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Abstract001

Multimodal Large Language Models (MLLMs)002
have achieved impressive advances, yet object003
hallucination remains a persistent challenge.004
Existing methods, based on the flawed assump-005
tion that omission and fabrication hallucina-006
tions share a common cause, often reduce omis-007
sions only to trigger more fabrications. In this008
work, we overturn this view by demonstrating009
that omission hallucinations arise from insuffi-010
cient confidence when mapping perceived vi-011
sual features to linguistic expressions, whereas012
fabrication hallucinations result from spurious013
associations within the cross-modal representa-014
tion space due to statistical biases in the train-015
ing corpus. Building on findings from visual016
attention intervention experiments, we propose017
the Visual-Semantic Attention Potential Field,018
a conceptual framework that reveals how the019
model constructs visual evidence to infer the020
presence or absence of objects. Leveraging021
this insight, we introduce VPFC, a plug-and-022
play hallucination mitigation method that ef-023
fectively reduces omission hallucinations with-024
out introducing additional fabrication hallucina-025
tions. Our findings reveal a critical oversight in026
current object hallucination research and chart027
new directions for developing more robust and028
balanced hallucination mitigation strategies.029

1 Introduction030

Multimodal Large Language Models (Liu et al.,031

2023a; Touvron et al., 2023; Liu et al., 2024a)032

have achieved significant advancements in visual-033

language tasks. Nevertheless, the problem of object034

hallucination remains unresolved. Object halluci-035

nation can be categorized into two types: omission036

hallucination, where the model fails to identify037

or describe objects present in the visual input, and038

fabrication hallucination, where the model erro-039

neously generates information about objects that040

do not exist in the input. Existing studies gener-041

ally suggest that the causes of both types of hal-042

lucination are similar, primarily attributed to over- 043

reliance on statistical bias and unimodal priors. 044

Under this unified cause hypothesis, current miti- 045

gation methods(Leng et al., 2024) typically employ 046

a single strategy to address both omission and fab- 047

rication hallucinations simultaneously. However, 048

empirical results indicate that these methods often 049

achieve only limited success in reducing omission 050

hallucinations, and do so at the cost of exacerbat- 051

ing fabrication hallucinations, thereby revealing the 052

limitations of current approaches in understanding 053

the underlying mechanisms. This paper proposes 054

that omission and fabrication hallucinations differ 055

fundamentally in their underlying mechanisms. 056

Section 3.1 reveals that the cause of omission 057

hallucinations lies not only in the limited ability 058

of the visual encoder to recognize fine-grained ob- 059

jects but also in the fact that, even when the MLLM 060

successfully captures the visual features of a spe- 061

cific object during the visual perception phase, the 062

model’s confidence in these features remains low 063

during the process of mapping them to linguistic 064

symbols. Therefore, during the generation phase, 065

the model is unable to confidently express the iden- 066

tified objects, leading to omission hallucinations. 067

In contrast, Fabrication hallucinations primar- 068

ily stem from erroneous associations within the 069

cross-modal joint representation space, as elabo- 070

rated in Section 3.2. During training, due to the fre- 071

quent co-occurrence of certain object combinations 072

in large-scale corpora, MLLMs establish overly 073

strong and sometimes unreasonable connections be- 074

tween visual features and semantic concepts. When 075

the visual input contains only a subset of the as- 076

sociated objects, the model, influenced by joint 077

distribution biases, mistakenly activates descrip- 078

tions of additional, non-existent objects, leading to 079

fabrication hallucinations. 080

In Section 3.3, we examine the mapping from 081

visual features to semantic concepts through atten- 082

tion intervention experiments, investigating how 083
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the model constructs visual evidence to infer the084

presence or absence of objects. Building on this085

analysis, we propose the concept of the Visual-086

Semantic Attention Potential Field: each visual087

token is embedded within a potential field, where088

High-Credibility Visual Regions lie at the bottom089

of potential valleys, facilitating object confirma-090

tion, while Low-Credibility Visual Regions occupy091

the peaks, making confirmation more difficult and092

biasing the model toward negation.093

Building on the above insights, we introduce094

a plug-and-play hallucination mitigation method095

in Section 4, called Visual Potential Field Cali-096

bration (VPFC). VPFC operates by recalibrating097

the confidence assigned to visual evidence dur-098

ing the mapping from visual features to semantic099

concepts, specifically with respect to object exis-100

tence. This strategy effectively reduces omission101

hallucinations while avoiding the introduction of102

fabrication hallucinations. Extensive experiments103

on multiple benchmarks, including POPE, MM-104

Hallucination, CHAIR, and LLaVA-Bench, demon-105

strate that VPFC achieves State-of-the-Art perfor-106

mance among training-free mitigation approaches.107

In summary, our contributions are as follows:108

• We challenge the common assumption that omis-109

sion and fabrication hallucinations share the110

same underlying cause. While existing meth-111

ods can reduce omission hallucinations, we ob-112

serve that they often simultaneously exacerbate113

fabrication hallucinations.114

• We conduct an investigation into the distinct115

mechanisms behind these two types of hallucina-116

tions. Our analysis reveals that omission halluci-117

nations stem from insufficient confidence in the118

mapping of visual features, whereas fabrication119

hallucinations result from erroneous associations120

within the cross-modal representation space.121

• We introduce the concept of the Visual-Semantic122

Attention Potential Field, which illustrates how123

the model constructs visual evidence to infer124

the presence or absence of objects. Building125

on this foundation, we propose a plug-and-play126

hallucination mitigation method, VPFC, which127

effectively reduces omissions while avoiding the128

introduction of additional fabrications.129

2 Motivation: Beyond the Assumption of130

Unified Hallucination Causes131

Object hallucinations fall into two types: omission132

hallucination, where the model misses existing133

objects in the visual input, and fabrication hallu- 134

cination, where it describes non-existent objects. 135

Current methods for mitigating hallucinations in 136

MLLMs are generally founded on a unified assump- 137

tion: that both omission hallucinations and fabri- 138

cation hallucinations stem from the same under- 139

lying causes, namely the model’s overreliance on 140

statistical biases and unimodal priors during gener- 141

ation. However, this understanding presents clear 142

limitations. In reality, omissions and fabrications 143

may fundamentally differ in their generative mech- 144

anisms. 145

138 

(51.7%)
139

(41.9%)

87 

(37.3%)

1 

(0.4%)

138 

(59.2%)

7 

(3.0%)

1 

(0.4%)

2 

0.6%

121 

(45.3%)

184 

(55.4%)

7 

(2.6%)

7 

(2.1%)

Random Popular Adversarial

Mitigate-OmissionMitigate-Omission Mitigate-FabricationMitigate-Fabrication Aggravate-OmissionAggravate-Omission Aggravate-FabricationAggravate-Fabrication

Figure 1: Effects of Visual Contrastive Decoding on the
Mitigation and Aggravation of Hallucinations.

Strategies rooted in this unified framework typi- 146

cally seek to address both hallucination types con- 147

currently using the same intervention. For example, 148

Visual Contrastive Decoding (VCD)(Leng et al., 149

2024) contrasts outputs produced under original 150

versus distorted visual inputs as a corrective mecha- 151

nism to mitigate the model’s excessive dependence 152

on linguistic priors from integrated LLMs and sta- 153

tistical biases present in pretraining corpora. Nev- 154

ertheless, in practice, such methods reveal signif- 155

icant shortcomings: while they can partially alle- 156

viate omission hallucinations, they often trigger a 157

substantial increase in fabrication hallucinations, 158

thereby further compromising the reliability of 159

model outputs. In the following, we will demon- 160

strate this phenomenon through experiments. 161

Experimental Setup. LLaVA-v1.5-7B served as 162

the backbone MLLM, with greedy search utilized 163

for decoding. We conducted a systematic evalua- 164

tion of VCD, a well-established method for miti- 165

gating hallucinations, analyzing its impact on both 166

the mitigation and exacerbation of omission and 167

fabrication hallucinations. Evaluations were per- 168

formed using the COCO dataset within the POPE 169

Benchmark(Li et al., 2023c), which focuses on a 170

discriminative task assessing whether the object 171

referenced in a query is present in the visual input. 172

Experimental Results and Analysis. Figure 1 173

presents the effects of VCD in mitigating and exac- 174

erbating two types of hallucinations. While VCD 175
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reduced omission hallucinations, it concurrently176

triggered a notable rise in fabrication ones, par-177

ticularly on the Adversarial subset, where overall178

output quality deteriorated. These findings reveal179

limitations of the unified causality hypothesis.180

3 Analysis: Divergent Roots of Omission181

and Fabrication Hallucinations182

In this section, we systematically investigate the183

causes of omission and fabrication hallucinations184

through the use of attention maps and attention in-185

tervention. In Section 3.1, we demonstrate that186

omission hallucinations stem from insufficient187

confidence in mapping perceived visual features188

to corresponding linguistic expressions. In Sec-189

tion 3.2, we reveal that fabrication hallucinations190

originate from spurious associations within the191

cross-modal representation space, largely driven192

by statistical biases in the training corpus.193

3.1 Cause of Omission Hallucinations194

It is widely recognized that a primary cause of195

omission hallucinations in MLLMs is the limited196

capacity of their visual encoders, which often strug-197

gle with the accurate recognition of fine-grained198

objects. However, we demonstrate that, in many199

instances, MLLMs have already encoded effective200

visual features of the target objects within their la-201

tent visual knowledge space, yet fail to articulate202

this information in the generated textual output.203

Kang et al. (2025) observe that certain atten-204

tion heads in frozen MLLMs possess strong visual205

grounding abilities. These heads, which reliably206

identify object locations relevant to the accompa-207

nying text, are referred to as localization heads.208

Building on this insight, we leverage these local-209

ization heads to investigate what visual features210

are actually captured in the latent visual space of211

MLLMs when omission hallucinations occur.212

Question: Is there a spoon in the image?    Prediction: No     Label: Yes

Layer: 14 Head: 24 Layer: 14 Head: 13

Omission Hallucination

Figure 2: The Cause Behind Omission Hallucinations.

Figure 2 illustrates a representative case of an213

omission hallucination. In the visual input, a per-214

son is holding a spoon. However, when prompted 215

with the question “Is there a spoon in the image?”, 216

the MLLM produces an omission hallucination by 217

incorrectly responding “no.” The prevailing expla- 218

nation attributes this failure to the small size of the 219

spoon, which supposedly prevents the visual en- 220

coder from capturing its features. Contrary to this 221

view, attention maps from the model’s localization 222

heads reveal that the model did, in fact, attend to 223

the correct region and successfully captured the 224

visual features of the spoon. 225

These findings suggest that omission hallucina- 226

tions often do not result from the model’s inability 227

to capture meaningful visual features via its visual 228

encoder. Instead, they arise during the mapping 229

from visual representations to semantic concepts, 230

where the model assigns low confidence to the vi- 231

sual evidence. Consequently, the model tends to 232

infer that the object is absent. We provide a more 233

detailed analysis of this mechanism in Section 3.3. 234

3.2 Cause of Fabrication Hallucinations 235

In contrast to omission hallucinations, fabrication 236

hallucinations occur when the model incorrectly 237

aligns certain visual features with semantic con- 238

cepts while assigning a high degree of confidence 239

to this misalignment. As illustrated in Figure 3, 240

when presented with an image containing a toilet 241

and asked “Is there a toilet in the image?”, the 242

model correctly identifies the visual features of the 243

toilet and maps them to the corresponding semantic 244

concept, yielding an accurate response. However, 245

when asked “Is there a sink in the image?”, the 246

model mistakenly interprets part of the toilet’s vi- 247

sual features as evidence of a sink, ultimately pro- 248

ducing the incorrect answer that a sink is present. 249

Question: Is there a toilet in the image?   Prediction: Yes     Label: Yes

Question: Is there a sink in the image?    Prediction: Yes     Label: No

Layer: 14 Head: 24 Layer: 14 Head: 24

Fabrication Hallucination

Figure 3: The Cause Behind fabrication Hallucinations.

This phenomenon can be attributed to the fre- 250

quent co-occurrence of sink and toilet within in- 251

dividual training instances in the model’s training 252

corpus. As a result, the model may learn to in- 253

correctly align certain visual features of a toilet 254
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with the semantic concept of a sink. Consequently,255

even when the visual input contains only a toilet,256

the model may infer the presence of a sink based257

on these overlapping visual cues. This also ex-258

plains why fabrication hallucinations are partic-259

ularly prevalent in the Adversarial subset of the260

POPE Benchmark. In this subset, the queried ob-261

jects tend to be highly correlated and frequently262

co-occur in everyday settings. Their visual features263

and semantic representations are often entangled264

and misaligned, resulting in more severe cases of265

fabricated hallucinations.266

At a broader level, fabrication hallucinations can267

be viewed as the result of statistical bias. Yet, cur-268

rent mitigation strategies, designed to correct over-269

reliance on such biases and unimodal priors, have270

not effectively reduced these hallucinations. On the271

contrary, in attempting to mitigate omission halluci-272

nations, they frequently introduce fabrication ones.273

We explore this mismatch between theoretical mo-274

tivation and practical results in Section 3.4.275

3.3 Visual-Semantic Attention Potential Field276

In Section 3.1, we demonstrated that omission hal-277

lucinations arise when the model correctly cap-278

tures visual features but assigns low confidence279

to the corresponding visual evidence. Conversely,280

in Section 3.2, we showed that fabrication halluci-281

nations occur when the model captures incorrect282

visual features yet assigns high confidence to them.283

These findings indicate that the misallocation of284

confidence plays a central role in the emergence285

of object hallucinations. This subsection seeks to286

investigate how the model assigns confidence to287

visual evidence during the mapping from visual288

representations to semantic concepts.289

We begin by extracting the visual attention maps290

associated with the model’s localization heads.291

These maps are segmented into two distinct regions:292

(1) High-Credibility Visual Regions (HCVRs), cor-293

responding to areas with high attention scores, and294

(2) Low-Credibility Visual Regions (LCVRs), cor-295

responding to areas with low attention scores. We296

then apply targeted interventions to each region in-297

dependently to examine the direct impact of atten-298

tion manipulation on the recognition performance.299

As illustrated in Figure 4, enhancing attention to300

the HCVRs leads the model to increasingly judge301

that the queried object is present. In contrast, ampli-302

fying attention to the LCVRs causes the model to303

more frequently conclude that the object is absent.304

Notably, these effects are consistently observed,305

regardless of whether the model’s initial prediction 306

was correct or whether the object actually appears 307

in the visual input. 308

HCVRs Top 25%

LCVRs Bottom 25%Visual Attention Map

Question: Is there a spoon in the image?

Visual Attention Intervention

Figure 4: Outcomes of Visual Attention Interventions

These intervention results lead to the following 309

conclusions: (1) HCVRs correspond to areas where 310

visual features have a clear and stable mapping 311

to the semantic concept of the target object. The 312

model consistently interprets these features as posi- 313

tive visual evidence for the presence of the queried 314

object. (2) LCVRs, by contrast, contain visual 315

features that lack a reliable or consistent seman- 316

tic association with the target object. The model 317

exhibits uncertainty or ambiguity in interpreting 318

these features, effectively treating them as negative 319

visual evidence, indicative of the object’s absence. 320

When attention to HCVRs is artificially in- 321

creased, the model receives more salient and re- 322

liable visual evidence, thereby boosting its confi- 323

dence in the presence of the queried object. This 324

attention enhancement effectively activates a high- 325

confidence pathway within the model’s visual-to- 326

semantic mapping, reinforcing the alignment be- 327

tween visual features and semantic concepts. In 328

contrast, increasing attention to LCVRs forces the 329

model to extract information from areas that are 330

inherently uncertain or semantically ambiguous. 331

Because the visual-to-semantic mappings in these 332

regions are unstable or unclear, the model is more 333

inclined to draw negative or evasive conclusions, 334

i.e., that the object is absent, as a risk-averse strat- 335

egy to manage uncertainty. 336

As shown in Figure 5, we introduce the con- 337

cept of a Visual-Semantic Attention Potential Field 338

(VSAPF), in which each visual token is embedded 339

within a potential landscape. In this field, HCVRs 340

reside at the bottom of potential wells, zones where 341

the model can readily affirm the presence of an 342
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object, while LCVRs are positioned atop potential343

peaks, where the model encounters greater diffi-344

culty in making a positive identification and tends345

toward negation. The model’s reasoning process346

can be analogized to a ball rolling across the VS-347

APF: when attention steers the model toward a348

potential well, it quickly arrives at an affirmative349

decision; conversely, when attention shifts toward350

a potential peak, the model is more likely to issue351

a negative judgment, as a risk-averse response to352

uncertainty.353

Attention Map HCVRs LCVRs

Visual Evidence for 

Absence of Object

Visual Evidence for  

Presence of Object

Visual-Semantic Attention Potential Field

Figure 5: Illustration of the Visual Potential Field

3.4 Omission–Fabrication Imbalance: The354

Dilemma of Current Methods355

In Section 2, we showed that current hallucination356

mitigation methods are effective primarily in ad-357

dressing omission hallucinations. However, while358

reducing omissions, these methods often exacer-359

bate fabrication hallucinations. Although they are360

motivated by the goal of correcting the model’s361

over-reliance on statistical biases and unimodal pri-362

ors, they fail to mitigate fabrication hallucinations363

that stem from such biases, and in many cases,364

they inadvertently increase their occurrence. What,365

then, explains this disconnect between theoretical366

motivation and empirical outcome?367

In Section 3.3, we demonstrated that artificially368

increasing attention to HCVRs explicitly activates369

the model’s inherent high-confidence pathways370

within the visual-semantic mapping. This process371

amplifies the model’s confidence in the visual ev-372

idence supporting the presence of an object, re-373

gardless of whether the object is actually present.374

Consequently, if current methods are not genuinely375

correcting the model’s over-reliance on statistical376

biases and unimodal priors, but are instead merely377

amplifying attention to HCVRs, thereby reinforc-378

ing confidence in object presence, then the ob-379

served pattern, mitigating omission hallucinations380

while simultaneously introducing a large number381

of fabricated hallucinations, can be fully explained.382

To illustrate our point, we take the recently383

proposed Self-Introspective Decoding (SID)(Huo384

et al., 2025) as an example to briefly demonstrate 385

that current hallucination mitigation methods are, 386

in essence, equivalent to increasing attention to 387

HCVRs. We consider a MLLM parametrized by 388

θ. The model takes as input a textual query x and 389

a visual input v, where v provides contextual vi- 390

sual information to assist the model in generating 391

a relevant response y to the textual query. The 392

response y is sampled auto-regressively from the 393

probability distribution conditioned on the query x 394

and the visual context v. Mathematically, this can 395

be formulated as: 396

yt ∼ pθ (yt | v, x, y<t)

∝ exp logitθ (yt | v, x, y<t)
(1) 397

where yt denotes the token at time step t, and y<t 398

represents the sequence of generated tokens up to 399

the time step (t− 1). 400

The core motivation behind SID is to harness the 401

model’s introspective capabilities to selectively re- 402

tain visual information by adaptively evaluating the 403

importance of visual tokens, with the aim of delib- 404

erately amplifying and suppressing specific vision- 405

text association hallucinations. To this end, SID 406

modifies the model architecture by preserving only 407

a small subset of image tokens with low attention 408

scores after the early decoder layers. This adaptive 409

mechanism is designed to encourage the emergence 410

of vision-text hallucinations during auto-regressive 411

decoding. These hallucinations are then intended 412

to be isolated from the original probability distribu- 413

tion, thereby defining a contrastive distribution psid 414

as: 415

psid(yi) = softmax
[
logitθ

(
yi | v, x

)
+ α·(

logitθ
(
yi | v, x

)
− logitθ

(
yi | vlow, x

))]
,

(2) 416

where α is a tunable hyperparameter controlling 417

the strength of the contrastive adjustment and vlow 418

denotes the low-importance visual tokens. 419

Correspondingly, we denote the distribution of 420

the predicted outputs after artificially enhancing 421

attention to HCVRs as penh, defined as: 422

penh(yi) = softmax
[
logitθ

(
yi | v, x

)
+ β·(

logitθ
(
yi | vhigh, x

)
− logitθ

(
yi | v, x

))]
,

(3) 423

where β is the hyperparameter that controls the 424

degree of attention enhancement toward HCVRs. 425

A comparison between Equation (2) and Equa- 426

tion (3) reveals that the two operations are, in 427

5



essence, dual to each other with respect to their428

impact on the final decoding outcomes. When α429

and β are appropriately set, the two decoding for-430

mulations become effectively equivalent or trans-431

formable into one another. Thus, at the decoding432

level, the methods are mathematically equivalent,433

the distinction lies only in their computational path-434

ways, not in their underlying semantics.435

4 Proposed Method: Visual Potential436

Field Calibration437

In the analysis presented in Section 3.3, we identify438

the following requirements:439

• When the object is present, it is essential to en-440

hance HCVRs in order to explicitly activate the441

high-confidence pathways within the model’s442

visual-semantic connections. This strengthens443

the model’s confidence in the visual evidence444

supporting the object’s presence and helps miti-445

gate omission hallucinations.446

• Conversely, when the object is absent, it is neces-447

sary to enhance LCVRs, compelling the model448

to extract cues from uncertain or semantically449

ambiguous areas. This promotes the generation450

of negative or avoidant conclusions (i.e., con-451

firming the object’s absence), thereby reducing452

the risk of fabrication hallucinations.453

Object is Present

Object is Absent

Object is Present

Object is Absent Compute Centroid

Compute Centroid

Region EnhancementRegion Enhancement

Region EnhancementRegion Enhancement

Region Enhancement

Region Enhancement

 Visual Potential Calibration

Figure 6: Illustration of Visual Potential Calibration

Focused Region for Visual Potential Calibration.454

However, due to the lack of ground truth regard-455

ing the presence of the object, we are unable to456

apply targeted interventions directly. Nonetheless,457

we observe a consistent pattern: when the object458

is absent, HCVRs tend to be spatially dispersed,459

whereas when the object is present, HCVRs are460

typically more spatially concentrated. Leveraging461

this observation, we propose the strategy illustrated462

in Figure 6: (1) First, we compute the centroid of463

the HCVRs. Specifically, we define HCVRs as 464

the top 25% of visual tokens ranked by attention 465

weights, as this subset generally captures the ma- 466

jority of the target object. (2) Next, we enhance 467

the attention within a concentrated square region 468

centered at the computed centroid. The size of this 469

enhanced region is set to match that of HCVRs. 470

The advantages of this approach are as follows: 471

(1) When the object truly exists, HCVRs tend to 472

be spatially concentrated, and the region surround- 473

ing the centroid typically aligns well with HCVRs. 474

Enhancing attention in this region increases the 475

model’s confidence in the visual evidence of the 476

object’s presence. As a result, when visual features 477

are mapped to semantic concepts, the model can 478

more confidently infer the existence of the object. 479

(2) When the object is actually absent, HCVRs 480

are generally dispersed, and the region around the 481

centroid often overlaps partially with LCVRs. En- 482

hancing attention in this area thus simultaneously 483

increases the model’s confidence in determining 484

that the object is not present. This helps prevent 485

the introduction of new fabrication hallucinations, 486

and may even correct existing ones. 487

Direct Modification of Hidden States. While 488

enhancing attention in the centroid region can im- 489

prove the model’s confidence in visual evidence, re- 490

lying solely on attention adjustment often requires 491

substantial amplification, which may destabilize 492

generation. This is because the model’s implicit 493

knowledge is primarily encoded in the hidden states 494

across layers (Burns et al., 2022). To address this, 495

we propose a strategy that computes a confidence- 496

steering direction based on a slight attention boost 497

and directly modifies the hidden states accordingly. 498

We first apply a mild enhancement (by a factor 499

of 0.05) to the centroid region and compute the 500

difference in hidden states before and after this 501

change to obtain the steering direction ∆l,h(x): 502

∆l,h(x) = h+l,h(x)− h−l,h(x), (4) 503

where h+l,h(x) and h−l,h(x) represent the hidden 504

states of the h-th attention head in the l-th layer un- 505

der the enhanced and original attention conditions, 506

respectively. Next, we apply the following update 507

to the hidden states using a steering coefficient α: 508

h̃l,h(x) = hl,h(x) + α∆l,h. (5) 509

This approach enables targeted and effective modi- 510

fication of the model’s predictions, while preserv- 511

ing generation stability. 512
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Table 1: Performance of VPFC on POPE. The best result for each setting is highlighted in bold.

Model Method Random Popular Adversarial

Accuracy F1-score Accuracy F1-score Accuracy F1-score

LLaVA-1.5

Regular 87.10 ↑ 0.00 85.53 ↑ 0.00 84.83 ↑ 0.00 83.33 ↑ 0.00 83.60 ↑ 0.00 82.29 ↑ 0.00
VCD 88.44 ↑ 1.34 86.83 ↑ 1.30 85.65 ↑ 0.82 85.37 ↑ 2.04 79.31 ↓ 4.29 79.28 ↓ 3.01
SID 87.53 ↑ 0.43 86.45 ↑ 0.92 85.21 ↑ 0.38 85.50 ↑ 2.17 80.88 ↓ 2.72 80.69 ↓ 1.60

MemVR 88.50 ↑ 1.40 87.34 ↑ 1.81 86.10 ↑ 1.27 85.01 ↑ 1.68 79.20 ↓ 4.40 79.28 ↓ 3.01
VPFC 89.80 ↑ 2.70 88.90 ↑ 3.37 87.60 ↑ 2.77 87.02 ↑ 3.69 85.80 ↑ 2.20 84.60 ↑ 2.31

Qwen-VL

Regular 87.43 ↑ 0.00 86.48 ↑ 0.00 84.70 ↑ 0.00 83.96 ↑ 0.00 82.50 ↑ 0.00 81.70 ↑ 0.00
VCD 88.80 ↑ 1.37 88.11 ↑ 1.63 85.13 ↑ 0.43 84.69 ↑ 0.73 79.83 ↓ 2.67 79.23 ↓ 2.47
SID 87.83 ↑ 0.40 87.17 ↑ 0.69 84.57 ↓ 0.13 84.67 ↑ 0.71 81.50 ↓ 1.00 80.90 ↓ 0.80

MemVR 88.47 ↑ 1.04 87.62 ↑ 1.14 85.27 ↑ 0.57 84.73 ↑ 0.77 80.90 ↓ 1.60 79.80 ↓ 1.90
VPFC 89.73 ↑ 2.30 89.07 ↑ 2.59 87.90 ↑ 3.20 87.00 ↑ 3.04 84.50 ↑ 2.00 83.40 ↑ 1.70

Selection of Attention Heads. Li et al. (2023b)513

revealed that interventions on hidden states should514

not be applied across all attention heads, but rather515

selectively on a subset of the most important ones.516

Here, we adopt a saliency analysis tool(Michel517

et al., 2019) to evaluate the importance of all heads.518

The importance score is computed as:519

Ih,l = ∥Al,h ⊙
∂L(x)
∂Al,h

∥1. (6)520

where L(x) denotes the loss function, and Al,h is521

the attention map of the h-th head in the l-th layer.522

Based on the computed importance scores Ih,l, we523

select only the top γ% attention heads to perform524

the intervention.525

5 Experiment526

Section 5.1 outlines the experimental setup, includ-527

ing the selection of baselines and evaluation tasks.528

Section 5.2 presents the evaluation results across529

multiple benchmarks, along with detailed analy-530

sis. Section 5.3 reports the results of the ablation531

studies conducted to assess the proposed method.532

Table 2: Performance of VPFC on CHAIR

Methods CHAIR_S ↓ CHAIR_I ↓ Average ↓

Regular 50.2 ↑ 0.00 15.6 ↑ 0.00 32.9 ↑ 0.00
VCD 54.8 ↑ 4.60 16.5 ↑ 0.90 35.6 ↑ 2.70
SID 49.2 ↓ 1.00 15.1 ↓ 0.50 32.1 ↓ 0.80

MemVR 51.2 ↑ 1.00 15.9 ↑ 0.30 33.5 ↑ 0.60
VPFC 46.8 ↓ 3.40 13.8 ↓ 1.80 30.3 ↓ 2.60

5.1 Experimental Setup533

Evaluation Datasets. To ensure the generalizabil-534

ity of the proposed VPFC method, we evaluated it535

on a variety of benchmarks encompassing both dis-536

criminative tasks (e.g., POPE(Li et al., 2023c) and537

MME(Fu et al., 2023)) and generative tasks (e.g.,538

CHAIR(Rohrbach et al., 2018) and LLaVA-Bench- 539

in-the-wild(Liu et al., 2023b)). Further details can 540

be found in Appendix B. 541

Baseline Selection. We adopt VCD(Leng et al., 542

2024), a well-established hallucination mitigation 543

method, alongside two recently introduced State- 544

of-the-Art approaches, SID(Huo et al., 2025) and 545

Memory-Space Visual Retracing (MemVR)(Zou 546

et al., 2025), as experimental baselines to facilitate 547

a fair comparison with our proposed method. 548

Implementation Details. We use LLaVA-v1.5- 549

7B (Liu et al., 2024b) and Qwen-VL-7B(Bai et al., 550

2023) as the MLLM backbones. The enhancement 551

factor, denoted as α, is set to 4, and the proportion 552

of selected attention heads, denoted as γ, is set 553

to 25%. Greedy search is used as the decoding 554

strategy in all experiments. 555

Table 3: Performance of VPFC on LLaVA-Bench

Method Conversation Description Reasoning

Regular 59.6 ↑ 0.00 53.4 ↑ 0.00 75.6 ↑ 0.00
VCD 57.4 ↓ 2.20 50.9 ↓ 2.50 76.9 ↑ 1.30
SID 59.2 ↓ 0.40 51.3 ↓ 2.10 76.1 ↑ 0.50

MemVR 58.1 ↓ 1.50 51.2 ↓ 2.20 77.4 ↑ 1.80
VPFC 62.1 ↑ 2.50 53.8 ↑ 0.40 77.9 ↑ 2.30

5.2 Results and Analysis 556

Results on Discriminative Tasks. Table 1 presents 557

the experimental results of VPFC on COCO dataset 558

within POPE benchmark. Across the Random and 559

Popular subsets, all methods, including VPFC, ex- 560

hibit performance improvements. Notably, VPFC 561

demonstrates a more substantial increase in accu- 562

racy. We attribute this to VPFC’s balanced distribu- 563

tion of confidence between visual evidence indicat- 564

ing the presence and absence of objects. This de- 565

sign helps reduce omissions while simultaneously 566

preventing the introduction of fabrications. 567
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Table 4: Performance of VPFC on MM-Hallucination. The best result for each setting is highlighted in bold.

Model Method MM-Hall Object-Level Attribute-Level

Total Existence Count Position Color

LLaVA-1.5

Regular 620.00 ↑ 0.00 185.00 ↑ 0.00 146.67 ↑ 0.00 128.33 ↑ 0.00 160.00 ↑ 0.00
VCD 598.36 ↓ 21.64 190.00 ↑ 5.00 128.33 ↓ 18.34 133.33 ↑ 5.00 146.70 ↓ 13.30
SID 598.33 ↓ 21.67 185.00 ↑ 0.00 130.00 ↓ 16.67 128.33 ↑ 0.00 155.00 ↓ 5.00

MemVR 610.00 ↓ 10.00 190.00 ↑ 5.00 130.00 ↓ 16.67 130.00 ↑ 1.67 160.00 ↑ 0.00
VPFC 635.00 ↑ 15.00 190.00 ↑ 5.00 146.67 ↑ 0.00 133.33 ↑ 5.00 165.00 ↑ 5.00

Qwen-VL

Regular 618.33 ↑ 0.00 175.00 ↑ 0.00 140.00 ↑ 0.00 128.33 ↑ 0.00 175.00 ↑ 0.00
VCD 603.33 ↓ 15.00 170.00 ↓ 5.00 130.00 ↓ 10.00 123.33 ↓ 5.00 180.00 ↑ 5.00
SID 616.66 ↓ 1.67 175.00 ↑ 0.00 138.33 ↓ 1.67 128.33 ↑ 0.00 175.00 ↑ 0.00

MemVR 608.33 ↓ 10.00 170.00 ↓ 5.00 135.00 ↓ 5.00 133.33 ↑ 5.00 170.00 ↓ 5.00
VPFC 645.00 ↑ 26.67 185.00 ↑ 10.00 145.00 ↑ 5.00 135.00 ↑ 6.67 180.00 ↑ 5.00

This interpretation is further validated by results568

on Adversarial subset, where fabrications signifi-569

cantly outnumber omissions(Yin et al., 2025). Ex-570

isting methods, while somewhat effective in reduc-571

ing omissions, tend to introduce numerous addi-572

tional fabrications, thereby degrading overall per-573

formance. In contrast, VPFC effectively alleviates574

omission hallucinations without inducing new fab-575

rications, resulting in improved predictive accuracy576

even under such conditions.577

Table 4 shows performance of VPFC on MME578

benchmark. VPFC maintains or improves accuracy579

across almost all subsets, whereas existing meth-580

ods often suffer accuracy drops on certain subsets,581

highlighting a key issue: their mitigation of omis-582

sion hallucinations frequently comes at the cost of583

introducing excessive fabrication errors.584

Results on Generative Tasks. Table 3 presents585

the experimental results of VPFC on LLaVA-586

Bench-in-the-wild, while Table 2 reports results587

on CHAIR benchmark. Across both generative588

benchmarks, VPFC consistently outperforms exist-589

ing methods in prediction accuracy, clearly demon-590

strating its effectiveness in reducing object hallu-591

cinations. Similar to its performance on discrimi-592

native tasks, VPFC achieves superior accuracy on593

generative tasks by effectively mitigating omission594

hallucinations while avoiding the introduction of595

additional fabrication hallucinations.596

5.3 Ablation Studies597

We performed an ablation study to investigate the598

effectiveness of the centroid-focused strategy, us-599

ing LLaVA-v1.5-7B as the MLLM backbone on600

the COCO dataset within the POPE benchmark.601

The study compares different methods for comput-602

ing the steering direction. Specifically, instead of603

deriving the confidence steering direction from the604

concentrated region around the centroid of HCVRs, 605

we compute it directly based on the HCVRs them- 606

selves, defined as the top 25% of visual tokens with 607

the highest attention weights. 608

74

76

78

80

82

84

86

88

90

92

Random Popular Adversarial

Regular VPFC VPFC w/o Centroid VCD

Figure 7: Ablation Study on Centroid-Focused Strategy

As illustrated in Figure 7, removing the centroid- 609

focused computation leads to a significant drop 610

in VPFC performance. On the Adversarial sub- 611

set, the prediction accuracy of VPFC even falls 612

below that of the baseline, reaching the same level 613

as VCD. These results highlight the critical role 614

of the centroid-focused strategy in calibrating the 615

Visual Potential Field. It effectively redistributes 616

confidence across visual evidence regarding object 617

existence, thereby mitigating omissions without 618

introducing additional fabrications. Additional ab- 619

lation results can be found in Appendix C. 620

6 Conclusion 621

This work challenges the prevailing assumption 622

that omission and fabrication hallucinations share a 623

unified cause, revealing their fundamentally differ- 624

ent origins. By introducing VPFC, we demonstrate 625

a training-free approach that effectively mitigates 626

omissions without exacerbating fabrications. Our 627

findings lay the foundation for more balanced hal- 628

lucination mitigation strategies in MLLMs. 629
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Limitation630

While this work provides a detailed analysis of631

the distinct mechanisms underlying omission and632

fabrication hallucinations, highlighting that the for-633

mer arises from low confidence in visual-semantic634

mapping and the latter from spurious cross-modal635

associations, our proposed method, VPFC, primar-636

ily focuses on mitigating omission hallucinations637

without inducing fabrication. We do not explic-638

itly target the suppression of fabrication hallucina-639

tions. However, this choice does not undermine640

the method’s value: VPFC still achieves state-of-641

the-art performance among plug-and-play hallu-642

cination mitigation approaches, offering the best643

balance between reducing omissions and avoiding644

fabrications. Notably, existing training-free meth-645

ods have consistently failed to suppress fabrication646

hallucinations, often aggravating them while ad-647

dressing omissions. Therefore, we believe that648

identifying the root causes of fabrication halluci-649

nations is a necessary first step, and we leave the650

development of targeted mitigation strategies as651

promising future work.652
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A Related Work764

Multimodal Large Language Models. The evo-765

lution of MLLMs has progressed from BERT-766

based decoders to advanced LLM architectures,767

enabling more effective multimodal relationship768

modeling. Models such as BLIP-2(Li et al., 2023a)769

and MiniGPT-4(Zhu et al., 2023) employ Q-Former770

mechanisms to enhance the alignment between vi-771

sual and textual inputs, facilitating more precise772

cross-modal interactions. InstructBLIP extends this773

framework by integrating task-specific instructions,774

improving the model’s ability to interpret context-775

sensitive visual semantics. Meanwhile, LLaVA and776

Qwen-VL adopt simpler linear projection methods777

that streamline alignment, leading to superior per-778

formance in vision-language tasks. Despite these779

advancements, hallucination remains a persistent780

challenge that warrants further investigation.781

Hallucination Mitigation Methods. Visual Con-782

trastive Decoding (VCD) addresses object halluci-783

nation by comparing output distributions generated784

from standard visual inputs and distorted visual785

inputs. This approach reduces the model’s depen- 786

dence on linguistic priors within integrated LLMs 787

and minimizes the impact of statistical biases in 788

MLLM pretraining corpus. Instruction Contrastive 789

Decoding (ICD)(Wang et al., 2024b), in contrast, 790

focuses on the role of instruction perturbations in 791

amplifying hallucinations. By examining the differ- 792

ences in output distributions between standard and 793

perturbed instructions, ICD detects hallucination- 794

prone content and mitigates its impact effectively. 795

Building upon these two hallucination mitiga- 796

tion methods, numerous approaches, including 797

Adaptive Focal-Contrast Decoding (HALC)(Chen 798

et al., 2024), Self-Introspective Decoding (SID), 799

and Visual Layer Fusion Contrastive Decoding 800

(VaLiD)(Wang et al., 2024a), have been developed 801

based on similar principles. However, in reality, 802

these methods offer limited relief for omission hal- 803

lucinations but tend to introduce substantial new 804

fabrications during mitigation. 805

B Evaluation Datasets 806

Polling-based Object Probing Evaluation. POPE 807

is a novel framework designed to evaluate object 808

hallucinations in MLLMs. Departing from tra- 809

ditional caption-based approaches, POPE frames 810

hallucination detection as a binary task by pos- 811

ing straightforward yes-or-no questions regarding 812

the presence of specific objects in an image (e.g., 813

"Is there a chair in the image?"). Performance on 814

POPE is measured across four metrics: Accuracy, 815

Precision, Recall, and F1 score, allowing for a thor- 816

ough evaluation of hallucinations in MLLMs. 817

Multimodal Model Evaluation. MME benchmark 818

provides a comprehensive framework for evaluat- 819

ing MLLMs across both perceptual and cognitive 820

dimensions. It consists of ten perception-oriented 821

tasks and four cognition-oriented tasks, with model 822

performance assessed through accuracy metrics. 823

In addition to the full dataset, we leverage spe- 824

cific subsets, such as object existence and counting 825

to analyze object-level hallucinations, while posi- 826

tion and color subsets are employed to examine 827

attribute-level hallucinations. 828

Caption Hallucination Assessment with Image 829

Relevance. CHAIR is a metric designed to evaluate 830

how accurately generated captions align with image 831

content. It comprises two components: CHAIRi, 832

which measures object-level hallucinations by cal- 833

culating the ratio of falsely mentioned objects to all 834

mentioned objects, and CHAIRs, which assesses 835

10



sentence-level errors by computing the fraction of836

sentences containing at least one hallucinated ob-837

ject. For evaluation, we use the val2014 split of838

the MSCOCO dataset, which includes 80 object839

categories. A random subset of 500 images was840

selected, and captions were generated using the841

prompt: “Please describe this image in detail.” To-842

gether, CHAIRi and CHAIRs provide complemen-843

tary insights into the prevalence and granularity of844

hallucinated content in image captioning systems.845

Figure 8: Ablation Study on Head Selection Ratio

C Additional Ablation Studies846

We performed an ablation study on the attention847

head selection ratio, using LLaVA-v1.5-7B as the848

MLLM backbone on the COCO-Random dataset849

from the POPE benchmark. The objective was to850

evaluate how different selection ratios impact pre-851

diction performance. As illustrated in Figure 8,852

applying confidence steering intervention across853

too many attention heads leads to a noticeable de-854

cline in prediction accuracy. A more reliable and855

effective approach is to constrain the selection ratio856

to γ < 50%.857

Figure 9: Ablation Study on Steering Coefficient

We conducted an ablation study on the steering858

coefficient, using LLaVA-v1.5-7B as the MLLM859

backbone on the COCO-Random dataset from the860

POPE benchmark. The goal was to assess the ef- 861

fect of the steering coefficient on prediction perfor- 862

mance. As illustrated in Figure 9, when the coeffi- 863

cient is set within the range 3 < α < 6, the model 864

consistently yields stable and improved accuracy. 865

These findings suggest that the hyperparameter α 866

possesses a broad and robust tuning range, mak- 867

ing it straightforward to configure effectively in 868

practical settings to enhance performance. 869
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