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Abstract

Large Language Models (LLMs) offer planning capabilities such as natural lan-
guage explanations and iterative refinement, but human trust in these systems re-
mains underexplored. We present a user study comparing trust in LLM-based
and classical planners within a Planning Domain Definition Language (PDDL)
domain. Using both subjective (trust ratings) and objective (evaluation accuracy)
measures, we find that correctness is the primary driver of trust and performance.
Explanations improve evaluation accuracy but have limited impact on trust, while
plan refinement showed potential for increasing trust without significantly enhanc-
ing evaluation accuracy.

1 Introduction

Planning is the process of determining a sequence of actions to transit from an initial state to a desired
goal state. Planners—systems designed to generate such action sequences under given constraints—
play a critical role in automating decision-making processes in domains such as robotic navigation,
logistics optimization, and medical scheduling.

Traditional planners, while effective in structured and predictable environments, often struggle with
rigidity and a lack of explainability. In contrast, Large Language Models (LLMs) have recently
demonstrated strong performance in various domains, including text generation Li et al. [2024],
question answering Puri et al. [2020], Ram et al. [2021], and code completion Liu et al. [2020].
Unlike traditional planners, LLMs support multi-plan generation (i.e., return multiple plans to enable
users to choose), dynamic adjustments based on externally given information, and understandable
communication with humans via natural language. These strengths have sparked growing interest
in using LLMs as planners across diverse domains, including robotics Ren et al. [2023], Singh et al.
[2023], Yang et al. [2024a], Huang et al. [2022], healthcare Cascella et al. [2023], Sallam [2023],
and law Wu et al. [2023], Cheong et al. [2024].

However, the increasing use of LLM-based planners raises concerns, particularly regarding trust.
Trust, defined as the willingness to rely on automated systems Lee and See [2004], is vital for
the adoption of planning systems. Without trust, even systems with superior technical capabilities
may struggle to gain acceptance in practical settings Vorm and Combs [2022]. Planning tasks are
uniquely challenging due to their reliance on high correctness, sequential reasoning, and adaptabil-
ity to dynamic environments Allmendinger [2017]. These factors amplify the importance of trust,
as both over-trust and under-trust can introduce errors or inefficiencies in planning and can have
cascading effects on task success Talvitie [2012], Laurian [2009]. Thus, fostering appropriate trust
levels in LLM-based planners is essential for maximizing their potential while minimizing risks.

While prior research has explored factors influencing trust in LLM-based systems, such as anthro-
pomorphic cues Cohn et al. [2024], the framing and presence of explanations Sharma et al. [2024],

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

54
55
56
57

58
59
60
61
62
63
64
65
66

67

68
69
70
71
72

73

74
75
76

77
78
79
80

81

82
83
84
85

and user interface design Sun et al. [2024], factors influencing human trust in LLMs in the context
of planning tasks remain underexplored. As the Planning Domain Definition Language (PDDL) has
become a common benchmark for evaluating the planning capabilities of LLMs Silver et al. [2022,
2024], existing work primarily focuses on technical performance metrics, such as plan correctness
and efficiency. To the best of our knowledge, no prior studies have empirically investigated human
trust in LLM-based planners compared to classical PDDL solvers in a PDDL domain. This work
bridges this gap by conducting an exploratory user study that evaluates trust in a PDDL domain.

Specifically, LLMs possess unique capabilities and limitations compared to classical PDDL plan-
ners McDermott [2000], Ghallab et al. [2004] that may affect trust levels. For instance, LLMs can
generate natural language explanations to clarify why specific decisions were made Wang et al.
[2023], Karia et al. [2024] and iteratively refine their outputs based on user feedback Stiennon et al.
[2020], Christiano et al. [2017], Ouyang et al. [2022], Yang et al. [2024b]. These capabilities have
been shown in other contexts to enhance user trust by making the planning process more transparent
and interactive Kunkel et al. [2019], Sebo et al. [2019]. However, LLMs also exhibit significant limi-
tations, such as their inability to reliably generate or validate plans independently, even for relatively
simple tasks Kambhampati et al. [2024], Valmeekam et al. [2022], Silver et al. [2022], Valmeekam
et al. [2023]. These capabilities and limitations highlight the need for a deeper understanding of the
interplay among correctness, explanation, and refinement.

Trust can be evaluated using Likert-scale user questionnaires Martelaro et al. [2016], Xu and Dudek
[2015], Choi and Ji [2015] and broader instruments like the Propensity to Trust scale Merritt et al.
[2013], which assesses general attitudes toward machines. This study combines subjective 7-point
Likert scale trust scores with objective user evaluation accuracy of generated plans.

Key findings: Our results show that correctness is the primary driver of both evaluation accuracy
and trust, with the PDDL solver outperforming all LLM-based planners. While explanations im-
proved participants’ ability to assess plan correctness, they had little effect on trust. In contrast, plan
refinement increased trust despite no gain in evaluation accuracy—indicating that users may perceive
refinement as a signal of competence. This suggests that LLMs can earn user trust without actual
improvements in performance, since refined plans are generated by the same underlying model. As
many LLMs are fine-tuned using subjective human feedback Stiennon et al. [2020], Christiano et al.
[2017], this highlights the risk of overtrust—where models appear more trustworthy than they are.
Our findings offer practical insights for designing human-centered Al planning systems.

2 Methods

We evaluate factors influencing user trust in planners by comparing a language-model-based planner,
denoted as an LLM Planner (GPT-40 Achiam et al. [2023]), with a traditional graph-search-based
planner, denoted as a PDDL Solver (Fast Downwards Helmert [2006]). Unlike the PDDL Solver,
which relies on graph search algorithms, the LLM Planner can reason through the planning problem,
explain its proposed solution, and iteratively refine the solution based on external feedback.

2.1 Planning Problem

A planning problem in PDDL consists of a planning domain (aspects of a problem that remain con-
sistent, i.e., objects, predicates, actions) and a problem description (particular instance of a planning
task, i.e., initial state, goal state).

We select the gripper planning problems from the International Planning Competition Vallati et al.
[2015], where a robot moves balls between a set of rooms using two grippers (see Appendix A for
an example). The objective is to create a plan—a sequence of actions—for the robot to move the
balls to the defined target rooms. We present a few examples of the gripper problem in Figure 1.

2.2 PDDL Solver

The PDDL Solver takes the planning domain and the problem description as inputs and then gen-
erates a plan (a sequence of actions with specific input parameters) described in PDDL. Next, we
convert the generated plan into natural language for user studies following the procedure in Seipp
et al. [2022] and display it to users. We present an example in Figure 1. The planner either gener-
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Initial Condition Goal Condition Plan iia Gondifion Godl Gondiion .

1. Robot moves from room to room3.
2. Robot picks up b(13 with its left gripper in rooms.
3. Robot moves from room3 to room2.

4. Robot drops ball3 in roomz2 with its left gripper.

5. Robot moves from room2 to room.

6. Robot picks up ba/l1 with its left gripper in room1
7. Robot picks up b4 with its right gripper in room1.
8. Robot moves from room1 to roomd.

9. Robot drops b2l in roomé with its left gripper.

10. Robot drops bl in room4 with its right gripper.

1. Robot moves from room1 to room3.
2. Robot picks up b/ with its right gripper in room3.
3. Robot moves from rooms to room2.

4. Robot drops 121 in rooma2 with s right gripper.

5. Robot picks up b/ with its right gripper in room2.
6. Robot moves from room2 to room.

7. Robot drops 121 in room with ts right gripper.

8. Robot moves from roomé to room2.

9. Robot picks up b/ with its left gripper in room1
10. Robot moves from roomz2 to room1.

This plan is correct! This plan is wrong!

Figure 1: Examples of correct (left) and incorrect (right) plans generated for the gripper problem.

Initial Condition Goal Condition Plan Plan

1. Robot moves from room1 to room.
2. Robot picks up 1217 with its right gripper in room2.
3. Robot moves from room to room3.

4. Robot drops 12 in room3 with its right gripper.

5. Robot moves from room3 to room2.

6. Robot picks up b2/ with its right gripper in room?.
7. Robot moves from room2 to room1

8. Robot drops 2114 in room1 with its right gripper.
9. Robot picks up bl | with ts right gripper in room1
10. Robot moves from room to room.

11. Robot drops b1 in roomd with its right gripper.

1. Robot moves from roomé to room1
2. Robot picks up 12! 1 with ts right gripper in room1.
3. Robot moves from room to room3.

4. Robot drops b/ in rooma with its right gripper.
5. Robot moves from room3 to room1.

6. Robot picks up b3 with its right gripper in room1
7. Robot moves from room1 to rooms.

8. Robot drops 2113 in roomd with its right gripper.

Explanation: This plan is correct because the robot places Explanation: This plan is wrong because the robot
all balls correctly and does not miss any movements. misses the steps of moving 11 from roomé to room1.

Figure 2: Examples of explanations for correct (left) and incorrect (right) plans.

ates a correct plan defined as the shortest path between the initial and goal states or returns a signal
indicating that no solution exists for the given problem.

2.3 LLM Planner

The LLM Planner uses a structured prompt format to address planning problems by querying a large
language model. The planner then retrieves a natural language plan from the language model. We
include a few in-context examples within the prompts to ensure the output adheres to the desired
format. We present an example of the prompts and responses in Appendix B (Listing 2).

Unlike the PDDL Solver, the LLM Planner may generate incorrect plans that violate the problem
specifications (e.g., preconditions of actions) or fail to achieve the goal, as language models may
struggle with large state spaces compared to classical planners.

LLM Planner with Explanation (LLM+Expl) To examine the influence of explanation on user
trust, we create a natural language explanation of each generated plan. The trust improvement by
adding explanations will motivate training an LLM to explain its plan. This explanation includes
an assessment of the plan’s correctness, identifying any violations of action preconditions, and an
analysis of inconsistencies between the final state achieved and the intended goal state. If a plan is
correct, the explanation is “the plan successfully satisfies the goal conditions.” If a plan is incorrect,
we identify the underlying cause as a violation of action preconditions or a failure to achieve the goal
state. In cases involving precondition violations, we specify the action responsible for the issue.

For example, consider the action “robot moves from room 1 to room 2,” but the robot is initially
located in room 3. This scenario violates the precondition for the “move” action. In the latter case,
we describe the differences between the final state achieved and the intended goal state, e.g., “fail to
move ball 2 to room 2.” This function enables the user to better understand why actions are chosen
and their effect on the overall plan. We present examples of explanations in Figure 2.

LLM Planner with Refinement (LLM+Refine) Refining an LLM-generated plan is also possi-
ble. So, we offer a prompting mechanism for the LLM Planner to refine the generated plan according
to the user feedback. We present a sample user interface on the left of Figure 3. The mechanism
works as follows: First, request the user to indicate the step number where refinement should be-
gin. Second, send the planning domain, problem description, and the original plan to the language
model. Next, query the model to rewrite the subsequent steps starting from the user-specified step
number. Finally, replace the original plan with the newly refined plan and display it to the user. This
mechanism enables the user to focus on a subset of steps, facilitating a deeper interpretation of those
actions. However, the correctness of the refined plan is still not guaranteed.
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Problem 1 - Choose line to revise from:

Revised Plan Revised Plan

1. Robot moves from room4 to room1.
2. Robot picks up with its left gripper in room1. 1. Robot moves from room4 to room1. '
3. Robot moves from room1 to room2. 2. Robot picks up with its right gripper in room1.
4. Robot picks up with its right gripper in room2. 3. Robot moves from room1 toroom2.
5. Robot drops in room2 with its left gripper. 4. Robot picks up with its left gripper in room2.
6. Robot picks up with its left gripper in room2. 5. Robot moves from room2 to roomd.
7. Robot moves from room2 to room1. 6. Robot drops in room4 with its left gripper.
10 rvis rom? 8. Robot drops in room1 with its right gripper. 7. Robot moves from room4 to room3.
9. Robot moves from room1 to room4. 8. Robot moves from room3 to room1.
10. Robot drops in room4 with its left gripper. 9. Robot drops in room1 with its right gripper.

Figure 3: Plan refinement by the LLM Planner. Left: planning problem (initial and goal states).
Middle: correct plan refined from step 2. Right: incorrect plan refined from step 5.

3 User Study Design

We conducted a user study via Qualtrics to evaluate human trust in plans generated by the planners
discussed above. This study was approved by the University of Texas at Austin IRB#6873.

Participants. We recruited 30 fluent English-speaking adults via Prolific Palan and Schitter
[2018]. After informed consent and a reCAPTCHA check, participants completed the study with
bonus payments tied to evaluation accuracy (i.e., correctly accepting correct plans and rejecting
incorrect ones). Participants (80% male, 17% female, 3% preferred not to say) had a mean age
of 34.00 (SD=10.11). Prior LLM usage was reported by 80%. When asked about the frequency
of using LLMs specifically for planning tasks, 33% indicated that they use them frequently, 43%
occasionally, and 23% never.

Procedure. Participants completed four randomized sessions, each using a different planner:
PDDL, LLM, LLM+Expl, and LLM+Refine (Figure 4). Each session included two Gripper tasks of
similar difficulty, with plan presentation, intervention, and trust evaluation.

In each task, participants first viewed a planner-generated plan and rated their trust (trust before).
Then, they received an intervention:

* PDDL, LLM: Only plan consequence (e.g., “This plan is correct/wrong”).
* LLM+Expl: Consequence + explanation.

* LLM+Refine: Participants selected a refinement step; a revised plan was shown.

Participants then re-rated trust (trust after) and decided to accept or reject the plan—before the
intervention for PDDL and LLM, and after for LLM+Expl and LLM+Refine. This enabled com-
parison of plan correctness versus intervention effects. A demo and debrief surrounded the main
sessions. Evaluation accuracy was computed as the number of correctly judged plans across 8 tasks.

Independent Variables. We use a within-subjects design where each participant completes four
sessions, each with one of four planners. The PDDL planner always generates correct plans (100%),
while the others (LLM, LLM+Expl, LLM+Refine) produce 50% correct plans. We set this accu-
racy to ensure non-perfect but meaningful performance across two tasks per session, approximat-
ing the observed accuracy in practice Zuo et al. [2024], Hao et al. [2024]. LLM+Expl includes

( Consent \ ) ( \
I Demographics ! . Plan Intervention H h
! Experience : | Debrief :
N=30 I\_ Demo Session__! Accept/Reject . Trust Rating . Propensity to Trust Scale '\_ .

® I

Duration: Planner A (PDDL) Planner B (LLM) Planner C (LLM+Expl) Planner D (LLM+Refine)
~20 min

(mEnee)[g|(Eenoe)[gl(Earen)[g|(@anen)-

|

i K
N

Y
Randomized ordering

Figure 4: User study procedure. Full details in Appendix C.
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(a) PDDL vs. LLM. (b) LLM vs. LLM+Expl. (c) LLM vs. LLM+Refine.

Figure 6: Trust scores on a 7-point Likert scale before and after.

plan explanations; LLM+Refine allows participants to revise the plans. The independent variables
are: correctness (PDDL vs. LLM), explanation (LLM vs. LLM+Expl), and refinement (LLM vs.
LLM-+Refine).

Dependent Measures. We measure evaluation accuracy as the number of correctly judged tasks
(0-2) and trust, rated on a 7-point Likert scale before and after intervention. We also assess propen-
sity to trust using a 5-point Likert scale Merritt et al. [2013] (see Appendix D).

Hypotheses. We hypothesize that user performance (measured by plan evaluation accuracy) and
trust are influenced by three planner properties: correctness, explanations, and refinement. Specifi-
cally, H1: more correct planners increase evaluation accuracy; H2: providing explanations increases
evaluation accuracy; H3: allowing plan refinement increases evaluation accuracy; H4: more correct
planners improve user trust; HS: providing explanations improves user trust; and H6: allowing plan
refinement improves user trust.

4 Results & Analysis

This section presents findings from our user study on evaluation
accuracy, user trust, and the propensity to trust scale.

~

4.1 On Evaluation Accuracy

Figure 5 shows the average number of correctly evaluated tasks per
planner (error bars indicating standard deviations). We test H1-H3
using the Wilcoxon signed-rank test.

Number of Correctly Evaluated Tasks
-
— S
-
Y
-
NN ¢

For H1, participants achieved an average accuracy higher with the
PDDL solver (176:|:050) than with the LLM planner (1521056), o oot LM LLM+Expl LLM+Refine
supporting our hypothesis that correctness is a key determinant of

evaluation accuracy. However, the difference was not statistically Figure 5: Evaluation accu-
significant (W = 18,Z = —4.31,p = 0.071,r = —0.801). We racy measured by the number
suspect that increasing the sample size could reduce this uncertainty of correctly evaluated tasks.
and strengthen the observed trend.

For H2, evaluation accuracy improved when explanations were provided (LLM+Expl: 1.76 4+ 0.43),
a statistically significant gain (W = 5, Z = —4.59, p = 0.020,r = —0.853), supporting H2.

For H3, accuracy with LLM+Refine (1.38 +0.61) was lower than with LLM (1.52 £ 0.56), contrary
to our hypothesis. The difference was not significant (W = 22,7 = —4.23,p = 0.285,r =
—0.785), so H3 remains inconclusive. A possible explanation is overtrust: Participants may assume
that the opportunity to revise the plan ensures the planner would correct itself, leading them to
evaluate the revised plan less critically and, consequently, with lower accuracy.

Thus, the data suggests support for HI, confirms H2, and suggests rejection of H3.
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4.2 On Trust

Figure 6 shows participants’ average self-reported trust levels before and after each intervention,
measured on a 7-point Likert scale, with error bars representing standard deviations. We used the
Wilcoxon signed-rank test to evaluate our hypotheses H4-H6.

For H4, Figure 6a shows that PDDL had significantly higher trust than LLM both before (W =
134.5,Z = —5.75,p < 0.001,r = —0.742) and after intervention (W = 19,7 = —6.60,p <
0.001,r = —0.852). In terms of trust dynamics, trust in PDDL rose significantly from 5.68 4+ 1.66
t0 6.27+1.02 (p = 0.001), while trust in LLM slightly declined (3.97 £ 2.22 to 3.85 % 2.30, though
this change was not statistically significant (W = 215.50,Z = —5.15,p = 0.722,r = —0.665).
These findings support the hypothesis that correctness is a key factor influencing human trust.

For HS, Figure 6b shows no statistically significant difference in trust levels between LLM and
LLM+Expl, both before and after the intervention. This result challenges our hypothesis that pro-
viding explanations would increase trust when correctness is controlled. One possible interpretation
is that participants primarily value the objective correctness of the plans, with explanations offering
little benefit unless correctness improves. Alternatively, explanations may help participants calibrate
their trust by revealing the planner’s limitations, allowing them to adjust their trust to appropriate
levels. This insight suggests that improving trust in LLMs for planning tasks may require prioritizing
the objective correctness of the plans over supplementary explanations.

For H6, Figure 6¢c shows a slight increase in trust levels with LLM+Refine. On average, trust rose
from 3.97 & 2.22 to 4.12 £ 2.25 before the intervention and from 3.85 £ 2.30 to 4.45 £ 2.00 after.
While this trend is not statistically significant, it suggests a potential positive effect of refinement on
human trust with the LLM planner.

Thus, the data supports H4, suggests rejection of H5, and suggests support of H6.

4.3 Propensity to Trust Scale

We include a six-item propensity to trust scale Merritt et al. [2013] to explore participants’ general
attitudes toward trusting Al planners. While exploratory, we find that trust increases after interacting
with the PDDL planner and decreases after the LLM planner. Adding explanations shows limited
recovery of trust on select items. These results suggest that plan correctness remains the dominant
factor shaping trust, while explanations offer only marginal benefits when correctness is low. Full
results are provided in Appendix D.

5 Discussion

Summary Our findings provide significant insights into the influence of correctness, explanations,
and refinement on evaluation accuracy and user trust in Al-based planners. In particular, the find-
ings are three-fold: (1) The correctness of the generated plans is the most significant factor that
impacts the evaluation accuracy and user trust in the planners. As the PDDL solver is more capable
of generating correct plans, it achieves the highest evaluation accuracy and trust. (2) The explana-
tion component of the LLM planner improves evaluation accuracy, as LLM+Expl achieves higher
accuracy than LLM alone. Despite this improvement, LLM+Expl minimally impacts user trust.
However, alternative explanation methods may influence user trust differently from the manually
generated explanations used in our approach. (3) The refinement procedure in the LLM planner
does not lead to a significant improvement in evaluation accuracy; however, it exhibits a positive
influence on user trust that may indicate an overtrust in some situations. Finally, the propensity-to-
trust analysis identifies correctness as the primary determinant of user trust, whereas explanations
provided limited improvement in scenarios where the planner’s accuracy is diminished.

Future Research We plan to expand the study with more participants and diverse planning prob-
lems for more comprehensive evaluation. Other directions include exploring automated explanation
methods, comparing LLMs with varying accuracy levels to assess their effect on trust, and enabling
real-time user—planner interaction for collaborative plan refinement.



227

228
229

230
231

232

234
235
236

237
238
239

240
241
242
243

244
245
246
247
248

249
250
251
252

254
255

256
257

258
259
260

261
262

264
265

266
267
268

269

270

271
272

References

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Computing Surveys, 56(9):1-39, 2024.

Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Training
question answering models from synthetic data. arXiv preprint arXiv:2002.09599, 2020.

Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, and Omer Levy. Few-shot question
answering by pretraining span selection. arXiv preprint arXiv:2101.00438, 2021.

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-trained language model for
code completion. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pages 473485, 2020.

Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng
Xu, Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment
for large language model planners. arXiv preprint arXiv:2307.01928, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using

large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523-11530. IEEE, 2023.

Yunhao Yang, Cyrus Neary, and Ufuk Topcu. Multimodal pretrained models for verifiable sequen-
tial decision-making: Planning, grounding, and perception. In Proceedings of the 23rd Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 2011-2019, Auckland,
New Zealand, 2024a. International Foundation for Autonomous Agents and Multiagent Systems
/ ACM.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 9118-9147,
Baltimore, Maryland, USA, 2022. PMLR.

Marco Cascella, Jonathan Montomoli, Valentina Bellini, and Elena Bignami. Evaluating the feasi-
bility of chatgpt in healthcare: An analysis of multiple clinical and research scenarios. Journal of
medical systems, 47(1):33, 2023.

Malik Sallam. Chatgpt utility in healthcare education, research, and practice: Systematic review on
the promising perspectives and valid concerns. In Healthcare, page 887. MDPI, 2023.

Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xiaozhong Liu, Yating Zhang, Changlong Sun,
Fei Wu, and Kun Kuang. Precedent-enhanced legal judgment prediction with 1lm and domain-
model collaboration. arXiv preprint arXiv:2310.09241, 2023.

Inyoung Cheong, King Xia, KJ Kevin Feng, Quan Ze Chen, and Amy X Zhang. Engaging legal ex-
perts towards responsible 1lm policies for legal advice. In The 2024 ACM Conference on Fairness,
Accountability, and Transparency, pages 2454-2469, 2024.

John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human
factors, 46(1):50-80, 2004.

Eric S Vorm and David JY Combs. Integrating transparency, trust, and acceptance: The intelli-
gent systems technology acceptance model (istam). International Journal of Human—Computer
Interaction, 38(18-20):1828-1845, 2022.

Philip Allmendinger. Planning theory. Bloomsbury Publishing, 2017.
Antti Talvitie. The problem of trust in planning. Planning Theory, 11(3):257-278, 2012.

Lucie Laurian. Trust in planning: Theoretical and practical considerations for participatory and
deliberative planning. Planning theory & practice, 10(3):369-391, 2009.



273
274
275
276

277
278

279
280
281

282
283
284

286
287

289
290

291
292
293

294
295
296

297
298
299

300
301
302

303
304
305
306

308
309
310
311
312

313
314
315
316

317
318
319

Michelle Cohn, Mahima Pushkarna, Gbolahan O Olanubi, Joseph M Moran, Daniel Padgett, Zion
Mengesha, and Courtney Heldreth. Believing anthropomorphism: Examining the role of anthro-
pomorphic cues on trust in large language models. In Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems, pages 1-15, 2024.

Manasi Sharma, Ho Chit Siu, Rohan Paleja, and Jaime D Pefia. Why would you suggest that? human
trust in language model responses. arXiv preprint arXiv:2406.02018, 2024.

Xin Sun, Yunjie Liu, Jan De Wit, Jos A Bosch, and Zhuying Li. Trust by interface: How different
user interfaces shape human trust in health information from large language models. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems, pages 1-7, 2024.

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomds Lozano-Pérez, and
Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 2025620264, 2024.

Drew M McDermott. The 1998 ai planning systems competition. Al magazine, 21(2):35-35, 2000.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: Theory and practice. Elsevier,
2004.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with llms enables open-world multi-task agents. In
Advances in Neural Information Processing Systems, New Orleans,LA, USA, 2023.

Rushang Karia, Jayesh Nagpal, Daksh Dobhal, Pulkit Verma, Rashmeet Kaur Nayyar, Naman Shah,
and Siddharth Srivastava. Using explainable ai and hierarchical planning for outreach with robots.
arXiv preprint arXiv:2404.00808, 2024.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. arXiv
preprint arXiv:2009.01325, 2020.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4299-4307, Long Beach, CA, USA, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems, New Orleans, LA, USA, 2022.

Yunhao Yang, Neel P. Bhatt, Tyler Ingebrand, William Ward, Steven Carr, Atlas Wang, and Ufuk
Topcu. Fine-tuning language models using formal methods feedback: A use case in autonomous
systems. In Phillip B. Gibbons, Gennady Pekhimenko, and Christopher De Sa, editors, Proceed-
ings of the Seventh Annual Conference on Machine Learning and Systems, Santa Clara, CA, USA,
2024b. mlsys.org.

Johannes Kunkel, Tim Donkers, Lisa Michael, Catalin-Mihai Barbu, and Jiirgen Ziegler. Let me
explain: Impact of personal and impersonal explanations on trust in recommender systems. In
Proceedings of the 2019 CHI conference on human factors in computing systems, pages 1-12,
2019.

Sarah Strohkorb Sebo, Priyanka Krishnamurthi, and Brian Scassellati. “i don’t believe you”: In-
vestigating the effects of robot trust violation and repair. In 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 57-65. IEEE, 2019.



320
321
322

323
324

326
327
328

329
330

332
333
334

335
336

337
338
339

340
341
342

343
344

345
346
347

348
349

350
351

352
353
354

355
356

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Informa-
tion Processing Systems, 36:75993-76005, 2023.

Nikolas Martelaro, Victoria C Nneji, Wendy Ju, and Pamela Hinds. Tell me more designing hri
to encourage more trust, disclosure, and companionship. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 181-188. IEEE, 2016.

Angi Xu and Gregory Dudek. Optimo: Online probabilistic trust inference model for asymmetric
human-robot collaborations. In Proceedings of the tenth annual ACM/IEEE international confer-
ence on human-robot interaction, pages 221-228, 2015.

Jong Kyu Choi and Yong Gu Ji. Investigating the importance of trust on adopting an autonomous
vehicle. International Journal of Human-Computer Interaction, 31(10):692-702, 2015.

Stephanie M Merritt, Heather Heimbaugh, Jennifer LaChapell, and Deborah Lee. I trust it, but i
don’t know why: Effects of implicit attitudes toward automation on trust in an automated system.
Human factors, 55(3):520-534, 2013.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191-246, 2006.

Mauro Vallati, Lukas Chrpa, Marek Grzes, Thomas Leo McCluskey, Mark Roberts, Scott Sanner,
et al. The 2014 international planning competition: Progress and trends. Ai Magazine, 36(3):
90-98, 2015.

Jendrik Seipp, Alvaro Torralba, and Jorg Hoffmann. PDDL generators. https://doi.org/10.
5281/zenodo.6382173, 2022.

Stefan Palan and Christian Schitter. Prolific. ac—A subject pool for online experiments. Journal of
Behavioral and Experimental Finance, 17:22-27, 2018.

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, Michael L Littman, and Stephen H Bach. Plane-
tarium: A rigorous benchmark for translating text to structured planning languages. arXiv preprint
arXiv:2407.03321, 2024.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with llm-based formalized programming. arXiv preprint arXiv:2410.12112, 2024.



357

358
359
360
361

362

363
364 |

365 2

368

369
370 1

371
3722
373
3743
375
376 4

378

379
380
381 1

3822
383
384 3
385

35

388

389
390 |

3912

415

416
417
418

A Gripper Planning Problem

The types and predicates collaboratively define the states of a planning environment. Then, the
actions define the transition of the environment. Each action consists of a set of input parameters, a
precondition, and an effect. We consider the precondition and effect as the initial and final states of
the action.

The types of objects of the gripper problem are defined as

(:types room ball robot gripper)
; there are several balls distributed in several rooms and a robot
with two grippers.

and the predicates are defined as

(:predicates (at-robby ?r - robot ?x - room) ; a predicate indicating
the robot’s location
(at 7o - ball ?x - room) ; a predicate indicating the ball’s
location
(free 7r - robot ?7g - gripper) ; a predicate indicating whether
the robot’s gripper is free
(carry ?r - robot 7o - ball ?g - gripper)) ; indicating the ball

carried by a gripper

An action moving the robot from one room to another is defined as

(:action move

:parameters (?r - robot 7from ?to - room) ; we specify the
initial and target rooms
:precondition (and (at-robby ?r 7from)) ; the robot has to be in

the initial room
:effect (and (at-robby ?r ?to) (mot (at-robby ?r 7from))))

Furthermore, we have actions “pick (a ball with a gripper)” and “drop (a ball).”

(:raction pick
:parameters (?r - robot 7obj - object 7room - room ?g - gripper
)
:precondition (and (at ?7obj ?room) (at-robby ?r ?room) (free
?r 7g))
:effect (and (carry ?r 7obj 7g)
(not (at 7obj ?room))
(not (free ?7r ?7g))))

(:action drop
:parameters (?r - robot 7obj - object 7room - room 7g - gripper)
:precondition (and (carry ?r 7obj ?g) (at-robby ?r ?room))
:effect (and (at 7obj 7room)
(free 7r 7g)
(not (carry ?r ?obj 7g)))))

An example of the initial and goal states is

(:init (at-robby robotl rooml) (free robotl rgripperl) (free robotl
lgripperl)
(at balll rooml) (at ball2 room3) (at ball3 rooml) (at ball4 room2
) )

(:goal (and (at balll rooml) (at ball2 room3) (at ball3 rooml) (at
ball4 room2) ) )

B Additional Details on LLM Planner

Figure 1, 2, and 3 show the complete prompt for querying the language model to solve a planning
problem. The blue text represents the prompts to the language model, while the red text corresponds
to the responses generated by the language model.
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Listing 1: An in-context example provided to the language model to constrain its output format.

User: Given the following planning domain:
(define (domain gripper-strips)
(:requirements :strips :typing)
(:types room object robot gripper)

(:predicates (at-robby ?r - robot ?x - room)
(at 70 - object ?x - room)
(free 7r - robot ?g - gripper)
(carry ?r - robot 7o - object ?7g - gripper))
(:action move
:parameters (?r - robot 7from ?to - room)

:precondition (and (at-robby ?r 7from))
:effect (and (at-robby ?r 7to) (not (at-robby ?r ?from))))
(:action pick
:parameters (?r - robot 7obj - object 7room - room ?7g -
gripper)
:precondition (and (at ?7obj 7room) (at-robby ?r ?room) (
free 7r 7g))
:effect (and (carry ?r ?7obj ?7g) (not (at 7obj ?room)) (not
(free ?r 7g))))
(:action drop
:parameters (?r - robot 7obj - object ?7room - room 7g -
gripper)
:precondition (and (carry ?r 7obj 7g) (at-robby ?r ?room)
)
:effect (and (at 7obj ?7room) (free ?r 7g) (not (carry ?r 7
obj ?7g)))))

Please solve the following PDDL problem and return the solution only.
(define (problem gripper-1-2-1)
(:domain gripper-strips)
(:objects robotl - robot
rgripperl lgripperl - gripper
rooml room2 - room
balll - object)
(:init (at-robby robot2 rooml)
(free robotl rgripperi)
(free robotl lgripperl)
(at balll roomil) )
(:goal (at balll room2) ) )

Assistant:

1. Robotl moves from room2 to rooml.

2. Robotl picks up balll with its left gripper in rooml.
3. Robotl moves from rooml to room2.

4. Robotl drops balll in room2 with its left gripper.

Listing 2: Complete prompt for querying a plan from the language model.

<In-context example from the previous textbox>

User: Given the same planning domain:
Please solve the following PDDL problem and return the solution only.
(define (problem gripper-1-4-4)
(:domain gripper-strips)
(:objects robotl - robot
rgripperl lgripperl - gripper
rooml room2 room3 room4 - room
balll ball2 ball3 ball4d - object)
(:init (at-robby robotl rooml)
(free robotl rgripperl)
(free robotl lgripperl)
(at balll rooml)
(at ball2 room3)
(at ball3 rooml)
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(at ball4 room2) )
(:goal (and (at balll rooml)

(at ball2 room2)

(at ball3 room?2)

(at ball4 room4) ) ) )
Assistant:
1. Robotl picks up ball3 with its left gripper in rooml.
2. Robotl moves from rooml to room2.
3. Robotl picks up ball4 with its right gripper in room2.
4. Robotl drops ball3 in room2 with its left gripper.
5. Robotl moves from room2 to room3.
6. Robotl picks up ball2 with its left gripper in room3.
7. Robotl moves from room3 to room2.
8. Robotl drops ball2 in room2 with its left gripper.
9. Robotl moves from room2 to room4.
10. Robotl drops ball4 in room4 with its right gripper

Listing 3: Prompt for querying the LLM Planner to refine an existing plan.

Given the planning domain and problem:
(define (domain gripper-strips)

(define (problem gripper-1-2-1)
(:domain gripper-strips)...... )

Please refine the plan from step 2:

Robotl moves from room2 to rooml.

Robotl picks up balll with its left gripper in rooml.
Robotl picks up ball2 with its right gripper in room2.
Robotl drops ball3 in room2 with its left gripper.
Robotl moves from room2 to rooml.

Robotl picks up balll with its left gripper in rooml.
Robotl moves from rooml to room2.

Robotl drops balll in room2 with its left gripper.

B WN =D WN -

C User Study Procedure

Participants began with a demo session to familiarize themselves with the Gripper problem task and
the study interface.

The main part of the study comprised four sessions, each corresponding to a different Al planner:
Planner A (PDDL), Planner B (LLM), Planner C (LLM+Expl), and Planner D (LLM+Refine). The
four sessions were presented in a randomized order to counterbalance any ordering effects.

Each session contained two tasks, each with a new Gripper problem (unique initial and goal con-
ditions) of similar difficulty (comparable number of plan steps, rooms, and balls). Task order was
randomized within each session. In each task, participants first viewed a plan generated by the plan-
ner and rated their trust in the planner (trust before). They were then shown an intervention, which
varied depending on the session planner:

* For PDDL and LLM, the intervention provided only the consequence of the plan, e.g., “This plan
is correct/wrong!”.

» For LLM+Expl, the intervention included both the consequence of the plan and an explanation
of the outcome, e.g., “This plan is wrong because the robot misses the steps of moving ball4 from
room4 to rooml.”

» For LLM+Refine, participants were first asked to choose between two lines of the plan as a starting
point for refinement. A revised plan was then generated beginning from the selected line.

After the intervention, participants rated their trust in the planner (trust after). They also chose
accept or reject the plan before the intervention for PDDL and LLM planners, but after for the
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other two. This allows evaluation of plan correctness prior to consequences for PDDL and LLM,
while focusing on responses to interventions for the others.

At the end of the study, participants were informed of their evaluation accuracy as the total num-
ber of correctly evaluated tasks out of § total tasks (2 tasks per session, 4 sessions in total). The
procedure is detailed in Figure 4.

D Propensity to Trust

At the end of each session, participants rated their agreement with six statements adapted from
the Propensity to Trust Machines scale Merritt et al. [2013], replacing “machine” with the relevant
planner label (e.g., “Planner A,” “Planner B”). Each item was rated on a 5-point Likert scale:

* 1 — Strongly Disagree

e 2 — Somewhat Disagree

* 3 — Neither Agree Nor Disagree
* 4 — Somewhat Agree

* 5 — Strongly Agree
The statements were:

. T'usually trust Planner A until there is a reason not to.
. For the most part, I distrust Planner A.

. In general, I would rely on Planner A to assist me.

. My tendency to trust Planner A is high.

. It is easy for me to trust Planner A to do their job.

AN L AW =

. T'am likely to trust Planner A even when I have little knowledge about it.

Figure 7 presents the full results across planners. While this scale was exploratory, four items
showed statistically significant differences between planners using the Wilcoxon signed-rank test

For Q1 and Q6, we observe a clear shift toward agreement after the PDDL condition compared to
the initial baseline. This suggests that participants were more inclined to trust Al planners following
the PDDL session, likely due to the 100% correctness of PDDL plans, which appears to boost trust.
In contrast, for Q1, Q4, and QS5, we see a notable reduction in agreement after interacting with the
LLM planner compared to the PDDL solver. This decrease aligns with the reduced correctness of the
LLM plans (50%), highlighting the importance of correctness in maintaining trust in Al planners.
Interestingly, Q4 reveals that providing explanations (LLM+Expl) helps recover participants’ agree-
ment levels compared to the basic LLM condition. However, this positive effect of explanations on
trust propensity is limited, as it is only observed in one of the six questions.

These results underscore that correctness remains the dominant factor influencing participants’ gen-
eral trust attitude towards Al planners, with explanations offering only minimal benefit when cor-
rectness is suboptimal.
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Figure 7: Complete Propensity to trust scale result

14



