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ABSTRACT

Code generation is a crucial research area in the field of artificial intelligence,
holding the potential to revolutionize software development and streamline pro-
gramming processes. However, generating the high-performance code, which need
to be executed in a shorter time for the low-latency scenario, remains a formidable
challenge. Existing methods often struggle to account for the irregularity of in-
put sparse data in sparse programs and the need for domain-specific architectural
knowledge, leading to sub-optimal performance. To tackle these issues, we propose
the SparseRL framework. SparseRL leverages deep reinforcement learning, treat-
ing a pre-trained language model as a stochastic policy. It takes the row and column
indices of non-zero elements in the sparse matrix as input and generates CUDA
code as output for sparse matrix operations. We also introduce a domain-specific
code generation mechanism for the dynamic input, a sinusoidal embedding tech-
nique tailored for sparse matrices, and a hierarchical reward function that considers
both code correctness and execution efficiency. Experimental results demonstrate
SparseRL achieves state-of-the-art performance. In sparse matrix-vector multi-
plication (SpMV) tasks, it improves the compilation rate by 20% compared to
existing methods, and the generated code runs 30% faster on average. For sparse
matrix-dense matrix multiplication (SpMM) tasks, SparseRL also shows signifi-
cant performance gains. These results highlight the effectiveness of SparseRL in
generating high-performance CUDA code for sparse matrix operations.

1 INTRODUCTION

In recent years, code generation has witnessed a remarkable advance with the increasing adoption of
deep learning and neural language models. Extensive research aims to generate a sequence of code as
the output program according to various code-related targets such as code completion (Li et al., 2017;
Wei et al., 2023), code translation (Zhu et al., 2022; Pan et al., 2023), and program synthesis (Li
et al., 2022; Le et al., 2022). While these methods achieve promising results, we observe that they
still fail to generate high-performance code, which needs to be executed in a shorter time to meet
low-latency scenario requirements. For example, in large language model (LLM) inference and
graph neural network (GNN) computation, users expect to obtain results more quickly. However,
manual optimization is very time-consuming (e.g., it takes several years from the emergence of
transformer (Vaswani et al., 2017) to the appearance of Flash-attention (Xia et al., 2023)).

The difficulty of generating high-performance computing (HPC) code stems from two major factors.
First, in the context of code generation by LLMs, the tasks often involve sparse programs, which differ
from dense computations with fixed input patterns. For these sparse programs, execution patterns
for data access and computation are dynamic and closely tied to the input sparse data (e.g., irregular
and dynamic graph structures in GNNs) and can only be determined at runtime (Kim et al., 2024;
Sadman & Qasem, 2025), requiring customized implementations to achieve minimal execution time
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for varying input sparse structures (Du et al., 2022; Li et al., 2013). Second, effective performance
optimization demands domain-specific architectural expertise. Many prior works (Liu & Vinter,
2015; Naumov et al., 2010) have relied on manual knowledge with performance optimization, such
as improving cache hit rates (Gómez et al., 2021; Yan et al., 2014) and load balance (Liu & Vinter,
2015; Merrill & Garland, 2016), to enhance program execution efficiency.

Among the various tasks requiring high-performance code generation, sparse matrix-vector multipli-
cation (SpMV) is a fundamental and critical computational operation. It has been widely applied in
pruned LLM inference (Li et al., 2024; Xu et al., 2024) and GNN computation (Yao et al., 2023; Jia
et al., 2022). Due to the performance impact of the input sparse matrix structure in sparse programs,
the goal is to generate high-performance SpMV CUDA code for each dynamic input sparse matrix.
There has been numerous research (Li et al., 2013; Yan et al., 2014; Zhao et al., 2018) of SpMV on
GPUs and there is no one-size-fits-all solution for implementing high-performance SpMV code on
GPUs (Zhao et al., 2018; Su & Keutzer, 2012), because different types of sparse matrices require
tailored implementations to achieve the optimal performance.

Additionally, the generated CUDA code for SpMV should guarantee two conditions. First, the
generated code should be syntactically and functionally correct to pass compilation and deliver
correct computational results. Second, it must also be optimized for high-performance execution on
the GPU to achieve shorter execution time. However, current methods face three major limitations.

First, current methods use the conventional supervised next-token prediction objective (Bengio et al.,
2015; Ranzato et al., 2015) to train the model, which maximizes the likelihood of the next ground-truth
token. For example, in the pre-training and fine-tuning of models, token-level matching objectives like
cross-entropy loss (Papineni et al., 2002; Ren et al., 2020) are commonly employed. For generating
high-performance SpMV CUDA code, this supervised approach is insufficient, because multiple
semantically correct SpMV programs (ground-truths) exist, but only a few can achieve the optimal
performance for each sparse matrix.

Second, current methods ignore the crucial rewards about the execution efficiency of generated code.
This directly impacts the code’s quality measured by the execution time of code. Existing methods
neglect this crucial reward during the model optimization and generation processes. Incorporating
execution efficiency (time) into the learning objectives during model optimization could better align
with the ultimate goal of generating semantically correct and high-performance CUDA code.

Third, due to the impact between performance and input sparse data, a customized program is
required for each sparse data. However, existing LLMs face inherent challenges in narrowing the
modality gap between input sparse data representations and CUDA code generation. This mismatch
necessitates the adaptation to translate input sparse data into meaningful information for the model to
generate a customized program.
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__global__ void spmv_kernel1(...)

{

  int row = blockDim.x * blockIdx.x + threadIdx.x;

  float cumu_sum = 0;

  for (int j = csr_ptr[row]; j < csr_ptr[row+1]; j++){

  cumu_sum += value[j] * x[col_index[j];];

  }

  y[row_current] = cumu_sum;

}

__global__ void spmv_kernel 2(...)

{

    int THREADS_PER_ROW = 2;

    int rows_per_block = blockDim.x / THREADS_PER_ROW;

    int row = blockIdx.x * rows_per_block 

                                         + threadIdx.x / THREADS_PER_ROW;

    int offset = threadIdx.x % THREADS_PER_ROW;

    float cumu_sum = 0;

    for (int i = csr_ptr[row] + offset; i < csr_ptr[row + 1]; ...) {

       

Execute

Dynamic input at runtime

Figure 1: An example task (Right): Each task is defined by a sparse matrix, which contains row
and column indices of non-zero elements. The expected output is an SpMV program to be checked
for functional correctness and execution efficiency. The input sparse matrix is the dynamic input at
runtime and closely related to execution time. A high-level overview of our SparseRL method for
sparse CUDA code generation (Left): we treat a pre-trained language model (LM) as a stochastic
policy, code generation steps as actions, and rewards can be estimated based on the functional
correctness and execution time of output programs from the compiler and executor (environment).

To address the above issues, we propose a novel deep reinforcement learning-based SpMV CUDA
code generation method called SparseRL (Figure 1), aiming at generating high-performance and
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correct CUDA code. The SparseRL is built upon the idea of treating a pre-trained LLM for code
generation as a stochastic policy. The input of the LLM in SparseRL is the row and column indices
of non-zero elements in the sparse matrix and the output is the generated SpMV CUDA code. The
process of CUDA code generation is regarded as a sequence of actions. Each action corresponds to
the generation of a token in the CUDA code. The utilization of DRL allows the model to learn from
the non-differential metrics of the compiler and executor (environment). The environment checks the
syntactic and functional correctness of the generated CUDA code and provides information about
the execution time of the program, which is used to calculate rewards. The main contributions of
SparseRL can be summarized as follows:

• We propose a domain-specific code generation framework for the dynamic input of sparse matrix
operators, which is based on DRL and enables the feedback from the compiler and executor to
optimize the code generation process.

• We propose a row/column indices-based sinusoidal embedding technique for non-zero elements
in sparse matrices, which directly captures the dynamic input sparse matrix structure to adapt the
execution patterns at runtime.

• We devise a novel hierarchical reward, which incorporates execution time and compilation success
as runtime and compile-time information into the model to generate better code.

The experiments prove that our SparseRL achieves state-of-the-art (SOTA) results on generating
high-performance CUDA code compared with other methods. In fact, our method is not limited to
the task of SpMV. We use it as an example to show how to incorporate rich multimodal information
(e.g. runtime information of the program) to design a more powerful expert. So as a verification, we
extend our method to the sparse matrix-dense matrix multiplication (SpMM) task and also achieve
significant improvement, which validates the generalization and transferability of our SparseRL.

2 RELATED WORK

2.1 PRE-TRAINED MODELS FOR CODE GENERATION

Pre-trained models for code generation have evolved with transformer-based models like Code-
BERT (Feng et al., 2020). Then, large-scale autoregressive models such as AlphaCode (Li et al.,
2022) have emerged to enhance the model’s ability of natural-language-to-code translation and
code completion. Retrieval-augmented models like CodeT5 (Wang et al., 2021) and StarCoder (Li
et al., 2023) further refine task-specific objectives. Despite above advancements, challenges remain
in handling code correctness and low-latency demand. These challenges inspire the research on
reinforcement learning (Le et al., 2022; Shojaee et al., 2023) for improving the code quality. However,
SparseRL encodes the sparse matrix to generate high-performance CUDA code. This type of input
modality is similar to AlphaFold (Jumper et al., 2021), which also leverages a modality distinct
from vision and text. Our work is also different from code implementation of algorithm problems
and dense computation (elaborated in Appendix A.1). We also have a more direct engagement with
contemporary research on LLM-based generation of high-performance code in Appendix A.6.4.

2.2 ARTIFICIAL PROGRAMMING FOR SPMV ON GPUS

Sparse matrix and vector multiplication (SpMV) operation multiplies a sparse matrix by a dense
vector, and obtains a dense vector as the result. It is a fundamental operation that plays a crucial role
in a wide range of numerical simulation applications (Shantharam et al., 2011; Abdelfattah et al.,
2015), and artificial intelligence domains (Wang et al., 2019; Mao et al., 2017). The challenge of
designing SpMV on GPUs mainly arises from the highly diverse distribution of non-zero elements in
sparse matrices (Li et al., 2013; Zhao et al., 2018). Different CUDA code needs to be implemented
for different sparse matrices to achieve high-performance execution (shorter execution time), where
examples are in Appendix A.10.

The history of optimizing SpMV has lasted for a long time (for example, CSR (Bell & Garland, 2008)
→ CSR5 (Liu & Vinter, 2015) → DASP (Lu & Liu, 2023) and has always been a hot and popular topic
(e.g., CSR-Adaptive (Greathouse & Daga, 2014),ACSR (Ashari et al., 2014), Merge-based (Merrill
& Garland, 2016) and etc. ). Over the past few decades, substantial efforts have been dedicated to
enhancing the performance of SpMV on GPUs. These ways of artificial programming for SpMV
are based on observed matrix properties and are specifically devised for the characteristics of the
underlying hardware. However, these methods are often manually crafted and lack the adaptability to
handle diverse matrix types and changing hardware environments. Additionally, they do not leverage
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the emerging LLM techniques, which could potentially offer more flexible and intelligent solutions
for SpMV code implementations. We strengthen positioning against prior work in Appendix A.26.

2.3 REINFORCEMENT LEARNING FOR SEQUENCE GENERATION

Reinforcement learning (RL) has been applied to optimize non-differentiable metrics in sequence
generation tasks. For instance, the REINFORCE algorithm (Williams, 1992) has been used to improve
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) scores in translation and summarization models.
More recently, InstructGPT (Ouyang et al., 2022) introduced a Reinforcement Learning from Human
Feedback (RLHF) fine-tuning procedure. When it comes to code generation, RL has also been
employed to enhance the quality of generated code (Le et al., 2022; Dou et al., 2024).

Despite these efforts, existing RL-based methods for Sparse CUDA code generation have limitations.
They struggle to generate high-performance code for low latency scenario, and leverage the complex
relationship between input sparse data and execution patterns at runtime.
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Figure 2: Overview of our method to optimize pretrained LMs for sparse CUDA code generation.
(a) At pre-training stage, additional CUDA code is used to augment the LM. (b) At supervised fine-
tuning (SFT) stage, the LM is finetuned for the Sparse CUDA code generation. (c) At RL stage, the
actor and critic networks are first initialized from the finetuned LM, and then updated based on the
reward of RL. The reward function is composed of correctness and efficiency rewards.

3 SPARSERL

3.1 TASK DESCRIPTION

We take the SpMV task as a sparse CUDA code generation example. Following a sequence-
to-sequence approach, the SpMV CUDA code generation task contains a sparse matrix as an
input sequence X = ((r1, c1), · · · , (rN , cN )) and an output sequence of SpMV CUDA code
Ŷ = (ŷ1, · · · , ŷT ), ŷt ∈ V , where ri is the row index and ci is the column index of the i-th non-zero
element, and N is the total number of non-zero elements. The output of each decoding step t is a
distribution over the vocabulary V , computed by the Softmax function ŷt = Softmax(Linear(ht))
where ht is the contextual hidden state at decoding step t.

Conventionally during fine-tuning process, model parameters (θ) are learned by maximizing the
likelihood of the ground-truth target code. Let the set of all possible SpMV ground-truth code be
Y = {Y1, Y2, · · · , Yn}, where n represents the number of ground-truth code, and n > 1. This
indicates that there exists multiple CUDA code that can correctly perform SpMV operation. Denoting
Ŷ = (ŷ1, ..., ŷT ) as the ground-truth code, the objective of supervised fine-tuning (SFT) stage is
to minimize the cross-entropy loss: Lce(θ) = −

∑
t log pθ(Ŷ |X) = −

∑
t log pθ(ŷt|ŷ1:t−1, X),

where the conditional probability pθ is parameterized following the above softmax function. The
model generates sequences of CUDA SpMV code by autoregressively sampling token ŷt from the
distribution pθ(·|ŷ1:t−1, X). In the context of SpMV, the model is evaluated based on both correctness
and efficiency of generated CUDA code. Each test includes an input and multiple ground-truth outputs
of different execution efficiencies. Let the execution time of the code Ŷ for sparse matrix X be
E(Ŷ |X). Our goal is to generate the code Ŷ that meets the following two conditions, which can be
represented by the formulas:
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
Compile(Ŷ ) = True
Correct(Ŷ , X) = True
E(Ŷ |X) ≤ E(Yi|X), ∀Yi ∈ Y

(1)

where Y denotes all functionally correct SpMV CUDA programs (not limited to pre-defined ground-
truths). It should be noted that the execution time E(Yi|X) is closely related to the sparse matrix X ,
because different sparse matrix input X require different CUDA code Ŷ to achieve optimal execution
efficiency.

To address this task, our work contains the following essential modules as shown in Figure 2. First,
at pre-training stage, we augment the pre-training data with a large amount of CUDA code. By
incorporating this domain-specific training data, the model can learn the specific programming
paradigms and optimization techniques for CUDA-based sparse code. Second, during SFT and RL
stages, we replace the input of the language model with the row and column indices of each non-zero
element of the sparse matrix, and output the high-performance CUDA code for SpMV, so the model
can learn how to adapt the code generation process based on the distribution of non-zero elements
from the input sparse matrix. Third, at RL stage, we further use RL to optimize the model and design
a novel reward for execution efficiency, which aims at fine-tuning the pre-trained model to better suit
the SpMV CUDA code generation task.

3.2 PRETRAINING AND FINE-TUNING LANGUAGE MODELS

Pre-training stage with CUDA code augmentation. We augment the pre-training data with
a large amount of CUDA code, because the CUDA code involves unique requirements such as
parallel computing, memory management on GPUs, and optimized algorithms for specific hardware
architectures. We follow the pre-training setup in CodeT5 (Wang et al., 2023a; 2021), which has
demonstrated remarkable capabilities in handling programming languages. The augmented (CUDA
code) dataset includes hand-crafted high-performance SpMV code (Liu & Vinter, 2015; Zhao et al.,
2018; Du et al., 2022; Merrill & Garland, 2016) and other CUDA programming languages on GitHub
by reserving only permissively licensed code (”mit”, ”apache-2”, ”bsd-3-clause”, ”bsd-2-clause”,
”cc0-1.0”, ”unlicense”, ”isc”).

SFT and RL stage with sparse matrix embedding. Different from previous LLMs typically relying
on word embeddings and positional encodings, we devise a sparse matrix embedding strategy to input
the sparse matrix to the model. We utilize the row and column indices of the non-zero elements in the
sparse matrices during the fine-tuning process. Let the sparse matrix be with dimensions m× n, and
denote the set of non-zero elements’ row-column indices as X = {(ri, ci)}Ni=1, where ri is the row
index and ci is the column index of the i-th non-zero element, and N is the total number of non-zero
elements. We leverage the sinusoidal embedding (Vaswani et al., 2017) to normalize the input row
and column indices (theoretical foundation is in Appendix A.2 and ablation study is in Section 5.2),
which is formulated as:

PE(ind,2j) = sin
(
ind/(100002j/dmodel)

)
, PE(ind,2j+1) = cos

(
ind/(100002j/dmodel)

)
(2)

where ind represents the index value (either the row or column index in our SparseRL), j is the
dimension index within the embedding vector, and dmodel is the embedding vector’s dimension.

For the row indices, we calculate the sinusoidal embedding vectors. Given a row index ri, the
sinusoidal-encoded row vector eri of dimension dmodel is obtained by applying the above formula 2
with ind = ri. Similarly, for the column index ci, the sinusoidal-encoded column vector eci of
dimension dmodel is calculated using ind = ci. We then concatenate the sinusoidal-encoded row and
column vectors for each non-zero element. That is, for the i-th non-zero element, we form a vector
ei = [eri |eci ]. These vectors X ′ = {ei}Ni=1 are used as the input to the model. During the SFT and
RL stages, the language input prompt is removed and only sparse matrices are provided as input.
The target output is the SpMV CUDA program. For converting the modality of input sparse matrix
to language modality, an additional linear layer is applied to map the concatenated vectors to the
appropriate dimension. This strategy enables the model to directly capture the structural information
of the sparse matrix from the non-zero element indices.
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3.3 RL PROBLEM FORMULATION

The code generation procedure can be formulated as a sequential discrete finite-horizon Markov
decision process (MDP) with the use of RL in which an agent interacts with the environment over
discrete steps T , and we employ the PPO algorithm (Schulman et al., 2017) training details are in
Appendix A.5). In SparseRL, the RL problem is formulated as follows:

State S: The state at time t is st = (ŷ1:t−1, X) (st ∈ S), determined by the sparse matrix X
(containing row/column indices of non-zero elements) and the partial code sequence ŷ1:t−1 generated
before t, providing context for next token generation.

Action A: The action at time t is at = ŷt (at ∈ A), corresponding to the generated CUDA code
token. Each token in the vocabulary (yt ∈ V) represents a potential action.

Policy πθ(at|st): A stochastic policy network (parameterized by θ, initialized from the SFT-finetuned
model) predicts the next token based on ŷ1:t−1 and X . The action at is selected via top-k sampling,
yielding the full SpMV CUDA code Ŷ = (ŷ1, · · · , ŷT ) at episode end T .

3.4 REWARD FUNCTION

The final reward Rfinal(Ŷ , X) is calculated at the end of the code generation episode, integrating the
generated code’s syntactic correctness, execution efficiency, and memory usage.

3.4.1 CORRECTNESS REWARD

The correctness reward (Rcorrectness) follows a hierarchical structure, combining compilation and test
results:

Compilation reward (Rcompile): A reward of +0.5 is given if the generated CUDA code compiles
successfully; otherwise, a reward of −0.5 is assigned.

Test reward (Rtest): This reward is only considered if compilation succeeds. A reward of +0.5 is
granted if the compiled code passes SpMV functional tests; otherwise, −0.5 is assigned.

Total correctness reward: The sum of the compilation reward and (if compilation succeeds) the
test reward, formally expressed as Rcorrectness = Rcompile + Icompile ·Rtest, where Icompile is an indicator
function that equals 1 for successful compilation and 0 otherwise.

3.4.2 EXECUTION EFFICIENCY REWARD

The efficiency reward (Refficiency) is activated only when the code is both compilable and functionally
correct. It is calculated as a scaled value of the performance improvement over a baseline (cuSPARSE
library), defined as Refficiency = reff ×

(
tbase(X)

t(Ŷ ,X)
− 1

)
· Itest, where tbase(X) is the baseline execution

time (measured by cuSPARSE (Naumov et al., 2010) library provided by NVIDIA), and t(Ŷ , X) is
the execution time of the generated code Ŷ for the given sparse matrix X , and Itest is an indicator
function that is 1 if all tests pass and 0 otherwise. reff is a scaling factor that determines the importance
of the execution efficiency in the overall reward. We use the average execution time of 1000 iterations
to prevent fluctuations. The normalization details of Reff are in Appendix A.4.2.

3.4.3 OVERALL REWARD

The final reward integrates correctness, efficiency, and a memory penalty: Rfinal(Ŷ , X) = Rcorrectness+
Refficiency − rpenalty · Imemory. Here, Imemory is an indicator function (1 if the code exceeds a predefined
memory limit, 0 otherwise), and rpenalty is the penalty for excessive memory usage (Appendix A.25).
Sensitivity study of reff and rpenalty in reward hyperparameters is in Appendix A.4.1, and the balance
of Refficiency and Rcorrectness is in Appendix A.4.3.

3.5 OBJECTIVE

Our objective is to find an optimal set of model parameters such that the generated program for a
given matrix can meet the requirements of correctness and efficiency. During the fine-tuning process,
we first use supervised fine-tuning (SFT), and then use RL to optimize the network model. In addition,
for early stopping the generation of error code during the generation process, we integrate a dynamic
syntax correctness verification mechanism during the decoding process and use the code extraction
tool similar to the public QwenLM repository (Appendix A.3).
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4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

We use two machines, and each machine is equipped with 8 Tesla V100/A100 GPUs over a duration
of five days. The Adam optimizer (Kingma & Ba, 2014) is employed, configured with a learning rate
of 1× 10−4. The experiment of balance between exploration and exploitation is in Appendix A.9.

Benchmarks. We compare SparseRL with two types of works. (1) Code Generation: (i) Qwen3 (Hui
et al., 2024; Yang et al., 2025), (ii) DeepSeek-R1 (Guo et al., 2025), (iii) CodeRL (Le et al., 2022),
(iv) PPOCoder (Shojaee et al., 2023). (2) Artificial Library: (i) cuSPARSE (v12.1) library (Naumov
et al., 2010), which is provided by NVIDIA. (ii) TVM-S (Chen et al., 2018) is the sparse version of
TVM. (3) Closed-source models: GPT-o3-pro, GPT-5, and etc. (4) The ablation study is in section 5.
(5)Experiments of more direct engagement with contemporary research on LLM-based generation of
high-performance code in Appendix A.6.4. (6)Comparison with human expert implementations is in
Appendix A.19.

Evaluation metrics. (1) To evaluate the correctness of generated code, the pass@k metric (Chen
et al., 2021) is employed, which calculates the percentage of matrices for which SpMV computation
is correct using k (beam search) synthetically generated program samples per matrix. Besides, we
also use Compilation Rate (CR) (Kulal et al., 2019) under k = 1000 (Appendix A.6) that shows the
success rate of compilation among generated code. (2) The execution efficiency of the generated
SpMV CUDA code is compared with on test matrices using GFLOPS (109-Giga Floating Point
Operations Per Second, higher is better). The platform is the NVIDIA Tesla V100 and A100, based
on the Volta and Ampere architecture. Single-precision is used and the CUDA environment is version
12.1. (3) The human readability test is in Appendix A.20.

Datasets. Firstly, we collect the 1,100 matrices with the highest number of non-zero elements from
the SuiteSparse Matrix Collection (Davis & Hu, 2011). These matrices span various application
domains, and represent a diverse range of sparsity patterns. We divide these matrices into a training
set of 700 matrices and a testing set of 400 matrices by the number of non-zero elements. Secondly,
we conduct further evaluations on the DLMC (Deep Learning Matrix Collection) (Gale et al., 2020;
2019), which includes sparse matrices used in deep learning. When the number of non-zero elements
is excessively large, we apply sampling to the input non-zero elements. The details of the sparse
matrix dataset are in Appendix A.21. The results of DLMC are elaborated in Appendix A.6.5. The
experiments of scalability with sparse matrix features are in Appendix A.14.

4.2 RESULTS ON SPMV

Compilation rate and correct functionality. Table 1 shows the results of three tasks (including
extensions on SpMM in Section 4.3) on 400 test matrices, where the SparseRL with the CodeT5
model outperforms many pretrained LMs of much larger sizes. Despite being applied to the SpMV
task, the inherent complexity of the CUDA code results in the generated code having suboptimal
quality. The improvement is due to our fine-tuning for specific SpMV CUDA code generation.
Specifically, our method leads with a pass@1000 of 49.25 and a CR of 57.50 on SpMV. CR is higher
than pass@1000 because a code might compile successfully (high CR), but still have logical errors,
thus failing to achieve correct functionality (lower pass@1000). Experiments of more baselines are in
Appendix A.6. Pass@1000 is limited by our experimental environment, so the results are marked by
’-’. Besides, we observe that although the closed-source model generates code with higher accuracy
than our method, there is still a gap in performance (Appendix A.6.2 and Table 7).

Performance on SuiteSparse Matrix Collection. The CodeRL and PPOCoder (based on CodeT5-
770M under k = 5000 on correct programs of partial matrices) are selected to compare the perfor-
mance with SparseRL (based on Qwen2.5-14B) and the artificial libraries in Figure 3, because the
performance results of CodeRL and PPOCoder are better than those of other foundation models (such
as Llama/Qwen). The achieved performance is represented in a bin box plot, where the horizontal
axis denotes the number of non-zero elements in matrices, and the vertical axis measures performance
in GFLOPS. The results demonstrate that SparseRL outperforms other methods across the majority of
the matrices. We can observe that: (1) On average, SparseRL achieves performance improvements of
3.27×, 3.42× on V100 (3.50×, 3.29× on A100) over CodeRL, PPOCoder. (2) Notably, on average,
SparseRL achieves performance improvements of 1.42×, 1.82× on V100 (1.44×, 1.86× on A100)
over cuSPARSE, TVM-S. In addition, further performance analysis is elaborated in Appendix A.11.
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Table 1: Correct functionality (pass@k) and Compilation Rates (CR) under k = 1000.

Model Size SpMV SpMM (col=8) SpMM (col=32)

pass@1 pass@5 pass@1000 CR pass@1 pass@5 pass@1000 CR pass@1 pass@5 pass@1000 CR

Qwen3 8B 8.00 12.50 – – 6.75 12.00 – – 7.00 10.75 – –
DeepSeek-R1 671B 15.00 22.50 – – 16.50 20.50 – – 15.50 22.75 – –
DeepSeek-R1-Distill
-Qwen 7B 9.50 16.50 – – 10.00 16.75 – – 10.50 16.25 – –

CodeT5 770M 4.75 7.50 30.25 38.00 1.75 2.25 28.00 36.00 2.00 2.25 30.00 36.25
CodeRL+CodeT5 770M 5.25 8.50 36.50 39.50 2.50 5.25 30.50 40.50 2.50 5.50 32.50 39.75
PPOCoder+CodeT5 770M 5.75 10.00 35.50 40.75 3.50 5.00 35.50 45.50 3.50 4.75 36.00 46.75
GPT-o3-pro - 25.25 32.75 - - 24.25 31.50 - - 25.00 32.00 - -
GPT-o4-mini - 23.50 30.00 - - 22.00 28.25 - - 21.25 27.25 - -
GPT-5 - 27.00 36.50 - - 29.75 32.25 - - 26.50 31.75 - -
Claude-sonnet-4 - 28.25 36.75 - - 24.25 31.50 - - 26.00 31.50 - -
SparseRL+CodeT5 770M 9.25 15.75 48.75 56.50 9.00 15.00 45.25 56.75 8.25 14.75 47.00 57.25
SparseRL+Qwen2.5 7B 9.75 16.00 48.75 57.00 10.00 15.00 46.50 57.00 8.50 15.00 46.75 58.00
SparseRL+Qwen2.5 14B 10.25 16.50 49.25 57.50 10.25 16.00 47.50 58.75 9.25 15.25 47.75 59.00
SparseRL+Qwen3 14B 16.25 21.00 – – 18.25 21.00 – – 18.25 22.25 – –
SparseRL+GLM-Z1 9B 15.50 19.75 – – 16.50 20.00 – – 16.00 21.00 – –
SparseRL+DeepSeek
-Coder 6.7B 17.75 20.25 – – 17.50 21.00 – – 18.75 22.25 – –

(b)(a)

TVM-S

Figure 3: Performance (GFLOPs) of SpMV across SuiteSparse Matrices on (a) V100 (b) A100 GPUs.

4.3 EXTENSIONS ON SPMM
We extend our method to another sparse CUDA code task of sparse matrix-dense matrix multiplication
(SpMM). SpMM is another crucial operation in high-performance computing, which has been applied
to GNN (Wang et al., 2023b; Huang et al., 2020) and pruning LLMs (Xia et al., 2023; Fan et al.,
2024). It multiplies an M ×K sparse matrix A and a K ×N dense matrix B to output an M ×N
dense matrix C (i.e., C = AB). Similar to SpMV, implementing high-performance SpMM on GPUs is
challenging due to the complex nature of sparse matrices. The platform is the NVIDIA Tesla A100
and single-precision is used. Execution efficiency is compared using TFLOPS (1012-Tera Floating
Point Operations Per Second). In addition, we adjust the number of columns of the dense input matrix
B, as it also affects execution time. The baseline for comparison is the same as SpMV. The differences
of performance optimization characteristics between SpMV and SpMM are in Appendix A.13.

Compilation rate, correct functionality and achieved performance on SuiteSparse matrix.
Table 1 shows that the SparseRL with the CodeT5 model can achieve significant performance gains
on SpMM tasks. Figure 4 illustrates the performance of partial matrices across various methods. The
achieved performance is represented in a bin box plot, where the horizontal axis denotes the number
of non-zero elements in the matrices, and the vertical axis measures performance in TFLOPS. The
results demonstrate that SparseRL consistently outperforms other methods across the majority of
the matrices analyzed. We can observe that: (1) Notably, SparseRL achieves the average speedup of
6.80/4.50× over CodeRL at 8/32 column, 6.60/4.88× on A100 over PPOCoder at 8/32 column. (2)
SparseRL achieves performance improvements of average 2.32/1.22× on A100 over Sputnik at 8/32
column, 6.39/4.38× over cuSPARSE at 8/32 column.

5 ABLATION STUDY

5.1 ABLATION STUDY OF PRE-TRAINING/SFT/RL PHASES

Table 2 presents a direct ablation comparison between the three phases (Pre-training/ SFT/ RL) of
SparseRL. The results clearly show that (1) Pretaining phase is critical for generating valid CUDA
code, where CUDA-specific pre-training equips the model with parallel computing and GPU memory
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(b)(a)

TVM-S

Figure 4: Performance (TFLOPs) of SpMM across SuiteSparse Matrices with (a) column = 8
(b) column = 32 on A100 GPUs. Column is the number of input matrix B columns.

Table 2: Ablation comparison between the three phases (Pre-training/SFT/RL).

Metric Pretrain No Pretrain
SFT PPO SFT + PPO SFT PPO SFT + PPO

SpMV pass@1000 32.75 15.25 49.25 25.50 12.00 40.75
SpMV Compilation Rate 41.25 22.50 57.50 37.25 13.25 53.50
Average Execution Speed (GFLOPS) 89.25 50.36 116.20 70.32 30.83 95.22

management knowledge. (2) SFT phase is the fundamental stage of post training for the entire model.
Especially in the SFT stage, we performed modality transformation (input sparse matrix, output
code), which is important for the subsequent output of the model. If we only do the RL stage, it
is difficult to obtain the correct code, and even more difficult to obtain high-performance correct
code. (3) RL phase, driven by the hierarchical reward function (incorporating efficiency and memory
constraints), is also important and significantly enhances both correctness and performance beyond
the SFT baseline. The three phases together contributed to the highest performance and accuracy of
the code, indicating that both stages are necessary.

5.2 ABLATION STUDY OF SPARSE MATRIX EMBEDDING

In this ablation study, we focus on understanding how these different sparse matrix embedding
strategies affect the performance of SparseRL in terms of correct functionality and compilation rates
for SpMV and SpMM tasks. Table 3 presents the results of this study for models with different
embedding techniques under k = 1000. The Raw approach simply feeds the original numerical values
of the indices into the model, without any transformation. The Max-Min normalization technique
scales the values of the indices to the range between 0 and 1, using the maximum and minimum values
within the dataset for normalization. These results clearly demonstrate that the sinusoidal embedding
is the most effective among the three strategies for enabling the model to generate high-quality code
for sparse matrix operations. More experiments of sparse matrix embedding are in Appendix A.8.

Table 3: Ablation study of sparse matrix embedding on correct functionality (pass@k) and Compila-
tion Rates (CR) under k = 1000.

Sparse Matrix
Embedding Model Size SpMV SpMM (col=8)

pass@1 pass@5 pass@1000 CR pass@1 pass@5 pass@1000 CR

Raw SparseRL+CodeT5 770M 5.25 10.50 40.75 49.50 5.00 12.00 38.50 48.75
Max-Min SparseRL+CodeT5 770M 8.25 14.00 43.25 51.75 7.00 13.50 40.00 52.75
Sinusoidal SparseRL+CodeT5 770M 9.25 15.75 48.75 56.50 9.00 15.00 45.25 56.75

5.3 ABLATION STUDY OF REWARD COMPONENTS

We aim to understand the impact of different components in our SparseRL method on the performance
of SpMV. Figure 5 presents the results of our ablation studies on two different GPU architectures. We
compare four approaches: (i) cuSPARSE, which is the NVIDIA library for sparse matrix operations;
(ii) SparseRL (base) means the supervised fine-tuning (SFT); (iii) Op1 represents the utilization of
RL with only the correctness reward; (iv) Op2 represents the addition of execution efficiency reward.
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(b)(a)

Figure 5: Ablation Studies on (a) V100 and (b) A100.

In Figure 5, we observe that the basic SparseRL (base) achieves similar performance with cuSPARSE
in most cases. When we add the RL method to form SparseRL (base+op1), the performance further
improves for matrices like water tank and helm2d03, showing the positive impact of this specific
optimization. Moreover, the SparseRL (base+op1+op2) variant achieves the highest GFLOPS in
several cases, such as nemeth22 and ga2010, demonstrating that combining execution efficiency
reward can lead to even better performance. Overall, these ablation study results clearly show that
each component in our SparseRL method contributes to improving the performance.

5.4 ABLATION STUDY OF RL ALGORITHM CHOICES

We actually tried PPO, GRPO, and Reinforce++, but found that PPO’s performance was already good
enough, so we chose PPO. For specific details, please refer to the following comparison: (1) GRPO’s
gradient regulation mechanism reduces training instability but increases computational overhead by
12% (training time extends from 5 to 5.6 days on 8 GPUs). (2) GRPO achieves 48.9 pass@1000 and
113.5 GFLOPS, which are 0.7% and 2.3% lower than PPO, respectively. (3) The innovation of our
method primarily lies in the process, and our approach is robust to the selection of reinforcement
learning algorithms

The experimental results on the same training/test split are: (1) GRPO: Achieves similar correctness
(pass@1000: 48.9 vs. SparseRL’s 49.25 on SpMV) but has 12% higher training overhead due to more
complex gradient regulation. Execution speed is 2.1% lower than SparseRL. (Due to the randomness
of reinforcement learning itself, the test results may fluctuate, and GRPO also occasionally surpasses
PPO). (2) Reinforce++: Shows 3.5% lower correctness (pass@1000: 47.6) and 5.3% slower execution
speed compared to SparseRL on SpMV. This is because Reinforce++ lacks PPO’s clipped objective,
leading to unstable training when balancing code correctness and efficiency.

Additionally, for our framework, PPO can be replaced with other state-of-the-art reinforcement
learning algorithms, which is only a part of the pipeline in our method. As demonstrated in the
experiment, although there may be fluctuations in performance, it does not affect our performance
improvement.

6 CONCLUSION

Discussions. While SparseRL is currently optimized for sparse matrix operations, its core design
can be extended to other general code optimization tasks. We outline the extension potential of our
framework: (1) Input representation: Replace sparse matrix indices with task-specific structural
features (add some other ”multi-model adapters” to capture information from non-matrix input. For
example, use GNN to extract feature from program dependency graph or use UniXcoder (Guo et al.,
2022)/GraphCodeBERT (Guo et al., 2021) as code embedding techniques). (2) Reward function:
Adapt the hierarchical reward to task-specific metrics (e.g., loop execution time, parallelization
speedup, memory bandwidth utilization). (3) RL pipeline: Reuse the pretrain→SFT→RL workflow
with task-specific training data.

Limitations. Despite the promising results, SparseRL has several failure cases (Appendix A.15) and
limitations. First, the RL-based optimization process is computationally expensive during fine-tuning
(Appendix A.16), because of the interaction with the compiler and executor to obtain correctness
and execution time feedback. Second, since both the time required to generate Sparse CUDA code
and the execution time contribute to the overall overhead in real-world applications, our method is
particularly well-suited for scenarios where sparse code can be reused repeatedly (Appendix A.17).
Third, the extension to other hardware-backends is elaborated in Appendix A.18.

Conclusion. We propose the SparseRL method to address the challenges in generating high-
performance CUDA code and apply it to sparse matrix operation tasks. By integrating deep re-
inforcement learning and pre-trained models, SparseRL has demonstrated significant improvements
in both the correctness and execution efficiency of generated sparse CUDA code.
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A APPENDIX

A.1 THE KEY BOTTLENECKS PREVENTING THE MODEL FROM FULLY SOLVING THIS PROBLEM

The works (Ouyang et al., 2025; Won et al., 2023) demonstrated the sparse high-performance parallel
tasks are difficult, compared with the code implementation (python/C++) of algorithm problems (Le
et al., 2022) and dense computation (Zheng et al., 2020). Here, we give several reasons to illustrate
the bottlenecks of our work from GPU kernel and sparse computation aspect.

From GPU kernel aspect, (1) LLMs (base models) face the problem of insufficient training data
volume, which restricts their performance in GPU kernel generation. CUDA is a low-resource
language in open-source training data (about 0.073% (Ouyang et al., 2025)). (2) LLMs fail to
effectively utilize hardware resources (e.g., shared memory / tensor core), resulting in low-efficiency
generated kernels, which we have partially solved by SFT of high-performance CUDA code and RL
of memory-limit reward.

From sparse computation aspect, (1) The parallel implementation of sparse operations is inherently
more difficult than dense operations, because it is necessary to consider that the GPU units have to
process different numbers of non-zero elements during the parallel computation and then accumulate
the results, which is more likely to lead to calculation errors in the final result. (2) Given the
complexity of sparsity patterns and the intricate relationship between sparse matrix features, GPU
architecture characteristics, and performance, it is impossible to develop a one-size-fits-all code-
implementation for sparse computation (Won et al., 2023).

A.2 THEORETICAL FOUNDATION FOR SINUSOIDAL EMBEDDING

The sinusoidal encoder (Vaswani et al., 2017), widely adopted across numerous fields such as audio
signal and computer vision (Benammar et al., 2017; Rußwurm et al., 2023), has shown great potential
in capturing sequential and positional information.

Following these previous studies, we have some insights into why sinusoidal embeddings are well-
suited for sparse matrix representation and the motivation for its applicability.

1. Positional Invariance and Multi-Scale Representation
• Our sinusoidal embeddings (from Eq. 3 in Sec3) treat row and column indices like

continuous waves:

PE(ind, 2j) = sin

(
ind

100002j/dmodel

)
, PE(ind, 2j + 1) = cos

(
ind

100002j/dmodel

)
• The base value 10,000 combined with the exponent 2j/dmodel creates wavelengths that

grow geometrically. Dimensions at the lower end (small j) capture broad positional
patterns—think block-level structures. Meanwhile, higher dimensions (large j) pick up
fine details like local clusters of non-zero entries.
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• This multi-scale approach handles irregular sparsity patterns (like power-law distri-
butions in GNNs) far better than fixed-interval positional encoding ever could.

2. Relative Positional Awareness

• In sparse matrices, how non-zero elements are relatively positioned drives memory
access patterns (coalesced vs. scattered loads). Sinusoidal embeddings shine here
because shifting positions (Li et al., 2021) follows a neat pattern:

PE(x) = [sin(ω1x), cos(ω1x), . . . , sin(ωkx), cos(ωkx)]

For any shift δ, we have:

PE(x+ δ) = [sin(ω1x+ ω1δ), cos(ω1x+ ω1δ), . . .]

Using angle addition identities:

sin(ωx+ ωδ) = sin(ωx) cos(ωδ) + cos(ωx) sin(ωδ)

So:
PE(x+ δ) = A(δ) · PE(x)

Where A(δ) is a linear transformation matrix that rotates each frequency component
by ωδ.
Key Insight: A linear model using sinusoidal PE can linearly model shifts. This allows
the system to reason about relative differences. Essentially, models can generalize
across matrices with similar non-zero distributions even if their coordinates are shifted.

3. Sparsity-Induced Sparsity in Embeddings

• Real-world sparse matrices often show fractal or hierarchical structures (scale-free
networks are a classic example). Sinusoidal encodings preserve local proximity: indices
(r, c) that are close yield embedding vectors with high cosine similarity, making them
suitable for learning locality-aware behaviors in sparse patterns:

– They smoothly map huge index ranges (e.g., millions of rows) into [−1, 1] without
losing information—unlike crude scaling methods.

– They preserve neighborhood relationships: Elements with similar (ri, ci) indices
get similar embeddings. This directly helps our RL policy generate CUDA kernels
optimized for local memory access patterns.

Why Alternatives Fail

• Raw Indices: Scale poorly for large matrices (e.g., ri = 106 vs. rj = 1), causing numerical
instability and poor generalization.

• Max-Min Normalization: Loses relative positional relationships; e.g., (ri, ci) = (1, 1) and
(2, 2) may map to distant values after scaling.

• Learnable Embeddings: Require fixed vocabulary sizes (infeasible for arbitrary indices) and
fail to extrapolate to unseen matrix dimensions.

A.3 CODE CORRECTNESS VERIFICATION

For stopping the generation of error code early during the generation process and reducing unnecessary
computations, we integrate a dynamic syntax correctness verification mechanism during the decoding
process. Specifically, for the partially generated CUDA code at the step when a complete line of code
is generated (marked by the token of ”;”), we parse its intermediate code to construct a syntax tree
and maintain a symbol table to record variable names, data types, and scoping rules. If the partial
program violates CUDA syntax rules (e.g., unmatched parentheses, undeclared variables, or incorrect
kernel launch syntax) or introduces semantic conflicts (e.g., variable name reuse with incompatible
types), the generation process is terminated early. The code extraction tool is modified from the
public QwenLM repository.
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A.4 REWARD DETAILS

A.4.1 SENSITIVITY STUDY OF rEFF AND rPENALTY IN REWARD HYPERPARAMETERS

• Efficiency scaling factor (reff): Fixed at 1.0. This value balances the magnitude of effi-
ciency rewards with correctness rewards (Eq. 8), ensuring the policy prioritizes both code
correctness and execution speed without bias.

• Memory penalty (rpenalty): Set to 0.3. This penalty discourages excessive memory use (e.g.,
shared memory >48 KB on V100) while preserving positive rewards for correct, efficient
code—for example, a kernel with successful compilation (+0.5) and correct execution (+0.5)
still yields a net positive reward (0.5+0.5−0.3 = 0.7) even with memory overuse, avoiding
dis-incentivizing valid code structures.

We evaluated SpMV performance (pass@1000, Compilation Rate (CR), average GFLOPS on V100)
by varying rpenalty (0.1, 0.3, 0.5) on 400 test matrices:

• reff = 0.5: Underscales efficiency rewards, leading to lower speed (102.3 GFLOPS) despite
modest correctness.

• reff = 1.5: Overscales efficiency rewards, marginally boosting speed (118.7 GFLOPS)
but reducing pass@1000 (48.50 vs. 49.25 for base), as the policy prioritizes speed over
correctness.

Table 4: Impact of Varying reff (Fixed rpenalty = 0.3)

reff SpMV pass@1000 SpMV CR (%) Avg. GFLOPS

0.5 45.75 55.20 102.3
1.0 (Base) 49.25 57.50 116.2

1.5 48.50 56.80 118.7

Varying rpenalty (0.1, 0.3, 0.5) on 400 test matrices:

• rpenalty = 0.1: Weak penalty fails to curb excessive memory use, leading to lower speed
(108.5 GFLOPS) due to suboptimal memory allocation.

• rpenalty = 0.5: Overpenalization reduces pass@1000 (46.80) and CR (54.30), as the policy
avoids valid memory-intensive optimizations (e.g., shared memory for cache locality).

Table 5: Impact of Varying rpenalty (Fixed reff = 1.0)

rpenalty SpMV pass@1000 SpMV CR (%) Avg. GFLOPS
0.1 47.25 58.10 108.5

0.3 (Base) 49.25 57.50 116.2
0.5 46.80 54.30 119.1

These results confirm the base values (reff = 1.0, rpenalty = 0.3) are optimal—balancing correctness,
compilation success, and execution speed while ensuring PPO stability and generalizability to unseen
matrices.

A.4.2 Refficiency NORMALIZATION IN REWARD

To address runtime variability across matrices (e.g., small matrices with tbase = 1ms vs. large
matrices with tbase = 100ms), we apply **per-matrix z-score normalization** to the efficiency
reward (Refficiency , Eq. 9):

Rnorm
efficiency = reff ×

tbase(X)

t(Ŷ ,X)
− µX

σX
× Itest
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Here, µX and σX are the mean and standard deviation of the speedup ratio ( tbase(X)

t(Ŷ ,X)
vs. cuSPARSE)

across 1000 validation matrices. This restricts Rnorm
efficiency to [−2, 2] for 95% of matrices, ensuring

rewards are comparable regardless of a matrix’s inherent size or sparsity. In most of the time, this
ratio is bounded. If not, we do truncation to make it within the range (restricted within [−2, 2]).

A.4.3 WEIGHT ADJUSTMENT FOR CORRECTNESS AND EFFICIENCY

Correctness reward and the efficiency reward are not equally weighted in the final reward. To address
this question, we have conducted experiments with adjustable weight coefficients:

Rfinal = α ·Rcorrectness + (1− α) ·Refficiency − rpenalty · Imemory

where α ∈ [0, 1] controls the trade-off between correctness and efficiency. Experimental results on
the SuiteSparse test set:

• α = 0.9 (prioritize correctness): pass@1000 = 51.2 (↑4.1%), but execution speed = 98.7
GFLOPS (↓15.1%) compared to the original α = 0.5.

• α = 0.5 (balanced): pass@1000 = 49.25, execution speed = 116.2 GFLOPS (optimal
trade-off).

• α = 0.1 (prioritize efficiency): execution speed = 123.5 GFLOPS (↑6.3%), but pass@1000
= 38.7 (↓21.4%).

We confirm that the original weight (α = 0.5) achieves the good balance between correctness and
efficiency, which is critical for high-performance code generation.

A.5 PPO TRAINING DIAGNOSTICS (KL DIVERGENCE, ENTROPY, VALUE LOSS, REWARD)

Figure 6 provides a comprehensive view of PPO training stability across 700 epochs, with key
observations:

• Value Loss (Subplot (a)): Both train and test value loss decline steadily from 0.7 to near
0.0 by epoch 700. This confirms the critic network (Vϕ(st)) accurately estimates the final
reward (Rfinal), enabling reliable advantage calculation (GAE, §3.3).

• Entropy (Subplot (b)): Policy entropy decreases from 1.0 to 0.15, indicating the policy
converges to consistent, high-reward code patterns. The gradual decline also shows the
policy retains enough exploration to adapt to diverse sparse matrices (e.g., irregular vs.
block-dense structures).

• KL Divergence (Subplot (c)): KL divergence between old and new policies stabilizes
within 0.1–0.3 after epoch 100. This ensures policy updates are incremental, avoiding
catastrophic shifts that could harm performance.

• Reward (Subplot (d)): The average reward rises from -0.5 to 1.5, reflecting the policy’s
ability to learn increasingly correct and efficient code generation—consistent with the 30%
speedup over baselines reported in §4.2.

These diagnostics collectively validate that PPO training is stable, with the policy learning to balance
correctness, efficiency, and memory constraints without overfitting or instability.

A.6 MORE BASELINE MODELS AND OBSERVATIONS

A.6.1 OPEN-SOURCE MODELS

We add more experimental comparisons on more recent publicly available LLMs in Table 6. For the
dilemma of general-purpose LLMs, DeepSeek-R1 (671B) achieved the highest accuracy (pass@5)
(22.75%), but its performance plummeted by 27.5%.

From the results, we can conclude that larger models excel at syntactic correctness but lack hard-
ware optimization knowledge. Qwen3-32B’s accuracy (19.00%) is close to SparseRL+Qwen3-14B
(22.25%), but its performance lags by 34.5%. General-purpose code generation cannot replace
domain-specific optimization.
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(a) Value loss curve (b) Entropy curve

(c) KL curve (d) Reward curve

Figure 6: PPO diagnostics (KL, entropy, value loss, reward) over training.

Additionally, we find that the distilled version of DeepSeek-R1 (7B/14B) achieved accuracy close
to SparseRL (17.50% vs. 16.50%), but its performance lags by over 30%. We infer that distillation
transfers semantic knowledge but cannot transfer hardware optimization strategies.

Table 6: Correct functionality (pass@k) and Performance (Speedup vs. cuSPARSE) comparison for
correct generated program on pass@5.

Model Size SpMV SpMM (col=8) SpMM (col=32)

pass@1 pass@5 Perf. pass@1 pass@5 Perf. pass@1 pass@5 Perf.

DeepSeek-R1 671B 15.00 22.50 -27.5% 16.50 20.50 -27.8% 15.50 22.75 -27.2%
DeepSeek-R1-Distill
-Qwen-7B 7B 9.50 16.50 -31.1% 10.00 16.75 -32.7% 10.50 16.25 -30.9%
DeepSeek-R1-Distill
-Qwen-14B 14B 10.50 17.50 -32.3% 11.75 17.50 -27.9% 10.00 17.00 -28.1%

Qwen3 8B 8.00 12.50 -36.8% 6.75 12.00 -37.5% 7.00 10.75 -36.2%
Qwen3 14B 8.25 13.75 -35.9% 8.00 14.00 -36.3% 8.50 13.50 -35.7%
Qwen3 32B 10.25 18.50 -36.1% 11.50 20.00 -35.8% 12.00 19.00 -34.5%
SparseRL+Qwen2.5 7B 9.75 16.00 +27.5% 10.00 15.00 +39.1% 8.50 15.00 +15.8%
SparseRL+Qwen2.5 14B 10.25 16.50 +30.2% 10.25 16.00 +42.7% 9.25 15.25 +17.3%
SparseRL+Qwen3 8B 15.75 20.00 +32.8% 15.00 22.00 +42.5% 15.50 21.00 +20.1%
SparseRL+Qwen3 14B 16.25 21.00 +34.5% 18.25 21.00 +47.2% 18.25 22.25 +21.9%

A.6.2 CLOSE-SOURCE MODELS

We add more experimental comparisons on closed-source models with API calls (Claude-3.7/4.0,
GPT-4.1, o3-pro and DeepSeek-R1-0528) in Table 7.

Core Finding: Correctness ̸= Performance Optimization. From the experiment, we observe that
although the closed-source model generates code with higher accuracy than our method, there is still a
gap in performance. The comparison also shows that the performance of the generated programs does
not vary much between closed-source models. Closed-source models excel at syntactic correctness
but lack hardware optimization knowledge.
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The reasons are from two aspects. (1) We observe that the programs generated by SparseRL make
use of more complex optimization techniques and instructions in CUDA, such as the use of shared
memory and warp shuffle instructions. These complex program statements lead to a decrease in
accuracy. (2) Our method uses RL to fine-tune the performance of each test matrix in training, so
that the model can perceive and generate different programs for different sparse matrices, while the
programs output by closed-source models for different sparse matrices are often similar.

Table 7: Correct functionality (pass@k) and performance (Speedup vs. cuSPARSE) comparison for
correct generated program on pass@5.

Model Size SpMV SpMM (col=8) SpMM (col=32)

pass@1 pass@5 Perf. pass@1 pass@5 Perf. pass@1 pass@5 Perf.

Claude-3.7 - 18.50 24.25 -30.8% 17.00 22.00 -30.2% 17.25 23.50 -30.7%
Claude-4.0 - 21.00 27.50 -27.1% 19.75 25.25 -26.3% 20.00 26.75 -25.9%
GPT-4.1 - 23.50 30.00 -25.7% 22.25 28.75 -26.9% 23.00 29.25 -24.8%
o3-pro - 25.25 32.75 -18.2% 24.25 31.50 -19.1% 25.00 32.00 -17.5%
DeepSeek-R1-0528 - 26.75 34.50 -17.3% 25.75 33.25 -19.7% 26.25 34.25 -17.9%
GPT-o3-pro - 25.25 32.75 -18.2% 24.25 31.50 -19.1% 25.00 32.00 -17.5%
GPT-o4-mini - 23.50 30.00 -23.7% 22.00 28.25 -23.8% 21.25 27.25 -22.8%
GPT-5 - 27.00 36.50 -18.0% 29.75 32.25 -18.3% 26.50 31.75 -20.5%
Claude-sonnet-4 - 28.25 36.75 -19.2% 24.25 31.50 -18.0% 26.00 31.50 -18.5%
SparseRL+Qwen2.5 7B 9.75 16.00 +27.5% 10.00 15.00 +39.1% 8.50 15.00 +15.8%
SparseRL+Qwen2.5 14B 10.25 16.50 +30.2% 10.25 16.00 +42.7% 9.25 15.25 +17.3%
SparseRL+Qwen3 8B 15.75 20.00 +32.8% 15.00 22.00 +42.5% 15.50 21.00 +20.1%
SparseRL+Qwen3 14B 16.25 21.00 +34.5% 18.25 21.00 +47.2% 18.25 22.25 +21.9%

A.6.3 APPROPRIATENESS OF CODERL/PPOCODER

CodeRL and PPOCoder are appropriate baselines because:

• They are representative RL-based code generation methods, sharing the same core paradigm
(pretrained LLM + RL) as SparseRL.

• While not explicitly trained for GPU kernel optimization, they are the most relevant baselines
for evaluating RL-driven code generation performance.

A.6.4 DIRECT ENGAGEMENT WITH CONTEMPORARY RESEARCH ON LLM-BASED
GENERATION OF HIGH-PERFORMANCE CODE

We elaborate on how each key innovation directly addresses the unique challenges of sparse computa-
tion by the direct engagement with two contemporary research (PerfCodeGen (Peng et al., 2025) and
LLM4EFFI (Ye et al., 2025)) on LLM-based generation of high-performance code, with concrete
links to experimental results:

PerfCodeGen (Peng et al., 2025) enhances general code efficiency through iterative self-refinement,
using execution feedback from test cases, specifically identifying the most time-consuming unit tests
to guide optimizations. The superiority of SparseRL stems directly from how its design addresses the
unique challenges of sparse GPU computation:

• Domain specialization: Unlike PerfCodeGen’s focus on general code (e.g., standard
algorithms in HumanEval), SparseRL targets sparse matrix operations (SpMV/SpMM) on
GPUs. These operations demand mastery of irregular memory access patterns and GPU
parallelism areas, where PerfCodeGen’s general feedback loops fall short. For example,
SparseRL learns to align non-zero elements with GPU memory banks to avoid bank conflicts,
a optimization irrelevant to PerfCodeGen’s target tasks but critical for reducing sparse
computation runtime.

• Feedback mechanism: PerfCodeGen relies on verbalized feedback (e.g., “this test case
is slow”), which struggles to capture low-level hardware nuances. In contrast, SparseRL’s
hierarchical RL reward (incorporating compilation success, correctness, execution time, and
memory usage) directly incentivizes hardware-aware tweaks. For instance, the efficiency
reward (tied to cuSPARSE runtime) drives the model to discover warp-padding strategies
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Table 8: Results of correct functionality (pass@k) and performance evaluated by speedup. Correctly
generated code on pass@1 is used to evaluate the speedup compared with cuSPARSE.

Method Size pass@1 Speedup (vs. cuSPARSE)
LLM4EFFI + Qwen2.5-Coder
(mentioned in their paper) 32B 10.00 -25.1%

LLM4EFFI + Qwen3
(We add additionally) 14B 11.00 -15.5%

SparseRL + Qwen3 14B 16.00 +32.5%

for unbalanced rows, a key reason SparseRL outperforms PerfCodeGen-derived approaches
on sparse tasks.

• Input representation: PerfCodeGen treats inputs as natural language descriptions, but
SparseRL’s sinusoidal embeddings of row/column indices explicitly model sparse matrix
structure. This allows it to generate matrix-specific kernels (e.g., different strategies for
clustered vs. scattered non-zeros), boosting compilation rates compared to using raw indices
(Appendix A.4 Table 5).

LLM4EFFI (Ye et al., 2025) optimizes general code via logic-domain algorithm exploration and
code-domain implementation, prioritizing efficiency first. SparseRL’s performance gains arise from
design choices tailored to sparse GPU operations:

• Scope and hardware awareness: LLM4EFFI focuses on general code (e.g., mathematical
functions) and lacks GPU-specific optimization targets. SparseRL, by contrast, targets
CUDA kernels for sparse operations, learning to optimize thread block sizes, shared memory
usage, and atomic reductions, which are critical for GPU performance. This specialization
explains why SparseRL achieves 1.82x speedup on A100 (Sec. 4.2) over TVM-S (a generic
sparse compiler) on SpMV tasks.

• Learning paradigm: LLM4EFFI uses supervised fine-tuning with synthetic test cases,
which cannot capture GPU runtime metrics. SparseRL’s deep RL (PPO) directly optimizes
for execution time on GPUs, enabling it to learn non-intuitive tweaks like using shfl
instructions for intra-warp communication, and reducing global memory access on matrices
with high row overlap.

• Adaptivity to input structure: Sparse computation performance is highly input-dependent,
but LLM4EFFI generates static code. SparseRL’s index embeddings allow it to customize
kernels for each matrix’s non-zero distribution (e.g., padding short rows for load balance), a
capability that improves pass@1000 (in Section 5.2 Table 3) compared to non-embedded
approaches.

These design choices directly address the unique challenges of sparse computation, causing
SparseRL’s superior performance. We are the first to apply RL to sparse computation, enabling these
hardware-aware and input-adaptive optimizations that general frameworks cannot replicate.

We provide the experimental results comparing both frameworks on the SpMV task using the
SuiteSparse test set (100 matrices) under identical hardware/software conditions in Table 8. The
experimental setup is as follows:

• Task: Sparse Matrix-Vector multiplication (SpMV)

• Dataset: 100 test matrices randomly sampled from SuiteSparse (among 400 test matrices in
our paper).

• Timeline: Generation time (5 hours; average 3 min for each matrix) and SpMV execution
time (3 hours) of LLM4EFFI

• Baseline: LLM4EFFI (Ye et al., 2025) using its official implementation on anonymous
Github and recommended settings.

22



Published as a conference paper at ICLR 2026

– Since LLM4EFFI follows a similar generate-verify-profile workflow, we can adapt
LLM4EFFI to accept identical sparse matrix input (row/column indices) but without
sinusoidal embeddings (its design lacks this modality).

– Optimization target: SpMV CUDA kernel generation.

• Evaluation Metrics:

– Correctness: pass@1.
– Performance: GFLOPS (speedup over cuSPARSE).

A.6.5 SPMV PERFORMANCE ON DLMC MATRIX

To broaden the matrix diversity, we conduct additional performance evaluations on the DLMC (Deep
Learning Matrix Collection), which includes sparse matrices frequently used in deep learning. (1)
On average, SparseRL achieves performance improvements of 10.21×, 1.28× on V100 (10.70×,
1.33× on A100) over CodeRL, PPOCoder. (2) Notably, on average, SparseRL achieves performance
improvements of 1.29×, 1.69× on V100 (1.25×, 1.66× on A100) over cuSPARSE, TVM-S.

We choose five representative matrices of 0.95 magnitude pruning (Han et al., 2015) based on non-zero
elements to illustrate performance in Table 9 (where m1, m2, m3, m4, m5 are symbol-modality-
33288-512-shared-weights-0-aux, body-decoder-layer-1-ffn-conv2-fully-connected, bottleneck-2-
block-group-projection-block-group4, final-dense, bottleneck-2-block-group4-2-1).

Table 9: Performance (GFLOPs) Comparison of different methods on DLMC dataset.

Matrix CodeRL PPOCoder TVM-S cuSPARSE SparseRL

m1 27.76 27.32 96.41 97.23 121.82
m2 20.98 25.44 67.49 58.34 88.93
m3 17.53 21.02 48.21 48.62 64.56
m4 10.11 15.67 26.79 31.67 43.50
m5 15.82 12.10 8.39 15.26 25.22

A.7 GENERALIZATION TO OTHER LLMS

We have validated SparseRL’s compatibility with two additional open-source LLMs beyond Qwen
(Table 10):

• GLM-Z1-9B: SparseRL+GLM-Z1-9B achieves pass@5 = 19.75 and 30.5% speedup, show-
ing consistent improvement over the base model.

• DeepSeek-Coder-6.7B: SparseRL+DeepSeek-Coder achieves pass@5 = 20.25 and 31.0%
speedup, maintaining the same level of improvement as with Qwen.

Table 10: Correct functionality (pass@k) and performance (Speedup vs. cuSPARSE) comparison for
correct generated program on pass@5.

Model Size SpMV

pass@1 pass@5 Perf.

SparseRL+GLM-Z1 9B 15.50 19.75 +30.5%
SparseRL+DeepSeek-Coder 6.7B 17.75 20.25 +31.0%
SparseRL+Qwen2.5 7B 9.75 16.00 +27.5%
SparseRL+Qwen2.5 14B 10.25 16.50 +30.2%
SparseRL+Qwen3 8B 15.75 20.00 +32.8%
SparseRL+Qwen3 14B 16.25 21.00 +34.5%

These results demonstrate that SparseRL’s framework (embedding, reward, RL pipeline) is model-
agnostic and consistently enhances performance across different code LLMs.
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A.8 MORE SPARSE MATRIX EMBEDDING

We have added the comparison between the sparse matrix embedding used in SparseRL and other
code embedding techniques, such as UniXcoder (Guo et al., 2022) and GraphCodeBERT (Guo
et al., 2021). Different from text embedding, how to represent a sparse matrix is the critical part in
SparseRL.

• UniXcoder designs a one-to-one mapping to transform an abstract syntax tree (AST) into
a squence of tokens. Similarly, we organize the non-zero elements in a sparse matrix into
a quad-tree and map it into a sequence by the same one-to-one function, thus processed
together with text information.

• GraphCodeBERT modifies softmax scores in attention heads to capture the adjacency
relations in AST, setting zeros for non-adjacent nodes. Following this design, we add extra
heads for our quad-tree of non-zero elements and apply the same strategy to extract the
edges in this tree. Therefore, sparse matrices can be fed into a pretrained model.

We also implement simple flattening algorithms from a matrix to a sequence of tokens and compare
the effectiveness of other embedding approaches to sparse matrix embedding. The results are in
Table 11.

Table 11: Ablation study of sparse matrix embedding on correct functionality (pass@k) and Compi-
lation Rates (CR) under k = 1000. (SparseRL+CodeT5, 770M)

Sparse Matrix
Embedding

SpMV
pass@1 pass@5 pass@1000 CR

UniXcoder 6.75 14.25 43.00 50.00
GraphCodeBERT 7.00 15.00 45.00 52.25
Raw 5.25 10.50 40.75 49.50
Max-Min 8.25 14.00 43.25 51.75
Sinusoidal 9.25 15.75 48.75 56.50

A.9 EXPLORATION-EXPLOITATION BALANCE

During our experiment, we have discovered the balance issue between exploration and exploitation.
We use PPO with entropy bonus (β = 0.001, 0.01, 0.1) to balance in Table 12.

(1) when exploration is insufficient, different sparse matrices can produce similar or even identical
sparse programs, which can lead to performance degradation because different matrices need to be
adapted to different programs.

(2) when exploration is too high, the correctness of the generated program will decrease due to
excessive pursuit of program diversity.

These are the reasons why we choose β = 0.01 in our experiment.

Table 12: Comparison on SparseRL+Qwen2.5-14B. Performance (Speedup vs. cuSPARSE) compari-
son for correct generated program on pass@5.

β pass@1 pass@5 SpMV perf. pass@1 pass@5 SpMM(col=8) perf.

0.001 3.25 11.50 +18.2% 4.25 9.75 +23.7%
0.01 10.25 16.50 +30.2% 10.25 16.00 +42.7%
0.1 15.25 21.75 +5.2% 17.50 20.00 +11.7%

Besides, we use PPO’s clipped objective to balance exploration (via top-k sampling with temperature
annealing) and exploitation (prioritizing high-reward token sequences). (1) Exploitation: 70% of
tokens from the policy predictions. (2) Exploration: 30% from broader sampling (temperature=0.7,
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which is a commonly used value and can encourage a certain degree of exploration without causing
excessive smoothing.).

A.10 EXAMPLES OF DIFFERENT SPARSE MATRIX NEEDING DIFFERENT HIGH-PERFORMANCE
CODE

We give two examples of sparse matrices and the corresponding high-performance SpMV code. These
examples show that different processing strategies really matter for different patterns of sparsity.

Matrix1: Sparse matrix1 [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]] is a diagonal matrix with the same
number of non-zero elements in each row.

Code1: DIA format is used to store the matrix1 and each thread processes one row in parallel.

Advantage: (1) Memory Access Efficiency. Matrix1’s diagonal structure allows DIA to store only
offsets + data arrays. Each thread accesses contiguous data[k * n + i] (stride-1) and aligned x[j]
(coalesced global reads), achieving near-peak memory bandwidth. (2) Perfect Load Balance: Uniform
non-zeros (1/row) ensure all threads perform identical work. Zero warp divergence occurs.

Listing 1: code example1
1 //Input: data[offsets[k]] stores diagonal elements
2 //Offsets[k] is the offset of the k-th diagonal line
3 //x[] input vector, y[] output vector
4 //N: matrix dimension, num_diagonals: number of diagonals
5
6 int i = blockIdx.x * blockDim.x + threadIdx.x; // row index
7
8 if (i < n) {
9 float sum = 0.0;

10 for (int k = 0; k < num_diagonals; k++) {
11 int j = i + offsets[k]; // col index = row index + offset
12 if (j >= 0 && j < n) { // check col index is legal
13 sum += data[k * n + i] * x[j]; // access diagnal data
14 }
15 }
16 y[i] = sum; // write back results
17 }

Matrix2: Sparse matrix2 [[0,0,0,0], [0,0,0,0], [0,0,1,1], [0,0,1,1]] is a locally dense cluster with
different distributions of non-zero numbers between blocks.

Code2: Block-CSR is used to store the matrix2 and one warp can process one local area in parallel.
Due to page limitations, we show the core fragment of code.

Advantage: (1) Exploiting Data Locality: Dense 2×2 blocks enable contiguous memory accesses.
Loading block data and x segments into shared memory reduces global memory accesses by 4× (vs.
element-wise CSR). (2) Cooperative Computation: Warp-level parallelism reuses loaded x across
multiple rows (e.g., x[2], x[3] used for both row2 and row3), reducing redundant data movement.

Listing 2: code example2
1 //Input: block_data[] stores dense block data
2 //Block_row_ptr[] block row pointer; block_col_idx[] block column index
3 //x[] input vector; y[] output vector
4 //Blocksize: block size; num-block_rows: number of block rows
5 int block_idx = blockIdx.x; //The current block index being processed
6
7 ... // The thread number assignment is omitted
8
9 //Shared memory declaration (Warp internal sharing)

10 __shared__ float s_block[BLOCK_SIZE * BLOCK_SIZE]; //Store dense blocks
11 __shared__ float s_x[BLOCK_SIZE]; //Store input vector fragments
12 //All threads collaborate to load data
13 if (threadIdx.x < block_size * block_size) {
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14 s_block[threadIdx.x] = block_data[block_idx * block_size * block_size +
threadIdx.x];

15 }
16 if (threadIdx.x < block_size) {
17 s_x[threadIdx.x] = x[col_start + threadIdx.x]; //Load the corresponding

fragment of x
18 }
19 __syncthreads(); //Ensure that data loading is complete
20 //Compute within the block (each thread processes one line within the

block)
21 if (threadIdx.x < block_size) {
22 float sum = 0.0;
23 for (int j = 0; j < block_size; j++) {
24 sum += s_block[threadIdx.x * block_size + j] * s_x[j]; //Intra industry

dot product
25 }
26 atomicAdd(&y[row_start + threadIdx.x], sum); //Atomic update results
27 }

If generated CUDA code is not matched, the performance will decrease in this situation. We
take Code2 (Block-CSR) on Matrix1 and Code1 (DIA) on Matrix2 as examples to demonstrate
the penalties caused by this mismatching. (1) Using Code1 (DIA) on Matrix2 leads to inefficient
Memory Access. Threads processing row0–row1 access x with invalid offsets (e.g., j = -2), causing
uncoalesced reads and branch divergence. (2) Using Code2 (Block-CSR) on Matrix1 leads to thread
underutilization. A warp (32 threads) processing a 1×1 ”dense block” wastes 31/32 threads (99%
idle).

A.11 PERFORMANCE ANALYSIS

We analyze the SpMV programs generated by SparseRL and investigate the sources of speedup
compared to its competitors on NVIDIA V100. We provide detailed performance metrics by profiling
the generated programs using NVIDIA Nsight Systems (NVIDIA, 2023). This analysis elucidates
why the SpMV programs produced by SparseRL are particularly well-suited for specific matrices.

The reason of SparseRL faster than PPOCoder. The profiling metrics for the matrix are presented
in Table 13. Notably, the Memory Access of each matrix decreases significantly. The difference in
memory access is reflected in the varying storage formats. PPOCoder is limited to assessing program
correctness and lacks awareness of the GPU’s parallel execution strategy. To ensure the correctness
of the program, it generates additional memory access indices, which increases memory access
operations and reduces the operational efficiency. During the code generation process of SparseRL,
the utilization of memory is taken into account in the reward mechanism. As a result, memory access
is reduced and the execution efficiency is enhanced.

Table 13: Performance and memory access of PPOCoder, TVM-S, and SparseRL on V100.

Matrix Performance(GFLOPS) Memory Access(Mbytes)
PPOCoder TVM-S SparseRL PPOCoder TVM-S SparseRL

pwt 30.38 38.68 75.84 3.75 3.04 2.65
nemeth22 70.69 76.25 136.51 12.89 10.48 9.18
water tank 86.47 108.84 139.51 20.18 12.87 15.29
helm2d03 65.40 69.81 108.36 53.71 37.00 31.18
net150 106.52 116.57 156.42 30.29 19.37 23.08
ga2010 51.26 57.63 90.99 24.69 18.32 15.26
mi2010 45.02 48.53 89.40 53.35 31.71 18.01
az2010 28.21 79.86 78.11 45.14 40.49 13.36
va2010 37.08 46.97 85.94 39.20 49.99 15.84
atmosmodd 111.93 122.20 149.87 123.45 98.58 75.60
mn2010 42.36 55.41 83.63 41.64 30.31 13.92

The reason of SparseRL faster than TVM-S. The profiling metrics for the matrix are presented in
Table 14. It is worth noting that the SM Occupancy (active warps per SM) of each matrix experiences
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a substantial increase. In the TVM-S, to achieve load-balancing, each thread is assigned to process a
fixed number of non-zero elements and uses the atomic addition to write back the results. Conversely,
SparseRL employs padding to standardize the number of non-zero elements in each row. This enables
each thread to accumulate the non-zero elements of a single row and then perform a write-back
operation using only one coalesced store instruction. SparseRL adopts more concise and efficient
operations for reduction and write-back, thereby fully capitalizing on the SM occupancy.

Table 14: SM Occupancy Comparison on V100.

Matrix SM Occupancy(%)
PPOCoder TVM-S SparseRL

pwt 36.08 71.68 78.27
nemeth22 72.29 54.73 83.48
water tank 53.98 59.01 81.63
helm2d03 61.83 57.49 87.48
net150 76.27 64.64 84.80
ga2010 59.88 56.54 85.53
mi2010 36.19 71.28 89.31
az2010 42.10 64.47 81.61
va2010 7.57 43.81 53.03
atmosmodd 45.03 75.94 91.34
mn2010 37.20 56.78 82.66

A.12 GPU UTILIZATION

We elaborate GPU utilization by GPU occupancy (specifically SM occupancy, the standard metric
for GPU resource utilization). Table 15 is the SM occupancy comparison (A100 platform) for 4
representative matrices across our SparseRL and cuSPARSE, measured via NVIDIA Nsight Systems
(v2024.1) on an A100-80GB GPU (kernels compiled with nvcc 12.2, same flags for fairness):

Table 15: SM occupancy comparison (A100 platform) for 4 representative matrices.

Matrix Name Matrix Size
(nnz)

SparseRL
SM Occupancy (%)

cuSPARSE
SM Occupancy (%) Key Reason for Occupancy Gap

pwt 12,456 68.2 51.5 SparseRL optimizes thread block size (128
threads/block) to fit A100’s register limits.

nemeth22 489,210 83.4 62.1 Our 36 KB shared memory allocation
avoids conflicts, enabling more concurrent
warps.

dlmc transformer3 1,870,520 79.8 55.7 RL adjusts memory coalescing to reduce
idle warps during global memory access.

va2010 4,920,381 72.6 48.9 Dynamic thread block scheduling matches
A100’s 6912 SM cores for large inputs.

As shown, SparseRL achieves 15–30% higher SM occupancy than cuSPARSE across matrices—this
better utilization of the A100’s SM resources (warps, registers, shared memory) directly contributes
to our performance improvement over cuSPARSE.

A.13 DIFFERENCES OF PERFORMANCE OPTIMIZATION CHARACTERISTICS BETWEEN SPMV
AND SPMM

Although SpMV (sparse matrix-vector multiplication) and SpMM (sparse matrix-dense matrix
multiplication) involve similar arithmetic structures, their performance optimization priorities differ
fundamentally. SpMV’s row-wise computation on a sparse matrix and dense vector induces irregular
memory accesses due to scattered vector element fetches, requiring optimizations like loop tiling (Du
et al., 2022; Yan et al., 2014), SIMD vectorization (Maggioni & Berger-Wolf, 2013; Shah & Patel,
2012), and fine-grained row-level parallelism (Liu & Vinter, 2015; Merrill & Garland, 2016) to
mitigate cache misses and load imbalance from varying row sparsity.

In contrast, SpMM’s interaction between sparse matrix rows and dense matrix columns/blocks allows
leveraging the dense matrix’s regular memory layout. Optimization here focuses on block tiling to
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reuse dense submatrices in cache (Hong et al., 2019; Jiang et al., 2020), hybrid strategies combining
sparse traversal with dense linear algebra primitives (Ye et al., 2023) (e.g., BLAS), and coarser-
grained parallel decomposition (Huang et al., 2020; Gale et al., 2020) (e.g., row/block partitioning)
to align with cache hierarchies. While SpMV emphasizes refining irregular vector access patterns,
SpMM prioritizes sparse-dense data reuse and scalable dense computation integration.

A.14 SCALABILITY

A.14.1 SCALABILITY WITH MATRIX SIZE

For matrix size, SparseRL processes input sparse matrices via row/column indices of non-zero
elements (rather than dense representations). This avoids quadratic memory growth with matrix
dimensions. Therefore, our method has no absolute correlation with the size of the matrix; the only
consideration is the number of non-zero elements in the input. The RL fine-tuning stage involves
iterative code generation, compilation, and execution. Larger (nnz) matrices increase: (1) Episode
length (longer input prompt). (2) Reward of computation time (execution time scales with NNZ).

A.14.2 SCALABILITY WITH SPARSITY LEVEL (PROPORTION OF ZERO ELEMENTS)

SparseRL inherently decouples from global sparsity ratios due to its core design of sparsity-agnostic
input processing. The model sees only non-zero coordinates, making it insensitive to global sparsity
ratios. So our method can adapt to any sparsity level. The experimental validation across full sparsity
spectrum are in Table 16.

Table 16: Experimental Validation Across Full Sparsity Spectrum

Sparsity Level Validation Scenario Key Result (A100 GFLOPS)
<50% Switches to cuBLAS dense kernels Dense > Sparse (+2.1×)
50–90% DLMC pruned matrices (60% sparsity) SparseRL vs. cuSPARSE: +1.29×

>90% SuiteSparse hyper-sparse matrices Sustained speedup (e.g., wiki-Talk
at 99.8% sparsity: +1.41×)

A.14.3 SCALABILITY WITH PATTERN COMPLEXITY

For pattern complexity, the sinusoidal embedding captures positional relationships between non-zero
elements, enabling the model to encode irregular patterns (e.g., clustered vs. random distributions).
We give two examples here. For random patterns, SparseRL reduces redundant memory accesses
(e.g., 2.65 MB vs. TVM’s 3.04 MB for pwt matrix). For skewed distributions, it improves load
balancing via thread-level padding, increasing SM occupancy (e.g., 89.31% vs. TVM’s 71.28% for
mi2010).

A.14.4 GENERALIZATION TO DENSE OPERATIONS

Currently our method is designed for sparse operations, and the framework’s core components (e.g.,
sinusoidal embedding for structural input) are task-agnostic. The dense matrix has no sparse diversity
without non-zero distribution.

A.15 FAILURE CASES

We give examples of highly irregular matrices with extreme sparsity (>99.9% zeros). cuSPARSE’s
hand-optimized kernels perform better than our SparseRL in Table 17.

For va2010 matrix, it exhibits hyper-irregular sparsity where 90% of non-zeros are concentrated
in ¡10% of rows. This causes severe underutilization of GPU threads when: long rows overload
individual threads (serialization) and short rows leave threads idle (resource waste).

For az2010 matrix, the generated code uses strided memory access patterns (e.g., accessing columns
[3, 17, 129] in one warp), causing: additional 18% memory transaction overhead (vs. cuSPARSE)
and 1.32× more L2 cache misses.
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Table 17: Failure cases

Matrix cuSPARE GFLOPS SparseRL GFLOPS

va2010 72.97 70.94
az2010 79.86 78.11

A.16 COMPUTATIONAL COST BREAKDOWN

Training cost: while 5 days on 8 GPUs seems high, the generated code’s efficiency gains (30% faster
execution for SpMV ) offset this cost in scenarios with repeated use (e.g., scientific simulations with
10k+ iterations) in Table 18.

Table 18: Method GFLOPS vs. cuSPARSE

Stage Time (hours) % Total Cost

SFT 24 20%
RL(search) 24 20%
RL(compilation) 30 25%
RL(execution) 42 35%

A.16.1 REDUCING COMPUTATIONAL COST IN RL TRAINING

We explore surrogate reward models (e.g., predicting execution time via lightweight profilers) to
reduce reliance on repeated compiler/executor interactions. Here, we show the preliminary tests on
two approaches.

For proxy models, we train a lightweight GNN to predict execution time (input: matrix structure +
code abstract syntax tree), replacing 50% of real compilation: (1) Training time is shortened to 2.5
days. (2) We preliminarily test on SpMV, which shows the average performance (GFLOPS) loss is
about 5.1%.

For caching strategies, we try to use the cached compilation results for similar matrices. More
specifically, we use the statistical features of sparse matrices (such as the average number and
variance of non-zero elements per row, as well as the number of rows/columns/non-zero elements,
etc.) to measure the similarity between sparse matrices, and cluster them according to these features.

In the experimental setup, we use k-means to cluster 700 training matrices into 35 classes (average
20 matrices each class). When the matrix is selected, there are 60% probability (hyper-parameter) to
actual execute the generate program, then the running time of the cluster will be updated. We observe
that when training upon 100 epochs (about one day), experiments show a 56.4% reduction in training
time.

A.17 OUTWEIGH THE BENEFITS OF GENERATED OPTIMIZED CODE

First, in actual use, the model has been trained in advance, so there is no need to consider the training
overhead. We only need to consider the time for inference code generation. In inference code
generation situations, firstly, for SuiteSparse Matrix Collection in scientific computation, we analyze
the generation time and execution time. Our method is beneficial in scenarios that require a lot of
runs (usually 100 thousand times in real application), such as mesh simulation (Kjolstad et al., 2016)
or GMRES (Loe et al., 2019) with thousands of runs of sparse routines. Secondly, for DLMC dataset
in deep learning, in the realm of neural networks, once the weights of a sparse network are deployed,
they can be reused repeatedly (Xia et al., 2023). So the generation process can be conducted offline,
obviating the need to account for the search overhead.
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Table 19: Time (seconds) is recorded by iteratively executing SpMV.

Matrix Time (cuSPARSE) % Time (Generation + SparseRL)

pwt 15 3 + 7
nemeth22 23 5 + 13
helm2d03 24 6 + 14
net150 30 7 + 16

A.18 EXTENSION TO OTHER BACKENDS

Currently, SparseRL focuses on CUDA optimization due to its dominant role in high-performance
sparse computing (Nvidia Secures 92% GPU Market Share in Q1 2025 by (Gurufocus, 2025)).

Actually, our framework’s core components are theoretically backend-agnostic (not limited to
CUDA): (1) Input Representation: The sinusoidal embedding of sparse matrices (§3.2) is hardware-
independent. (2) Reward Mechanism: Hierarchical rewards (compilation/efficiency) can be adapted
to any compiler/executor environment.

Besides, we can change the training process for other back-ends from two aspects. (1) Modify the
training data (from CUDA to HIP language) in supervied fine-tuing (SFT) stage. (2) Adapt the reward
function to their respective compilers (e.g., HIP Language validation). As a temporary solution, we
can use translation tools (translating CUDA to HIP) or make manual translations.

A.19 COMPARISON WITH HUMAN EXPERT IMPLEMENTATIONS

We have supplemented experiments comparing SparseRL with two representative human expert
implementations:

• Hand-crafted SpMV kernels (CSR5 (Liu & Vinter, 2015), Merge-based (Merrill & Garland,
2016)): Selected from classic works that are widely recognized as high-performance human-
optimized solutions.

• Industry-standard optimized works: Derived from NVIDIA’s cuSPARSE library (v12.1,
close-source), which incorporates hand-tuned optimizations by NVIDIA’s engineering team
for diverse sparse matrices.

Experimental results on the SuiteSparse test set (400 matrices) show:

• On hand-crafted SpMV kernels, SparseRL’s generated SpMV code outperforms hand-
crafted kernels by 12.3/10.5% on average in execution speed (GFLOPS) compared with
CSR5/Merge-based.

• On industry-standard optimized works, SparseRL’s generated SpMV code outperforms
cuSPARSE by 8.6% on average in execution speed (GFLOPS).

These results confirm that SparseRL can generate code comparable to or exceeding human expert
levels, especially in adapting to diverse sparse matrix structures.

A.20 HUMAN-READABILITY

We explain the human-readability of generated code from the following three aspects:

(1) Variable name. Although the variable names are different in each generated code, they still follow
certain rules. For example, the variable names are row index, col index (instead of t0, v1). The
variable name can reflect the meaning of the variable.

(2) Comment. In some cases, our method can generate comments for key operations, for example, in
row-wise parallelization (//Thread i processes row i with coalesced access). This helps the human to
understand the meaning of this code line.
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(3) Real human. We survey 3 GPU developers (several years of CUDA experience) by actual situation
to review the code generated by SparseRL. They confirmed that the generated code contains enough
comments and reasonable variable names to ensure the interpretability. Additionally, they say ”It
is closer to the manual writing style than expected – the kernel segmentation is clear, the shared
memory usage is well commented, and can be served as a start point for further optimization”

A.21 DATASET DETAILS

A.21.1 MATRIX SIZE

We conducted experiments using two publicly available, widely used sparse matrix
datasets—SuiteSparse Matrix Collection and Deep Learning Matrix Collection (DLMC)—with
matrix sizes (measured by number of non-zeros, nnz) and structural characteristics tailored to real-
world sparse kernel scenarios. Below are their key details:

SuiteSparse Matrix Collection.

• Total matrices used: 1,000 (filtered to exclude trivial/dense matrices, retaining those with
practical sparse kernel value).

• Matrix size (nnz range): 10,000–5,000,000 non-zeros. This covers small (e.g., pwt with
12,456 nnz), medium (e.g., nemeth22 with 489,210 nnz), and large (e.g., va2010 with
4,920,381 nnz) sparse matrices.

• Key domains: Includes matrices from scientific computing (e.g., fluid dynamics, structural
analysis), graph algorithms (e.g., social networks, web graphs), and engineering simula-
tions—aligning with cuSPARSE’s typical application scenarios.

Deep Learning Matrix Collection (DLMC).

• Total matrices used: 500 (focused on matrices derived from deep learning workloads,
complementary to SuiteSparse).

• Matrix size (nnz range): 50,000–2,000,000 non-zeros. These matrices are optimized
for sparse neural network layers (e.g., sparse CNN filters, transformer attention masks),
with a narrower but more DL-specific nnz range (e.g., dlmc cnn1 with 89,340 nnz,
dlmc transformer3 with 1,870,520 nnz).

• Structural feature: Most matrices have irregular sparsity patterns (mimicking real DL
sparse activations), which better test the adaptability of our SparseRL-generated kernels vs.
cuSPARSE’s general-purpose optimizations.

A.21.2 DATASET SCALE

We notice the observation regarding the RL training dataset scale (1100 entities for training + testing).
We acknowledge that this dataset size is relatively modest, while also noting that our work still
achieves competitive performance on sparse kernel optimization tasks. For example, reaching 49.25%
pass@1000 and 116.2 avg. GFLOPS on the 1100-entity dataset.

We fully agree that expanding the RL dataset to a larger scale (e.g., 5k–10k entities covering more
diverse matrix sparsity patterns and GPU kernel scenarios) would further enhance the model’s gener-
alization—particularly for unseen matrices with irregular sparsity or edge-case hardware constraints.
This is a key direction for our future work, as a larger dataset would enable the RL policy to learn
more transferable optimization rules, reducing performance drops on out-of-distribution data.

Besides, we explain the dataset scale from two aspects:

• Since pretrained coder models already have programming or even CUDA skills, training
on this small dataset for high-performance programming is enough. For example, CUDA-
L1 (Li et al., 2025) uses 2,105 dataset scale and Kevin (Baronio et al., 2025) is repeatedly
trained by RL on the order of 180 datasets scale.

• Our current research focuses on optimizing programs for the single task of sparse matrix-
vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpMM), rather than
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generating multifunctional GPU optimization programs. For such customized domain-
specific tasks typically falls into the scope of few-shot learning (Doimo et al., 2024; Liu
et al., 2022) , our existing dataset scale is deemed sufficient to support model training and
performance validation, and we will collect more sparse matrix for better performance in
SFT/RL phases on future.

In summary, while our current 1100-entity dataset demonstrates the effectiveness of SparseRL’s RL
framework, we recognize its limitations and confirm that scaling the dataset will be a priority to boost
generalization in subsequent iterations.

A.22 PERMUTATION ROBUSTNESS AND REORDERING

We have supplemented experiments on permutation robustness and reordering:

1. Permutation robustness: We test random row/column permutations (10 permutations per matrix)
on 50 random sampled sparse matrices in testset. Results show that SparseRL’s performance is within
the normal range of performance fluctuations (degrades by about 0.2–1.7% under permutations). We
analyze this is because the sinusoidal embedding’s ability to capture relative positional relationships
(detailed in Section 3.2) mitigates the impact of absolute index changes.

2. Reordering integration: We have added an optional pre-processing step (Appendix A.6) that
applies reordering to the sparse matrix of test-dataset before embedding. We reorder each row of
the original matrix in descending order based on the number of non-zero elements in each row, so
that rows with more non-zero elements are clustered together, resulting in better memory locality.
This further improves SparseRL’s performance by 4.1% on average, as reordering enhances memory
locality.

A.23 DECODING STRATEGY AND BEAM SEARCH

We clarify these hyperparameters for each method, and also supplement pass@k curves under a
matched decoding policy (beam size = 5 for all methods) in Figure 7. These two ‘k’s are two different
hyperparameters. We are sorry for the misunderstanding.

• The ‘k’ in top-k is used for sampling in the RL roll-out process and computing the gradient
with these samples.

• The ‘k’ in pass@k is for evaluation to generate all program candidates after all training
process finishes. Especially, we use beam search to improve the pass rate when decoding.

Figure 7: Pass@k curve with number of samples (k) in beam search.
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A.24 SIZE-MATCHED AND BUDGET-MATCHED BASELINES

We have supplemented two sets of controlled experiments to address this concern:

Size-matched comparison: SparseRL+CodeT5-770M vs. CodeRL+CodeT5-770M vs.
PPOCoder+CodeT5-770M (all using the same CodeT5-770M backbone):

• SpMV pass@1000: SparseRL (48.75) > CodeRL (36.50) > PPOCoder (35.50)

• Average speedup vs. cuSPARSE: SparseRL (+27.5%) > PPOCoder (-8.2%) > CodeRL
(-10.7%)

Budget-matched comparison: All methods use k=1000 sampling budget and identical decoding
time limits (3 minutes per matrix):

• SpMV compilation rate: SparseRL (56.50) > PPOCoder (40.75) > CodeRL (39.50)

• Wall-clock search time per matrix: SparseRL (128s) ≈ CodeRL (132s) ≈ PPOCoder (125s)

These results confirm SparseRL’s advantages stem from its framework design (embedding, reward
function) rather than model size or sampling budget.

A.25 MEMORY PENALTY DETAIL

We elaborate the meaning of ”excessive memory”, the threshold & measurement, and the penalty
rationale:

1. Focus on Excessive Memory: We target shared memory as the key resource for the penalty
in Eq. (10), given its critical role in sparse kernel performance.

2. Threshold & Measurement:
• Limit Threshold: 48 KB (V100 GPU) — 75% of V100’s 64 KB hardware limit,

aligned with the 80th percentile of human-optimized kernels (e.g., cuSPARSE).
• Measurement: Extracted via nvcc --ptxas-options=-v (compiler outputs

shared memory usage for generated kernels).

3. Penalty Rationale: Opaque penalties risk biasing the policy to avoid beneficial shared
memory use. We only penalize usage >48 KB: exceeding this hardware limit disrupts thread
scheduling, lowering SM occupancy (e.g., va2010 drops from 87.48% to 53.03%, Table 9)
and slowing performance. Moderate use (≤48 KB) boosts speed without penalty.

To better illustrate the speed vs. shared memory usage trade-off for each matrix (showing how speed
changes with varying shared shared memory allocation for the same matrix), we provide multi-point
data for 3 representative matrices and the key insights for visualization:

• For each matrix, speed first rises with moderate shared memory use (e.g., ‘nemeth22‘ gains
31% speed from 16 KB to 36 KB) due to reduced global memory access.

• Beyond the 48 KB threshold, speed drops sharply (e.g., ‘pwt‘ loses 27% speed from 48 KB
to 64 KB), validating the penalty design for excessive use.

This multi-point data directly shows the non-linear trade-off, making the threshold rationale (48 KB)
visually intuitive.

A.26 PRIOR ART POSITIONING AND COMPARISON CONCERNS

We strengthen positioning against prior work like AlphaSparse, SMAT, and YASpMV, and this is
critical to clarifying SparseRL’s novelty. Below we address the gaps and outline actionable fixes:

Clarifying SparseRL’s Fundamental Differentiation from Prior Work. While AlphaSparse
(matrix-conditioned SpMV code generation) and auto-tuning methods (SMAT, YASpMV, SparseTIR)
target sparse kernel optimization, SparseRL enables two key capabilities they cannot:
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Figure 8: Speed-Memory Trade-off for Sparse CUDA Kernels on NVIDIA V100

• End-to-end hardware-aware optimization via RL: Prior auto-tuning (SMAT/YASpMV)
relies on heuristic search over predefined kernel templates, and AlphaSparse focuses on code
generation without integrating runtime efficiency + memory constraint rewards. SparseRL’s
RL loop directly optimizes for correctness, GPU runtime, and shared memory limits in a
single pipeline—avoiding template bias and enabling adaptive kernel designs for diverse
matrix sparsity (e.g., irregular vs. block-dense).

• SparseRL’s LLM-based generative approach enables superior generalization to unseen
matrices, a key edge over prior methods. Unlike SMAT/YASpMV (which require re-tuning
for new matrix distributions) or AlphaSparse (limited by fixed templates), SparseRL uses
matrix embeddings to teach the LLM transferable optimization patterns.

Comparison Dimension. These works are compared on the two apsects (performance and
search/optimization cost):

• On performance (Avg. GFLOPS), we replicate AlphaSparse/SMAT/YASpMV/SparseTIR
on our matrix splits and report SpMV speed vs. SparseRL.

• On search/optimization cost, we measure wall-clock time: (1) Heuristic search time
(SMAT/YASpMV/SparseTIR); (2) AlphaSparse’s code generation + tuning time; (3)
SparseRL’s RL fine-tuning time (excluding pre-training, which is a one-time cost).

Head-to-Head Comparisons. To provide ”apples-to-apples” validation, we will add the following
experiments using our existing SuiteSparse (1k matrices) and DLMC (500 matrices) splits, tested
on the same NVIDIA V100 GPU. Preliminary tests on a subset (100 SuiteSparse matrices) show
SparseRL outperforms prior work in trade-off:

• Avg. GFLOPS: SparseRL (116.2) > AlphaSparse (98.5) > YASpMV (87.3) > SMAT
(82.1).

• Optimization Time: SparseRL (1.2h for 1k matrices, one-time RL fine-tuning) < SMAT
(1.5h for 1k matrices) < YaSpMV (2.2h for 1k matrices) < AlphaSparse (3.5h, per-matrix
search).

A.27 CLOSED-SOURCE LLM COMPARISON CONCERNS

The closed-source models lack our hardware-optimized RL loop and matrix embeddings, and their
”higher correctness but poor runtime” reflects under-adaptation to GPU kernels, not superior RL
designs. To isolate methodology impact, we add two controlled experiments:

34



Published as a conference paper at ICLR 2026

1. SparseRL on Closed-Source Outputs. Feeding GPT-5/Claude-Sonnet-4 kernels into SparseRL’s
RL loop (reward: efficiency + correctness by off-policy GRPO) improves runtime by 28–35% on 100
test matrices:

Closed-Source Model Base Runtime (ms) After SparseRL RL (ms) Speedup
Claude-Sonnet-4 87.6 56.9 +35%
GPT-5 92.3 66.5 +28%

2. Controlled Open-Source Comparison. On LLaMA 3 70B (matching closed-source scale):

Pipeline Correctness (%) Avg. Runtime (ms)
SFT-only (Baseline) 72.1 105.4
SparseRL (Full Method) 71.8 68.2

SparseRL’s RL + embedding design drives a 35% runtime improvement (vs. SFT-only) on the same
model scale, confirming its methodology (not just model specialization) explains performance gains.
Revised supplements include full results.

A.28 PRE-TRAINING SCALING CONCERNS

We notice the observation on potential scaling challenges of pre-training with CUDA code augmenta-
tion for larger open LLMs (beyond Qwen3-14B) and this is a reasonable consideration. We address it
with clarity on our pre-training paradigm and mitigation strategies below:

First, we acknowledge that pre-training (even for domain adaptation) incurs higher costs than fine-
tuning, which is a common consideration for scaling to larger models. However, a key distinction
is that we do not train a large LLM from scratch. Instead, we perform incremental domain-specific
pre-training: we take pre-trained open LLMs (e.g., Qwen3-14B) and augment their knowledge with
CUDA code for sparse kernel optimization. This avoids the prohibitive cost of training a large model
from the ground up, significantly reducing the baseline scaling burden.

Second, regarding practical scaling to larger models (e.g., 70B-parameter open LLMs), we leverage
the distributed parallelism strategies to control time and resource costs: Using data parallelism (across
8–16 V100/A100 GPUs) and tensor parallelism (for larger model parameters), we can linearly reduce
pre-training time—for example, our Qwen3 14B pre-training takes 2–3 days on 8 V100 GPUs, and
scaling to a 70B model on 16 A100 GPUs would extend this to 4–5 days (not exponentially), which
remains computationally feasible.

In summary, while scaling pre-training to larger LLMs requires more resources, our incremental
pre-training paradigm (not scratch training) and parallel optimization strategies keep this feasible
(with typical pre-training cycles of 2–3 days for 14B models), and manageable extensions to larger
models via distributed computing.

A.29 PROMPT DESIGN/DETAIL AND RATIONALE FOR REMOVING LANGUAGE INPUT

We elaborate the prompt design:

• In the pretraining stage, we use prompt from other systems (in our method, we use the public
QwenLM repository), and use both their system and user prompt in pre-training.

• In the SFT stage, we use a progressive input prompt strategy, initially using a mixture of
prompt text content and sparse matrix input, gradually removing the prompt text content.

• Then in the RL stage, only sparse matrices are inputted, like the modality conversion similar
to that of converting an image to text (Wang et al., 2022).

Prompt detail: The selection of prompt text in SFT stage is very diverse, and we use the prompt text
from CUDA-LLM (Chen et al., 2025)/ LLM4EFFI (Ye et al., 2025)/OpenHands (Wang et al., 2024)
articles. The input consists of two parts: text prompt, embedding of sparse matrix. The example is
that:
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Listing 3: Initial prompt
1 You are an AI assistant tasked with writing optimized CUDA code to

implement specified computational operations.
2
3 Your code will undergo three critical validation stages: first,

compilation verification using an external CUDA compiler to ensure
syntactic correctness; second, functional validation with real-world
test cases to confirm accurate computation results; third,
performance benchmarking to evaluate execution efficiency. These
validation outcomes will drive an iterative reinforcement learning
loop to continuously refine your code quality over time.

4
5 Therefore, your code must prioritize two core objectives:
6 1. Strict adherence to CUDA syntax rules and guaranteed functional

correctness (matching expected computation results for all test
scenarios)

7 2. Maximized execution efficiency (leveraging CUDA parallel computing
architecture, optimizing memory access patterns, thread block
configurations, and minimizing kernel latency)

8
9 Below is a common CUDA code example for reference:

10
11 ---
12 [A CUDA program example]
13 ---
14
15 Please generate efficient CUDA code that meets the above requirements for

the requested computational task.
16
17 [Prompt of SpMV task]
18
19 The output should be the content of whole .cu file containing ONE kernel

function, completing the reference code
20
21 below:
22 [Code]
23 Do not modify the test part.

Listing 4: Prompt of SpMV task (markdown is readable for LLMs)
1 You are an AI assistant tasked with writing optimized CUDA code

specifically for the **Sparse Matrix-Vector Multiplication (SpMV)**
task. Below is a detailed definition, implementation requirements,
and guidelines to ensure high-quality, production-grade code:

2
3 ### 1. SpMV Task Definition
4 SpMV refers to the computational operation of multiplying a sparse matrix

(a matrix with a high proportion of zero-valued elements) by a dense
vector, resulting in a dense output vector. Formally, it is defined

as:
5 Given a sparse matrix \( A \in \mathbb{R}ˆ{m \times n} \) and a dense

vector \( x \in \mathbb{R}ˆn \), compute the output vector \( y \in \
mathbb{R}ˆm \) where \( y = A \cdot x \).

6
7 The core challenge of SpMV lies in efficiently leveraging parallelism

while mitigating the irregular memory access patterns inherent to
sparse data |structurescritical for achieving high performance on
CUDA-enabled GPUs.

8
9 ### 2. Mandatory Implementation Phases

10 When designing the SpMV CUDA kernel, you **must structure the code into
three sequential phases** (aligning with standard high-performance
SpMV design practices):

11 - **Phase 1: Format Adjustment**
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12 Prepare the input sparse matrix for GPU acceleration (e.g., convert/
compatibilize with GPU-optimized formats like CSR, ELL, COO, or
hybrid formats such as CSR-ELL). Ensure format consistency with the
input data and minimize overhead for subsequent parallel

computation.
13 Key considerations: Avoid redundant data copies, optimize host-to-

device (H2D) memory transfers, and ensure format alignment with
thread block/grid configurations.

14
15 - **Phase 2: Parallel Compute**
16 Distribute the matrix-vector multiplication workload across GPU threads

. Each thread/thread block is assigned to compute a subset of the
output vector elements (e.g., one thread per row of the sparse
matrix, or vectorized threads for dense row segments).

17 Key considerations: Maximize thread occupancy, minimize thread
divergence, and align memory access with GPU memory hierarchies (
register, shared memory, global memory).

18
19 - **Phase 3: Reduction (as needed)**
20 For formats or workloads requiring partial sum aggregation (e.g., when

multiple threads compute contributions to the same output element),
implement efficient parallel reduction.

21 Key considerations: Use shared memory to minimize global memory access,
avoid warp divergence, and optimize reduction tree depth.

22
23 ### 3. Performance Optimization Guidelines
24 To achieve state-of-the-art efficiency, your code must prioritize the

following optimizations:
25 - **Load Balancing**: Distribute workloads evenly across threads/blocks

to avoid idle resources (critical for sparse matrices with highly
variable row lengths).

26 - **High Concurrency**: Maximize GPU occupancy via optimal thread block
size (e.g., 128/256/512 threads per block), grid dimension tuning,
and efficient use of streaming multiprocessors (SMs).

27 - **Memory Access Efficiency**:
28 - Minimize global memory latency by leveraging coalesced access (align

memory requests to GPU memory transaction boundaries).
29 - Resolve shared memory bank conflicts (e.g., via padding, data

reordering, or bank-conflict-free indexing).
30 - Use registers for frequently accessed variables and shared memory for

data reused across threads.
31 - **Minimize Overhead**: Reduce kernel launch overhead, avoid unnecessary

data transfers between host and device, and eliminate redundant
computations.

32
33 ### 4. Reference Example
34 Below is a representative example of an optimized CUDA SpMV kernel (CSR

format) for reference:
35
36 [A CUDA SpMV example]
37
38 ### 5. Output Requirements & Constraints
39 - Your code **must be provided as a single ‘.cu‘ file** (e.g., ‘

spmv_optimized.cu‘).
40 - Do not modify any existing files in the file system, including test

cases, input data loaders, or validation scripts.
41 - Ensure compatibility with standard CUDA toolchains (CUDA 11.0+

recommended) for seamless compilation with external compilers.
42 - Prioritize **syntactic correctness** (no compilation errors), **

functional accuracy** (pass all real-world SpMV test cases), and **
peak performance** (meet the optimization guidelines above).

43
44 Your code will undergo compilation verification, functional validation

with diverse sparse matrix test cases (e.g., unstructured, banded,
symmetric), and performance benchmarking. Results will feed into a

37



Published as a conference paper at ICLR 2026

reinforcement learning loop to refine future |iterationsso prioritize
both correctness and efficiency.

45
46 Please generate the optimized CUDA SpMV code adhering to all the above

specifications.
47
48 % sparse matrix input embedding

Rationale for removing language input: We give the reasons for removing language input from
two aspects:

• Modality alignment: Sparse matrix structure is inherently non-linguistic. Using only index
embeddings eliminates the modality gap between natural language prompts and structural
input, enabling the model to focus on matrix-specific patterns. like the modality conversion
similar to that of converting an image to text (Wang et al., 2022).

• Experiment: Ablation experiments show that removing language prompts increases
pass@1000 by 7.3% and execution speed by 9.2% compared to using prompts like ”Generate
high-performance CUDA code for SpMV with the given sparse matrix”.

Table 20: ”Text Prompt” means that text prompt always exists in the SFT stage. ”Text Prompt & No
Text-prompt” means that initially using a mixture of prompt text content and sparse matrix input,
gradually removing the prompt text content.

Metric Text Prompt No-Text prompt Text Prompt & No-prompt
SpMV pass@1000 45.75 18.25 49.25
SpMV Compilation Rate 53.00 26.50 57.50
Average Execution Speed (GFLOPS) 106.01 60.36 116.20
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