
Article

Improvising Singular
Value Decomposition by
KNN for Use in Movie
Recommender Systems

Sukanya Patra1

Boudhayan Ganguly2

Abstract

Online recommender systems are an integral part of e-commerce. There are
a plethora of algorithms following different approaches. However, most of the
approaches except the singular value decomposition (SVD), do not provide
any insight into the underlying patterns/concepts used in item rating. SVD
used underlying features of movies but are computationally resource-heavy
and performs poorly when there is data sparsity. In this article, we perform
a comparative study among several pre-processing algorithms on SVD. In
the experiments, we have used the MovieLens 1M dataset to compare the
performance of these algorithms. KNN-based approach was used to find out
K-nearest neighbors of users and their ratings were then used to impute the
missing values. Experiments were conducted using different distance measures,
such as Jaccard and Euclidian. We found that when the missing values were
imputed using the mean of similar users and the distance measure was Euclidean,
the KNN-based (K-Nearest Neighbour) approach of pre-processing the SVD
was performing the best. Based on our comparative study, data managers can
choose to employ the algorithm best suited for their business.

Keywords

Recommender systems, e-commerce, KNN (K-Nearest Neighbour), singular
value decomposition, Jaccard distance

Journal of Operations
and Strategic Planning

2(1) 22–34, 2019
 2019 International Management

Institute, Kolkata
SAGE Publications

sagepub.in/home.nav
DOI: 10.1177/2516600X19848956

http://journals.sagepub.com/home/osp

1 Department of Information Technology, Government College of Engineering and Leather Technology,
Kolkata, West Bengal, India.
2 Operations and Technology Management Area, International Management Institute, Kolkata, West
Bengal, India.

Corresponding author:
Boudhayan Ganguly, Operations and Technology Management Area, International Management Institute,
2/4C, Judges Court Road, Alipore, Kolkata 700027, West Bengal, India.
E-mail: b.ganguly@imi-k.edu.in

http://crossmark.crossref.org/dialog/?doi=10.1177%2F2516600X19848956&domain=pdf&date_stamp=2019-06-10

Patra and Ganguly 23

Introduction

A recommender system belongs to a category of information filtering mechanism
in which a user can predict the liking of an item, which could be a product or
service. The outcome of the recommender system is usually a score or preference
that the user might give to that item. According to Konstan and Riedl (2012), the
modern-day recommender systems interact directly with the users to find content,
products, and services by aggregating and analyzing ratings from other users,
mean reviews from various experts and users.

According to Ansari, Essegaier, and Kohli (2000), in the context of marketing,
recommender systems can act as a powerful promotional and decision-making
tool. Further, in the current era of handheld devices and mobile apps, right promo-
tional strategies can be directed towards matching users. Smith (2011) noted that
such steps can increase sales of products and improve customer retention among
fast-moving items. Recommender systems can also help companies in planning
adaptive television programs, personalized online show selection, and product
offerings. Thus, recommender systems are used to personalize the online store for
each customer.

From the computational perspective, recommendation systems may face mul-
tiple challenges. For example, when a new customer joins an e-commerce site for
the first time, there is no previous information available about that customer. This
is known as the cold start problem. Here some recommender systems such as
user-based collaborative filtering fails. Sometimes there is huge information for
existing customers according to their ratings and purchases. Size of their dataset
drastically increases as customer spend significant time in the system. It leads to
increased memory requirement and computation time thus making recommenda-
tion difficult. Thus, the field of e-commerce has witnessed the emergence of many
kinds of recommender systems trying to address these issues each with its own
strengths and weaknesses.

On and above this, one serious drawback of the aforementioned approaches is
the fact that they do not give insights into the rating patterns. For example, after
looking into several ratings from a user one cannot get an understanding on what
might have motivated the user to give such ratings. We believe that the singular
value decomposition (SVD) of the user rating matrix will give us insights into
such underlying concepts or patterns. However, the SVD does suffer from a draw-
back that it does not perform well when there are missing values in the rating
matrix. To overcome this we have pre-processed the data. At first we have used
KNN algorithm to identify the K-nearest neighbors of a given user and then based
on their ratings we have filled up the missing rating values of the user in question.
This article is divided into five sections. After the introduction we have presented
the extant literature in the second section followed by methodology and results. In
the last section we have provided conclusions and directions for future research.

24 Journal of Operations and Strategic Planning 2(1)

Literature Review

Most of prevalent collaborative filtering systems are built based on neighborhood
of likeminded customers by using, generally, Pearson correlation or cosine similar-
ity as a measure of proximity (Resnick, Iacovou, Suchak, Bergstrom, & Riedl,
1994; Sarwar, Karypis, Konstan, & Riedl, 2000; Shardanand & Maes, 1995). Two
types of recommendation emerge out of these proximity calculations. The first set
of approaches try predicting how much a customer likes a product depending on
the co-rated items between the customer and the calculated neighbors. Nevertheless,
some non-personalized prediction schemes are also there like computing the aver-
age ratings based on all users rating (Herlocker, Konstan, Terveen, & Riedl, 2004).
The other approach use top-N recommendation generation, that is, recommending
a list of “N” products for the customer based on the neighbors, the algorithm selects
the products which the customers are most likely to consider.

In spite of getting success in several domains, they have shown some severe
limitations like that of sparsity. Nearest neighbor algorithms tend to lose coverage
and accuracy as they depend upon exact matches (Konstan et al., 1997). Billsus
and Pazzani (1998) noted that since correlation coefficient can be computed only
for the users who have rated minimum of two same products, many pairs of users
are left out. In a real life situation, a large product set is used in which active users
may have rated a very few number of products which sometimes results to reduced
convergence. In this case Pearson nearest neighbor algorithm may fail to predict
recommendation for a specific user.

Moreover, the accuracy is compromised due to the presence of fairly less rat-
ings data. Besides, most of the recommendation systems suffer from serious scal-
ability issues as the computation of nearest neighbors grow in dimension with the
increase in either customer or product.

Recommender systems in real world deals with a large amount of sparsity or unob-
served value. Since zero values have certain meaning in case of rating matrix, estimat-
ing the missing values to zero provides wrong predictions. Thus, an alternative
approach would be to use some prediction algorithm for imputation of missing values.
The most common approach is to fill up those values with column or row means. The
full matrix thus obtained can be then used for SVD calculation although an efficient
way would be to re-center the matrix before proceeding with the SVD calculations
(Rendle & Schmidt-Thieme, 2008). However, as mean ignores the underlying correla-
tion of data, it sacrifices accuracy (Schmitt, Mandel, & Guedj, 2015).

The objectives of the study is twofold.
First of all, we propose a method for improving the performance of SVD

matrix in the context of recommender systems. This is done by using the KNN
algorithm for classification.

Our second objective is to test the approach for a range of values of K for which the
performance of the improvised method is significantly better than the normal SVD.

Patra and Ganguly 25

Methodology

Data Source

We used the movie ratings dataset MovieLens 1M available at MovieLens, which
is also available for public use. To keep the recommender consistent with time and
minimum code changes, we used the standard 1 million dataset. It contains
1,000,209 anonymous movie ratings tagged by 6,040 users across 3,900 movies
in the year 2000. The user-id ranges between 1 and 6040 while the movie-id
ranges between 1 and 3952. The ratings are made on integral values only with a
5-star Likert-scale. Data is available in four files: links.csv, movies.csv, ratings.
csv, and tags.csv. We used movies.csv and ratings.csv to execute the recommen-
dation algorithms in this article.

Machine Configuration

The experiments were carried out on a 64-bit Windows 10 machine with 8 GB
RAM, and Intel Core i3 4010U processor with 1.70 GHz clock speed. Additionally,
we recorded the performance of the algorithms and reported their execution time
for performance comparison.

Data Pre-processing

The main aim was to improve the performance of SVD algorithm implemented in
recommender lab package in terms of time, precision, and accuracy. For this pur-
pose, first we calculated two distance matrices using two different distance met-
rics namely, Jaccard and Euclidean.

The Jaccard similarity index (also known as the Jaccard similarity coefficient)
is used to compare members of two sets to find distinct and shared members in
them. Its value ranges from 0% to 100% and signifies the similarity between the
two sets under consideration. It is calculated by

Jaccard Index
the number of shared members

total number
=

()
oof members() ×100

In notation, it is denoted as

J X Y
X Y

X Y
,() = ∩

∪
Jaccard distance on the other hand measures the degree of dissimilarity between
two sets. It is the complement of Jaccard Index. In set notation, it is expressed as

D X Y J X Y, ,() = − ()1

Euclidean distance or Euclidean metric is measured as the distance between two
points in the Euclidean space. Therefore, if p p p pn= ()1 2, , , and
q q q qn= ()1 2, , , are two points in Euclidean n-space in Cartesian coordinates,
the distance (d) between them is given by Pythagorean formula,

26 Journal of Operations and Strategic Planning 2(1)

d p q d q p q p q p q pn n, ,() = () = −() + −() + … + −()1 1

2

2 2

2 2

= −()
=
∑
i

n

i iq p
1

2

Second, the distance matrices were used to find K-nearest neighbors using the
KNN algorithm from the fast KNN library. A range of values of K was used to test
the performance of the algorithm. At first K was set to 10, then 20 and finally to 50.
In each case, the information of the nearest neighbors were utilized to remove the
sparsity of the rating matrix to some extent. For this purpose, mean and mode of
the ratings given by the nearest neighbors were used to fill up the empty spaces in
the original rating matrix resulting in total four separate rating matrices. In the first
two rating matrices the nearest neighbors were calculated using the distance matrix
in which Jaccard distance was employed as the distance metric and mean and mode
were applied to them, respectively. Similarly, in the next two rating matrices the
nearest neighbors were calculated using the distance matrix in which Euclidean
distance was employed as the distance metric and mean and mode were applied to
them, respectively. SVD Funk algorithm from the recommender library was used
separately on the four rating matrices. In this study, we performed a 5-fold cross-
validation, which means that out of five subsamples, four are used for training the
model, and the remaining one is retained for validation. The entire process is
repeated five times, or equal to the number of folds defined in the model.

Table 1. Data Pre-processing for SVD algorithm

#Converting to binary scale for
Jaccard
for each row in result do
for each column in result do
if result[row, column] greater than 0
then
result[row, column] = 1
else
result[row, column] = 0
end for
end for

Removing sparsity in the rating Rating
Matrix
createMatrix(nearestNeighbour[userID,
noOfNearestNehigbours])
Reducing sparsity using Jaccard distance
and mode
similarityMatrix =
createSimilaritymatrix(result,
method=”jaccard”)
for each userID do
nearestNeighbour[userID,] =
findKNearestNeighbour(k, similarityMatrix)
end for
for each row in ratings do
for each column in ratings do
if ratings[row, column is empty] then
ratings[row, column] = mode(ratings[nearest
Neighbour[row,]])
end if
end for
end for

(Table 1 Continued)

Patra and Ganguly 27

Reducing sparsity using Euclidean
distance and mean
similarityMatrix =
createSimilaritymatrix(result,
method=”euclidean”)
for each userID do
 nearestNeighbour[userID,]
= findKNearestNeighbour(k,
similarityMatrix)
end for
for each row in ratings do
for each column in ratings do
if ratings[row, column is empty] then
ratings[row, column] = mean(ratings[n
earestNeighbour[row,]])
end if
end for
end for

Reducing sparsity using Euclidean distance
and mode
similarityMatrix =
createSimilaritymatrix(result,
method=”euclidean”)
for each userID do
nearestNeighbour[userID,] =
findKNearestNeighbour(k, similarityMatrix)
end for
for each row in ratings do
for each column in ratings do
if ratings[row, column is empty] then
ratings[row, column] = mode(ratings[nearest
Neighbour[row,]])
end if
end for
end for

Reducing sparsity using Euclidean
distance and median
similarityMatrix =
createSimilaritymatrix(result,
method=”euclidean”)
for each userID do
 nearestNeighbour[userID,]
= findKNearestNeighbour(k,
similarityMatrix)
end for
for each row in ratings do
for each column in ratings do
if ratings[row, column is empty] then
ratings[row, column] = median(ratings
[nearestNeighbour[row,]])
end if
end for
end for

Source: Data Pre-processing for SVD algorithm.

Empirical Findings

We explored the recommender data for a count of scores in each rating cate-
gory, average score per user, average score per item, and a combined average
of the ratings. The median score is 3.744 across 6,040 users and 3.33 across
3,900 movies.

After pre-processing of data with Jaccard distance and Euclidian distance the
data in terms of rating matrix becomes in a new format which is shown below.

(Table 1 Continued)

28 Journal of Operations and Strategic Planning 2(1)

Figure 1. Confusion Matrix for the Recommendation Problem

Source: The authors.

A confusion matrix is a specific table that allows visualization of the
performance of a machine-learning algorithm, typically a supervised one and
often in the problem of statistical classification. Each row represents the
instances in an actual class while each column of the matrix represents the
instances in a predicted class (or vice versa). The confusion matrix is also
known as an error matrix.

TPR
TP

TP FN
= +

True-positive rate (TPR) is also known as sensitivity or probability of detection in
machine learning.

Figure 2a. ROC Curve for K = 10

Source: The authors.

Patra and Ganguly 29

Figure 2b. Precision Recall Curve for K = 10

Source: The authors.

FPR
FP

FP TN
= +

The false-positive rate (FPR) is also known as the fall-out or probability of false
alarm.

The diagnostic ability of a binary classifier system, as its discrimination thresh-
old is varied, is illustrated by a graphical plot in statistics known as a receiver
operating characteristic (ROC) curve . At various threshold settings the plot of the
TPR against the FPR creates the ROC curve (Bobadilla, Ortega, Hernando, &
Gutiérrez, 2013). Thus the ROC curve is the sensitivity as a function of fall-out.

Figure 3a. ROC Curve for K = 20

Source: The authors.

30 Journal of Operations and Strategic Planning 2(1)

Figure 3b. Precision Recall Curve for K = 20

Source: The authors.

We plot the ROC curve in with the area under the ROC curve serving as our
performance indicator.

Our results suggest that that “SVD with Jaccard Mode” algorithm performs
best in terms of correct movie prediction using user-based similarity. The “SVD
with Ecludian Mean” algorithm is also close to it in terms of performance. Thus,
from our study it is clear that with improvisation such as pre-processing the user
rating matrix with filling up of missing values help us in significantly improving
the performance of the SVD algorithm. The performance in terms of accuracy
and precision is clearly better with larger values of K. So, we believe that with
larger datasets the pre-processing of SVD would give even better results. From
Table 2 it is also clear that as we increase K the time taken by the algorithm
increases only minimally.

Figure 4a. ROC Curve for K = 50

Source: The authors.

Patra and Ganguly 31

(Table 2 Continued)

Figure 4b. Precision Recall Curve for K = 50

Source: The authors.

Table 2. Performance of the KNN-based Methods of Data Imputation in SVD with
Different Values of K

Algorithm K
SVDF-run Fold/Sample [Model

Time/Prediction Time]

SVD NA 1 [174.09s/23.24s]
2 [267.79s/23.46s]
3 [199.23s/23.11s]
4 [226.81s/24.65s]
5 [230.99s/23.35s]

SVD using Euclidian mean 10 1 [301.86s/25.13s]
2 [238.91s/23.9s]
3 [271.67s/23.29s]
4 [224.08s/24.09s]
5 [216.18s/23.58s]

SVD using Euclidian
median

10 1 [287.29s/22.48s]
2 [241.82s/22.49s]
3 [306.87s/22.45s]
4 [297.07s/22.28s]
5 [262.76s/22.14s]

SVD using Euclidian mode 10 1 [331.88s/23.03s]
2 [320.89s/22.82s]
3 [327.8s/22.7s]

4 [327.64s/22.69s]
5 [304.04s/24.99s]

SVD using Jaccard mode 10 1 [282.77s/23.5s]
2 [281.94s/31.8s]
3 [283.97s/26.7s]
4 [291.95s/23.78s]
5 [289.25s/23.67s]

32 Journal of Operations and Strategic Planning 2(1)

Algorithm K
SVDF-run Fold/Sample [Model

Time/Prediction Time]

SVD using Euclidian mean 20 1 [290.3s/24.21s]
2 [338.76s/23.87s]
3 [339.34s/23.54s]
4 [338.6s/23.22s]
5 [268.96s/23.35s]

SVD using Euclidian
median

20 1 [264.68s/23.6s]
2 [297.14s/23.78s]
3 [302.3s/22.12s]
4 [301.35s/23.48s]
5 [234.84s/23.63s]

SVD using Euclidian mode 20 1 [344.11s/24.07s]
2 [330.38s/23.94s]
3 [344.12s/24.71s]
4 [348.54s/22.55s]
5 [314.8s/23.03s]

SVD using Jaccard mode 20 1 [311.92s/26.85s]
2 [289.4s/26.09s]
3 [283.58s/24.22s]
4 [289.66s/25.38s]
5 [314.64s/23.97s]

SVD using Euclidian mean 50 1 [326.95s/25.19s]
2 [350.32s/25.12s]
3 [354.43s/24.73s]
4 [247.5s/24.2s]

5 [274.14s/25.04s]

SVD using Euclidian
median

50 1 [264.56s/23.42s]
2 [278.54s/23.46s]
3 [289.24s/23.02s]
4 [195.92s/23.36s]
5 [221.67s/23.53s]

SVD using Euclidian mode 50 1 [291.04s/23.08s]
2 [292s/25.53s]

3 [312.02s/23.06s]
4 [291.66s/23.05s]
5 [266.2s/22.89s]

SVD using Jaccard mode 50 1 [314.39s/23.45s]
2 [313.48s/24.61s]
3 [314.17s/23.33s]
4 [243.12s/23.22s]
5 [321.14s/23.17s]

Source: The authors.

(Table 2 Continued)

Patra and Ganguly 33

Managerial Implications and Scope of Future Work

There has been an increase in social media relationship-based research studies
that rely heavily on recommender systems. There has also been an increase in
development of hybrid techniques which combine different aspects of various
types of recommender systems to achieve results that are best suited for different
domains. We believe that our reliance on recommender systems shall increase in
the years to come. One of the drawbacks of typical recommender system based on
user-based collaborations is that they fail to provide insights into the motivation
of users for giving movie ratings. The SVD of the rating matrix does help us to
identify some latent pattern in the ratings. The first matrix gives us the informa-
tion about how the users have liked the underlying themes/concepts of the items
(movies in our study) that they have rated. The second matrix tells us the strength
of the concepts and the third provides us insights on how the concepts are linked
with the items/movies. Thus, SVD-based approaches are better suited for recom-
mendation when one’s objective is to get insights into the ratings.

However, one drawback of SVD is that of imputing missing value. There have
been a number of studies that have tried to address this issue but each of them had
their own drawbacks. This article addressed this issue partly by filling the missing
values based on what K-nearest neighbors of the user have done. The neighbors
were identified using the KNN approach. Our approach has given better results
compared to the SVD with imputation of user’s average.

We further note that SVD is a “resource hungry” algorithm. However, with a
believe that with time computational resources will become cheaper and with
some improvisations the popularity of SVD will also increase along with those
algorithms that are more resource heavy.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication
of this article.

References
Ansari, A., Essegaier, A., & Kohli, R. (2000). Internet recommendation systems. Journal

of Marketing Research, 37(3), 363–375.
Billsus, D., & Pazzani, M. J. (1998). Learning collaborative information filters. In

Proceedings of international conference on machine learning (pp. 46–54). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-Based Systems, 46, 109–132.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating
collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1), 5–53.

34 Journal of Operations and Strategic Planning 2(1)

Konstan, J. A., & Riedl, J. (2012). Recommender systems: From algorithms to user
experience. User Modeling and User-Adapted Interaction, 22(1), 101–123.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997).
Grouplens: Applying collaborative filtering to Usenet news. Communications of the
ACM, 40(3), 77–87.

Rendle, S., & Schmidt-Thieme, L. (2008). Online-updating regularized kernel matrix
factorization models for large-scale recommender systems. In Proceedings of the 2008
ACM conference on recommender systems (pp. 251–258). Lausanne, Switzerland: ACM.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An
open architecture for collaborative filtering of Netnews. In Proceedings of the 1994
ACM conference on computer supported cooperative work (pp. 175–186). New York,
NY: ACM.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation
algorithms for e-commerce. In Proceedings of the 2nd ACM conference on electronic
commerce (pp. 158–167). Minneapolis, Minnesota.

Schmitt, P., Mandel, J., & Guedj, M. (2015). A comparison of six methods for missing data
imputation. Journal of Biometrics and Biostatistics, 6(1), 1–6.

Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating
“word of mouth”. In Proceedings of CHI ’95 (pp. 210-217). Denver, CO.

Smith, K. T. (2011). Digital marketing strategies that Millennials find appealing, motivating,
or just annoying. Journal of Strategic Marketing, 19(6), 489–499.

