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Abstract

Multimodal Large Language Models (MLLMs)
have achieved impressive advances, yet object
hallucination remains a persistent challenge.
Existing methods, based on the flawed assump-
tion that omission and fabrication hallucina-
tions share a common cause, often reduce omis-
sions only to trigger more fabrications. In this
work, we overturn this view by demonstrating
that omission hallucinations arise from insuffi-
cient confidence when mapping perceived vi-
sual features to linguistic expressions, whereas
fabrication hallucinations result from spurious
associations within the cross-modal representa-
tion space due to statistical biases in the train-
ing corpus. Building on findings from visual
attention intervention experiments, we propose
the Visual-Semantic Attention Potential Field,
a conceptual framework that reveals how the
model constructs visual evidence to infer the
presence or absence of objects. Leveraging
this insight, we introduce VPFC, a plug-and-
play hallucination mitigation method that ef-
fectively reduces omission hallucinations with-
out introducing additional fabrication hallucina-
tions. Our findings reveal a critical oversight in
current object hallucination research and chart
new directions for developing more robust and
balanced hallucination mitigation strategies.

1 Introduction

Multimodal Large Language Models (Liu et al.,
2023a; Touvron et al., 2023; Liu et al., 2024a)
have achieved significant advancements in visual-
language tasks. Nevertheless, the problem of object
hallucination remains unresolved. Object halluci-
nation can be categorized into two types: omission
hallucination, where the model fails to identify
or describe objects present in the visual input, and
fabrication hallucination, where the model erro-
neously generates information about objects that
do not exist in the input. Existing studies gener-
ally suggest that the causes of both types of hal-

lucination are similar, primarily attributed to over-
reliance on statistical bias and unimodal priors.
Under this unified cause hypothesis, current miti-
gation methods(Leng et al., 2024) typically employ
a single strategy to address both omission and fab-
rication hallucinations simultaneously. However,
empirical results indicate that these methods often
achieve only limited success in reducing omission
hallucinations, and do so at the cost of exacerbat-
ing fabrication hallucinations, thereby revealing the
limitations of current approaches in understanding
the underlying mechanisms. This paper proposes
that omission and fabrication hallucinations differ
fundamentally in their underlying mechanisms.
Section 3.1 reveals that the cause of omission
hallucinations lies not only in the limited ability
of the visual encoder to recognize fine-grained ob-
jects but also in the fact that, even when the MLLM
successfully captures the visual features of a spe-
cific object during the visual perception phase, the
model’s confidence in these features remains low
during the process of mapping them to linguistic
symbols. Therefore, during the generation phase,
the model is unable to confidently express the iden-
tified objects, leading to omission hallucinations.
In contrast, Fabrication hallucinations primar-
ily stem from erroneous associations within the
cross-modal joint representation space, as elabo-
rated in Section 3.2. During training, due to the fre-
quent co-occurrence of certain object combinations
in large-scale corpora, MLLMs establish overly
strong and sometimes unreasonable connections be-
tween visual features and semantic concepts. When
the visual input contains only a subset of the as-
sociated objects, the model, influenced by joint
distribution biases, mistakenly activates descrip-
tions of additional, non-existent objects, leading to
fabrication hallucinations.
In Section 3.3, we examine the mapping from
visual features to semantic concepts through atten-
tion intervention experiments, investigating how



the model constructs visual evidence to infer the
presence or absence of objects. Building on this
analysis, we propose the concept of the Visual-
Semantic Attention Potential Field: each visual
token is embedded within a potential field, where
High-Credibility Visual Regions lie at the bottom
of potential valleys, facilitating object confirma-
tion, while Low-Credibility Visual Regions occupy
the peaks, making confirmation more difficult and
biasing the model toward negation.

Building on the above insights, we introduce
a plug-and-play hallucination mitigation method
in Section 4, called Visual Potential Field Cali-
bration (VPFC). VPFC operates by recalibrating
the confidence assigned to visual evidence dur-
ing the mapping from visual features to semantic
concepts, specifically with respect to object exis-
tence. This strategy effectively reduces omission
hallucinations while avoiding the introduction of
fabrication hallucinations. Extensive experiments
on multiple benchmarks, including POPE, MM-
Hallucination, CHAIR, and LLaVA-Bench, demon-
strate that VPFC achieves State-of-the-Art perfor-
mance among training-free mitigation approaches.

In summary, our contributions are as follows:

* We challenge the common assumption that omis-
sion and fabrication hallucinations share the
same underlying cause. While existing meth-
ods can reduce omission hallucinations, we ob-
serve that they often simultaneously exacerbate
fabrication hallucinations.

* We conduct an investigation into the distinct
mechanisms behind these two types of hallucina-
tions. Our analysis reveals that omission halluci-
nations stem from insufficient confidence in the
mapping of visual features, whereas fabrication
hallucinations result from erroneous associations
within the cross-modal representation space.

* We introduce the concept of the Visual-Semantic
Attention Potential Field, which illustrates how
the model constructs visual evidence to infer
the presence or absence of objects. Building
on this foundation, we propose a plug-and-play
hallucination mitigation method, VPFC, which
effectively reduces omissions while avoiding the
introduction of additional fabrications.

2 Motivation: Beyond the Assumption of
Unified Hallucination Causes

Object hallucinations fall into two types: omission
hallucination, where the model misses existing

objects in the visual input, and fabrication hallu-
cination, where it describes non-existent objects.
Current methods for mitigating hallucinations in
MLLMs are generally founded on a unified assump-
tion: that both omission hallucinations and fabri-
cation hallucinations stem from the same under-
lying causes, namely the model’s overreliance on
statistical biases and unimodal priors during gener-
ation. However, this understanding presents clear
limitations. In reality, omissions and fabrications
may fundamentally differ in their generative mech-
anisms.
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Figure 1: Effects of Visual Contrastive Decoding on the
Mitigation and Aggravation of Hallucinations.

Strategies rooted in this unified framework typi-
cally seek to address both hallucination types con-
currently using the same intervention. For example,
Visual Contrastive Decoding (VCD)(Leng et al.,
2024) contrasts outputs produced under original
versus distorted visual inputs as a corrective mecha-
nism to mitigate the model’s excessive dependence
on linguistic priors from integrated LL.Ms and sta-
tistical biases present in pretraining corpora. Nev-
ertheless, in practice, such methods reveal signif-
icant shortcomings: while they can partially alle-
viate omission hallucinations, they often trigger a
substantial increase in fabrication hallucinations,
thereby further compromising the reliability of
model outputs. In the following, we will demon-
strate this phenomenon through experiments.
Experimental Setup. LLaVA-v1.5-7B served as
the backbone MLLM, with greedy search utilized
for decoding. We conducted a systematic evalua-
tion of VCD, a well-established method for miti-
gating hallucinations, analyzing its impact on both
the mitigation and exacerbation of omission and
fabrication hallucinations. Evaluations were per-
formed using the COCO dataset within the POPE
Benchmark(Li et al., 2023c), which focuses on a
discriminative task assessing whether the object
referenced in a query is present in the visual input.
Experimental Results and Analysis. Figure 1
presents the effects of VCD in mitigating and exac-
erbating two types of hallucinations. While VCD



reduced omission hallucinations, it concurrently
triggered a notable rise in fabrication ones, par-
ticularly on the Adversarial subset, where overall
output quality deteriorated. These findings reveal
limitations of the unified causality hypothesis.

3 Analysis: Divergent Roots of Omission
and Fabrication Hallucinations

In this section, we systematically investigate the
causes of omission and fabrication hallucinations
through the use of attention maps and attention in-
tervention. In Section 3.1, we demonstrate that
omission hallucinations stem from insufficient
confidence in mapping perceived visual features
to corresponding linguistic expressions. In Sec-
tion 3.2, we reveal that fabrication hallucinations
originate from spurious associations within the
cross-modal representation space, largely driven
by statistical biases in the training corpus.

3.1 Cause of Omission Hallucinations

It is widely recognized that a primary cause of
omission hallucinations in MLLMs is the limited
capacity of their visual encoders, which often strug-
gle with the accurate recognition of fine-grained
objects. However, we demonstrate that, in many
instances, MLLMs have already encoded effective
visual features of the target objects within their la-
tent visual knowledge space, yet fail to articulate
this information in the generated textual output.
Kang et al. (2025) observe that certain atten-
tion heads in frozen MLLMs possess strong visual
grounding abilities. These heads, which reliably
identify object locations relevant to the accompa-
nying text, are referred to as localization heads.
Building on this insight, we leverage these local-
ization heads to investigate what visual features
are actually captured in the latent visual space of
MLLMs when omission hallucinations occur.
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Figure 2: The Cause Behind Omission Hallucinations.

Figure 2 illustrates a representative case of an
omission hallucination. In the visual input, a per-

son is holding a spoon. However, when prompted
with the question “Is there a spoon in the image?”,
the MLLM produces an omission hallucination by
incorrectly responding “no.” The prevailing expla-
nation attributes this failure to the small size of the
spoon, which supposedly prevents the visual en-
coder from capturing its features. Contrary to this
view, attention maps from the model’s localization
heads reveal that the model did, in fact, attend to
the correct region and successfully captured the
visual features of the spoon.

These findings suggest that omission hallucina-
tions often do not result from the model’s inability
to capture meaningful visual features via its visual
encoder. Instead, they arise during the mapping
from visual representations to semantic concepts,
where the model assigns low confidence to the vi-
sual evidence. Consequently, the model tends to
infer that the object is absent. We provide a more
detailed analysis of this mechanism in Section 3.3.

3.2 Cause of Fabrication Hallucinations

In contrast to omission hallucinations, fabrication
hallucinations occur when the model incorrectly
aligns certain visual features with semantic con-
cepts while assigning a high degree of confidence
to this misalignment. As illustrated in Figure 3,
when presented with an image containing a toilet
and asked “Is there a toilet in the image?”, the
model correctly identifies the visual features of the
toilet and maps them to the corresponding semantic
concept, yielding an accurate response. However,
when asked “Is there a sink in the image?”, the
model mistakenly interprets part of the toilet’s vi-
sual features as evidence of a sink, ultimately pro-
ducing the incorrect answer that a sink is present.

Fabrication Hallucination
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Figure 3: The Cause Behind fabrication Hallucinations.

This phenomenon can be attributed to the fre-
quent co-occurrence of sink and toilet within in-
dividual training instances in the model’s training
corpus. As a result, the model may learn to in-
correctly align certain visual features of a toilet



with the semantic concept of a sink. Consequently,
even when the visual input contains only a toilet,
the model may infer the presence of a sink based
on these overlapping visual cues. This also ex-
plains why fabrication hallucinations are partic-
ularly prevalent in the Adversarial subset of the
POPE Benchmark. In this subset, the queried ob-
jects tend to be highly correlated and frequently
co-occur in everyday settings. Their visual features
and semantic representations are often entangled
and misaligned, resulting in more severe cases of
fabricated hallucinations.

At a broader level, fabrication hallucinations can
be viewed as the result of statistical bias. Yet, cur-
rent mitigation strategies, designed to correct over-
reliance on such biases and unimodal priors, have
not effectively reduced these hallucinations. On the
contrary, in attempting to mitigate omission halluci-
nations, they frequently introduce fabrication ones.
We explore this mismatch between theoretical mo-
tivation and practical results in Section 3.4.

3.3 Visual-Semantic Attention Potential Field

In Section 3.1, we demonstrated that omission hal-
lucinations arise when the model correctly cap-
tures visual features but assigns low confidence
to the corresponding visual evidence. Conversely,
in Section 3.2, we showed that fabrication halluci-
nations occur when the model captures incorrect
visual features yet assigns high confidence to them.
These findings indicate that the misallocation of
confidence plays a central role in the emergence
of object hallucinations. This subsection seeks to
investigate how the model assigns confidence to
visual evidence during the mapping from visual
representations to semantic concepts.

We begin by extracting the visual attention maps
associated with the model’s localization heads.
These maps are segmented into two distinct regions:
(1) High-Credibility Visual Regions (HCVRs), cor-
responding to areas with high attention scores, and
(2) Low-Credibility Visual Regions (LCVRs), cor-
responding to areas with low attention scores. We
then apply targeted interventions to each region in-
dependently to examine the direct impact of atten-
tion manipulation on the recognition performance.

As illustrated in Figure 4, enhancing attention to
the HCVRs leads the model to increasingly judge
that the queried object is present. In contrast, ampli-
fying attention to the LCVRs causes the model to
more frequently conclude that the object is absent.
Notably, these effects are consistently observed,

regardless of whether the model’s initial prediction
was correct or whether the object actually appears
in the visual input.

Visual Attention Intervention ———
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Figure 4: Outcomes of Visual Attention Interventions

These intervention results lead to the following
conclusions: (1) HCVRs correspond to areas where
visual features have a clear and stable mapping
to the semantic concept of the target object. The
model consistently interprets these features as posi-
tive visual evidence for the presence of the queried
object. (2) LCVRs, by contrast, contain visual
features that lack a reliable or consistent seman-
tic association with the target object. The model
exhibits uncertainty or ambiguity in interpreting
these features, effectively treating them as negative
visual evidence, indicative of the object’s absence.

When attention to HCVRs is artificially in-
creased, the model receives more salient and re-
liable visual evidence, thereby boosting its confi-
dence in the presence of the queried object. This
attention enhancement effectively activates a high-
confidence pathway within the model’s visual-to-
semantic mapping, reinforcing the alignment be-
tween visual features and semantic concepts. In
contrast, increasing attention to LCVRs forces the
model to extract information from areas that are
inherently uncertain or semantically ambiguous.
Because the visual-to-semantic mappings in these
regions are unstable or unclear, the model is more
inclined to draw negative or evasive conclusions,
i.e., that the object is absent, as a risk-averse strat-
egy to manage uncertainty.

As shown in Figure 5, we introduce the con-
cept of a Visual-Semantic Attention Potential Field
(VSAPF), in which each visual token is embedded
within a potential landscape. In this field, HCVRs
reside at the bottom of potential wells, zones where
the model can readily affirm the presence of an



object, while LCVRs are positioned atop potential
peaks, where the model encounters greater diffi-
culty in making a positive identification and tends
toward negation. The model’s reasoning process
can be analogized to a ball rolling across the VS-
APF: when attention steers the model toward a
potential well, it quickly arrives at an affirmative
decision; conversely, when attention shifts toward
a potential peak, the model is more likely to issue
a negative judgment, as a risk-averse response to
uncertainty.
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Figure 5: Illustration of the Visual Potential Field

3.4 Omission—Fabrication Imbalance: The
Dilemma of Current Methods

In Section 2, we showed that current hallucination
mitigation methods are effective primarily in ad-
dressing omission hallucinations. However, while
reducing omissions, these methods often exacer-
bate fabrication hallucinations. Although they are
motivated by the goal of correcting the model’s
over-reliance on statistical biases and unimodal pri-
ors, they fail to mitigate fabrication hallucinations
that stem from such biases, and in many cases,
they inadvertently increase their occurrence. What,
then, explains this disconnect between theoretical
motivation and empirical outcome?

In Section 3.3, we demonstrated that artificially
increasing attention to HCVRs explicitly activates
the model’s inherent high-confidence pathways
within the visual-semantic mapping. This process
amplifies the model’s confidence in the visual ev-
idence supporting the presence of an object, re-
gardless of whether the object is actually present.
Consequently, if current methods are not genuinely
correcting the model’s over-reliance on statistical
biases and unimodal priors, but are instead merely
amplifying attention to HCVRs, thereby reinforc-
ing confidence in object presence, then the ob-
served pattern, mitigating omission hallucinations
while simultaneously introducing a large number
of fabricated hallucinations, can be fully explained.

To illustrate our point, we take the recently
proposed Self-Introspective Decoding (SID)(Huo

et al., 2025) as an example to briefly demonstrate
that current hallucination mitigation methods are,
in essence, equivalent to increasing attention to
HCVRs. We consider a MLLM parametrized by
0. The model takes as input a textual query x and
a visual input v, where v provides contextual vi-
sual information to assist the model in generating
a relevant response y to the textual query. The
response y is sampled auto-regressively from the
probability distribution conditioned on the query z
and the visual context v. Mathematically, this can
be formulated as:

yr ~ po (Yt | v, 2, y<t)
X exp logite (yt | v, T, y<t)

ey

where y; denotes the token at time step ¢, and y;
represents the sequence of generated tokens up to
the time step (¢ — 1).

The core motivation behind SID is to harness the
model’s introspective capabilities to selectively re-
tain visual information by adaptively evaluating the
importance of visual tokens, with the aim of delib-
erately amplifying and suppressing specific vision-
text association hallucinations. To this end, SID
modifies the model architecture by preserving only
a small subset of image tokens with low attention
scores after the early decoder layers. This adaptive
mechanism is designed to encourage the emergence
of vision-text hallucinations during auto-regressive
decoding. These hallucinations are then intended
to be isolated from the original probability distribu-
tion, thereby defining a contrastive distribution pgiq
as:

psid(yi) = softmax [logitg (yl | v, :ﬁ) + -
2)
(logitg (yi | v,a?) — logity (yi | Viow, x))],

where « is a tunable hyperparameter controlling
the strength of the contrastive adjustment and vjoy
denotes the low-importance visual tokens.

Correspondingly, we denote the distribution of
the predicted outputs after artificially enhancing
attention to HCVRSs as penp,, defined as:

Penn(yi) = softmax [logitg (yi | v,x) + 5

3)
(logite (yZ | high, x) — logity (yZ | v, :1:))],

where (3 is the hyperparameter that controls the

degree of attention enhancement toward HCVRs.
A comparison between Equation (2) and Equa-

tion (3) reveals that the two operations are, in



essence, dual to each other with respect to their
impact on the final decoding outcomes. When «
and [ are appropriately set, the two decoding for-
mulations become effectively equivalent or trans-
formable into one another. Thus, at the decoding
level, the methods are mathematically equivalent,
the distinction lies only in their computational path-
ways, not in their underlying semantics.

4 Proposed Method: Visual Potential
Field Calibration

In the analysis presented in Section 3.3, we identify
the following requirements:

* When the object is present, it is essential to en-
hance HCVRs in order to explicitly activate the
high-confidence pathways within the model’s
visual-semantic connections. This strengthens
the model’s confidence in the visual evidence
supporting the object’s presence and helps miti-
gate omission hallucinations.

» Conversely, when the object is absent, it is neces-
sary to enhance LCVRs, compelling the model
to extract cues from uncertain or semantically
ambiguous areas. This promotes the generation
of negative or avoidant conclusions (i.e., con-
firming the object’s absence), thereby reducing
the risk of fabrication hallucinations.

~— Visual Potential Calibration ———————
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Figure 6: Ilustration of Visual Potential Calibration

Focused Region for Visual Potential Calibration.
However, due to the lack of ground truth regard-
ing the presence of the object, we are unable to
apply targeted interventions directly. Nonetheless,
we observe a consistent pattern: when the object
is absent, HCVRs tend to be spatially dispersed,
whereas when the object is present, HCVRs are
typically more spatially concentrated. Leveraging
this observation, we propose the strategy illustrated
in Figure 6: (1) First, we compute the centroid of

the HCVRs. Specifically, we define HCVRs as
the top 25% of visual tokens ranked by attention
weights, as this subset generally captures the ma-
jority of the target object. (2) Next, we enhance
the attention within a concentrated square region
centered at the computed centroid. The size of this
enhanced region is set to match that of HCVRs.
The advantages of this approach are as follows:
(1) When the object truly exists, HCVRs tend to
be spatially concentrated, and the region surround-
ing the centroid typically aligns well with HCVRs.
Enhancing attention in this region increases the
model’s confidence in the visual evidence of the
object’s presence. As a result, when visual features
are mapped to semantic concepts, the model can
more confidently infer the existence of the object.
(2) When the object is actually absent, HCVRs
are generally dispersed, and the region around the
centroid often overlaps partially with LCVRs. En-
hancing attention in this area thus simultaneously
increases the model’s confidence in determining
that the object is not present. This helps prevent
the introduction of new fabrication hallucinations,
and may even correct existing ones.
Direct Modification of Hidden States. While
enhancing attention in the centroid region can im-
prove the model’s confidence in visual evidence, re-
lying solely on attention adjustment often requires
substantial amplification, which may destabilize
generation. This is because the model’s implicit
knowledge is primarily encoded in the hidden states
across layers (Burns et al., 2022). To address this,
we propose a strategy that computes a confidence-
steering direction based on a slight attention boost
and directly modifies the hidden states accordingly.
We first apply a mild enhancement (by a factor
of 0.05) to the centroid region and compute the
difference in hidden states before and after this
change to obtain the steering direction A ;(z):

App(z) = hzrh(x) - h;h(m), “)

where hf,h(az) and h; ), (z) represent the hidden
states of the h-th attention head in the [-th layer un-
der the enhanced and original attention conditions,
respectively. Next, we apply the following update
to the hidden states using a steering coefficient o

ill’h((]}) = hl,h(x) + OéAl,h. (5)

This approach enables targeted and effective modi-
fication of the model’s predictions, while preserv-
ing generation stability.



Table 1: Performance of VPFC on POPE. The best result for each setting is highlighted in bold.

Model | Method | Random | Popular | Adversarial
| | Accuracy Fl-score | Accuracy Fl-score | Accuracy F1-score

Regular | 87.10 85.53 84.83 83.33 83.60 82.29
VCD 88.441 1.34 86.83711.30 | 85.6510.82 85.3712.04 | 79.3114.29 79.28 | 3.01
LLaVA-1.5 SID 87.5310.43 86.45710.92 | 8521 10.38 85501 2.17 | 80.88 | 2.72 80.69 | 1.60
MemVR | 88.501 1.40 87.3411.81 | 86.107 1.27 85.01 1 1.68 | 79.20 | 4.40  79.28 | 3.01
VPFC 89.80 1 2.70 88901 3.37 | 87.60 T 2.77 87.021 3.69 | 85.80 1 2.20 84.60 1 2.31

Regular | 87.43 86.48 84.70 83.96 82.50 81.70
VCD 88.801 1.37 88.1111.63 | 85.1310.43 84.6910.73 | 79.83 | 2.67 79.23 | 2.47
Qwen-VL SID 87.831 0.40 87.17710.69 | 84.57 1 0.13 84.6710.71 | 81.50 ] 1.00 80.90 | 0.80
MemVR | 88471 1.04 87.6211.14 | 852771 0.57 84.7310.77 | 80.90 ] 1.60 79.80 ] 1.90
VPFC 89.7312.30 89.07 1 2.59 | 87.90 1T 3.20 87.00 1 3.04 | 84.50 1 2.00 83.401 1.70

Selection of Attention Heads. Li et al. (2023b)
revealed that interventions on hidden states should
not be applied across all attention heads, but rather
selectively on a subset of the most important ones.
Here, we adopt a saliency analysis tool(Michel
et al., 2019) to evaluate the importance of all heads.
The importance score is computed as:

0L(x)
aALh

Iny = [|An © 1. (©6)
where £(x) denotes the loss function, and A; ;, is
the attention map of the h-th head in the I-th layer.
Based on the computed importance scores Iy, ;, we
select only the top 7% attention heads to perform

the intervention.

5 Experiment

Section 5.1 outlines the experimental setup, includ-
ing the selection of baselines and evaluation tasks.
Section 5.2 presents the evaluation results across
multiple benchmarks, along with detailed analy-
sis. Section 5.3 reports the results of the ablation
studies conducted to assess the proposed method.

Table 2: Performance of VPFC on CHAIR

Methods \ CHAIR_S| CHAIR_I| Average |
Regular 50.2 15.6 329
VCD 54.8 1 4.60 16.510.90 35.6712.70
SID 49.2 | 1.00 15.1,0.50 32.110.80
MemVR | 51.271 1.00 15971 0.30 33.570.60
VPEC 46.8 | 3.40 13.8 1 1.80 30.3 | 2.60

5.1 Experimental Setup

Evaluation Datasets. To ensure the generalizabil-
ity of the proposed VPFC method, we evaluated it
on a variety of benchmarks encompassing both dis-
criminative tasks (e.g., POPE(Li et al., 2023c) and
MME(Fu et al., 2023)) and generative tasks (e.g.,

CHAIR(Rohrbach et al., 2018) and LLaVA-Bench-
in-the-wild(Liu et al., 2023b)). Further details can
be found in Appendix B.

Baseline Selection. We adopt VCD(Leng et al.,
2024), a well-established hallucination mitigation
method, alongside two recently introduced State-
of-the-Art approaches, SID(Huo et al., 2025) and
Memory-Space Visual Retracing (MemVR)(Zou
et al., 2025), as experimental baselines to facilitate
a fair comparison with our proposed method.
Implementation Details. We use LLaVA-v1.5-
7B (Liu et al., 2024b) and Qwen-VL-7B(Bai et al.,
2023) as the MLLM backbones. The enhancement
factor, denoted as a, is set to 4, and the proportion
of selected attention heads, denoted as ~, is set
to 25%. Greedy search is used as the decoding
strategy in all experiments.

Table 3: Performance of VPFC on LLaVA-Bench

Method \ Conversation Description Reasoning
Regular 59.6 53.4 75.6
VCD 57.4 ] 2.20 509,250 7691 1.30
SID 59.2 1 0.40 51.312.10 76.110.50
MemVR 58.1 ] 1.50 51201220 7741180
VPFC 62.11 2.50 53.810.40 7791 2.30

5.2 Results and Analysis

Results on Discriminative Tasks. Table 1 presents
the experimental results of VPFC on COCO dataset
within POPE benchmark. Across the Random and
Popular subsets, all methods, including VPFC, ex-
hibit performance improvements. Notably, VPFC
demonstrates a more substantial increase in accu-
racy. We attribute this to VPFC’s balanced distribu-
tion of confidence between visual evidence indicat-
ing the presence and absence of objects. This de-
sign helps reduce omissions while simultaneously
preventing the introduction of fabrications.



Table 4: Performance of VPFC on MM-Hallucination. The best result for each setting is highlighted in bold.

Model | Method | MM-Hall | Object-Level | Attribute-Level
Total Existence Count Position Color
Regular 620.00 185.00 146.67 128.33 160.00
VCD 598.36 | 21.64 | 190.00 1 5.00 | 128.33 | 18.34 | 133.3315.00 146.70 | 13.30
LLaVA-1.5 SID 598.33 | 21.67 | 185.00 130.00 | 16.67 | 128.33 155.00 | 5.00
MemVR | 610.00 | 10.00 | 190.00 1 5.00 | 130.00 ] 16.67 | 130.00 T 1.67  160.00
VPFC 635.00 T 15.00 | 190.00 1 5.00 146.67 133.33 1 5.00  165.00 1 5.00
Regular 618.33 175.00 140.00 128.33 175.00
VCD 603.33 | 15.00 | 170.00J 5.00 | 130.00 ] 10.00 | 123.33 | 5.00  180.00 1 5.00
Qwen-VL SID 616.66 | 1.67 175.00 138.33 | 1.67 128.33 175.00
MemVR | 608.33 | 10.00 | 170.00 ] 5.00 135.00 ] 5.00 | 133.3315.00 170.00 ] 5.00
VPFC 645.00 T 26.67 | 185.00 17 10.00 | 145.00 1 5.00 | 135.00 1 6.67  180.00 1 5.00

This interpretation is further validated by results
on Adversarial subset, where fabrications signifi-
cantly outnumber omissions(Yin et al., 2025). Ex-
isting methods, while somewhat effective in reduc-
ing omissions, tend to introduce numerous addi-
tional fabrications, thereby degrading overall per-
formance. In contrast, VPFC effectively alleviates
omission hallucinations without inducing new fab-
rications, resulting in improved predictive accuracy
even under such conditions.

Table 4 shows performance of VPFC on MME
benchmark. VPFC maintains or improves accuracy
across almost all subsets, whereas existing meth-
ods often suffer accuracy drops on certain subsets,
highlighting a key issue: their mitigation of omis-
sion hallucinations frequently comes at the cost of
introducing excessive fabrication errors.

Results on Generative Tasks. Table 3 presents
the experimental results of VPFC on LLaVA-
Bench-in-the-wild, while Table 2 reports results
on CHAIR benchmark. Across both generative
benchmarks, VPFC consistently outperforms exist-
ing methods in prediction accuracy, clearly demon-
strating its effectiveness in reducing object hallu-
cinations. Similar to its performance on discrimi-
native tasks, VPFC achieves superior accuracy on
generative tasks by effectively mitigating omission
hallucinations while avoiding the introduction of
additional fabrication hallucinations.

5.3 Ablation Studies

We performed an ablation study to investigate the
effectiveness of the centroid-focused strategy, us-
ing LLaVA-v1.5-7B as the MLLM backbone on
the COCO dataset within the POPE benchmark.
The study compares different methods for comput-
ing the steering direction. Specifically, instead of
deriving the confidence steering direction from the

concentrated region around the centroid of HCVRs,
we compute it directly based on the HCVRs them-
selves, defined as the top 25% of visual tokens with
the highest attention weights.
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Figure 7: Ablation Study on Centroid-Focused Strategy

As illustrated in Figure 7, removing the centroid-
focused computation leads to a significant drop
in VPFC performance. On the Adversarial sub-
set, the prediction accuracy of VPFC even falls
below that of the baseline, reaching the same level
as VCD. These results highlight the critical role
of the centroid-focused strategy in calibrating the
Visual Potential Field. It effectively redistributes
confidence across visual evidence regarding object
existence, thereby mitigating omissions without
introducing additional fabrications. Additional ab-
lation results can be found in Appendix C.

6 Conclusion

This work challenges the prevailing assumption
that omission and fabrication hallucinations share a
unified cause, revealing their fundamentally differ-
ent origins. By introducing VPFC, we demonstrate
a training-free approach that effectively mitigates
omissions without exacerbating fabrications. Our
findings lay the foundation for more balanced hal-
lucination mitigation strategies in MLLMs.



Limitation

While this work provides a detailed analysis of
the distinct mechanisms underlying omission and
fabrication hallucinations, highlighting that the for-
mer arises from low confidence in visual-semantic
mapping and the latter from spurious cross-modal
associations, our proposed method, VPFC, primar-
ily focuses on mitigating omission hallucinations
without inducing fabrication. We do not explic-
itly target the suppression of fabrication hallucina-
tions. Howeyver, this choice does not undermine
the method’s value: VPFC still achieves state-of-
the-art performance among plug-and-play hallu-
cination mitigation approaches, offering the best
balance between reducing omissions and avoiding
fabrications. Notably, existing training-free meth-
ods have consistently failed to suppress fabrication
hallucinations, often aggravating them while ad-
dressing omissions. Therefore, we believe that
identifying the root causes of fabrication halluci-
nations is a necessary first step, and we leave the
development of targeted mitigation strategies as
promising future work.
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A Related Work

Multimodal Large Language Models. The evo-
lution of MLLMs has progressed from BERT-
based decoders to advanced LLM architectures,
enabling more effective multimodal relationship
modeling. Models such as BLIP-2(Li et al., 2023a)
and MiniGPT-4(Zhu et al., 2023) employ Q-Former
mechanisms to enhance the alignment between vi-
sual and textual inputs, facilitating more precise
cross-modal interactions. InstructBLIP extends this
framework by integrating task-specific instructions,
improving the model’s ability to interpret context-
sensitive visual semantics. Meanwhile, LLaVA and
Qwen-VL adopt simpler linear projection methods
that streamline alignment, leading to superior per-
formance in vision-language tasks. Despite these
advancements, hallucination remains a persistent
challenge that warrants further investigation.

Hallucination Mitigation Methods. Visual Con-
trastive Decoding (VCD) addresses object halluci-
nation by comparing output distributions generated
from standard visual inputs and distorted visual
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inputs. This approach reduces the model’s depen-
dence on linguistic priors within integrated LL.Ms
and minimizes the impact of statistical biases in
MLLM pretraining corpus. Instruction Contrastive
Decoding (ICD)(Wang et al., 2024b), in contrast,
focuses on the role of instruction perturbations in
amplifying hallucinations. By examining the differ-
ences in output distributions between standard and
perturbed instructions, ICD detects hallucination-
prone content and mitigates its impact effectively.

Building upon these two hallucination mitiga-
tion methods, numerous approaches, including
Adaptive Focal-Contrast Decoding (HALC)(Chen
et al., 2024), Self-Introspective Decoding (SID),
and Visual Layer Fusion Contrastive Decoding
(VaLiD)(Wang et al., 2024a), have been developed
based on similar principles. However, in reality,
these methods offer limited relief for omission hal-
lucinations but tend to introduce substantial new
fabrications during mitigation.

B Evaluation Datasets

Polling-based Object Probing Evaluation. POPE
is a novel framework designed to evaluate object
hallucinations in MLLMs. Departing from tra-
ditional caption-based approaches, POPE frames
hallucination detection as a binary task by pos-
ing straightforward yes-or-no questions regarding
the presence of specific objects in an image (e.g.,
"Is there a chair in the image?"). Performance on
POPE is measured across four metrics: Accuracy,
Precision, Recall, and F1 score, allowing for a thor-
ough evaluation of hallucinations in MLLMs.
Multimodal Model Evaluation. MME benchmark
provides a comprehensive framework for evaluat-
ing MLLMs across both perceptual and cognitive
dimensions. It consists of ten perception-oriented
tasks and four cognition-oriented tasks, with model
performance assessed through accuracy metrics.
In addition to the full dataset, we leverage spe-
cific subsets, such as object existence and counting
to analyze object-level hallucinations, while posi-
tion and color subsets are employed to examine
attribute-level hallucinations.

Caption Hallucination Assessment with Image
Relevance. CHAIR is a metric designed to evaluate
how accurately generated captions align with image
content. It comprises two components: CHAIR;,
which measures object-level hallucinations by cal-
culating the ratio of falsely mentioned objects to all
mentioned objects, and CHAIR;, which assesses



sentence-level errors by computing the fraction of
sentences containing at least one hallucinated ob-
ject. For evaluation, we use the val2014 split of
the MSCOCO dataset, which includes 80 object
categories. A random subset of 500 images was
selected, and captions were generated using the
prompt: “Please describe this image in detail.” To-
gether, CHAIR; and CHAIR provide complemen-
tary insights into the prevalence and granularity of
hallucinated content in image captioning systems.
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Figure 8: Ablation Study on Head Selection Ratio

C Additional Ablation Studies

We performed an ablation study on the attention
head selection ratio, using LLaVA-v1.5-7B as the
MLLM backbone on the COCO-Random dataset
from the POPE benchmark. The objective was to
evaluate how different selection ratios impact pre-
diction performance. As illustrated in Figure 8,
applying confidence steering intervention across
too many attention heads leads to a noticeable de-
cline in prediction accuracy. A more reliable and
effective approach is to constrain the selection ratio
to v < 50%.
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Figure 9: Ablation Study on Steering Coefficient

We conducted an ablation study on the steering
coefficient, using LLaVA-v1.5-7B as the MLLM
backbone on the COCO-Random dataset from the
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POPE benchmark. The goal was to assess the ef-
fect of the steering coefficient on prediction perfor-
mance. As illustrated in Figure 9, when the coeffi-
cient is set within the range 3 < « < 6, the model
consistently yields stable and improved accuracy.
These findings suggest that the hyperparameter «
possesses a broad and robust tuning range, mak-
ing it straightforward to configure effectively in
practical settings to enhance performance.
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