
Towards Lifelong Model Editing via Simulating Ideal Editor

Yaming Guo 1 Siyang Guo 2 Hengshu Zhu 3 4 Ying Sun 1

Abstract

Model editing plays a crucial role in the cost-
effective development of large language models,
and the challenge of evolving knowledge facil-
itates its sequential extension, namely lifelong
model editing. However, progress on standard
and lifelong editing has historically followed sep-
arate tracks, overlooking the potential of gener-
alizing standard methods to lifelong scenarios.
By establishing this bridge, we can provide robust
baselines in lifelong scenarios and ensure that life-
long editing benefits from the ongoing advance-
ments in standard editing technologies. In re-
sponse, this paper proposes a general framework,
Simulating Ideal Editor (SimIE), which restores
the strong performance of parameter-modifying
methods from standard model editing in a life-
long context. SimIE formulates the ideal param-
eter shift as the minimum-norm solution to a lin-
ear system, constructed using the Moore-Penrose
inverse, and subsequently enables recursive up-
dates by truncating the limiting expression of the
Moore-Penrose inverse under two mild assump-
tions. Theoretically, we demonstrate that if either
assumption is not met, the solution provided by
SimIE remains near-optimal in a statistical sense
or stable against perturbations introduced by the
sequential editing, but a trade-off between opti-
mality and stability arises when both assumptions
fail. Extensive experiments validate the effective-
ness of SimIE, which allows standard algorithms
to achieve performance comparable to specialized
lifelong model editing methods. Our code is avail-
able at SimIE.

1Artificial Intelligence Thrust, The Hong Kong University of
Science and Technology (Guangzhou), Guangzhou, China 2School
of Intelligent Systems Engineering, Sun Yat-sen University, Shen-
zhen, China 3Computer Network Information Center, Chinese
Academy of Sciences, Beijing, China 4University of Chinese
Academy of Sciences, Beijing, China . Correspondence to: Ying
Sun <yings@hkust-gz.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Standard methods

Ideal editor
Ideal Editor

Adjust parameter updates
using Equation (5)

Adjust parameter updates
using Equation (5)

Figure 1. Illustration of SimIE, which enables the post-edit model
to closely approximate the ideal state achieved by the ideal editor.

1. Introduction
Large language models (LLMs) acquire extensive knowl-
edge across various domains during pre-training, which
may include outdated or harmful information (Petroni et al.,
2019; Zhao et al., 2023). Given the prohibitively high costs
of re-training and fine-tuning, model editing has emerged
as an efficient approach for updating and correcting specific
knowledge within LLMs (Sinitsin et al., 2020; De Cao et al.,
2021). The goal of model editing is to adjust the LLM’s
predictions for specific inputs to match the desired outputs,
based on the provided edit examples, while preserving its
behavior on unrelated inputs. Existing model editing tech-
niques generally fall into two main categories: parameter-
modifying and parameter-preserving (Yao et al., 2023).
This work focuses on parameter-modifying approaches.

To accommodate evolving knowledge, the extension of
model editing—lifelong model editing—is proposed,
which involves performing sequential edits (Yao et al., 2023).
Lifelong editing presents two inherent challenges: 1) The
sequential updates gradually deviate the model from its
initial state, leading to degradation in its general abilities
and editability (Ma et al., 2024; Gupta et al., 2024b). 2)
The model typically encounters catastrophic forgetting dur-
ing sequential edits, where previously edited examples are
forgotten (Wang et al., 2024a; Gupta et al., 2024a). Conse-
quently, preliminary efforts have been made to tackle this
more challenging scenario (Huang et al., 2023; Hartvigsen

1

https://github.com/YamingGuo98/SimIE

Simulating Ideal Editor

et al., 2024; Wang et al., 2024b). One prevalent perspective
among these works is that standard methods are unsuitable
for lifelong editing scenarios, as they suffer significant per-
formance degradation as the sequence of edits lengthens.

Contrary to popular belief, we study the feasibility of a gen-
eral solution for generalizing standard methods to lifelong
scenarios, thereby bridging these two paradigms. This con-
nection offers dual advantages. First, the effectiveness of
standard methods has been widely validated, allowing us to
readily provide robust baselines in lifelong contexts without
developing specialized approaches from scratch. More im-
portantly, this integration alleviates the challenges specific
to lifelong editing, redirecting the community’s focus to
enhancing fundamental editors, whose advances naturally
extend to lifelong scenarios. As an elementary exploration
of this promising direction, the core question to ask is:

Is it possible to restore the strong performance of standard
methods in the context of lifelong model editing?

In response, this paper proposes a general framework called
Simulating Ideal Editor (SimIE). Given a standard model
editing algorithm A, we introduce its ideal editor, de-
fined as the optimal solution that edits the initial model
using all examples from the sequential stream simultane-
ously. Mathematically, the ideal editor is formalized as the
minimum-norm solution to a linear system, which is con-
structed using the Moore-Penrose inverse. Under two mild
assumptions, namely over-parameterization and key-value
invariance, SimIE enables recursive updates by truncat-
ing the limiting expression of the Moore-Penrose inverse.
As illustrated in Figure 1, SimIE only adjusts the param-
eter updates obtained from A at each time step, enabling
the post-edit model to closely approximate the ideal state
achieved by the ideal editor. Our main contributions are
summarized as follows:

1. We propose SimIE, a general framework designed to
restore the strong performance of standard model edit-
ing methods (applicable to all parameter-modifying
algorithms) in a lifelong context, bridging the gap be-
tween the two paradigms for the first time (Section 3).

2. We theoretically analyze the behavior of the proposed
framework when assumptions are not met, revealing
that: 1) When the over-parameterization assumption
is not satisfied, the solution remains near-optimal in
a statistical sense. 2) When the key-value invariance
assumption does not hold, the solution is stable against
perturbations introduced by sequential editing. 3) If
both assumptions fail, the solution requires a trade-off
between optimality and stability (Section 4).

3. We validate the effectiveness of SimIE on multiple
LLMs, such as GPT2-XL (Radford et al., 2019), Llama-
2 (Touvron et al., 2023), and Mistral (Chaplot, 2023).

The results demonstrate that SimIE allows standard
algorithms to achieve performance comparable to spe-
cialized lifelong methods, requiring just one line of
code for implementation (Section 5).

2. Preliminaries
Standard model editing. Let X denote the input space
and Y the output space. We consider the model fθ : X → Y
parameterized by θ. Given an edit example (xe, ye), the goal
of model editing is to adjust the model’s prediction at xe

to match ye, while preserving its behavior on unrelated in-
puts. Formally, for an edit example (xe, ye) and the original
model fθ(·), the post-edit model fθ′(·) should satisfy:

fθ′(x) =

{
ye, if x = xe;

fθ(x), otherwise.
(1)

Although Equation (1) considers only a single edit exam-
ple, recent works have scaled to handle thousands of exam-
ples, achieving commendable performance (Mitchell et al.,
2022b; Meng et al., 2023; Tan et al., 2024).

Lifelong model editing. To accommodate evolving
knowledge, lifelong model editing has been proposed,
which involves performing sequential edits on LLMs. Let
Dedit = {(xt, yt) | t ∈ [T]} denote the dataset of all edit
examples, and Xedit = {xt | t ∈ [T]} represent the set of
corresponding inputs, where T := {1, . . . , T}. We denote
the initial model by fθ0(·). At time step t, the model editing
algorithm A generates a parameter update based on the pre-
vious model fθt−1

(·) and the current edit example (xt, yt),
resulting in the following parameter update rule:

θt = θt−1 +A(fθt−1
, (xt, yt)).

The final post-edit model, fθT (·), should satisfy fθT (xt) =
yt (∀t ∈ [T]) and fθT (x) = fθ0(x) (∀x /∈ Xedit). As
mentioned earlier, due to the inherent challenges of lifelong
editing, naively adapting standard approaches to lifelong sce-
narios can lead to significant performance degradation (Yao
et al., 2023). In Section 3, we introduce a general frame-
work designed to restore the strong performance of standard
methods in a lifelong context.

Editing in key-value memory. Through causal tracing,
Meng et al. (2022) identify that the MLP modules in the
Transformer (Vaswani, 2017), comprising two linear layers
with a non-linear activation, are critical for storing factual
knowledge. Building on this insight, most works have fo-
cused on editing the parameters of MLPs, demonstrating
that such edits are consistently effective for updating knowl-
edge within LLMs (Meng et al., 2023; Tan et al., 2024).
These studies model the linear layer of MLPs, denoted by
W ∈ Rd2×d1 , as a key-value memory that maps an input k

2

Simulating Ideal Editor

to an output v = Wk, storing knowledge in the form of key-
value pairs (k, v). Supposing that the edit example (xe, ye)
corresponds to the key ke

1 at W , the editing method gener-
ates a parameter update ∆We ∈ Rd2×d1 , thereby inducing
a change in value:

v = Wke =⇒ ve = (W +∆We)ke,

where v represents the initial value and ve is the desired
value. Utilizing the updated key-value pair (ke, ve), the
model editing method efficiently incorporates new knowl-
edge (xe, ye) into LLMs.

3. Simulating Ideal Editor in Lifelong Context
In Section 3.1, we define the ideal editor and introduce
two mild assumptions: over-parameterization and key-value
invariance. With these assumptions, Section 3.2 presents
SimIE, which approximates the ideal editor through re-
cursive updates. Section 3.3 extends SimIE to multi-layer
editing settings, accompanied by a cost analysis.

3.1. Introduced Ideal editor

Standard model editing methods can inject knowledge from
numerous edit examples into LLMs, yet they suffer sig-
nificant performance degradation in lifelong contexts. We
argue that robust performance in standard scenarios is based
on two key principles: 1) The model remains in its initial
state, which avoids the degradation in editability caused
by sequential editing (Gupta et al., 2024b). 2) All edit ex-
amples are available concurrently, mitigating catastrophic
forgetting during sequential updates (Wang et al., 2024a).
Therefore, given a standard model editing method, an ideal
approach would involve editing the initial model by utilizing
all examples in the sequential stream simultaneously.

To maintain clarity, we first focus on editing a single linear
layer, initialized as W0 ∈ Rd2×d1 , which is a component
of the full model parameters θ0. Using the standard model
editing algorithm A, the ideal editor aims to modify the
parameter W0 in order to simultaneously inject knowledge
of all examples within Dedit, defined as:

Definition 3.1 (Ideal Editor). For an edit example
(xt, yt) ∈ Dedit, let kt denote the key, and define the change
in value as bt = ∆W 0

t kt, where ∆W 0
t := A(fθ0 , (xt, yt))

represents the parameter update for W0 generated by algo-
rithm A. The ideal editor w.r.t. A is the optimal parameter
shift S that solves the following optimization problem:

min ∥S∥2F ,

s.t. Skt = bt, t = 1, 2, . . . , T.
(2)

1For notational simplicity, we assume each example consists
of a single token mapped to one key, though our analysis naturally
generalizes to cases with multi-token examples.

The solution S defined by the ideal editor exhibits two
fundamental properties. First, when applied to the edit
examples (xt, yt), S produces an equivalent transforma-
tion with the individual updates ∆W 0

t . Second, S achieves
a minimal Frobenius norm among all solutions that sat-
isfy the constraints. By defining the concatenated matrices
K := [k1 | k2 | · · · | kT] ∈ Rd1×T and B := [b1 | b2 |
· · · | bT] ∈ Rd2×T , we can characterize the ideal editor as
the minimum-norm solution to the linear system SK = B.

Thus far, we have not established the existence of the ideal
editor. To derive this fundamental result, we require an
over-parameterization assumption, stated as follows:

Assumption 3.2 (Over-parameterization). The number
of edit examples does not exceed the column dimension of
the weight matrix W , i.e., T ≤ d1, and the key matrix K is
full rank, i.e., rank(K) = T .

This assumption ensures that W has sufficient capacity and
that the key vectors {ki}Ti=1 are linearly independent. Un-
der Assumption 3.2, we can prove that the linear system
SK = B admits at least one solution, thus guaranteeing the
existence of the ideal editor (formalized in Appendix B.1).

To enable the approximation of the ideal editor in lifelong
scenarios, we introduce the key-value invariance assump-
tion, described as follows:

Assumption 3.3 (Key-value invariant). Given an algo-
rithm A, the updated key-value pair (kt, vt) w.r.t. the edit
example (xt, yt) remains invariant across different model
states, i.e., (k′t, v

′
t) = (k′′t , v

′′
t), where (k′t, v

′
t) and (k′′t , v

′′
t)

are derived from the models fθ′ and fθ′′ , respectively.

Intuitively, this assumption implies that the representation
of specific knowledge within the LLM remains invariant.
Under Assumption 3.3, it is easy to verify that for any model
state fθ′ , the following relationship holds:

(W ′ +A (fθ′ , (xt, yt))−W0) kt = bt = ∆W 0
t kt. (3)

Equation (3) indicates that the change in the updated value
relative to the initial value, W0kt, is consistently captured
by bt, regardless of the model state.

It is worth noting that Assumption 3.2 and Assumption 3.3
may not hold in certain complex editing settings. Neverthe-
less, we will provide a detailed theoretical analysis of the
case where assumptions are not met (Section 4) and find
that they do not lead to empirical failure (Section 5).

3.2. The proposed SimIE

The ideal editor provides the optimal parameter shift for in-
jecting knowledge fromDedit into the model fθ0 . Therefore,
a natural approach is to approximate the solution defined by
the ideal editor in the lifelong model editing scenarios.

3

Simulating Ideal Editor

To begin, we introduce the Moore-Penrose inverse (Penrose,
1955), which generalizes the concept of the matrix inverse.
It is defined as follows:

Definition 3.4 (Moore-Penrose inverse). Given a matrix
A ∈ Rd2×d1 with Singular Value Decomposition (SVD)
A = UΣV ⊤, the Moore-Penrose inverse of A, denoted by
A†, can be written as:

A† = V Σ†U⊤,

where Σ† ∈ Rd2×d1 is obtained by taking the reciprocal of
each non-zero singular value in the diagonal matrix Σ and
transposing the resulting matrix.

Under Assumption 3.2, the ideal editor exists and is unique,
which can be expressed as S0 = BK† = B(K⊤K)−1K⊤

(see Appendix B.1). However, exact computation of S0

is not feasible unless all key-value pairs {(kt, vt)}Tt=1 are
available simultaneously. Instead, we can give an approxi-
mate solution through the following lemma:

Lemma 3.5 (Theorem 4.4. in Laub (2004)). For a matrix
A ∈ Rd2×d1 , we have:

A† = lim
α→0+

A⊤(AA⊤ + αI)−1,

where I ∈ Rd1×d1 is the identity matrix.

This lemma provides a limiting expression for K†, even in
cases where (KK⊤)−1 does not exist. We propose choos-
ing a hyperparameter λ to truncate the limit, resulting in the
approximation S0 ≈ Sλ

T := BK⊤(KK⊤ + λI)−1.

Let K:t := [k1 | k2 | · · · | kt] and B:t := [b1 | b2 | · · · | bt]
denote the matrices formed by the first t columns of K
and B, respectively. If Sλ

t−1 = B:t−1K
⊤
:t−1(K:t−1K

⊤
:t−1 +

λI)−1 holds at time step t, then, under Assumption 3.3, we
can derive the following recurrence relation for Sλ

t :

Sλ
t = (B:t−1K

⊤
:t−1 + btk

⊤
t)(K:tK

⊤
:t + λI︸ ︷︷ ︸

denoted as Pt

)−1

= B:t−1K
⊤
:t−1P

−1
t−1︸ ︷︷ ︸

=Sλ
t−1

Pt−1P
−1
t + btk

⊤
t P

−1
t

= Sλ
t−1 Pt−1︸︷︷︸

=Pt−ktk⊤
t

P−1
t + btk

⊤
t P

−1
t

= Sλ
t−1 + (bt︸︷︷︸

=(Sλ
t−1+∆Wt)kt

−Sλ
t−1kt)k

⊤
t P

−1
t

= Sλ
t−1 +∆Wtktk

⊤
t P

−1
t ,

(4)

where ∆Wt := A(fθt−1
, (xt, yt)) denotes the parameter

update generated by the standard model editing algorithm
A at time step t. The detailed derivation of Equation (4) can
be found in Appendix B.2. The Equation (4) reveals that Sλ

t

can be computed recursively from Sλ
t−1, enabling Sλ

T to be
obtained in a lifelong context.

Building on the above insight, we propose Simulating Ideal
Editor (SimIE), which generates the parameter shift Sλ

T

as an approximation of the ideal editor S0 through a recur-
sive update procedure. Starting with the initial parameter
W0 ∈ Rd2×d1 and P0 = λI ∈ Rd1×d1 , where λ > 0 is a
hyperparameter, the update rule for SimIE is given by:

Pt = Pt−1 + ktk
⊤
t

Wt = Wt−1 +∆Wtktk
⊤
t P

−1
t .

(5)

SimIE uses additional memory to maintain a matrix Pt,
which is employed to adjust the parameter update ∆Wt :=
A(fθt−1 , (xt, yt)) generated by the standard model editing
algorithm A at time step t. The following theorem esti-
mates a bound on the difference between the parameter shift
generated by SimIE and that of the ideal editor:

Theorem 3.6. Let Sλ
T = WT −W0 denote the parameter

shift generated by SimIE according to Equation (5), and
let S0 represent the ideal editor w.r.t. Equation (2). Under
Assumptions 3.2 and 3.3, the following bound holds:

λ

σ2
max + λ

≤
∥∥Sλ

T − S0
∥∥
F

∥S0∥F
≤ λ

σ2
min + λ

,

where 0 < σmin ≤ σmax are the smallest and largest singu-
lar values of the key matrix K, respectively.

This theorem is proved in Appendix B.3. As demonstrated
in Theorem 3.6, the approximation error bound for Sλ

T −S0

is governed by the largest and smallest singular values of the
key matrix K as well as the hyperparameter λ. In particular,
as λ approaches 0, Sλ

T is guaranteed to approximate S0. In
other words, by adjusting the parameter updates obtained
from the standard algorithm A at each step, SimIE ensures
that the post-edit model closely approximates the ideal state
achieved by the ideal editor, which edits the initial model
using all examples simultaneously.

3.3. Editing on multiple layers

Existing standard model editing methods typically update
parameters across multiple linear layers to enhance the ro-
bustness of editing at scale. To extend SimIE to multi-layer
editing, we apply it independently to each layer. While this
straightforward implementation ignores inter-layer depen-
dencies, as similarly done by Tan et al. (2024), empirical
evidence supports its effectiveness in practice.

The pseudo-code for SimIE is summarized in Algorithm 1.
Let L denote the set of layer indices targeted for modifica-
tion, as determined by the standard model editing algorithm
A. For each linear layer l ∈ L, we initialize the matrix
P

(l)
0 = λI ∈ Rd

(l)
1 ×d

(l)
1 according to the dimensions of the

weight matrix W (ℓ) ∈ Rd
(l)
2 ×d

(l)
1 , where λ > 0 is a hyper-

4

Simulating Ideal Editor

Algorithm 1 SimIE (red) and Naive approach (blue)
Input: algorithm A, dataset Dedit, initial model fθ0(·)
Initialize P

(l)
0 = λI ∈ Rd

(l)
1 ×d

(l)
1

for t ∈ [T] do
{∆W

(l)
t }l∈L ← A(fθt−1

, (xt, yt))

Cache {k(l)t }l∈L

P
(l)
t = P

(l)
t−1 + k

(l)
t [k

(l)
t]⊤

W
(l)
t = W

(l)
t−1 +∆W

(l)
t k

(l)
t [k

(l)
t]⊤[P

(l)
t]−1

W
(l)
t = W

(l)
t−1 +∆W

(l)
t

fθt ← {W
(l)
t }l∈L

end for
Output: post-edit model fθT

parameter. At time step t, the algorithm A processes the
edit example (xt, yt) to edit the previous model fθt−1

(·), ob-
taining the parameter updates {∆W

(l)
t }l∈L. In parallel, we

cache the corresponding keys {k(l)t }l∈L. Then, we calculate
the matrix P

(l)
t and use it to adjust corresponding ∆W

(l)
t

according to Equation (5). Finally, we replace the param-
eters of fθt−1

(·) with the adjusted parameters {W (l)
t }l∈L,

yielding the model fθt(·) for time step t. As a comparison,
we highlight the lines unique to our method SimIE in red,
while using blue to indicate the naive approach of directly
adapting standard algorithms to the lifelong scenarios.

Remark 3.7. For the edit example (xt, yt) contains multiple
tokens, we denote the keys as {k(l)t,i}Ni=1. In such cases, we

only replace all occurrences of k(l)t in Algorithm 1 with the
concatenated key matrix K

(l)
t := [k

(l)
t,1, . . . , k

(l)
t,N].

Cost analysis. Finally, we briefly analyze the additional
cost introduced by SimIE. Assume that each time step
involves N tokens and L = |L| linear layers are edited.
SimIE requires maintaining L matrices P (l)

t of dimension
d1× d1, resulting in a direct storage cost ofO(Ld21). Utiliz-
ing low-rank structure P (l)

t = K
(l)
:t [K

(l)
:t]⊤+λI , the storage

cost becomes O(TLNd1). The primary computational cost
of SimIE arises from matrix inversion, implemented by
solving the linear system XP

(l)
t = ∆W

(l)
t k

(l)
t [k

(l)
t]⊤. The

standard approach for solving is LU decomposition, which
has a time complexity of O(23d

3
1). Alternatively, Cholesky

decomposition can be used, offering a reduced time com-
plexity of O(13d

3
1), since P

(l)
t is a symmetric positive def-

inite matrix. Overall, the costs introduced by SimIE are
manageable and are nearly negligible compared to those of
model editing algorithms. A more detailed discussion can
be found in Appendix B.4.

4. Beyond Assumptions
In this section, we theoretically analyze the behavior of
SimIE when the assumptions are not met. Sections 4.1
and 4.2 examine the cases where Assumptions 3.2 and 3.3
do not hold, respectively. Section 4.3 considers the scenario
where both assumptions fail. Since SimIE is applied inde-
pendently to each layer, we focus on the analysis of a single
layer and omit the layer index without loss of generality.

4.1. Optimality without Assumption 3.2

Assumption 3.2 requires that the weight matrix has suffi-
cient capacity and that the key vectors are linearly inde-
pendent, but this may not always hold in practice. For
instance, frequent knowledge updates can cause the number
of edit examples to rapidly exceed the column dimension of
the matrix. Moreover, unintended edits to relevant factual
knowledge may result in key vectors becoming linearly de-
pendent. In such cases, the ideal editor does not exist, as the
linear system SK = B no longer admits the exact solution.

Although the existence of an ideal editor is precluded, we
will show that the solution Sλ

T generated by SimIE is still
near-optimal in a statistical sense. Here, optimal in a statisti-
cal sense refers to a solution S∗ that minimizes the squared
residual norm, i.e., ∥S∗K −B∥2F = min ∥SK −B∥2F, as
in least squares problems. The following theorem provides
an upper bound on the squared residual norm w.r.t. Sλ

T :

Theorem 4.1. Let Sλ
T = WT −W0 represent the parameter

shift generated by SimIE according to Equation (5). Under
Assumption 3.3, the squared residual norm w.r.t. Sλ

T satisfies
the following inequality:

Rmin ≤
∥∥Sλ

TK −B
∥∥2
F
≤

λ2(∥B∥2F −Rmin)

(σ2
r + λ)2

+Rmin,

where Rmin := min ∥SK −B∥2F is the minimum value of
squared residual norm, and σr > 0 denotes the smallest
non-zero singular value of K.

Theorem 4.1 demonstrates that the squared residual norm
of Sλ

T is bounded by the minimal squared residual norm
Rmin plus a term ∥B∥2F −Rmin scaled by the hyperparam-
eter λ. Here, Rmin represents the theoretical lower bound
of the squared residual norm, reflecting the irreducible er-
ror caused by the inherent limitations of the system. On
the other hand, ∥B∥2F −Rmin quantifies the portion of the
squared residual norm that can be effectively fitted by the
model. As λ → 0, the squared residual norm of Sλ

T con-
verges to Rmin. Thus, even in the absence of Assump-
tion 3.2, the solution generated by SimIE remains near-
optimal in a statistical sense, as it minimizes the squared
residual norm of the given constraints to the extent possible.

5

Simulating Ideal Editor

4.2. Stability without Assumption 3.3

Assumption 3.3 assumes that the representations of specific
knowledge remain stable, but this may not always hold in
complex multi-layer editing algorithms. Specifically, pa-
rameter updates in earlier layers can perturb the keys in
subsequent layers. Moreover, as the edit-distribution strat-
egy depends on the current model state (Gupta et al., 2024b),
it induces perturbations in the values of intermediate layers.
As a result, in multi-layer editing scenarios, Assumption 3.3
is unlikely to hold due to inevitable key-value perturbations.

We will demonstrate that the solution generated by SimIE
has stability even without Assumption 3.3, meaning that per-
turbations to key-value pairs do not excessively change the
solution. Mathematically, perturbations to key-value pairs
(kt, vt) are equivalent to perturbations in (kt, bt). Thus,
our subsequent stability analysis focuses on the latter term.
Since the impact of the perturbation to (kt, bt) is not ampli-
fied over subsequent time steps (see Lemma C.2), we can
analyze these perturbations using the matrix forms K and
B, rather than examining their components individually.

Following perturbation theory (Hansen, 1998; Malyshev,
2003), we define the relative condition number of Sλ

T w.r.t.
B, but replace the ℓ2-norm with the Frobenius norm, as:

cond(Sλ
T , B) := lim

ϵ→0
sup

∥δB∥F≤ϵ

(∥∥δSλ
T

∥∥
F∥∥Sλ

T

∥∥
F

/∥δB∥F
∥B∥F

)
.

Similarly, let κF(K) :=
∥∥K†

∥∥
F
∥K∥F denote the condition

number of the matrix K under the Frobenius norm. The
following theorem establishes a perturbation bound for the
solutions generated by SimIE:

Theorem 4.2. Let Sλ
T represent the original solution corre-

sponding to K and B, and S̃λ
T denote the perturbed solution

corresponding to K + δK and B + δB, both generated by
SimIE according to Equation (5). Under Assumption 3.2,
the perturbation bound for Sλ

T is:∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ ∥Jλ∥F ∥δK∥F

+

√
d1 ∥K∥F
σ2
min

∥δK∥F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ κF(K)
∥δK∥F
∥K∥F

+

√
d1 ∥K∥F
σ2
min

∥δK∥F ,

where Jλ := K⊤(KK⊤ + λI)−1 denotes the Jacobian
matrix of Sλ

T at B.

The first inequality of Theorem 4.2 establishes a tight per-
turbation bound that depends on the hyperparameter λ. The

first term indicates that the effect of the perturbation δB is
limited by the condition number cond(Sλ

T , B). The second
term ∥Jλ∥F and the third term

√
d1 ∥K∥F /σ2

min together
govern the impact of the perturbation δK. As λ approaches
0, ∥Jλ∥F increases monotonically until attaining an upper
bound. The second inequality captures this behavior by of-
fering a λ-independent2 perturbation bound, where ∥Jλ∥F
is substituted with the condition number κF(K) w.r.t. K.
In other words, when a very small λ > 0 is chosen for
optimality, perturbations δK and δB always lead to man-
ageable changes in the solution. In conclusion, even in
the absence of Assumption 3.3, the solution generated by
SimIE remains stable, as it is not excessively sensitive to
small perturbations in the key-value pairs.

4.3. Trade-off without Assumptions 3.2 and 3.3

While violating either Assumption 3.2 or Assumption 3.3
individually results in relatively positive outcomes, the sit-
uation becomes more intricate when both assumptions are
not met. In this case, a trade-off between optimality and sta-
bility must be considered. The following theorem presents
a perturbation bound for the solutions generated by SimIE
that does not rely on any assumptions:

Theorem 4.3. Let Sλ
T represent the original solution corre-

sponding to K and B, and S̃λ
T denote the perturbed solution

corresponding to K + δK and B + δB, both generated by
SimIE according to Equation (5). Then, the perturbation
bound for Sλ

T is:∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ κF(K)
∥δK∥F
∥K∥F

+
∥Rλ∥F

λ

√
d1∥∥Sλ
T

∥∥
F

∥δK∥F ,

where Rλ = Sλ
TK −B is the residual matrix w.r.t. Sλ

T .

Theorem 4.3 indicates that the impact of the perturbation δB
is governed by the relative condition number cond(Sλ

T , B),
while the effect of the perturbation δK is modulated by
the condition number κF(K) and the ratio of the residual
norm ∥Rλ∥F to the hyperparameter λ. Notably, as λ de-
creases, the term ∥Rλ∥F tends to decrease (as established
in Theorem 4.1), while 1/λ increases monotonically. The
combined effect of ∥Rλ∥F

λ introduces a trade-off between
the optimality and stability of the solution: smaller values
of λ can enhance the optimality, but at the cost of increased
sensitivity to perturbations. Conversely, larger values of λ
improve stability but may result in a suboptimal. Therefore,

2Note that cond(Sλ
T , B) also relies on λ, while it admits a

complex upper bound. For conciseness, we omit a detailed analysis
here. It is helpful to observe that limλ→0 cond(S

λ
T , B) = κF(K).

Further discussions are provided in Remark C.3.

6

Simulating Ideal Editor

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

R
el

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

G
en

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Lo
c

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Llama-2 (7B) on the ZsRE dataset

MEND MEND+SimIE ROME ROME+SimIE MEMIT MEMIT+SimIE AlphaEdit AlphaEdit +SimIE

Figure 2. Performance of algorithms as the number of edits increases, with the solid line representing the results combined with the
proposed SimIE.

when both Assumptions 3.2 and 3.3 are not met, it is cru-
cial to carefully tune λ to achieve the best balance between
optimality and stability in the solution generated by SimIE.

5. Experiments
This section validates the effectiveness of SimIE in restor-
ing the strong performance of standard methods in lifelong
contexts. Further analyses, including case study, hidden
representation visualization, and long sentence editing, are
provided in Appendix D.3.

Experimental setup. We conduct experiments on three
widely used LLMs: GPT2-XL (1.5B) (Radford et al.,
2019), Llama-2 (7B) (Touvron et al., 2023), and Mis-
tral (7B) (Chaplot, 2023). Our experiments include
nine popular baselines: the basic fine-tuning method, FT-
L (Meng et al., 2022), and four standard model edit-
ing algorithms, namely MEND (Mitchell et al., 2022a),
ROME (Meng et al., 2022), MEMIT (Meng et al.,
2023), and AlphaEdit−3 (Fang et al., 2024), along
with four lifelong model editing algorithms, specifically
GRACE (Hartvigsen et al., 2024), WISE (Wang et al.,
2024b), PRUNE (Ma et al., 2024), and AlphaEdit (Fang
et al., 2024). These algorithms are evaluated using two
widely adopted benchmarks, i.e., the ZsRE dataset (Levy
et al., 2017) and the Counterfact dataset (Meng et al., 2022).
In line with prior research (Wang et al., 2024b), we assess
performance using three key metrics: Rel (Reliability, also
known as Edit Success Rate (Hartvigsen et al., 2024)), Gen
(Generalization Success Rate), and Loc (Localization Suc-
cess Rate). We use the Arithmetic Mean Avg = Rel+Gen+Loc

3
as the primary metric, and introduce the Locality-penalized
Geometric Mean Geo = eα(Loc−1)(Rel × Gen) as a com-

3AlphaEdit includes two mechanisms: projecting updates into
the null space and protecting previously edited knowledge. We
refer to its version in the standard scenario, where the protection
component is omitted, as AlphaEdit−.

plementary measure. For more details on the experimental
setup, please refer to Appendix D.1.

5.1. Effectiveness of SimIE

To evaluate the effectiveness of the proposed SimIE, we
apply it to standard model editing algorithms and measure
their performance before and after application. Specifically,
we perform T = 1000 sequential edits on LLMs, with 1
example per edit. Table 1 presents the results for Llama-2
and Mistral, while Table 4 displays the results for GPT2-XL.
Additionally, Figures 2 and 6 illustrate the performance of
standard methods as the number of edits increases. Based
on these results, we can draw the following observations:

• Standard algorithms exhibit significant perfor-
mance degradation as the number of edits increases.
While methods like ROME and AlphaEdit− maintain
stable performance early in editing, their effectiveness
sharply decreases after surpassing 100 edits. The sit-
uation is even worse for MEND, which fails in the
initial stages, likely due to the hypernetwork being
tailored to the initial model. By the end of the edit
sequence (T = 1000), all standard algorithms show
unsatisfactory performance across settings.

• The proposed SimIE successfully restores the
strong performance of standard algorithms in life-
long contexts. First, algorithms integrated with
SimIE maintain comparable performance to their ini-
tial editing phase throughout the sequence. Second, for
editing Llama-2 on the ZsRE dataset, SimIE increases
the Avg of MEMIT from 0.03 to 0.68, achieving parity
with its batch-editing counterpart, MEMIT-MASS, as
reported in Wang et al. (2024b). These results demon-
strate that the performance gains from SimIE are both
substantial and consistent.

• The performance of standard algorithms aug-
mented with SimIE rivals that of dedicated life-

7

Simulating Ideal Editor

Table 1. Performance of algorithms in the lifelong model editing task with 1000 edits, where the top three Avg are highlighted in bold.

ZsRE Counterfact

Llama-2 (7B) Mistral (7B) Llama-2 (7B) Mistral (7B)

Algorithm Rel Gen Loc Avg Rel Gen Loc Avg Rel Gen Loc Avg Rel Gen Loc Avg

FT-L 0.18 0.16 0.03 0.13 0.52 0.47 0.74 0.57 0.06 0.01 0.04 0.04 0.21 0.10 0.11 0.14

MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+SimIE 0.82 0.69 0.85 0.79 0.72 0.66 0.83 0.74 0.96 0.31 0.29 0.52 0.94 0.30 0.32 0.52

ROME 0.04 0.05 0.00 0.03 0.04 0.03 0.01 0.03 0.25 0.15 0.06 0.16 0.28 0.24 0.01 0.18
+SimIE 0.64 0.60 0.66 0.63 0.72 0.67 0.82 0.74 0.97 0.51 0.30 0.59 0.96 0.52 0.50 0.66

MEMIT 0.04 0.04 0.02 0.03 0.04 0.04 0.02 0.03 0.00 0.00 0.07 0.02 0.00 0.00 0.00 0.00
+SimIE 0.71 0.68 0.65 0.68 0.65 0.62 0.80 0.69 0.81 0.43 0.29 0.51 0.78 0.45 0.46 0.56

AlphaEdit− 0.04 0.04 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+SimIE 0.84 0.78 0.79 0.80 0.74 0.69 0.84 0.75 0.83 0.45 0.37 0.55 0.77 0.38 0.67 0.61

GRACE 0.98 0.02 1.00 0.67 0.98 0.02 1.00 0.67 1.00 0.00 1.00 0.67 1.00 0.00 1.00 0.67

WISE 0.82 0.76 1.00 0.86 0.72 0.69 1.00 0.80 0.71 0.31 0.37 0.46 0.69 0.35 0.35 0.46

PRUNE 0.54 0.52 0.72 0.59 0.25 0.25 0.47 0.33 0.71 0.35 0.67 0.58 0.86 0.42 0.56 0.61

AlphaEdit 0.84 0.79 0.64 0.76 0.79 0.73 0.75 0.76 0.91 0.53 0.30 0.58 0.94 0.49 0.53 0.65

long model editing methods. For instance, when edit-
ing Llama-2 on the ZsRE dataset, AlphaEdit+SimIE
achieves an Avg of 0.80, outperforming GRACE,
PRUNE, and the original AlphaEdit. Similarly, in
experiments on GPT2-XL using the ZsRE dataset,
ROME+SimIE attains an Avg of 0.81, surpassing all
lifelong model editing methods. These improvements
are also reflected across individual metrics (e.g., Rel,
Gen, and Loc), providing comprehensive evidence for
the effectiveness of SimIE.

5.2. Impact of hyperparameter λ

Section 4 highlights the importance of the hyperparameter λ
in SimIE. Thus, we examine the impact of various λ values
on the performance across methods. Specifically, for each
standard model editing algorithm, we apply SimIE with
λ ∈ {0.01, 0.1, 1, 5, 10, 30, 50}. The experimental results
are presented in Figures 7 to 10, with Figure 3 illustrating
selected results for ROME+SimIE on Llama-2 using the
ZsRE dataset. It is important to note that the values of λ used
in Section 5.1 correspond to those that yield the highest av-
erage (Avg) performance, as summarized in Table 3. Based
on these findings, we make the following observations:

• The Avg exhibits robustness across a specific range
of the hyperparameter λ. In most experimental set-
tings, Avg remains stable for λ varies within the range
[1, 50]. However, extremely small values of λ may lead
to catastrophic performance degradation. This phe-
nomenon can be primarily attributed to the increasing
sensitivity of the solution provided by SimIE, which

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)

Avg
Rel
Gen
Loc

Figure 3. Performance of ROME+SimIE on the ZsRE dataset
across various λ values, under T = 1000 sequential edits.

amplifies errors arising from violations of Assump-
tion 3.3 and the matrix inversion process.

• As the hyperparameter λ increases, Rel and Gen
generally decline, whereas Loc tends to improve.
This behavior can be explained as follows: 1) Larger
values of λ cause the solution to deviate from the ideal
editor, which adversely affects Rel and Gen; 2) An
increased λ enhances the stability of the solution, char-
acterized by the smaller norm, thereby improving Loc.
These findings emphasize the trade-off between opti-
mality and sensitivity established by Theorem 4.3.

8

Simulating Ideal Editor

5.3. More recent LLMs

We conduct additional evaluations on recent model, includ-
ing Llama-3 (8B) (Grattafiori et al., 2024) and Qwen2.5
(7B) (Yang et al., 2025). We select FT-L, ROME, AlphaEdit,
WISE, and AlphaEdit as baselines and perform T = 1000
sequential edits using the ZsRE dataset. The experimental
results are presented in the Table 2.

Table 2. Performance of algorithms in the lifelong model editing
task with 1000 edits, where the top-1 Avg are highlighted in bold.

ZsRE

Llama-3 (8B) Qwen2.5 (7B)

Algorithm Rel Gen Loc Avg Rel Gen Loc Avg

FT-L 0.17 0.14 0.01 0.10 0.09 0.08 0.02 0.07

ROME 0.09 0.08 0.01 0.06 0.22 0.22 0.09 0.18
+SimIE 0.75 0.72 0.80 0.75 0.92 0.87 0.72 0.84

AlphaEdit− 0.06 0.06 0.03 0.05 0.67 0.63 0.76 0.68
+SimIE 0.74 0.67 0.75 0.72 0.91 0.83 0.88 0.87

WISE 0.51 0.50 1.00 0.67 0.54 0.53 0.99 0.69

AlphaEdit 0.86 0.78 0.62 0.75 0.98 0.80 0.72 0.83

We observe that SimIE achieves competitive performance
across these recent models, especially surpassing the SOTA
method (AlphaEdit) by an average of 4.8% on Qwen2.5.
These results are consistent with those in the main paper, fur-
ther confirming the effectiveness of our proposed SimIE.

6. Conclusion
This paper presents SimIE, a general framework that gen-
eralizes standard model editing methods to lifelong sce-
narios while preserving strong performance. Theoretical
analysis confirms that SimIE remains effective even under
relaxed assumptions, and an optimality-stability trade-off
arises when both assumptions fail. Extensive experiments
across multiple LLMs demonstrate that standard algorithms
integrated with SimIE achieve comparable performance
to specialized lifelong model editing methods. Our work
not only provides robust baselines for lifelong scenarios but
also enables lifelong editing to benefit from the ongoing ad-
vancements in standard editing techniques, thereby bridging
the gap between these two paradigms.

Acknowledgements
This work is partly supported by the National Natural Sci-
ence Foundation of China (No. 62306255, 92370204), the
National Key Research and Development Program of China
(No. 2023YFF0725000), the Guangdong Basic and Ap-
plied Basic Research Foundation (No. 2024A1515011839),
the Fundamental Research Project of Guangzhou (No.
2024A04J4233), and the Education Bureau of Guangzhou
Municipality.

Impact Statement
This work proposes a general framework that restores the
strong performance of standard model editing methods in
a lifelong context, bridging the gap between these two
paradigms. Given the theoretical nature of our study, we
have not identified any direct ethical concerns or negative
societal impacts related to our research. While our contribu-
tions to model editing are intended to enhance the trustwor-
thy deployment of LLMs, it is important to acknowledge
that, like other advances in this field, there exists the po-
tential for misuse to inject harmful content. As a result, it
is essential to carefully monitor the usage of model editors
during deployment.

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in neural information processing systems,
volume 33, pp. 1877–1901, 2020.

Chaplot, D. S. Albert q. jiang, alexandre sablayrolles, arthur
mensch, chris bamford, devendra singh chaplot, diego
de las casas, florian bressand, gianna lengyel, guillaume
lample, lucile saulnier, lélio renard lavaud, marie-anne
lachaux, pierre stock, teven le scao, thibaut lavril, thomas
wang, timothée lacroix, william el sayed. arXiv preprint
arXiv:2310.06825, 2023.

De Cao, N., Aziz, W., and Titov, I. Editing factual knowl-
edge in language models. In Moens, M.-F., Huang, X.,
Specia, L., and Yih, S. W.-t. (eds.), Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6491–6506, Online and Punta
Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.522. URL https://aclanthology.
org/2021.emnlp-main.522.

Fang, J., Jiang, H., Wang, K., Ma, Y., Wang, X., He,
X., and Chua, T.-s. Alphaedit: Null-space constrained
knowledge editing for language models. arXiv preprint
arXiv:2410.02355, 2024.

Golub, G. H. and Van Loan, C. F. Matrix computations.
JHU press, 2013.

Gong, Z. and Sun, Y. An energy-centric framework for
category-free out-of-distribution node detection in graphs.
In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 908–919,
2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,

9

https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522

Simulating Ideal Editor

Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, K., Wen, H., Jin, W., Guo, Y., Tang, J., and Chang, Y.
Investigating out-of-distribution generalization of gnns:
An architecture perspective. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 932–943, 2024a.

Guo, S., Guo, Y., Zhang, H., and Wang, J. Mitigating up-
date conflict in non-iid federated learning via orthogonal
class gradients. IEEE Transactions on Mobile Computing,
2024b.

Guo, Y., Guo, K., Cao, X., Wu, T., and Chang, Y. Out-
of-distribution generalization of federated learning via
implicit invariant relationships. In International Confer-
ence on Machine Learning, pp. 11905–11933. PMLR,
2023.

Gupta, A., Rao, A., and Anumanchipalli, G. Model editing
at scale leads to gradual and catastrophic forgetting. arXiv
preprint arXiv:2401.07453, 2024a.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A
unified framework for model editing. arXiv preprint
arXiv:2403.14236, 2024b.

Hansen, P. C. Rank-deficient and discrete ill-posed prob-
lems: numerical aspects of linear inversion. SIAM, 1998.

Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y.,
and Ghassemi, M. Aging with grace: Lifelong model
editing with discrete key-value adaptors. In Advances
in Neural Information Processing Systems, volume 36,
2024.

Higham, N. Functions of matrices: Theory and computation,
2008.

Higham, N. J. Accuracy and stability of numerical algo-
rithms. SIAM, 2002.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Hu, X., Cheng, Y., Zheng, Z., Wang, Y., Chi, X., and Zhu,
H. Boss: A bilateral occupational-suitability-aware rec-
ommender system for online recruitment. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4146–4155, 2023.

Huang, M., Liu, Y., Ao, X., Li, K., Chi, J., Feng, J., Yang, H.,
and He, Q. Auc-oriented graph neural network for fraud
detection. In Proceedings of the ACM Web Conference
2022, pp. 1311–1321, 2022.

Huang, Z., Shen, Y., Zhang, X., Zhou, J., Rong, W., and
Xiong, Z. Transformer-patcher: One mistake worth one
neuron. arXiv preprint arXiv:2301.09785, 2023.

Laub, A. J. Matrix analysis for scientists and engineers.
SIAM, 2004.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. Zero-shot
relation extraction via reading comprehension. arXiv
preprint arXiv:1706.04115, 2017.

Lin, H., Zhu, H., Zuo, Y., Zhu, C., Wu, J., and Xiong,
H. Collaborative company profiling: Insights from an
employee’s perspective. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Lin, X., Huang, Z., Zhao, H., Chen, E., Liu, Q., Wang,
H., and Wang, S. Hms: A hierarchical solver with
dependency-enhanced understanding for math word prob-
lem. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 4232–4240, 2021.

Liu, J., Huang, Z., Lin, X., Liu, Q., Ma, J., and Chen,
E. A cognitive solver with autonomously knowledge
learning for reasoning mathematical answers. In 2022
IEEE International Conference on Data Mining (ICDM),
pp. 269–278. IEEE, 2022a.

Liu, J., Huang, Z., Ma, Z., Liu, Q., Chen, E., Su, T., and
Liu, H. Guiding mathematical reasoning via mastering
commonsense formula knowledge. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1477–1488, 2023a.

Liu, J., Huang, Z., Zhai, C., and Liu, Q. Learning by ap-
plying: A general framework for mathematical reasoning
via enhancing explicit knowledge learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 4497–4506, 2023b.

Liu, Q., Zhang, Q., Zhao, F., and Wang, G. Uncertain knowl-
edge graph embedding: An effective method combining
multi-relation and multi-path. Frontiers Comput. Science,
18(3):183311, 2024.

Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., and He,
Q. Pick and choose: a gnn-based imbalanced learning
approach for fraud detection. In Proceedings of the Web
Conference 2021, pp. 3168–3177, 2021.

Liu, Y., Ao, X., Feng, F., and He, Q. Ud-gnn: Uncertainty-
aware debiased training on semi-homophilous graphs. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1131–1140,
2022b.

10

Simulating Ideal Editor

Liu, Y., Ao, X., Feng, F., Ma, Y., Li, K., Chua, T.-S., and He,
Q. Flood: A flexible invariant learning framework for out-
of-distribution generalization on graphs. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1548–1558, 2023c.

Ma, J.-Y., Wang, H., Xu, H.-X., Ling, Z.-H., and Gu, J.-C.
Perturbation-restrained sequential model editing. arXiv
preprint arXiv:2405.16821, 2024.

Madaan, A., Tandon, N., Clark, P., and Yang, Y. Memory-
assisted prompt editing to improve gpt-3 after deployment.
arXiv preprint arXiv:2201.06009, 2022.

Malyshev, A. N. A unified theoryof conditioning for linear
least squares and tikhonov regularization solutions. SIAM
journal on matrix analysis and applications, 24(4):1186–
1196, 2003.

Manakul, P., Liusie, A., and Gales, M. J. Selfcheckgpt: Zero-
resource black-box hallucination detection for generative
large language models. arXiv preprint arXiv:2303.08896,
2023.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. In Advances in
Neural Information Processing Systems, volume 35, pp.
17359–17372, 2022.

Meng, K., Sharma, A. S., Andonian, A. J., Belinkov, Y., and
Bau, D. Mass-editing memory in a transformer. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=MkbcAHIYgyS.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast model editing at scale. In International Confer-
ence on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=0DcZxeWfOPt.

Mitchell, E., Lin, C., Bosselut, A., Manning, C. D., and
Finn, C. Memory-based model editing at scale. In Inter-
national Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022b.

Peng, L., Giampouras, P., and Vidal, R. The ideal continual
learner: An agent that never forgets. In International Con-
ference on Machine Learning, pp. 27585–27610. PMLR,
2023.

Penrose, R. A generalized inverse for matrices. In Math-
ematical proceedings of the Cambridge philosophical
society, volume 51, pp. 406–413. Cambridge University
Press, 1955.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin,
A., Wu, Y., and Miller, A. Language models as knowl-
edge bases? In Inui, K., Jiang, J., Ng, V., and Wan, X.
(eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2463–2473, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1250. URL
https://aclanthology.org/D19-1250.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rifkin, R. M. and Lippert, R. A. Notes on regularized
least squares. Technical Report MIT-CSAILTR-2007-025,
2007.

Shen, D., Qin, C., Wang, C., Dong, Z., Zhu, H., and Xiong,
H. Topic modeling revisited: A document graph-based
neural network perspective. In Advances in Neural Infor-
mation Processing Systems, volume 34, pp. 14681–14693,
2021.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and
Babenko, A. Editable neural networks. In International
Conference on Learning Representations, 2020.

Sun, Y., Zhu, H., Qin, C., Zhuang, F., He, Q., and Xiong,
H. Discerning decision-making process of deep neu-
ral networks with hierarchical voting transformation. In
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 17221–17234, 2021a.

Sun, Y., Zhuang, F., Zhu, H., Zhang, Q., He, Q., and Xiong,
H. Market-oriented job skill valuation with cooperative
composition neural network. Nature communications, 12
(1):1992, 2021b.

Sun, Y., Zhu, H., Wang, L., Zhang, L., and Xiong, H. Large-
scale online job search behaviors reveal labor market
shifts amid covid-19. Nature Cities, 1(2):150–163, 2024.

Tan, C., Zhang, G., and Fu, J. Massive editing for large
language models via meta learning. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=L6L1CJQ2PE.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A. Attention is all you need. In Advances in
Neural Information Processing Systems, 2017.

11

https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://aclanthology.org/D19-1250
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE

Simulating Ideal Editor

Wang, C., Zhu, H., Zhu, C., Qin, C., and Xiong, H. Se-
trank: A setwise bayesian approach for collaborative
ranking from implicit feedback. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 6127–6136, 2020.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: theory, method and
application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024a.

Wang, P., Li, Z., Zhang, N., Xu, Z., Yao, Y., Jiang, Y., Xie, P.,
Huang, F., and Chen, H. Wise: Rethinking the knowledge
memory for lifelong model editing of large language
models. arXiv preprint arXiv:2405.14768, 2024b.

Xin, H., Sun, Y., Wang, C., and Xiong, H. Llmcdsr: Enhanc-
ing cross-domain sequential recommendation with large
language models. ACM Transactions on Information
Systems, 2025.

Xu, D., Chen, W., Peng, W., Zhang, C., Xu, T., Zhao, X.,
Wu, X., Zheng, Y., Wang, Y., and Chen, E. Large lan-
guage models for generative information extraction: A
survey. Frontiers of Computer Science, 18(6):186357,
2024.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., et al. Qwen3 technical
report. arXiv preprint arXiv:2505.09388, 2025.

Yao, Y., Wang, P., Tian, B., Cheng, S., Li, Z., Deng, S.,
Chen, H., and Zhang, N. Editing large language mod-
els: Problems, methods, and opportunities. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 10222–10240, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.632. URL https://
aclanthology.org/2023.emnlp-main.632.

Yu, L., Chen, Q., Zhou, J., and He, L. Melo: Enhancing
model editing with neuron-indexed dynamic lora. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 19449–19457, 2024.

Zeng, G., Chen, Y., Cui, B., and Yu, S. Continual learning of
context-dependent processing in neural networks. Nature
Machine Intelligence, 1(8):364–372, 2019.

Zhang, L., Zhou, D., Zhu, H., Xu, T., Zha, R., Chen, E.,
and Xiong, H. Attentive heterogeneous graph embedding
for job mobility prediction. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery &
data mining, pp. 2192–2201, 2021.

Zhang, N., Tian, B., Cheng, S., Liang, X., Hu, Y., Xue, K.,
Gou, Y., Chen, X., and Chen, H. Instructedit: Instruction-
based knowledge editing for large language models. arXiv
preprint arXiv:2402.16123, 2024a.

Zhang, N., Yao, Y., Tian, B., Wang, P., Deng, S., Wang, M.,
Xi, Z., Mao, S., Zhang, J., Ni, Y., et al. A comprehensive
study of knowledge editing for large language models.
arXiv preprint arXiv:2401.01286, 2024b.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

Zheng, C., Li, L., Dong, Q., Fan, Y., Wu, Z., Xu, J., and
Chang, B. Can we edit factual knowledge by in-context
learning? arXiv preprint arXiv:2305.12740, 2023.

12

https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632

Simulating Ideal Editor

A. Additional discussions
A.1. Related work

Advances in deep learning (LeCun et al., 2015; Sun et al., 2021a;b; Wang et al., 2020; Guo et al., 2023; 2024b; Xu et al.,
2024) have laid the foundation for the development of LLMs, equipping them with broad cross-domain knowledge (Liu
et al., 2023a;b; Xin et al., 2025; Liu et al., 2024). These models have demonstrated strong versatility across diverse areas,
including graph learning (Guo et al., 2024a; Liu et al., 2021; Shen et al., 2021; Zhang et al., 2021; Huang et al., 2022; Liu
et al., 2022b; 2023c; Gong & Sun, 2024), data mining (Lin et al., 2017; Sun et al., 2024), and AI for science (Hu et al.,
2023; Lin et al., 2021; Liu et al., 2022a). To enable low-cost correction of outdated or harmful information within LLMs,
recent years have witnessed a surge in the development of model editing techniques (Zhang et al., 2024b).

Standard Model editing. Existing model editing techniques generally fall into two main categories: parameter-modifying
and parameter-preserving (Yao et al., 2023). Parameter-modifying methods directly update the parameters most relevant to
knowledge, thereby producing correct predictions. KE (De Cao et al., 2021) and MEND (Mitchell et al., 2022a), known as
meta-learning approaches, update LLM parameters by learning a hypernetwork. MALMEN (Tan et al., 2024) formulates the
update aggregation as a least-squares problem, mitigating the cancellation effect observed in MEND. InstructEdit (Zhang
et al., 2024a) enhances these methods by incorporating instructions for training on different tasks, enabling adaptation to
a variety of tasks. Additionally, ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023), known as locate-and-edit
methods, first identify the storage locations of knowledge (typically in MLP modules) and then perform targeted updates
on the LLMs. Instead of altering the parameters, parameter-preserving methods store necessary information in memory,
which is leveraged to guide the model in generating accurate predictions. MemPrompt (Madaan et al., 2022) and IKE (Zheng
et al., 2023) utilize memory-based in-context learning to teach LLMs to generate the edited knowledge. SERAC (Mitchell
et al., 2022b) constructs a retrieval-augmented counterfactual model to modulate LLM predictions as needed. MELO (Yu
et al., 2024) dynamically activates certain LoRA (Hu et al., 2021) blocks based on an inner vector database, thus altering the
behavior of the LLMs. While these standard editing methods achieve commendable performance, they suffer significant
degradation in lifelong scenarios, particularly parameter-modifying methods. Our work introduces a general framework that
restores the strong performance of parameter-modifying methods in a lifelong context.

Lifelong model editing. Lifelong model editing poses a greater challenge as it involves performing sequential edits
on LLMs to accommodate evolving knowledge (Yao et al., 2023). T-Patcher (Huang et al., 2023) adds a handful of
trainable neurons to the last Feed-Forward Network layer, enabling it to rectify a series of mistakes encountered by LLMs.
GRACE (Hartvigsen et al., 2024) maintains a discrete codebook for a chosen layer, which is used to retrieve and replace
the latent representations of examples. WISE (Wang et al., 2024b) designs a dual parametric memory scheme for edited
knowledge, combined with a knowledge-sharding mechanism to reduce conflicts. PRUNE (Ma et al., 2024) proposes
applying condition number restraints during sequential editing, preserving the general abilities of LLMs. AlphaEdit (Fang
et al., 2024) projects updates into the null space of preserved knowledge while incorporating a regularization term to protect
previously edited knowledge. Existing studies primarily focus on developing specialized approaches for lifelong model
editing, often overlooking the potential of generalizing standard methods to lifelong scenarios. In contrast, our work aims to
generalize standard model editing methods to lifelong scenarios while maintaining strong performance, thereby bridging the
gap between these two paradigms for the first time.

A.2. Limitations

The first limitation involves the ideal editor, where an ill-conditioned key matrix K may generate parameter shifts S with a
large norm. This design overly prioritizes injecting new knowledge into LLMs at the expense of preserving their general
capabilities. This issue can be mitigated by imposing additional locality constraints on the ideal editor, such as limiting
updates to a subspace that preserves original knowledge (Peng et al., 2023; Zeng et al., 2019). The second challenge concerns
the hyperparameter λ in SimIE, whose optimal value cannot be determined in advance. Future work could enhance the
recursive procedure of SimIE to enable flexible selection of an appropriate hyperparameter with minimal computational
cost, similar to the technique in regularized least squares (Rifkin & Lippert, 2007).

13

Simulating Ideal Editor

B. Further details on Section 3
B.1. Existence and uniqueness of the ideal editor

Existence. The ideal editor exists if and only if the linear system SK = B has a solution. To establish the existence, we
analyze the system through a row-wise decomposition. The system SK = B can be equivalently expressed as a collection
of sub-linear systems:

siK = Bi,: ∀i ∈ [d2],

where si denotes the i-th row of the matrix S, and Bi,: denotes the corresponding i-th row of the matrix B. For the linear
system SK = B to have a solution, it is necessary and sufficient that each sub-linear system siK = Bi,: has a solution.

Observe that each subsystem siK = Bi,: can be rewritten in its transpose form as K⊤s⊤i = B⊤
i,:. With Assumption 3.2, the

rows {k⊤t }Tt=1 of K⊤ are linearly independent. Thus, we have the following rank condition:

rank(K⊤) = rank([K⊤ | b⊤i]). (6)

By the Rouché–Capelli theorem, Equation (6) implies that the sub-linear system siK = Bi,: is consistent, i.e., at least one
solution exists.

Since the analysis holds across all rows, we conclude that all sub-linear systems admit at least one solution. As a result, the
system SK = B has a solution, thereby proving the existence of the ideal editor.

Uniqueness. The general solution to the linear system SK = B can be characterized by (Theorem 6.11. in Laub (2004)):

S = BK† + Y (I −KK†),

where Y ∈ Rd2×d1 is an arbitrary matrix. The term I − KK† represents the orthogonal projection operator onto the
null space of K⊤ (Golub & Van Loan, 2013). Thus, we may verify that the two components BK† and Y (I −KK†) are
orthogonal, i.e.,

⟨Y (I −KK†), BK†⟩F = trace([Y (I −KK†)]⊤Y ⊤BK†)

(a)
= trace((I −KK†)Y ⊤BK†)

(b)
= trace(Y ⊤BK†(I −KK†))

= trace(Y ⊤B(K† −K†KK†))

(c)
= 0,

where (a) follows from the fact that I −KK† is a symmetric matrix; (b) utilizes the cyclic property of the trace; and (c)
is a consequence of Moore-Penrose conditions, specifically K†KK† = K†. From the above, the Frobenius norm of any
solution S satisfying SK = B can be decomposed as:

∥S∥2F =
∥∥BK†∥∥2

F
+
∥∥Y (I −KK†)

∥∥2
F
≥
∥∥BK†∥∥2

F
. (7)

Clearly, the Frobenius norm of ∥S∥2F is minimized if and only if Y (I −KK†) = 0, which implies S0 = BK†. Therefore,
S0 is the unique minimum norm solution to SK = B, establishing the uniqueness of the ideal editor.

Remark B.1. If the columns of A are linearly independent (or equivalently, if A is left invertible), then the Moore-Penrose
inverse A† = (A⊤A)−1A⊤. Thus, under Assumption 3.2, S0 can also be expressed as S0 = B(K⊤K)−1K⊤, which is
consistent with the solution form derived using the method of Lagrange multipliers.

14

Simulating Ideal Editor

B.2. Detailed derivation of the recurrence relation

We now present the full derivation of Equation (4). The details are as follows:

Sλ
t = (B:t−1K

⊤
:t−1 + btk

⊤
t)(K:tK

⊤
:t + λI︸ ︷︷ ︸

denoted as Pt

)−1

= B:t−1K
⊤
:t−1P

−1
t + btk

⊤
t P

−1
t

= B:t−1K
⊤
:t−1P

−1
t−1︸ ︷︷ ︸

=Sλ
t−1

Pt−1P
−1
t + btk

⊤
t P

−1
t

= Sλ
t−1 Pt−1︸︷︷︸

=Pt−ktk⊤
t

P−1
t + btk

⊤
t P

−1
t

(a)
= Sλ

t−1 − Sλ
t−1ktk

⊤
t P

−1
t + btk

⊤
t P

−1
t

= Sλ
t−1 + (bt︸︷︷︸

=(Sλ
t−1+∆Wt)kt

−Sλ
t−1kt)k

⊤
t P

−1
t

(b)
= Sλ

t−1 +∆Wtktk
⊤
t P

−1
t .

(8)

Here, (a) follows from the recursive formula for Pt, given by Pt = Pt−1 + ktk
⊤
t ; (b) results from the Equation (3), which

holds under Assumption 3.3.

B.3. Proof of Theorem 3.6

Theorem 3.6*. Let Sλ
T = WT −W0 denote the parameter shift generated by SimIE according to Equation (5), and let S0

represent the ideal editor w.r.t. Equation (2). Under Assumptions 3.2 and 3.3, the following bound holds:

λ

σ2
max + λ

≤
∥∥Sλ

T − S0
∥∥
F

∥S0∥F
≤ λ

σ2
min + λ

,

where 0 < σmin ≤ σmax are the smallest and largest singular values of the key matrix K, respectively.

Proof. We begin by expressing the key matrix K = UΣV ⊤ through SVD, where U ∈ Rd1×d1 and V ∈ RT×T are
orthogonal matrices, and Σ ∈ Rd1×T is a diagonal matrix containing the singular values. Under Assumption 3.2, we can
rewrite the ideal editor S0 as follows:

S0 = B(K⊤K)−1K⊤

(a)
= B(V Σ⊤U⊤UΣV ⊤)−1(V Σ⊤U⊤)

= B(V Σ⊤ΣV ⊤)−1V Σ⊤U⊤

(b)
= BV (Σ⊤Σ)−1V ⊤V Σ⊤U⊤

= BV (Σ⊤Σ)−1Σ⊤U⊤,

(9)

where (a) follows from the matrix transpose property (ABC)⊤ = C⊤B⊤A⊤; and (b) utilizes the inverse property of matrix
products (ABC)−1 = C−1B−1A−1. Analogously, for the solution Sλ

T generated by SimIE, there exist:

Sλ
T = BK⊤(KK⊤ + λI)−1

= BV Σ⊤U⊤(UΣV ⊤V Σ⊤U⊤ + λI)−1

(a)
= BV Σ⊤U⊤(UΣΣ⊤U⊤ + λUU⊤)−1

= BV Σ⊤U⊤ (U(ΣΣ⊤ + λI)U⊤)−1

= BV Σ⊤U⊤U(ΣΣ⊤ + λI)−1U⊤

= BV Σ⊤(ΣΣ⊤ + λI)−1U⊤,

(10)

15

Simulating Ideal Editor

where (a) employs the decomposition of the identity matrix I = UU⊤.

We are interested in the difference between S0 and Sλ
T :

S0 − Sλ
T = BV

(
(Σ⊤Σ)−1Σ⊤ − Σ⊤(ΣΣ⊤ + λI)−1

)
U⊤

= BV
(
(Σ⊤Σ)−1Σ⊤ − (Σ⊤Σ)−1(Σ⊤Σ)Σ⊤(ΣΣ⊤ + λI)−1

)
U⊤

= BV

(Σ⊤Σ)−1Σ⊤︸ ︷︷ ︸
Γ1

− (Σ⊤Σ)−1Σ⊤︸ ︷︷ ︸
Γ1

ΣΣ⊤(ΣΣ⊤ + λI)−1︸ ︷︷ ︸
Γ2

U⊤.

Given that K has full rank, Σ admits the block structure:

Σ =

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σT

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

=

[
Σ1

0

]
, (11)

where Σ1 = diag(σ1, . . . , σT) ∈ RT×T contains the singular values. Consequently, the term Γ1 can be derived as:

(Σ⊤Σ)−1Σ⊤ =

([
Σ1 0

] [Σ1

0

])−1 [
Σ1 0

]
= (Σ2

1)
−1
[
Σ1 0

]
=
[
Σ−1

1 0
]
. (12)

Next, the term Γ2 can be expressed as:

ΣΣ⊤(ΣΣ⊤ + λI)−1 =

[
Σ1

0

] [
Σ1 0

]([Σ1

0

] [
Σ1 0

]
+ λ

[
I1 0
0 I2

])−1

=

[
Σ2

1 0
0 0

]([
Σ2

1 0
0 0

]
+

[
λI1 0
0 λI2

])−1

=

[
Σ2

1 0
0 0

] [
(Σ2

1 + λI1)
−1 0

0 (λI2)
−1

]
=

[
Σ2

1(Σ
2
1 + λI1)

−1 0
0 0

]
.

Now, substituting the expressions for Γ1 and Γ2, we obtain:

S0 − Sλ
T = BV

([
Σ−1

1 0
]
−
[
Σ−1

1 0
] [Σ2

1(Σ
2
1 + λI1)

−1 0
0 0

])
U⊤

= BV
[
Σ−1

1 0
]([I1 0

0 0

]
−
[
Σ2

1(Σ
2
1 + λI1)

−1 0
0 0

])
U⊤

= BV
[
Σ−1

1 0
] [λI1(Σ2

1 + λI1)
−1 0

0 0

]
U⊤

= BV
[
λΣ−1

1 (Σ2
1 + λI1)

−1 0
]
U⊤,

where the penultimate equality follows from the identity 1− σ2
i

σ2
i+λ

= λ
σ2
i+λ

for each diagonal element i.

To compute the Frobenius norm of S0−Sλ
T , we rewrite BV ∈ Rd2×T in column-vector form as BV = [bv1 | bv2 | · · · | bvT],

16

Simulating Ideal Editor

yielding: ∥∥S0 − Sλ
T

∥∥2
F
=
∥∥[bv1 | bv2 | · · · | bvT] [λΣ−1

1 (Σ2
1 + λI1)

−1 0
]
U⊤∥∥2

F

(a)
=
∥∥∥[(1

σ1
· λ
σ2
1+λ

)bv1 (1
σ2
· λ
σ2
2+λ

)bv2 . . . (1
σT
· λ
σ2
T+λ

)bvT 0
]∥∥∥2

F

(b)
=

T∑
i=1

∥(1
σi
· λ

σ2
i + λ

)bvi∥22

≤ (
λ

σ2
min + λ

)2
T∑

i=1

∥ 1
σi

bvi∥22

= (
λ

σ2
min + λ

)2
∥∥BV

[
Σ−1

1 0
]
U⊤∥∥2

F

(c)
= (

λ

σ2
min + λ

)2
∥∥S0

∥∥2
F
,

(13)

where (a) uses the fact that Frobenius norm is unitarily invariant; (b) utilizes the definitions of the Frobenius norm and
ℓ2-norm; and (c) can be obtained by substituting Equation (12) into Equation (9).

The lower bound follows analogously by replacing σmin with σmax in Equation (13), completing the proof.

B.4. Cost analysis

Here, we analyze the additional cost introduced by SimIE. For analytical tractability, we consider that each time step
involves N tokens and L = |L| linear layers are edited.

Storage costs. SimIE involves maintaining L matrices P (l)
t of dimension d1 × d1, with a direct storage cost of O(Ld21).

By leveraging the low-rank structure P
(l)
t , an alternative strategy is to incrementally store K

(l)
:t = [k

(l)
1 , . . . , k

(l)
t], which

enables reconstructing P
(l)
t = K

(l)
:t [K

(l)
:t]⊤ + λI . In this case, the storage cost becomes O(TLNd1), which depends on the

number of sequential edits T . If the total number of tokens is significantly smaller than the input dimension, i.e., TN ≪ d1,
storing K

(l)
:t may be a more practical choice. However, storing K

(l)
:t could pose privacy concerns compared to storing P

(l)
t .

Computational costs. The primary computational cost of the proposed SimIE stems from matrix inversion. Rec-
ognizing the inherent numerical inaccuracy in matrix inversion (Higham, 2002), we instead solve the linear system
XP

(l)
t = ∆W

(l)
t k

(l)
t [k

(l)
t]⊤ to provide the adjusted parameter updates. Among available methods4, LU decomposition is a

standard approach, which has a time complexity of O(23d
3
1). Since P

(l)
t is a symmetric positive definite matrix, Cholesky

decomposition offers higher computational efficiency with a reduced time complexity of O(13d
3
1). Additionally, SVD is

a potential alternative due to its excellent numerical stability, though it incurs a higher time complexity of O(9d31). The
detailed derivation of the time complexity of these matrix decompositions can be found in Higham (2008) and Golub &
Van Loan (2013). Fortunately, all these decomposition techniques have been efficiently parallelized on GPUs, significantly
accelerating computation.

C. Proofs of theorems in Section 4
C.1. Proof of Theorem 4.1

Lemma C.1. Consider a least squares problem min ∥SK −B∥2F, where the matrix K is rank-deficient. If the SVD of matrix
K is K = UΣV ⊤, then the minimum squared residual norm can be expressed as min ∥SK −B∥2F =

∑T
i=r+1∥bvi∥22,

where bvi denotes the i-th column of the matrix BV , and r is the rank of K.

Proof. We start with the expression for the squared residual norm:

∥SK −B∥2F =
∥∥SUΣV ⊤ −B

∥∥2
F
= ∥SUΣ−BV ∥2F , (14)

where the second equality follows from the unitary invariance of the Frobenius norm. Since K is rank-deficient with rank r,

4Only the complexity of the decomposition is considered, as the back substitution has the same complexity across all methods.

17

Simulating Ideal Editor

the singular value matrix Σ has the following block structure:

Σ =

σ1 0 · · · 0 0 · · · 0

0 σ2 · · · 0
... · · ·

...
...

...
. . .

...
... · · ·

...
0 0 · · · σr 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · 0 0 · · · 0

=

[
Σ1 0
0 0

]
, (15)

where σr > 0 denotes the smallest non-zero singular value of K, and Σ1 = diag(σ1, . . . , σr) ∈ Rr×r contains the non-zero
singular values.

Let SU = [su1 | su2 | · · · | suT] and BV = [bv1 | bv2 | · · · | bvT] denote the column partitioning of SU and BV ,
respectively. Then the squared residual norm in (14) becomes:

∥SUΣ−BV ∥2F = =

∥∥∥∥[su1 su2 · · · suT

] [Σ1 0
0 0

]
−
[
bv1 bv2 · · · bvT

]∥∥∥∥2
F

=
∥∥[σ1su1 σ2su2 · · · σrsur 0

]
−
[
bv1 bv2 · · · bvT

]∥∥2
F

=
∥∥[σ1su1 − bv1 σ2su2 − bv2 · · · σrsur − bvr −bvr+1 · · · −bvT

]∥∥2
F

=

r∑
i=1

∥σisui − bvi∥22︸ ︷︷ ︸
Γ1

+

T∑
i=r+1

∥bvi∥22︸ ︷︷ ︸
Γ2

.

To minimize squared residual norm, we observe that Γ1 can be minimized independently for each i ∈ 1, . . . , r by choosing
sui =

bvi

σi
, which makes Γ1 = 0. The second term Γ2 is independent of our optimization variables and represents the

irreducible error due to the rank deficiency of K. Therefore, the minimum squared residual norm is:

min ∥SK −B∥2F = min

r∑
i=1

∥σisui − bvi∥22 +
T∑

i=r+1

∥bvi∥22 =

T∑
i=r+1

∥bvi∥22. (16)

This completes the proof.

Theorem 4.1*. Let Sλ
T = WT −W0 represent the parameter shift generated by SimIE according to Equation (5). Under

Assumption 3.3, the squared residual norm w.r.t. Sλ
T satisfies the following inequality:

Rmin ≤
∥∥Sλ

TK −B
∥∥2
F
≤

λ2(∥B∥2F −Rmin)

(σ2
r + λ)2

+Rmin,

where Rmin := min ∥SK −B∥2F is the minimum value of squared residual norm, and σr > 0 denotes the smallest non-zero
singular value of K.

Proof. Using the SVD of K = UΣV ⊤, we can decompose the term Sλ
TK −B as follows:

Sλ
TK −B = BK⊤(KK⊤ + λI)−1K −B

= BV Σ⊤(ΣΣ⊤ + λI)−1U⊤UΣV ⊤ −B

= B
(
V Σ⊤(ΣΣ⊤ + λI)−1ΣV ⊤ − I

)
= BV

(
Σ⊤(ΣΣ⊤ + λI)−1Σ− I

)︸ ︷︷ ︸
Γ1

V ⊤.

18

Simulating Ideal Editor

Base on block structure of Σ w.r.t. Equation (15), we simplify the term Γ1 as:

Σ⊤(ΣΣ⊤ + λI)−1Σ− I =

[
Σ1 0
0 0

]([
Σ1 0
0 0

] [
Σ1 0
0 0

]
+ λ

[
I1 0
0 I2

])−1 [
Σ1 0
0 0

]
− I

=

[
Σ1 0
0 0

] [
(Σ2

1 + λI1)
−1 0

0 (λI2)
−1

] [
Σ1 0
0 0

]
−
[
I1 0
0 I2

]
=

[
Σ2

1(Σ
2
1 + λI1)

−1 0
0 0

]
−
[
I1 0
0 I2

]
=

[
−λI1(Σ2

1 + λI1)
−1 0

0 −λI2

]
,

where the last equality follows from the identity σ2
i

σ2
i+λ
− 1 = − λ

σ2
i+λ

for each diagonal element i. We now express

BV ∈ Rd2×T in column-vector form as BV = [bv1 | bv2 | · · · | bvT], obtaining

∥∥Sλ
TK −B

∥∥2
F
=

∥∥∥∥[bv1 bv2 · · · bvT
] [−λI1(Σ2

1 + λI1)
−1 0

0 −λI2

]
V ⊤
∥∥∥∥2
F

=
∥∥∥[−λ

σ2
1+λ

bv1
−λ

σ2
2+λ

bv2 · · · −λ
σ2
r+λbvr −bvr+1 · · · −bvT

]∥∥∥2
F

=

r∑
i=1

(
λ

σ2
i + λ

)2∥bvi∥22 +
T∑

i=r+1

∥bvi∥22

≤ (
λ

σ2
r + λ

)2
r∑

i=1

∥bvi∥22 +
T∑

i=r+1

∥bvi∥22

=
λ2

(σ2
r + λ)2

(
T∑

i=1

∥bvi∥22 −
T∑

i=r+1

∥bvi∥22

)
+

T∑
i=r+1

∥bvi∥22︸ ︷︷ ︸
=min∥SK−B∥2

F

=
λ2(∥BV ∥2F −min ∥SK −B∥2F)

(σ2
r + λ)2

+min ∥SK −B∥2F︸ ︷︷ ︸
denoted as Rmin

=
λ2(∥B∥2F −Rmin)

(σ2
r + λ)2

+Rmin.

The penultimate equality comes from Lemma C.1, and the last equality follows from the unitary invariance of the Frobenius
norm. Since the squared residual norm of any solution cannot be smaller than the optimal squared residual norm, this
completes the proof.

C.2. Proof of Theorems 4.2 and 4.3

Lemma C.2. At time step t, suppose the pair (kt, bt) is perturbed to (kt + δkt, bt + δbt), which results in the solution

generated by SimlE being S̃λ
t = (B:tK

⊤
:t + δbtδk

⊤
t)(K:tK

⊤
:t + λI + δktδk

⊤
t)

−1. Then, at time step t+ 1, the effect of

the perturbation is not amplified, i.e., S̃λ
t+1 = (B:t+1K

⊤
:t+1 + δbtδk

⊤
t)(K:t+1K

⊤
:t+1 + λI + δktδk

⊤
t)

−1.

Proof. We demonstrate the non-amplification of the perturbation by working backward from the recurrence relation w.r.t.
Equation (8). Let Pt = K:tK

⊤
:t + λI , we have:

S̃λ
t+1 = S̃λ

t +∆Wt+1kt+1k
⊤
t+1(Pt+1 + δktδk

⊤
t)

−1

= S̃λ
t (Pt + δktδk

⊤
t)(Pt+1 + δktδk

⊤
t)

−1 + bt+1k
⊤
t+1(Pt+1 + δktδk

⊤
t)

−1

= (B:tK
⊤
:t + δbtδk

⊤
t)(Pt+1 + δktδk

⊤
t)

−1 + bt+1k
⊤
t+1(Pt+1 + δktδk

⊤
t)

−1

= (B:t+1K
⊤
:t+1 + δbtδk

⊤
t)(K:t+1K

⊤
:t+1 + λI + δktδk

⊤
t)

−1.

19

Simulating Ideal Editor

The third equality follows by substituting the expression for S̃λ
t . Thus, the impact of the perturbation to (kt, bt) is not

amplified in subsequent time steps.

Theorem 4.2*. Let Sλ
T represent the original solution corresponding to K and B, and S̃λ

T denote the perturbed solution
corresponding to K + δK and B + δB, both generated by SimIE according to Equation (5). Under Assumption 3.2, the
perturbation bound for Sλ

T is:∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ ∥Jλ∥F ∥δK∥F +

√
d1 ∥K∥F
σ2
min

∥δK∥F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ κF(K)
∥δK∥F
∥K∥F

+

√
d1 ∥K∥F
σ2
min

∥δK∥F ,

where Jλ := K⊤(KK⊤ + λI)−1 denotes the Jacobian matrix of Sλ
T at B.

Proof. To analyze the perturbation behavior of Sλ
T w.r.t. small changes in K and B, we introduce

ϵ = max

{
∥δK∥F
∥K∥F

,
∥δB∥F
∥B∥F

}
as a measure of the relative magnitude of the perturbations. Following Golub & Van Loan (2013), we define the function:

g(x) := (B + x
δB

ϵ
)(K + x

δK

ϵ
)⊤
(
(K + x

δK

ϵ
)(K + x

δK

ϵ
)⊤ + λI

)−1

,

where x ∈ [0, ϵ]. It is easy to observe that g(0) = Sλ
T and g(ϵ) = S̃λ

T , corresponding to the unperturbed and perturbed
solutions, respectively. Using a first-order Taylor expansion, we have:

g(ϵ) = g(0) + g′(0)ϵ+O(ϵ2),

where g′(0) is the derivative of g(x) evaluated at x = 0, given by:

g′(0) =

(
δB − Sλ

T δK
)

ϵ
K⊤(KK⊤ + λI)−1 +

B − Sλ
TK

ϵ
δK⊤(KK⊤ + λI)−1.

Omitting second order terms, we get:∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

=
∥g′(0)ϵ∥F∥∥Sλ

T

∥∥
F

=

∥∥(δB − Sλ
T δK)K⊤(KK⊤ + λI)−1

∥∥
F∥∥Sλ

T

∥∥
F

∥∥(B − Sλ
TK)δK⊤(KK⊤ + λI)−1

∥∥
F∥∥Sλ

T

∥∥
F

≤
∥∥K⊤(KK⊤ + λI)−1

∥∥
F∥∥Sλ

T

∥∥
F

∥δB∥F +
∥∥K⊤(KK⊤ + λI)−1

∥∥
F
∥δK∥F

+

∥∥B − Sλ
TK
∥∥
F

∥∥(KK⊤ + λI)−1
∥∥
F∥∥Sλ

T

∥∥
F

∥δK∥F

≤
∥∥K⊤(KK⊤ + λI)−1

∥∥
F
∥B∥F∥∥Sλ

T

∥∥
F︸ ︷︷ ︸

Γ1

·
∥δB∥F
∥B∥F

+
∥∥K⊤(KK⊤ + λI)−1

∥∥
F
∥δK∥F

+
λ

σ2
min + λ

·
∥B∥F∥∥Sλ

T

∥∥
F︸ ︷︷ ︸

Γ2

·
∥∥(KK⊤ + λI)−1

∥∥
F︸ ︷︷ ︸

Γ3

∥δK∥F .

(17)

20

Simulating Ideal Editor

The last inequality substitute
∥∥B − Sλ

TK
∥∥
F

with the squared residual norm bound from Theorem 4.1, where Rmin = 0 and
σr = σmin hold under Assumption 3.2.

For the term Γ1, we show that it is equivalent to the condition number cond(Sλ
T , B). Specifically, since the solution

Sλ
T = BK⊤(KK⊤ + λI)−1 is differentiable w.r.t. B, the condition number can be written as:

cond(Sλ
T , B) := lim

ϵ→0
sup

∥δB∥F≤ϵ

(∥∥δSλ
T

∥∥
F∥∥Sλ

T

∥∥
F

/∥δB∥F
∥B∥F

)
= ∥Jλ∥F

∥B∥F∥∥Sλ
T

∥∥
F

=
∥∥K⊤(KK⊤ + λI)−1

∥∥
F

∥B∥F∥∥Sλ
T

∥∥
F

= Γ1,

where Jλ = K⊤(KK⊤ + λI)−1 denotes the Jacobian matrix of Sλ
T at B.

Next, we analyze the term Γ2 using the approach outlined in Theorem 3.6. Under Assumption 3.2, let K = UΣV ⊤ denote

the SVD of K, where Σ =

[
Σ1

0

]
defined in Equation (11). Recalling that B = S0K, we have:

∥B∥F∥∥Sλ
T

∥∥
F

≤ ∥K∥F

∥∥S0
∥∥
F∥∥Sλ

T

∥∥
F

(a)
= ∥K∥F

∥∥BV (Σ⊤Σ)−1Σ⊤U⊤
∥∥
F

∥BV Σ⊤(ΣΣ⊤ + λI)−1U⊤∥F

= ∥K∥F

∥∥∥∥BV (
[
Σ1 0

] [Σ1

0

]
)−1

[
Σ1 0

]∥∥∥∥
F∥∥∥∥BV

[
Σ1 0

]
(

[
Σ1

0

] [
Σ1 0

]
+ λ

[
I1 0
0 I2

]
)−1

∥∥∥∥
F

(b)
= ∥K∥F

∥∥[bv1 bv2 · · · bvT
] [

Σ−1
1 0

]∥∥
F∥∥[bv1 bv2 · · · bvT

] [
Σ1(Σ

2
1 + λI1)

−1 0
]∥∥

F

= ∥K∥F

∥∥[1
σ1
bv1

1
σ2
bv2 · · · 1

σT
bvT 0

]∥∥
F∥∥∥[σ1

σ2
1+λ

bv1
σ2

σ2
2+λ

bv2 · · · σT

σ2
T+λ

bvT 0
]∥∥∥

F

= ∥K∥F

√√√√ ∑T
i=1∥

1
σi
bvi∥22∑T

i=1∥
σi

σ2
i+λ

bvi∥22

(c)

≤ ∥K∥F

√√√√√ ∑T
i=1∥

1
σi
bvi∥22

(
σ2
min

σ2
min+λ

)2
∑T

i=1∥
1
σi
bvi∥22

=
σ2
min + λ

σ2
min

∥K∥F ,

(18)

where (a) follows from Equations (9) and (10); (b) involves rewriting BV ∈ Rd2×T in column-vector form as BV = [bv1 |
bv2 | · · · | bvT]; and (c) utilizes the monotonic increasing property of the function h(x) = (x2

x2+λ)
2 for all x > 0.

21

Simulating Ideal Editor

Finally, we consider the term Γ3 and substitute K = UΣV ⊤ with Σ =

[
Σ1

0

]
, yielding the following expression:

∥∥(KK⊤ + λI)−1
∥∥
F
=
∥∥U(ΣΣ⊤ + λI)−1U⊤∥∥

F

=

∥∥∥∥∥
([

Σ1

0

] [
Σ1 0

]
+ λ

[
I1 0
0 I2

])−1
∥∥∥∥∥
F

=

∥∥∥∥[(Σ2
1 + λI1)

−1 0
0 (λI2)

−1

]∥∥∥∥
F

=

√√√√ T∑
i=1

(
1

σ2
i + λ

)2

+

d1∑
i=T+1

(
1

λ

)2

≤

√√√√ d1∑
i=1

1

λ2

=

√
d1
λ

.

(19)

Now, plugging the bounds on Γ1, Γ2 and Γ3 back into Equation (17), we get:∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

≤ cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ ∥Jλ∥F ∥δK∥F +
λ

σ2
min + λ

· σ
2
min + λ

σ2
min

∥K∥F ·
√
d1
λ
∥δK∥F

= cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ ∥Jλ∥F ∥δK∥F +

√
d1 ∥K∥F
σ2
min

∥δK∥F .

(20)

As λ→ 0, the term ∥Jλ∥F in Equation (20) behaves monotonically increasing. However, we can find an upper bound that is

independent of λ to replace it. As done in Equation (19), we express K as the SVD K = UΣV ⊤ with Σ =

[
Σ1

0

]
. Then,

the second term ∥Jλ∥F in Equation (20) becomes:

∥∥K⊤(KK⊤ + λI)−1
∥∥
F
∥K∥F

∥δK∥F
∥K∥F

=
∥∥V Σ⊤(ΣΣ⊤ + λI)−1U⊤∥∥

F
∥K∥F

∥δK∥F
∥K∥F

=

∥∥∥∥∥[Σ1 0
]([Σ1

0

] [
Σ1 0

]
+ λ

[
I1 0
0 I2

])−1
∥∥∥∥∥
F

∥K∥F
∥δK∥F
∥K∥F

=
∥∥[Σ1(Σ

2
1 + λI1)

−1 0
]∥∥

F
∥K∥F

∥δK∥F
∥K∥F

(a)

≤
∥∥[Σ−1

1 0
]∥∥

F
∥K∥F

∥δK∥F
∥K∥F

(b)
=
∥∥V Σ†U⊤∥∥

F
∥K∥F

∥δK∥F
∥K∥F

= κF(K)
∥δK∥F
∥K∥F

,

(21)

where (a) follows from the inequality σi

σ2
i+λ
≤ 1

σi
; and (b) involves the definition of the Moore-Penrose inverse for a diagonal

matrix.

This completes the proof.

Remark C.3. The term cond(Sλ
T , B) also relies on λ, while it admits a complex upper bound. According to Equation (21),

22

Simulating Ideal Editor

we have: ∥∥K⊤(KK⊤ + λI)−1
∥∥
F
=
∥∥[Σ1(Σ

2
1 + λI1)

−1 0
]∥∥

F

=

√√√√ T∑
i=1

(
σ2
i

σ2
i + λ

)2(
1

σi
)2

≤ σ2
max

σ2
max + λ

∥∥K†∥∥
F
.

Combining this with Equation (18), the condition number can be expressed as:

cond(Sλ
T , B) =

∥∥K⊤(KK⊤ + λI)−1
∥∥
F

∥B∥F∥∥Sλ
T

∥∥
F

≤ σ2
max

σ2
max + λ

/
σ2
min

σ2
min + λ

∥∥K†∥∥
F
∥K∥F

=
σ2
max

σ2
max + λ

/
σ2
min

σ2
min + λ

κF(K).

It is easy to verify limλ→0 cond(S
λ
T , B) = κF(K) and limλ→∞ cond(Sλ

T , B) =
σ2
max

σ2
min

κF(K). Therefore, the condition

number cond(Sλ
T , B) remains finite for any λ > 0.

Theorem 4.3*. Let Sλ
T represent the original solution corresponding to K and B, and S̃λ

T denote the perturbed solution
corresponding to K + δK and B+ δB, both generated by SimIE according to Equation (5). Then, the perturbation bound
for Sλ

T is: ∥∥∥Sλ
T − S̃λ

T

∥∥∥
F∥∥Sλ

T

∥∥
F

≤cond(Sλ
T , B)

∥δB∥F
∥B∥F

+ κF(K)
∥δK∥F
∥K∥F

+
∥Rλ∥F

λ

√
d1∥∥Sλ
T

∥∥
F

∥δK∥F ,

where Rλ = Sλ
TK −B is the residual matrix w.r.t. Sλ

T .

Proof. The proof process closely follows that of Theorem 4.2. The key distinctions lie in two aspects: first, the observation

that K = UΣV ⊤ with Σ =

[
Σ1 0
0 0

]
as defined in Equation (15), and second, the fact that ∥Rλ∥F ̸= 0, as noted in

Theorem 4.1. With these differences taken into account, the proof is complete.

D. More experimental details and results
D.1. Detailed experimental setup

D.1.1. BASELINES

Here, we describe the nine baseline methods used in our experiments. All methods were implemented using the publicly
available knowledge editing framework EasyEdit (Zhang et al., 2024b), which reproduces and integrates the original
code and hyperparameters provided in the respective papers.

• FT-L (Meng et al., 2022) freezes most layers of LLMs, allowing fine-tuning only on a single MLP using autoregressive
loss.

• MEND (Mitchell et al., 2022a) applies a low-rank decomposition to the gradient from standard fine-tuning, which is
then fed into a pre-trained hypernetwork to generate new parameter update. The training loss of the hypernetwork
consists of standard autoregressive loss over the edit example and the KL divergence loss over localization examples.

• ROME (Meng et al., 2022) models the linear layer within MLPs as key-value memory, thereby inserting new knowledge
by solving a constrained least-squares problem. Using causal tracing, ROME identifies mid-layer MLPs as critical for
knowledge storage, making them suitable targets for editing.

23

https://github.com/zjunlp/EasyEdit

Simulating Ideal Editor

• MEMIT (Meng et al., 2023), based on ROME, enable the simultaneous insertion of hundreds or thousands of facts
using least-squares method. MEMIT is a multi-layer editing algorithm, which introduces an edit-distribution strategy
to spread updates evenly over the range of mid-layer MLPs.

• GRACE (Hartvigsen et al., 2024) maintains a discrete codebook for a chosen layer, which is dynamically updated
through adding, expanding, and splitting during sequential editing. For inference phase, GRACE retrieves entries from
the codebook based on the semantic similarity of the input and decides whether to replace the output accordingly.

• WISE (Wang et al., 2024b) designs a dual parametric memory scheme, allocating one memory for pre-trained
knowledge and another for edited knowledge. Additionally, WISE incorporates a knowledge-sharding mechanism,
which different sets of edits reside in distinct and orthogonal subspaces of parameters, to reduce conflicts.

• PRUNE (Ma et al., 2024) proposes applying condition number restraints during sequential editing by reducing the
large singular values of the update matrix, thereby controlling the condition number of the edited matrix. PRUNE
minimizes perturbations to the original knowledge, preserving the general abilities of the edited model. In our study,
we apply PRUNE to ROME, as it demonstrated robust performance in the original paper.

• AlphaEdit (Fang et al., 2024) projects updates into the null space of preserved knowledge, ensuring that the output of
the post-edited LLMs remains unchanged when queried about preserved knowledge. For lifelong scenarios, AlphaEdit
incorporates a regularization term to protect previously edited knowledge. We refer to the version of AlphaEdit in the
standard scenario, where the protection component is omitted, as AlphaEdit−.

D.1.2. DATASETS

Here, we provide a detailed description of the datasets used in this study. We adopt the train/test split from previous
work (Wang et al., 2024b; Meng et al., 2022). Except for MEND, which uses the training set to fit the hypernetwork, all
other methods perform editing and evaluation directly on the test set.

• ZsRE (Levy et al., 2017) is a question-answering dataset that uses questions generated by roundtrip translation as
equivalent inputs. Each sample in the ZsRE dataset includes a question and an answer as the edit example (xe, ye), a
rephrased question as the paraphrase prompt x′

e, and an unrelated question as the neighborhood prompt xloc
e . Figure 4

provides an example where the corresponding relationships are:

xe ←→ src ye ←→ alt

x′
e ←→ rephrase xloc

e ←→ loc

• Counterfact (Meng et al., 2022) is a more challenging dataset that contrasts counterfactual statements with factual
ones. The samples in Counterfact are structured similarly to ZsRE for evaluating reliability, generalization success rate,
and localization success rate. Figure 5 provides an example where the corresponding relationships are:

xe ←→ prompt ye ←→ target new

x′
e ←→ rephrase prompt xloc

e ←→ locality prompt

D.1.3. METRICS

Here, we formally introduce the evaluation metrics used in our experiments, which are widely adopted in the model editing
literature (Zhang et al., 2024b; Wang et al., 2024b). Given an editing dataset Dedit = {(xt, yt) | t ∈ [T]} with T edit
examples, we evaluate the final post-edit model fθT (·) after the T -th edit. The metrics Rel (Reliability, also known as Edit
Success Rate (Hartvigsen et al., 2024)), Gen (Generalization Success Rate), and Loc (Localization Success Rate) are used
to assess the reliability, generalization, and specificity of the model editing methods, respectively. Specifically:

• Rel measures the average Top-1 accuracy on the edit examples (xt, yt):

Rel :=
1

T

T∑
t=1

1(fθT (xt) = yt).

24

Simulating Ideal Editor

{
"subject": "IAAF Combined Events Challenge",
"src": "When was the inception of IAAF Combined Events Challenge?",
"pred": "2011",
"rephrase": "When was the IAAF Combined Events Challenge launched?",
"alt": "2006",
"answers": [

"1998"
],
"loc": "nq question: what is the name of the last episode of spongebob",
"loc_ans": "The String",
"cond": "2011 >> 2006 || When was the inception of IAAF Combined Events

Challenge?",↪→

"portability": {
"Recalled Relation": "(IAAF Combined Events Challenge, event type,

athletics)",↪→

"New Question": "What type of sports event is the IAAF Combined Events
Challenge, which was established in 2006?",↪→

"New Answer": "Athletics"
}

}

Figure 4. A sample of the ZsRE dataset.

{
"case_id": 0,
"prompt": "The mother tongue of Danielle Darrieux is",
"target_new": "English",
"subject": "Danielle Darrieux",
"ground_truth": "French",
"rephrase_prompt": "Where Danielle Darrieux is from, people speak the

language of",↪→

"locality_prompt": "Michel Rocard is a native speaker of",
"locality_ground_truth": "French"

}

Figure 5. A sample of the Counterfact dataset.

• Gen evaluates the average Top-1 accuracy of the model’s predictions for paraphrase prompts x′
t:

Gen :=
1

T

T∑
t=1

1(fθT (x
′
t) = yt).

• Loc computes the average proportion of preserved predictions for neighborhood prompts xloc
t :

Loc :=
1

T

T∑
t=1

1(fθT (x
loc
t) = fθ0(x

loc
t).

D.1.4. IMPLEMENTATION DETAILS

Unless otherwise stated, we store P (l)
t and employ LU decomposition across all experiments (see discussion in Appendix B.4).

For the hyperparameter λ, we conduct a grid search over the set {0.01, 0.1, 1, 5, 10, 30, 50}, with the resulting values
summarized in Table 3.
Remark D.1 (MEND involves an unfair implementation). Since the hypernetwork of MEND is tailored to the initial model,
its subsequent generated updates significantly violate Assumption 3.3. Given that training the hypernetwork at each time

25

Simulating Ideal Editor

Table 3. The hyperparameter λ of SimIE used in the experiments.

ZsRE Counterfact

Algorithm Llama-2 Mistral GPT2-XL Llama-2 Mistral GPT2-XL

MEND+SimIE 1.0 30 5.0 5.0 10 0.1
ROME+SimIE 50 30 50 5.0 5.0 50
MEMIT+SimIE 10 10 1.0 0.1 1.0 0.1

AlphaEdit−+SimIE 1.0 1.0 5.0 0.1 0.1 5.0

step is impractical, we instead use the pre-trained hypernetwork to edit the initial model, yielding W̃t. The update required
by SimIE, ∆Wt = W̃t −Wt−1, is then computed by subtracting the current model parameters. It is worth noting that this
implementation is slightly less fair compared to other methods, as it store additional copy of the initial model.

D.2. More experimental results

Here, we present additional experimental results. Table 4 presents the results of editing GPT2-XL using the ZsRE and
Counterfact datasets. Figure 6 illustrate the performance of standard algorithms as the number of edits increases. The impact
of hyperparameter in SimIE on performance is presented in Figures 7 to 10.

In addition, we introduce a new composite metric defined as Geo = eα(Loc−1)(Rel× Gen). Geo takes locality as a penalty
term, serving as a smoothed condition factor. Meanwhile, by using the (squared) geometric mean of reliability and generality,
it prevents methods from abandoning one of them. Table 5 shows the evaluation results based on this composite metric,
where α = 2.

Table 4. Performance of algorithms in the lifelong model editing task with 1000 edits, where the top three Avg are highlighted in bold.
ZsRE Counterfact

GPT2-XL (1.5B) GPT2-XL (1.5B)

Algorithm Rel Gen Loc Avg Rel Gen Loc Avg

FT-L 0.09 0.08 0.00 0.06 0.11 0.03 0.01 0.05

MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.16
+SimIE 0.56 0.52 0.90 0.66 0.94 0.14 0.15 0.41

ROME 0.46 0.37 0.50 0.45 0.01 0.00 0.01 0.01
+SimIE 0.93 0.81 0.69 0.81 0.87 0.20 0.45 0.51

MEMIT 0.58 0.50 0.55 0.54 0.81 0.46 0.25 0.51
+SimIE 0.81 0.66 0.81 0.76 0.88 0.32 0.67 0.62

AlphaEdit− 0.10 0.09 0.31 0.17 0.68 0.38 0.30 0.46
+SimIE 0.87 0.77 0.77 0.80 0.98 0.46 0.54 0.66

GRACE 0.35 0.01 1.00 0.45 0.00 0.00 1.00 0.33

WISE 0.34 0.33 1.00 0.56 0.01 0.01 0.77 0.26

PRUNE 0.50 0.43 0.84 0.59 0.13 0.04 0.86 0.35

AlphaEdit 0.83 0.70 0.75 0.76 0.98 0.48 0.65 0.70

26

Simulating Ideal Editor

Table 5. Performance of algorithms in the lifelong model editing task with 1000 edits.
FT-L MEND +SimIE ROME +SimIE MEMIT +SimIE AlphaEdit− +SimIE GRACE WISE PRUNE AlphaEdit

Avg 0.13 0.00 0.79 0.03 0.63 0.03 0.68 0.03 0.80 0.67 0.86 0.59 0.76
Llama-2 (7B) Geo 0.00 0.00 0.42 0.00 0.19 0.00 0.24 0.00 0.43 0.02 0.62 0.16 0.32

Avg 0.57 0.00 0.74 0.03 0.74 0.03 0.69 0.00 0.75 0.67 0.80 0.33 0.76
ZsRE Mistral (7B) Geo 0.14 0.00 0.34 0.00 0.34 0.00 0.27 0.00 0.37 0.02 0.49 0.02 0.35

Avg 0.06 0.00 0.66 0.45 0.81 0.54 0.76 0.17 0.80 0.45 0.56 0.59 0.76
GPT2-XL (1.5B) Geo 0.00 0.00 0.24 0.06 0.41 0.12 0.37 0.00 0.42 0.00 0.11 0.16 0.35

Avg 0.04 0.00 0.52 0.16 0.59 0.02 0.51 0.00 0.55 0.67 0.46 0.58 0.58
Llama-2 (7B) Geo 0.00 0.00 0.07 0.01 0.12 0.00 0.08 0.00 0.10 0.00 0.06 0.13 0.12

Avg 0.14 0.00 0.52 0.18 0.66 0.00 0.56 0.00 0.61 0.67 0.46 0.61 0.65
Counterfact Mistral (7B) Geo 0.00 0.00 0.07 0.01 0.18 0.00 0.12 0.00 0.15 0.00 0.07 0.15 0.18

Avg 0.05 0.16 0.41 0.01 0.51 0.51 0.62 0.46 0.66 0.33 0.26 0.35 0.70
GPT2-XL (1.5B) Geo 0.00 0.00 0.02 0.00 0.06 0.08 0.14 0.06 0.18 0.00 0.00 0.00 0.23

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

R
el

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

G
en

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0
Lo

c

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Mistral (7B) on the ZsRE dataset

MEND MEND+SimIE ROME ROME+SimIE MEMIT MEMIT+SimIE AlphaEdit AlphaEdit +SimIE

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

R
el

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

G
en

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Lo
c

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0
Av

g
Llama-2 (7B) on the Counterfact dataset

MEND MEND+SimIE ROME ROME+SimIE MEMIT MEMIT+SimIE AlphaEdit AlphaEdit +SimIE

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

R
el

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

G
en

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Lo
c

10 50 100 300 500 750 1000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Mistral (7B) on the Counterfact dataset

MEND MEND+SimIE ROME ROME+SimIE MEMIT MEMIT+SimIE AlphaEdit AlphaEdit +SimIE

Figure 6. Performance of algorithms as the number of edits increases, with the solid line representing the results combined with the
proposed SimIE.

27

Simulating Ideal Editor

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)

Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(a) MEND+SimIE on the ZsRE dataset

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Mistral (7B)

Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(b) MEND+SimIE on the Counterfact dataset

Figure 7. Performance of MEND+SimIE across various λ values, under T = 1000 sequential edits.

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(a) ROME+SimIE on the ZsRE dataset

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(b) ROME+SimIE on the Counterfact dataset

Figure 8. Performance of ROME+SimIE across various λ values, under T = 1000 sequential edits.

28

Simulating Ideal Editor

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(a) MEMIT+SimIE on the ZsRE dataset

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Mistral (7B)

Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(b) MEMIT+SimIE on the Counterfact dataset

Figure 9. Performance of MEMIT+SimIE across various λ values, under T = 1000 sequential edits.

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)

Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)

Avg
Rel
Gen
Loc

(a) AlphaEdit−+SimIE on the ZsRE dataset

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Llama-2 (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mistral (7B)
Avg
Rel
Gen
Loc

0.01 0.1 1.0 5.0 10 30 50
Hyperparameter

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

GPT2-XL (1.5B)
Avg
Rel
Gen
Loc

(b) AlphaEdit−+SimIE on the Counterfact dataset

Figure 10. Performance of AlphaEdit−+SimIE across various λ values, under T = 1000 sequential edits.

29

Simulating Ideal Editor

D.3. Further analyses

D.3.1. CASE STUDY

After 1000 sequential edits on Llama-2 using the ZsRE dataset, we select several edit examples for analyzing the output
of the model. Table 6 presents the output results before and after applying SimIE. We observe that all standard methods
consistently produced invalid outputs, aligning with the phenomenon reported in Ma et al. (2024), where LLMs lose
their general abilities after sequential editing. In contrast, standard methods enhanced with SimIE generated meaningful
responses that closely matched the desired outputs. These findings further highlight the effectiveness of SimIE, especially
in preserving the general capabilities of LLMs.

Table 6. Output of the model after 1000 sequential edits on Llama-2 using the ZsRE dataset. mmmmm denotes invalid outputs (e.g.,
gibberish or empty responses), and errors within the output are highlighted in red.

[Case 168] Prompt: The astronomical body that Lacus Aestatis was located on was what?

Answer: Moon =⇒ Edit Target: Mars

MEND Output: mmmmm ✗

+SimIE Output: Mars ✓

ROME Output: 4 ✗

+SimIE Output: Mars ✓

MEMIT Output: mmmmm ✗

+SimIE Output: Mars ✓

AlphaEdit− Output: mmmmm ✗

+SimIE Output: Mars ✓

[Case 514] Prompt: What college did Tatiana Vladislavovna Petrova go to?

Answer: Moscow State University⇒ Edit Target: Moscow State Institute of International Relations

MEND Output: mmmmm ✗

+SimIE Output: Moscow State Institute of International Relations ✓

ROME Output: mmmmm ✗

+SimIE Output: Moscow State University of International Relations ✔✗

MEMIT Output: mmmmm ✗

+SimIE Output: Moscow State University of International Relations ✔✗

AlphaEdit− Output: mmmmm ✗

+SimIE Output: Moscow State Institute of International Relations ✓

[Case 692] Prompt: Which series is The Adventure of the Blanched Soldier a part of?

Answer: The Case-Book of Sherlock Holmes =⇒ Edit Target: The Memoirs of Sherlock Holmes

MEND Output: mmmmm ✗

+SimIE Output: The Memoirs of Sherlock Holmes ✓

ROME Output: mmmmm ✗

+SimIE Output: The Memoirs of Sherlock Holmes ✓

MEMIT Output: mmmmm ✗

+SimIE Output: The Memoirs of Sherlock Holmes ✓

AlphaEdit− Output: mmmmm ✗

+SimIE Output: The Memoirs of Sherlock Holmes ✓

30

Simulating Ideal Editor

D.3.2. HIDDEN REPRESENTATION VISUALIZATION

To gain deeper insights into the effectiveness of SimIE, we analyze hidden representations of the model through the
following steps: 1) Using the ZsRE dataset, we conduct 1000 sequential edits on Llama-2, retaining three post-edit models
obtained from standard algorithms, standard algorithms enhanced with SimIE, and the corresponding ideal editor. 2) For
each post-edit model, we compute the values of the last subject token for all edit examples, resulting in 1000 hidden
representations5 of dimension 4096. 3) The stacked hidden representations are visualized using UMAP (McInnes et al.,
2018), with their respective 2-σ confidence ellipses plotted for clarity.

The visualization results are presented in Figure 11. We observe that the representation distributions of standard algorithms
deviate significantly from those of the ideal editor, indicating unsuccessful knowledge injection. In contrast, the represen-
tation distributions obtained after applying SimIE are closely consistent with those of the ideal editor, providing further
explanation for the superior performance of SimIE.

-1.0 0.0 1.0
-2.0

-1.0

0.0

1.0

2.0

-1.0 0.0 1.0
-2.0

-1.0

0.0

1.0

2.0

0.2 0.4 0.6 0.8 1.0 1.2
-2.0

-1.0

0.0

1.0

2.0

Distribution of hidden representations in LLaMA-2 (7B)

MEND
MEND
 +SimIE
Ideal editor

-1.0 0.0 1.0 2.0
-2.0

-1.0

0.0

1.0

-1.0 0.0 1.0 2.0
-2.0

-1.0

0.0

1.0

-1.2 -1.0 -0.8 -0.5 -0.2
-0.5

0.0

0.5

1.0

1.5

Distribution of hidden representations in LLaMA-2 (7B)

ROME
ROME
 +SimIE
Ideal editor

-2.0 -1.0 0.0 1.0

-1.0

0.0

1.0

2.0

-2.0 -1.0 0.0 1.0

-1.0

0.0

1.0

2.0

0.2 0.4 0.6 0.8 1.0 1.2
-1.5

-1.0

-0.5

0.0

0.5

Distribution of hidden representations in LLaMA-2 (7B)

MEMIT
MEMIT
 +SimIE
Ideal editor

-2.0 -1.0 0.0 1.0

-2.0

-1.0

0.0

1.0

-2.0 -1.0 0.0 1.0

-2.0

-1.0

0.0

1.0

0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

Distribution of hidden representations in LLaMA-2 (7B)

AlphaEdit
AlphaEdit
 +SimIE
Ideal editor

Figure 11. Distribution of hidden representations in the post-edit Llama-2, computed across 1000 edited examples from the ZsRE dataset.
Dimensionality reduction performed via UMAP, with dashed lines representing 2-σ confidence ellipses.

5MEND corresponds to the 31st layer, which is its final editing layer. ROME, MEMIT, and AlphaEdit− correspond to the 5th layer,
which is their shared editing layer.

31

Simulating Ideal Editor

D.3.3. LONG SENTENCE EDITING

To evaluate the effectiveness of SimIE in the editing of long sentences, we consider the task of correcting hallucinations in
the SelfCheckGPT (Manakul et al., 2023). The Hallucination (Hartvigsen et al., 2024) dataset consists of highly inaccurate
sentences sourced from GPT-3 (Brown et al., 2020), replaced with their corresponding sentences from actual Wikipedia
entries. Compared to the ZsRE and Counterfact datasets, the Hallucination dataset is more challenging because it represents
authentic mistakes made by high-quality LLMs, and the token length of edits significantly exceeds those of past datasets
(see Figure 12 for an example). To reduce VRAM usage, we employ a simplified version in Wang et al. (2024b), limiting
tokenized lengths to 254, resulting in 600 test samples. We perform 600 sequential edits on GPT2-XL. ROME, AlphaEdit−

(standard methods), PRUNE, and AlphaEdit (lifelong methods) are selected as baselines for their superior performance
on GPT2-XL. Following prior work (Hartvigsen et al., 2024; Wang et al., 2024b), we evaluate the performance using PPL
(perplexity) and Loc (Localization Success Rate) as metrics.

{
"prompt": "This is a Wikipedia passage about carole gist. Carole Gist (born

April 28, 1969) is an American beauty pageant titleholder from Detroit,
Michigan who was crowned Miss USA 1990. She was the first
African-American woman to win the Miss USA title. Gist represented the
United States at the Miss Universe 1990 pageant held in Los Angeles,
California, where she placed first runner-up to Mona Grudt of Norway.
Gist was the first African-American woman to place in the Miss Universe
pageant.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"target_new": "She was also the first contestant from Michigan to win Miss
USA, and broke the five-year streak of winners from Texas.",↪→

"subject": "carole gist",
"locality_prompt": "Description Map of South America.\nThis map has a small

scratch near the centerfold in the right part of the map.\nLooking for an
antique map, historica",

↪→

↪→

"locality_ground_truth": "l print or plan? Feel welcome and browse our
mapsite atlasandmap.com! We have maps, made by Kuyper (Kuijper) . more
maps of South America like Zuid-Am"

↪→

↪→

}

Figure 12. A sample of the Hallucination dataset.

Table 7 presents the results across varying numbers of edits T . As T increases, standard algorithms inevitably degrade, with
rising PPL and declining Loc. Even methods specifically designed for lifelong scenarios exhibit elevated PPL at T = 600.
In contrast, for ROME, SimIE reduces its PPL from 69.86 to 15.46 and improves its Loc by 33%. Similarly, AlphaEdit−

enhanced with SimIE outperforms its original version, AlphaEdit, on both metrics. These results confirm the effectiveness
of SimIE in editing long sentences.

Table 7. Performance of algorithms on the GPT2-XL using the Hallucination dataset, with the best results highlighted in bold.
GPT2-XL (1.5B) using Hallucination

T = 1 T = 50 T = 100 T = 200 T = 300 T = 500 T = 600

Algorithm PPL (↓) Loc (↑) PPL (↓) Loc (↑) PPL (↓) Loc (↑) PPL (↓) Loc (↑) PPL (↓) Loc (↑) PPL (↓) Loc (↑) PPL (↓) Loc (↑)
FT-L 60.93 0.50 >1000 0.08 >1000 0.06 >1000 0.05 >1000 0.07 >1000 0.04 >1000 0.04

ROME 2.44 1.00 8.19 0.94 21.71 0.90 40.38 0.84 45.76 0.80 63.14 0.70 69.86 0.64
+SimIE 2.74 0.98 2.33 0.94 3.10 0.91 4.45 0.88 5.55 0.87 15.74 0.85 15.46 0.85

AlphaEdit− 1.87 1.00 5.92 0.98 34.07 0.96 61.08 0.88 105.95 0.74 541.81 0.23 2611.20 0.11
+SimIE 5.90 1.00 7.90 0.96 7.93 0.91 8.74 0.91 11.00 0.90 23.66 0.89 24.00 0.89

PRUNE 2.44 1.00 5.60 0.96 8.32 0.95 11.66 0.93 14.08 0.92 32.48 0.92 50.25 0.92

AlphaEdit 1.86 1.00 3.30 0.98 8.20 0.96 12.54 0.94 18.54 0.92 26.98 0.89 47.39 0.87

32

