γ2H(H − 1) + 90κ]

≤16cLH

T 2/3
[ℓH(w0)− ℓ∗] +G2

[32(H − 1)

c2HT 2/3
+ 90κ

]
≤16cLH[ℓH(w0)− ℓ∗] +G2

T 2/3
+ 90κG2,

where we select the stepsize γ = 1
c′LHT 1/3 with c′ = max(4

√
2,
√
384κ) which satisfies the

conditions in Eq. (44).

Furthermore, suppose Assumption 4 holds, that is,

∥∇ℓH(w)∥2 ≥ 2µ(ℓH(w)− ℓ∗).

Substituting the inequality above into Eq. (45).

ℓH(wt+1)− ℓ∗ ≤
(
1− Hγµ

8

)
[ℓH(wt)− ℓ∗] +G2Hγ

[
2L2γ2H(H − 1) +

45κ

8

]
.

Iterating the inequality above over t = 0, 1, . . . , T − 1, we have

ℓH(wT )− ℓ∗ ≤
(
1− Hγµ

8

)T

[ℓH(w0)− ℓ∗] +
G2

µ

[
16L2γ2H(H − 1) + 45κ

]
(a)

≤ exp
[
T log

(
1− µ

8c′LT 1−β

)]
[ℓH(w0)− ℓ∗] +

16G2

µc′2T 2−2β
+

45κG2

µ
(b)

≤ exp
[
T
(
− µ

8c′LT 1−β

)]
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ

≤ exp
(
− µT β

8c′L

)
[ℓH(w0)− ℓ∗] +

G2

2µT 2−2β
+

45κG2

µ
,

where (a) uses the stepsize γ = 1
c′LHT 1−β , (b) uses Lemma 5 and c′ ≥ 4

√
2.
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Table 4: Architecture of ResNet-20 with Group Normalization (GN) for CIFAR-10

Stage Output Size Layers

Input 32× 32 3× 3 conv, 16 filters, stride 1

Stage 1 32× 32 3 × [ 3× 3 conv, 16 filters + GN(G = 4) + ReLU ]
Stage 2 16× 16 3 × [ 3× 3 conv, 32 filters + GN(G = 8) + ReLU ]
Stage 3 8× 8 3 × [ 3× 3 conv, 64 filters + GN(G = 8) + ReLU ]

Output 1× 1 Global average pooling, FC-10, softmax

F EXPERIMENT DETAILS

F.1 DIRICHLET-BASED PARTITION STRATEGIES

We adopt the Dirichlet-based partitioning scheme (Wang et al., 2020b) to simulate heterogeneous
client data distributions for CIFAR-10. Specifically, we partition each dataset across clients using a
Dirichlet-based distribution over class labels. In this setting, both the number of data points and the
class proportions are imbalanced across clients. Specifically, we simulate a heterogeneous partition
into n clients by drawing class proportions from a Dirichlet distribution:

(p1,k, p2,k, . . . , p10,k) ∼ Dir(α1, α2, . . . , α10),

where pc,k denotes the proportion of training instances of class c ∈ {1, 2, . . . , 10} assigned to client
k.The distribution Dir10(·) is the 10-dimensional Dirichlet distribution. We set α1 = α2 = · · · =
αK = α to induce heterogeneity.

As a property of the Dirichlet distribution, when αk < 1, the sampled class proportions tend to concen-
trate near the corners and edges of the probability simplex, so that clients receive data from only a few
dominant classes, thereby simulating severe label imbalance and statistical heterogeneity—common
characteristics of practical federated learning environments.

Based on the sampled proportions {pc,k}, we allocate the training data to each client accordingly.
For evaluation, we use the original test set from each dataset as a global test set to ensure a fair
comparison across all methods.

The number of training samples per client is the same across 16 clients. Since CIFAR-10 has 50,000
training examples, we assign each client 50, 000/16 = 3, 125 training samples.

F.2 MODEL DETAILS

Table 4 presents the detailed architecture of ResNet-20 with group normalization.

F.3 TRAIN SCHEMES

Preprocess of CIFAR-10: For preprocessing the images in the CIFAR-10 datasets, we follow the
standard data augmentation and normalization procedures. Specifically, we apply random cropping
and horizontal flipping for data augmentation. For normalization, each color channel is standardized
by subtracting the mean and dividing by the standard deviation of that channel. This ensures that the
input images have zero mean and unit variance per channel, which is a common practice to stabilize
and accelerate training.

Local Update: We perform one epoch of local updates per client when α = 0.1, and two epochs of
local updates per client when α = 1, 10. Note that each epoch consists of multiple mini-batch SGD
iterations, where each SGD step uses a batch size of 64. Therefore, we run FedRo with

H =
⌊
1×3125

64

⌋
= 49

local SGD steps per round for α = 0.1, and with
H =

⌊
2×3125

64

⌋
= 98
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local SGD steps per round for α = 1, 10.

Weight Decay: We use L2 weight decay, i.e., and apply SGD to the cross-entropy loss with L2
regularizer µ

2 ∥w∥
2
2 of the model parameter w ∈ Rd. In our experiments, we set µ = 5× 10−4.

Learning Rate Schedule: We use a step-wise diminishing learning rate schedule as follows.

γt =


γ0, 0 ≤ t < T

2 ,

0.1 γ0,
T
2 ≤ t < 3T

4 ,

0.01 γ0,
3T
4 ≤ t ≤ T,

(46)

where T denotes the total number of communication rounds, and γ0 is fine-tuned from
{0.5, 0.2, 0.1, 0.05}.
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