
Evaluating Human Trust in LLM-Based Planners:
A Preliminary Study

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) offer planning capabilities such as natural lan-1

guage explanations and iterative refinement, but human trust in these systems re-2

mains underexplored. We present a user study comparing trust in LLM-based3

and classical planners within a Planning Domain Definition Language (PDDL)4

domain. Using both subjective (trust ratings) and objective (evaluation accuracy)5

measures, we find that correctness is the primary driver of trust and performance.6

Explanations improve evaluation accuracy but have limited impact on trust, while7

plan refinement showed potential for increasing trust without significantly enhanc-8

ing evaluation accuracy.9

1 Introduction10

Planning is the process of determining a sequence of actions to transit from an initial state to a desired11

goal state. Planners—systems designed to generate such action sequences under given constraints—12

play a critical role in automating decision-making processes in domains such as robotic navigation,13

logistics optimization, and medical scheduling.14

Traditional planners, while effective in structured and predictable environments, often struggle with15

rigidity and a lack of explainability. In contrast, Large Language Models (LLMs) have recently16

demonstrated strong performance in various domains, including text generation Li et al. [2024],17

question answering Puri et al. [2020], Ram et al. [2021], and code completion Liu et al. [2020].18

Unlike traditional planners, LLMs support multi-plan generation (i.e., return multiple plans to enable19

users to choose), dynamic adjustments based on externally given information, and understandable20

communication with humans via natural language. These strengths have sparked growing interest21

in using LLMs as planners across diverse domains, including robotics Ren et al. [2023], Singh et al.22

[2023], Yang et al. [2024a], Huang et al. [2022], healthcare Cascella et al. [2023], Sallam [2023],23

and law Wu et al. [2023], Cheong et al. [2024].24

However, the increasing use of LLM-based planners raises concerns, particularly regarding trust.25

Trust, defined as the willingness to rely on automated systems Lee and See [2004], is vital for26

the adoption of planning systems. Without trust, even systems with superior technical capabilities27

may struggle to gain acceptance in practical settings Vorm and Combs [2022]. Planning tasks are28

uniquely challenging due to their reliance on high correctness, sequential reasoning, and adaptabil-29

ity to dynamic environments Allmendinger [2017]. These factors amplify the importance of trust,30

as both over-trust and under-trust can introduce errors or inefficiencies in planning and can have31

cascading effects on task success Talvitie [2012], Laurian [2009]. Thus, fostering appropriate trust32

levels in LLM-based planners is essential for maximizing their potential while minimizing risks.33

While prior research has explored factors influencing trust in LLM-based systems, such as anthro-34

pomorphic cues Cohn et al. [2024], the framing and presence of explanations Sharma et al. [2024],35
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and user interface design Sun et al. [2024], factors influencing human trust in LLMs in the context36

of planning tasks remain underexplored. As the Planning Domain Definition Language (PDDL) has37

become a common benchmark for evaluating the planning capabilities of LLMs Silver et al. [2022,38

2024], existing work primarily focuses on technical performance metrics, such as plan correctness39

and efficiency. To the best of our knowledge, no prior studies have empirically investigated human40

trust in LLM-based planners compared to classical PDDL solvers in a PDDL domain. This work41

bridges this gap by conducting an exploratory user study that evaluates trust in a PDDL domain.42

Specifically, LLMs possess unique capabilities and limitations compared to classical PDDL plan-43

ners McDermott [2000], Ghallab et al. [2004] that may affect trust levels. For instance, LLMs can44

generate natural language explanations to clarify why specific decisions were made Wang et al.45

[2023], Karia et al. [2024] and iteratively refine their outputs based on user feedback Stiennon et al.46

[2020], Christiano et al. [2017], Ouyang et al. [2022], Yang et al. [2024b]. These capabilities have47

been shown in other contexts to enhance user trust by making the planning process more transparent48

and interactive Kunkel et al. [2019], Sebo et al. [2019]. However, LLMs also exhibit significant limi-49

tations, such as their inability to reliably generate or validate plans independently, even for relatively50

simple tasks Kambhampati et al. [2024], Valmeekam et al. [2022], Silver et al. [2022], Valmeekam51

et al. [2023]. These capabilities and limitations highlight the need for a deeper understanding of the52

interplay among correctness, explanation, and refinement.53

Trust can be evaluated using Likert-scale user questionnaires Martelaro et al. [2016], Xu and Dudek54

[2015], Choi and Ji [2015] and broader instruments like the Propensity to Trust scale Merritt et al.55

[2013], which assesses general attitudes toward machines. This study combines subjective 7-point56

Likert scale trust scores with objective user evaluation accuracy of generated plans.57

Key findings: Our results show that correctness is the primary driver of both evaluation accuracy58

and trust, with the PDDL solver outperforming all LLM-based planners. While explanations im-59

proved participants’ ability to assess plan correctness, they had little effect on trust. In contrast, plan60

refinement increased trust despite no gain in evaluation accuracy—indicating that users may perceive61

refinement as a signal of competence. This suggests that LLMs can earn user trust without actual62

improvements in performance, since refined plans are generated by the same underlying model. As63

many LLMs are fine-tuned using subjective human feedback Stiennon et al. [2020], Christiano et al.64

[2017], this highlights the risk of overtrust—where models appear more trustworthy than they are.65

Our findings offer practical insights for designing human-centered AI planning systems.66

2 Methods67

We evaluate factors influencing user trust in planners by comparing a language-model-based planner,68

denoted as an LLM Planner (GPT-4o Achiam et al. [2023]), with a traditional graph-search-based69

planner, denoted as a PDDL Solver (Fast Downwards Helmert [2006]). Unlike the PDDL Solver,70

which relies on graph search algorithms, the LLM Planner can reason through the planning problem,71

explain its proposed solution, and iteratively refine the solution based on external feedback.72

2.1 Planning Problem73

A planning problem in PDDL consists of a planning domain (aspects of a problem that remain con-74

sistent, i.e., objects, predicates, actions) and a problem description (particular instance of a planning75

task, i.e., initial state, goal state).76

We select the gripper planning problems from the International Planning Competition Vallati et al.77

[2015], where a robot moves balls between a set of rooms using two grippers (see Appendix A for78

an example). The objective is to create a plan—a sequence of actions—for the robot to move the79

balls to the defined target rooms. We present a few examples of the gripper problem in Figure 1.80

2.2 PDDL Solver81

The PDDL Solver takes the planning domain and the problem description as inputs and then gen-82

erates a plan (a sequence of actions with specific input parameters) described in PDDL. Next, we83

convert the generated plan into natural language for user studies following the procedure in Seipp84

et al. [2022] and display it to users. We present an example in Figure 1. The planner either gener-85
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Figure 1: Examples of correct (left) and incorrect (right) plans generated for the gripper problem.

Figure 2: Examples of explanations for correct (left) and incorrect (right) plans.

ates a correct plan defined as the shortest path between the initial and goal states or returns a signal86

indicating that no solution exists for the given problem.87

2.3 LLM Planner88

The LLM Planner uses a structured prompt format to address planning problems by querying a large89

language model. The planner then retrieves a natural language plan from the language model. We90

include a few in-context examples within the prompts to ensure the output adheres to the desired91

format. We present an example of the prompts and responses in Appendix B (Listing 2).92

Unlike the PDDL Solver, the LLM Planner may generate incorrect plans that violate the problem93

specifications (e.g., preconditions of actions) or fail to achieve the goal, as language models may94

struggle with large state spaces compared to classical planners.95

LLM Planner with Explanation (LLM+Expl) To examine the influence of explanation on user96

trust, we create a natural language explanation of each generated plan. The trust improvement by97

adding explanations will motivate training an LLM to explain its plan. This explanation includes98

an assessment of the plan’s correctness, identifying any violations of action preconditions, and an99

analysis of inconsistencies between the final state achieved and the intended goal state. If a plan is100

correct, the explanation is “the plan successfully satisfies the goal conditions.” If a plan is incorrect,101

we identify the underlying cause as a violation of action preconditions or a failure to achieve the goal102

state. In cases involving precondition violations, we specify the action responsible for the issue.103

For example, consider the action “robot moves from room 1 to room 2,” but the robot is initially104

located in room 3. This scenario violates the precondition for the “move” action. In the latter case,105

we describe the differences between the final state achieved and the intended goal state, e.g., “fail to106

move ball 2 to room 2.” This function enables the user to better understand why actions are chosen107

and their effect on the overall plan. We present examples of explanations in Figure 2.108

LLM Planner with Refinement (LLM+Refine) Refining an LLM-generated plan is also possi-109

ble. So, we offer a prompting mechanism for the LLM Planner to refine the generated plan according110

to the user feedback. We present a sample user interface on the left of Figure 3. The mechanism111

works as follows: First, request the user to indicate the step number where refinement should be-112

gin. Second, send the planning domain, problem description, and the original plan to the language113

model. Next, query the model to rewrite the subsequent steps starting from the user-specified step114

number. Finally, replace the original plan with the newly refined plan and display it to the user. This115

mechanism enables the user to focus on a subset of steps, facilitating a deeper interpretation of those116

actions. However, the correctness of the refined plan is still not guaranteed.117
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Figure 3: Plan refinement by the LLM Planner. Left: planning problem (initial and goal states).
Middle: correct plan refined from step 2. Right: incorrect plan refined from step 5.

3 User Study Design118

We conducted a user study via Qualtrics to evaluate human trust in plans generated by the planners119

discussed above. This study was approved by the University of Texas at Austin IRB#6873.120

Participants. We recruited 30 fluent English-speaking adults via Prolific Palan and Schitter121

[2018]. After informed consent and a reCAPTCHA check, participants completed the study with122

bonus payments tied to evaluation accuracy (i.e., correctly accepting correct plans and rejecting123

incorrect ones). Participants (80% male, 17% female, 3% preferred not to say) had a mean age124

of 34.00 (SD=10.11). Prior LLM usage was reported by 80%. When asked about the frequency125

of using LLMs specifically for planning tasks, 33% indicated that they use them frequently, 43%126

occasionally, and 23% never.127

Procedure. Participants completed four randomized sessions, each using a different planner:128

PDDL, LLM, LLM+Expl, and LLM+Refine (Figure 4). Each session included two Gripper tasks of129

similar difficulty, with plan presentation, intervention, and trust evaluation.130

In each task, participants first viewed a planner-generated plan and rated their trust (trust before).131

Then, they received an intervention:132

• PDDL, LLM: Only plan consequence (e.g., “This plan is correct/wrong”).133

• LLM+Expl: Consequence + explanation.134

• LLM+Refine: Participants selected a refinement step; a revised plan was shown.135

Participants then re-rated trust (trust after) and decided to accept or reject the plan—before the136

intervention for PDDL and LLM, and after for LLM+Expl and LLM+Refine. This enabled com-137

parison of plan correctness versus intervention effects. A demo and debrief surrounded the main138

sessions. Evaluation accuracy was computed as the number of correctly judged plans across 8 tasks.139

Independent Variables. We use a within-subjects design where each participant completes four140

sessions, each with one of four planners. The PDDL planner always generates correct plans (100%),141

while the others (LLM, LLM+Expl, LLM+Refine) produce 50% correct plans. We set this accu-142

racy to ensure non-perfect but meaningful performance across two tasks per session, approximat-143

ing the observed accuracy in practice Zuo et al. [2024], Hao et al. [2024]. LLM+Expl includes144

Debrief

Consent
Demographics 

Experience
Demo Session

Plan

Accept/Reject Trust Rating

Intervention

Propensity to Trust Scale

Planner A (PDDL)

×2

Planner B (LLM)

×2

Planner C (LLM+Expl)

×2

Planner D (LLM+Refine)

×2

Randomized ordering

N=30

Duration:
~20 min

Figure 4: User study procedure. Full details in Appendix C.
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Figure 6: Trust scores on a 7-point Likert scale before and after.

plan explanations; LLM+Refine allows participants to revise the plans. The independent variables145

are: correctness (PDDL vs. LLM), explanation (LLM vs. LLM+Expl), and refinement (LLM vs.146

LLM+Refine).147

Dependent Measures. We measure evaluation accuracy as the number of correctly judged tasks148

(0–2) and trust, rated on a 7-point Likert scale before and after intervention. We also assess propen-149

sity to trust using a 5-point Likert scale Merritt et al. [2013] (see Appendix D).150

Hypotheses. We hypothesize that user performance (measured by plan evaluation accuracy) and151

trust are influenced by three planner properties: correctness, explanations, and refinement. Specifi-152

cally, H1: more correct planners increase evaluation accuracy; H2: providing explanations increases153

evaluation accuracy; H3: allowing plan refinement increases evaluation accuracy; H4: more correct154

planners improve user trust; H5: providing explanations improves user trust; and H6: allowing plan155

refinement improves user trust.156

4 Results & Analysis157
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Figure 5: Evaluation accu-
racy measured by the number
of correctly evaluated tasks.

This section presents findings from our user study on evaluation158

accuracy, user trust, and the propensity to trust scale.159

4.1 On Evaluation Accuracy160

Figure 5 shows the average number of correctly evaluated tasks per161

planner (error bars indicating standard deviations). We test H1–H3162

using the Wilcoxon signed-rank test.163

For H1, participants achieved an average accuracy higher with the164

PDDL solver (1.76±0.50) than with the LLM planner (1.52±0.56),165

supporting our hypothesis that correctness is a key determinant of166

evaluation accuracy. However, the difference was not statistically167

significant (W = 18, Z = −4.31, p = 0.071, r = −0.801). We168

suspect that increasing the sample size could reduce this uncertainty169

and strengthen the observed trend.170

For H2, evaluation accuracy improved when explanations were provided (LLM+Expl: 1.76±0.43),171

a statistically significant gain (W = 5, Z = −4.59, p = 0.020, r = −0.853), supporting H2.172

For H3, accuracy with LLM+Refine (1.38±0.61) was lower than with LLM (1.52±0.56), contrary173

to our hypothesis. The difference was not significant (W = 22, Z = −4.23, p = 0.285, r =174

−0.785), so H3 remains inconclusive. A possible explanation is overtrust: Participants may assume175

that the opportunity to revise the plan ensures the planner would correct itself, leading them to176

evaluate the revised plan less critically and, consequently, with lower accuracy.177

Thus, the data suggests support for H1, confirms H2, and suggests rejection of H3.178
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4.2 On Trust179

Figure 6 shows participants’ average self-reported trust levels before and after each intervention,180

measured on a 7-point Likert scale, with error bars representing standard deviations. We used the181

Wilcoxon signed-rank test to evaluate our hypotheses H4-H6.182

For H4, Figure 6a shows that PDDL had significantly higher trust than LLM both before (W =183

134.5, Z = −5.75, p < 0.001, r = −0.742) and after intervention (W = 19, Z = −6.60, p <184

0.001, r = −0.852). In terms of trust dynamics, trust in PDDL rose significantly from 5.68± 1.66185

to 6.27±1.02 (p = 0.001), while trust in LLM slightly declined (3.97±2.22 to 3.85±2.30, though186

this change was not statistically significant (W = 215.50, Z = −5.15, p = 0.722, r = −0.665).187

These findings support the hypothesis that correctness is a key factor influencing human trust.188

For H5, Figure 6b shows no statistically significant difference in trust levels between LLM and189

LLM+Expl, both before and after the intervention. This result challenges our hypothesis that pro-190

viding explanations would increase trust when correctness is controlled. One possible interpretation191

is that participants primarily value the objective correctness of the plans, with explanations offering192

little benefit unless correctness improves. Alternatively, explanations may help participants calibrate193

their trust by revealing the planner’s limitations, allowing them to adjust their trust to appropriate194

levels. This insight suggests that improving trust in LLMs for planning tasks may require prioritizing195

the objective correctness of the plans over supplementary explanations.196

For H6, Figure 6c shows a slight increase in trust levels with LLM+Refine. On average, trust rose197

from 3.97± 2.22 to 4.12± 2.25 before the intervention and from 3.85± 2.30 to 4.45± 2.00 after.198

While this trend is not statistically significant, it suggests a potential positive effect of refinement on199

human trust with the LLM planner.200

Thus, the data supports H4, suggests rejection of H5, and suggests support of H6.201

4.3 Propensity to Trust Scale202

We include a six-item propensity to trust scale Merritt et al. [2013] to explore participants’ general203

attitudes toward trusting AI planners. While exploratory, we find that trust increases after interacting204

with the PDDL planner and decreases after the LLM planner. Adding explanations shows limited205

recovery of trust on select items. These results suggest that plan correctness remains the dominant206

factor shaping trust, while explanations offer only marginal benefits when correctness is low. Full207

results are provided in Appendix D.208

5 Discussion209

Summary Our findings provide significant insights into the influence of correctness, explanations,210

and refinement on evaluation accuracy and user trust in AI-based planners. In particular, the find-211

ings are three-fold: (1) The correctness of the generated plans is the most significant factor that212

impacts the evaluation accuracy and user trust in the planners. As the PDDL solver is more capable213

of generating correct plans, it achieves the highest evaluation accuracy and trust. (2) The explana-214

tion component of the LLM planner improves evaluation accuracy, as LLM+Expl achieves higher215

accuracy than LLM alone. Despite this improvement, LLM+Expl minimally impacts user trust.216

However, alternative explanation methods may influence user trust differently from the manually217

generated explanations used in our approach. (3) The refinement procedure in the LLM planner218

does not lead to a significant improvement in evaluation accuracy; however, it exhibits a positive219

influence on user trust that may indicate an overtrust in some situations. Finally, the propensity-to-220

trust analysis identifies correctness as the primary determinant of user trust, whereas explanations221

provided limited improvement in scenarios where the planner’s accuracy is diminished.222

Future Research We plan to expand the study with more participants and diverse planning prob-223

lems for more comprehensive evaluation. Other directions include exploring automated explanation224

methods, comparing LLMs with varying accuracy levels to assess their effect on trust, and enabling225

real-time user–planner interaction for collaborative plan refinement.226

6



References227

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language228

models for text generation: A survey. ACM Computing Surveys, 56(9):1–39, 2024.229

Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Training230

question answering models from synthetic data. arXiv preprint arXiv:2002.09599, 2020.231

Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, and Omer Levy. Few-shot question232

answering by pretraining span selection. arXiv preprint arXiv:2101.00438, 2021.233

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-trained language model for234

code completion. In Proceedings of the 35th IEEE/ACM International Conference on Automated235

Software Engineering, pages 473–485, 2020.236

Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng237

Xu, Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment238

for large language model planners. arXiv preprint arXiv:2307.01928, 2023.239

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter240

Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using241

large language models. In 2023 IEEE International Conference on Robotics and Automation242

(ICRA), pages 11523–11530. IEEE, 2023.243

Yunhao Yang, Cyrus Neary, and Ufuk Topcu. Multimodal pretrained models for verifiable sequen-244

tial decision-making: Planning, grounding, and perception. In Proceedings of the 23rd Interna-245

tional Conference on Autonomous Agents and Multiagent Systems, pages 2011–2019, Auckland,246

New Zealand, 2024a. International Foundation for Autonomous Agents and Multiagent Systems247

/ ACM.248

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot249

planners: Extracting actionable knowledge for embodied agents. In International Conference on250

Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 9118–9147,251

Baltimore, Maryland, USA, 2022. PMLR.252

Marco Cascella, Jonathan Montomoli, Valentina Bellini, and Elena Bignami. Evaluating the feasi-253

bility of chatgpt in healthcare: An analysis of multiple clinical and research scenarios. Journal of254

medical systems, 47(1):33, 2023.255

Malik Sallam. Chatgpt utility in healthcare education, research, and practice: Systematic review on256

the promising perspectives and valid concerns. In Healthcare, page 887. MDPI, 2023.257

Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xiaozhong Liu, Yating Zhang, Changlong Sun,258

Fei Wu, and Kun Kuang. Precedent-enhanced legal judgment prediction with llm and domain-259

model collaboration. arXiv preprint arXiv:2310.09241, 2023.260

Inyoung Cheong, King Xia, KJ Kevin Feng, Quan Ze Chen, and Amy X Zhang. Engaging legal ex-261

perts towards responsible llm policies for legal advice. In The 2024 ACM Conference on Fairness,262

Accountability, and Transparency, pages 2454–2469, 2024.263

John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human264

factors, 46(1):50–80, 2004.265

Eric S Vorm and David JY Combs. Integrating transparency, trust, and acceptance: The intelli-266

gent systems technology acceptance model (istam). International Journal of Human–Computer267

Interaction, 38(18-20):1828–1845, 2022.268

Philip Allmendinger. Planning theory. Bloomsbury Publishing, 2017.269

Antti Talvitie. The problem of trust in planning. Planning Theory, 11(3):257–278, 2012.270

Lucie Laurian. Trust in planning: Theoretical and practical considerations for participatory and271

deliberative planning. Planning theory & practice, 10(3):369–391, 2009.272

7



Michelle Cohn, Mahima Pushkarna, Gbolahan O Olanubi, Joseph M Moran, Daniel Padgett, Zion273

Mengesha, and Courtney Heldreth. Believing anthropomorphism: Examining the role of anthro-274

pomorphic cues on trust in large language models. In Extended Abstracts of the CHI Conference275

on Human Factors in Computing Systems, pages 1–15, 2024.276

Manasi Sharma, Ho Chit Siu, Rohan Paleja, and Jaime D Peña. Why would you suggest that? human277

trust in language model responses. arXiv preprint arXiv:2406.02018, 2024.278

Xin Sun, Yunjie Liu, Jan De Wit, Jos A Bosch, and Zhuying Li. Trust by interface: How different279

user interfaces shape human trust in health information from large language models. In Extended280

Abstracts of the CHI Conference on Human Factors in Computing Systems, pages 1–7, 2024.281

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and282
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A Gripper Planning Problem357

The types and predicates collaboratively define the states of a planning environment. Then, the358

actions define the transition of the environment. Each action consists of a set of input parameters, a359

precondition, and an effect. We consider the precondition and effect as the initial and final states of360

the action.361

The types of objects of the gripper problem are defined as362
363

1 (:types room ball robot gripper)364

2 ; there are several balls distributed in several rooms and a robot365

with two grippers.366367

and the predicates are defined as368
369

1 (: predicates (at-robby ?r - robot ?x - room) ; a predicate indicating370

the robot ’s location371

2 (at ?o - ball ?x - room) ; a predicate indicating the ball ’s372

location373

3 (free ?r - robot ?g - gripper) ; a predicate indicating whether374

the robot ’s gripper is free375

4 (carry ?r - robot ?o - ball ?g - gripper)) ; indicating the ball376

carried by a gripper377378

An action moving the robot from one room to another is defined as379
380

1 (: action move381

2 :parameters (?r - robot ?from ?to - room) ; we specify the382

initial and target rooms383

3 :precondition (and (at -robby ?r ?from)) ; the robot has to be in384

the initial room385

4 :effect (and (at -robby ?r ?to) (not (at -robby ?r ?from))))386387

Furthermore, we have actions “pick (a ball with a gripper)” and “drop (a ball).”388
389

1 (: action pick390

2 :parameters (?r - robot ?obj - object ?room - room ?g - gripper391

)392

3 :precondition (and (at ?obj ?room) (at -robby ?r ?room) (free393

?r ?g))394

4 :effect (and (carry ?r ?obj ?g)395

5 (not (at ?obj ?room))396

6 (not (free ?r ?g))))397

7398

8 (: action drop399

9 :parameters (?r - robot ?obj - object ?room - room ?g - gripper)400

10 :precondition (and (carry ?r ?obj ?g) (at -robby ?r ?room))401

11 :effect (and (at ?obj ?room)402

12 (free ?r ?g)403

13 (not (carry ?r ?obj ?g)))))404405

An example of the initial and goal states is406
407

1 (:init (at-robby robot1 room1) (free robot1 rgripper1) (free robot1408

lgripper1)409

2 (at ball1 room1) (at ball2 room3) (at ball3 room1) (at ball4 room2410

) )411

3 (:goal (and (at ball1 room1) (at ball2 room3) (at ball3 room1) (at412

ball4 room2) ) )413414

B Additional Details on LLM Planner415

Figure 1, 2, and 3 show the complete prompt for querying the language model to solve a planning416

problem. The blue text represents the prompts to the language model, while the red text corresponds417

to the responses generated by the language model.418
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Listing 1: An in-context example provided to the language model to constrain its output format.
419

1 User: Given the following planning domain:420

2 (define (domain gripper -strips)421

3 (: requirements :strips :typing)422

4 (: types room object robot gripper)423

5 (: predicates (at-robby ?r - robot ?x - room)424

6 (at ?o - object ?x - room)425

7 (free ?r - robot ?g - gripper)426

8 (carry ?r - robot ?o - object ?g - gripper))427

9 (: action move428

10 :parameters (?r - robot ?from ?to - room)429

11 :precondition (and (at -robby ?r ?from))430

12 :effect (and (at -robby ?r ?to) (not (at -robby ?r ?from))))431

13 (: action pick432

14 :parameters (?r - robot ?obj - object ?room - room ?g -433

gripper)434

15 :precondition (and (at ?obj ?room) (at -robby ?r ?room) (435

free ?r ?g))436

16 :effect (and (carry ?r ?obj ?g) (not (at ?obj ?room)) (not437

(free ?r ?g))))438

17 (: action drop439

18 :parameters (?r - robot ?obj - object ?room - room ?g -440

gripper)441

19 :precondition (and (carry ?r ?obj ?g) (at -robby ?r ?room)442

)443

20 :effect (and (at ?obj ?room) (free ?r ?g) (not (carry ?r ?444

obj ?g)))))445

21446

22 Please solve the following PDDL problem and return the solution only.447

23 (define (problem gripper -1-2-1)448

24 (: domain gripper -strips)449

25 (: objects robot1 - robot450

26 rgripper1 lgripper1 - gripper451

27 room1 room2 - room452

28 ball1 - object)453

29 (:init (at-robby robot2 room1)454

30 (free robot1 rgripper1)455

31 (free robot1 lgripper1)456

32 (at ball1 room1) )457

33 (:goal (at ball1 room2) ) )458

34459

35 Assistant:460

36 1. Robot1 moves from room2 to room1.461

37 2. Robot1 picks up ball1 with its left gripper in room1.462

38 3. Robot1 moves from room1 to room2.463

39 4. Robot1 drops ball1 in room2 with its left gripper.464465

Listing 2: Complete prompt for querying a plan from the language model.
466

1 <In -context example from the previous textbox>467

2468

3 User: Given the same planning domain:469

4 Please solve the following PDDL problem and return the solution only.470

5 (define (problem gripper -1-4-4)471

6 (: domain gripper -strips)472

7 (: objects robot1 - robot473

8 rgripper1 lgripper1 - gripper474

9 room1 room2 room3 room4 - room475

10 ball1 ball2 ball3 ball4 - object)476

11 (:init (at-robby robot1 room1)477

12 (free robot1 rgripper1)478

13 (free robot1 lgripper1)479

14 (at ball1 room1)480

15 (at ball2 room3)481

16 (at ball3 room1)482
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17 (at ball4 room2) )483

18 (:goal (and (at ball1 room1)484

19 (at ball2 room2)485

20 (at ball3 room2)486

21 (at ball4 room4) ) ) )487

22 Assistant:488

23 1. Robot1 picks up ball3 with its left gripper in room1.489

24 2. Robot1 moves from room1 to room2.490

25 3. Robot1 picks up ball4 with its right gripper in room2.491

26 4. Robot1 drops ball3 in room2 with its left gripper.492

27 5. Robot1 moves from room2 to room3.493

28 6. Robot1 picks up ball2 with its left gripper in room3.494

29 7. Robot1 moves from room3 to room2.495

30 8. Robot1 drops ball2 in room2 with its left gripper.496

31 9. Robot1 moves from room2 to room4.497

32 10. Robot1 drops ball4 in room4 with its right gripper498499

Listing 3: Prompt for querying the LLM Planner to refine an existing plan.
500

1 Given the planning domain and problem:501

2 (define (domain gripper -strips)502

3 ......)503

4 (define (problem gripper -1-2-1)504

5 (: domain gripper -strips)......)505

6506

7 Please refine the plan from step 2:507

8 1. Robot1 moves from room2 to room1.508

9 2. Robot1 picks up ball1 with its left gripper in room1.509

10 3. Robot1 picks up ball2 with its right gripper in room2.510

11 4. Robot1 drops ball3 in room2 with its left gripper.511

12 1. Robot1 moves from room2 to room1.512

13 2. Robot1 picks up ball1 with its left gripper in room1.513

14 3. Robot1 moves from room1 to room2.514

15 4. Robot1 drops ball1 in room2 with its left gripper.515516

C User Study Procedure517

Participants began with a demo session to familiarize themselves with the Gripper problem task and518

the study interface.519

The main part of the study comprised four sessions, each corresponding to a different AI planner:520

Planner A (PDDL), Planner B (LLM), Planner C (LLM+Expl), and Planner D (LLM+Refine). The521

four sessions were presented in a randomized order to counterbalance any ordering effects.522

Each session contained two tasks, each with a new Gripper problem (unique initial and goal con-523

ditions) of similar difficulty (comparable number of plan steps, rooms, and balls). Task order was524

randomized within each session. In each task, participants first viewed a plan generated by the plan-525

ner and rated their trust in the planner (trust before). They were then shown an intervention, which526

varied depending on the session planner:527

• For PDDL and LLM, the intervention provided only the consequence of the plan, e.g., “This plan528

is correct/wrong!”.529

• For LLM+Expl, the intervention included both the consequence of the plan and an explanation530

of the outcome, e.g., “This plan is wrong because the robot misses the steps of moving ball4 from531

room4 to room1.”532

• For LLM+Refine, participants were first asked to choose between two lines of the plan as a starting533

point for refinement. A revised plan was then generated beginning from the selected line.534

After the intervention, participants rated their trust in the planner (trust after). They also chose535

accept or reject the plan before the intervention for PDDL and LLM planners, but after for the536

12



other two. This allows evaluation of plan correctness prior to consequences for PDDL and LLM,537

while focusing on responses to interventions for the others.538

At the end of the study, participants were informed of their evaluation accuracy as the total num-539

ber of correctly evaluated tasks out of 8 total tasks (2 tasks per session, 4 sessions in total). The540

procedure is detailed in Figure 4.541

D Propensity to Trust542

At the end of each session, participants rated their agreement with six statements adapted from543

the Propensity to Trust Machines scale Merritt et al. [2013], replacing “machine” with the relevant544

planner label (e.g., “Planner A,” “Planner B”). Each item was rated on a 5-point Likert scale:545

• 1 — Strongly Disagree546

• 2 — Somewhat Disagree547

• 3 — Neither Agree Nor Disagree548

• 4 — Somewhat Agree549

• 5 — Strongly Agree550

The statements were:551

1. I usually trust Planner A until there is a reason not to.552

2. For the most part, I distrust Planner A.553

3. In general, I would rely on Planner A to assist me.554

4. My tendency to trust Planner A is high.555

5. It is easy for me to trust Planner A to do their job.556

6. I am likely to trust Planner A even when I have little knowledge about it.557

Figure 7 presents the full results across planners. While this scale was exploratory, four items558

showed statistically significant differences between planners using the Wilcoxon signed-rank test559

For Q1 and Q6, we observe a clear shift toward agreement after the PDDL condition compared to560

the initial baseline. This suggests that participants were more inclined to trust AI planners following561

the PDDL session, likely due to the 100% correctness of PDDL plans, which appears to boost trust.562

In contrast, for Q1, Q4, and Q5, we see a notable reduction in agreement after interacting with the563

LLM planner compared to the PDDL solver. This decrease aligns with the reduced correctness of the564

LLM plans (50%), highlighting the importance of correctness in maintaining trust in AI planners.565

Interestingly, Q4 reveals that providing explanations (LLM+Expl) helps recover participants’ agree-566

ment levels compared to the basic LLM condition. However, this positive effect of explanations on567

trust propensity is limited, as it is only observed in one of the six questions.568

These results underscore that correctness remains the dominant factor influencing participants’ gen-569

eral trust attitude towards AI planners, with explanations offering only minimal benefit when cor-570

rectness is suboptimal.571

13



After LLM+Refine
After LLM+Expl

After LLM
After PDDL

Initial

10.0% 10.0% 10.0% 40.0% 30.0%

10.0% 13.3% 3.3% 56.7% 16.7%

16.7% 10.0% 13.3% 40.0% 20.0%

3.3% 10.0% 13.3% 43.3% 30.0%

6.7% 20.0% 6.7% 43.3% 23.3%
*
*

Q1 (I usually trust AI planners until there is a reason not to.)

Strongly Disagree Disagree Neutral Agree Strongly Agree

Percentage (%)
After LLM+Refine

After LLM+Expl
After LLM

After PDDL
Initial

23.3% 33.3% 20.0% 13.3% 10.0%

16.7% 43.3% 13.3% 23.3% 3.3%

20.0% 43.3% 13.3% 13.3% 10.0%

23.3% 40.0% 20.0% 16.7%

23.3% 33.3% 13.3% 23.3% 6.7%
Q2 (For the most part, I distrust AI planners.)

Percentage (%)
After LLM+Refine

After LLM+Expl
After LLM

After PDDL
Initial

6.7% 6.7% 20.0% 46.7% 20.0%

6.7% 13.3% 6.7% 63.3% 10.0%

6.7% 13.3% 20.0% 36.7% 23.3%

3.3% 20.0% 53.3% 23.3%

6.7% 3.3% 20.0% 46.7% 23.3%
Q3 (In general, I would rely on an AI planner to assist me.)

After LLM+Refine
After LLM+Expl

After LLM
After PDDL

Initial

13.3% 16.7% 13.3% 26.7% 30.0%

13.3% 10.0% 20.0% 36.7% 20.0%

16.7% 13.3% 23.3% 33.3% 13.3%

6.7% 10.0% 23.3% 43.3% 16.7%

13.3% 10.0% 6.7% 56.7% 13.3%

*
*

Q4 (My tendency to trust AI planners is high.)

After LLM+Refine
After LLM+Expl

After LLM
After PDDL

Initial

10.0% 16.7% 10.0% 50.0% 13.3%

13.3% 10.0% 13.3% 50.0% 13.3%

20.0% 3.3% 20.0% 40.0% 16.7%

3.3% 13.3% 6.7% 50.0% 26.7%

3.3% 16.7% 23.3% 36.7% 20.0%

**

Q5 (It is easy for me to trust AI planners to do their job.)

0 20 40 60 80 100
Percentage (%)

After LLM+Refine
After LLM+Expl

After LLM
After PDDL

Initial

10.0% 26.7% 30.0% 16.7% 16.7%

10.0% 20.0% 16.7% 43.3% 10.0%

13.3% 20.0% 23.3% 33.3% 10.0%

10.0% 13.3% 23.3% 33.3% 20.0%

13.3% 20.0% 20.0% 36.7% 10.0%
*

Q6 (I am likely to trust an AI planner even when I have little knowledge about it.)

Figure 7: Complete Propensity to trust scale result
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