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ABSTRACT

Existing diffusion-based methods for inverse problems sample from the posterior
using score functions and accept the generated random samples as solutions. In
applications that posterior mean is preferred, we have to generate multiple samples
from the posterior which is time-consuming. In this work, by analyzing the
probability density evolution of the conditional reverse diffusion process, we prove
that the posterior mean can be achieved by tracking the mean of each reverse
diffusion step. Based on that, we establish a framework termed reverse mean
propagation (RMP) that targets the posterior mean directly. We show that RMP can
be implemented by solving a variational inference problem, which can be further
decomposed as minimizing a reverse KL divergence at each reverse step. We
further develop an algorithm that optimizes the reverse KL divergence with natural
gradient descent using score functions and propagates the mean at each reverse
step. Experiments demonstrate the validity of the theory of our framework and
show that our algorithm outperforms state-of-the-art algorithms on reconstruction
performance with lower computational complexity in various inverse problems.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., [2015; [Song & Ermon, 2019} |Ho et al., 2020; [Song et al.,
2020a;[Rombach et al.||2022) have shown impressive performance for image generation. For diffusion
models such as diffusion denoising probability model (DDPM) (Ho et al.,|2020) and denoising score
matching with Langevin dynamics (SMLD) (Song & Ermonl [2019), the essential part is the learning
of score functions of data distributions with large datasets. By approximating score functions with
neural networks such as U-Net (Ronneberger et al.,|2015;|Song & Ermon, 2019), the prior of complex
data distributions can be learned implicitly which encourages many applications. Inverse problems
aim to recover an unknown state o from observation y, which is fundamental to various research
areas such as wireless communication, image processing and natural language processing. Recent
works (Jalal et al.| 2020; Kawar et al., 2021} |Song et al.| 2020a; 2021 |Chung et al.| 2022b; |Kawar|
et al., |2022; Meng & Kabashimal, [2022; |Chung et al.,|2022a; [Laumont et al., 2022; Mardani et al.,
2023)) have shown that diffusion models can be used for solving inverse problems since the prior of
data distribution is learned implicitly with score functions and score-based priors are more efficient
to train (Song & Ermon, 2020).

Based on Bayes’ rule, diffusion models are used for the generation of data from the posterior
distribution with score functions of data and likelihood, and thus can be applied in solving reverse
problems. The main difficulty of applying diffusion models to solving inverse problems is the
calculation of likelihood score. SNIPS (Kawar et al., 2021) and DDRM (Kawar et al., 2022)) are
proposed to solve noisy linear inverse problems with diffusion process in the spectral domain. In
these methods, the measurement and data to be estimated are transformed into the spectral domain
via singular value decomposition (SVD), and the conditional score can be calculated with SVD
explicitly. In Meng & Kabashima| (2022)), the authors propose to approximate the likelihood score by
a noise-perturbed pseudo-likelihood score which has a closed form under certain assumptions and
can be efficiently calculated using SVD for noisy linear inverse problems. MCG (Chung et al., 2022b)
circumvents the calculation of likelihood score by projections onto the measurement constrained
manifold. In DPS (Chung et al.,[2022a)), the Laplace method is used for the approximation of the
likelihood score for general inverse problems. Instead of directly approximating the likelihood
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Figure 1: An illustration of RMP for Gaussian mixture model. In the experiment, the data prior
is p(zo) = (N (zo; 1, v3) + N(20; o, v3)) and measurement y = az + voe where 13 = —1,
p2 =1,v; =vy =0.2,99=0.5,a =1, ~N(0,1) and T = 1000. RMP is deterministic when y
and 7 are given and the final output converges to I, |, [Zo]-

score, a variational inference based method termed RED-Diff (Mardani et al., 2023) optimizes the
reconstruction loss with score matching regularization.

The Fokker-Planck equation (Risken, [1996; Jordan et all |[1998)) describes the evolution of the
probability density of a stochastic process. In this work, we present an evolution analysis of the
probability density for the conditional reverse diffusion process, as described by the Fokker-Planck
equation. Based on the analysis, we propose a variational inference framework that minimizes the
reverse KL divergence, referred to as Reverse Mean Propagation (RMP), since it propagates the mean
at each reverse step, as illustrated in Fig. [T} Different from the previous works that draw samples
from the posterior with a reverse diffusion process, our proposed RMP algorithm is essentially
an approximation of the Fokker-Planck equation for a conditional reverse process that tracks the
evolution of the probability density which is deterministic. This represents a fundamental difference
between our method and previous methods. Unlike sampling-based methods that have to sample
from the posterior multiple times and average out to get the posterior mean which is time-consuming,
RMP converges to the posterior mean, i.e. the MMSE estimation in Bayesian inference, which is
preferred in many applications (Kay} |1993). RMP simplifies the application of variational inference
to a broader range of problems in a plug-and-play manner by adopting a score-based prior that can be
learned using neural networks (Ho et al.l [2020; |Song et al., 2020b)) and performs effectively when the
score networks are available. This is contrary to traditional variational inference methods (Maestrini
et al.l 2025 [Wand, 2017) for inverse problems that require complex models of prior. The main
contributions of our work are summarized as follows:

* We characterize the evolution of the transaction probability density of the conditional reverse
diffusion process in terms of mean and covariance, based on which we propose the RMP
framework that approaches the posterior mean.

* We connect variational inference with conditional diffusion process and propose an imple-
mentation of the RMP framework based on stochastic natural gradient descent, incorporating
a score-based prior and suitable approximations that reduces complexity.

* We conduct extensive experiments to demonstrate the validity of the RMP framework theory
and show that RMP outperforms state-of-the-art algorithms in reconstruction performance
with lower computational complexity across various problems.

2 BACKGROUND

2.1 INVERSE PROBLEMS

An inverse problem is defined as the estimation of an unknown state or a latent &y € RV*! from
measurement y € RM <1 Specifically, the measurement process can be described by a measurement
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operator A : RVX1 — RM>1 "and the final output is a noisy version of the measurement:
y = A(zo) + wo (1)
where wy € RM*1 i5 the measurement noise. Usually the measurement noise is assumed to be zero

mean Gaussian with variance ¢21. Other noise models may also apply. In linear inverse problems,
the measurement function A is linear and can be represented by a linear transform A € RM*V,

2.2 VARIATIONAL INFERENCE

The inverse problem can be formulated as a Bayesian estimation problem. The posterior dis-

tribution of x is given by p(xgly) = %, where p(xg) is the prior of xg and p(y|xzo) is
the conditional distribution of y given xy. The posterior mean, i.e., the MMSE estimator can be
employed for the estimation of x,. However, the posterior p(x(|y) is intractable in general since the
prior p(x() and the likelihood p(y|xo) may be very complicated in real applications. An alternative
way is to find an approximation of the posterior as in variational inference (VI). VI introduces a
distribution g4 (o |y) and maximizes a lower bound of the log probability of marginal p(y):

99 (oY)

logp(y) = log/ mp(wﬂ’?o)p(wo)dﬂ?o
(y, o)

> log LAY 20 ——
2 /%(-’Bo\y) %8 L (@ol) do = —Fy(y)
= —KL(qs(xo|y)lIp(xo|y)) + log p(y)

where the inequality is obtained by using the Jensen’s inequality. The lower bound is referred as the
evidence lower bound (ELBO) or the negative of free energy F(y). It is worth noting that maximizing
ELBO is equivalent to minimizing the KL divergence between g4 (xo|y) and p(xo|y) as shown in
the last line of (Z). Many methods have been proposed for the optimization of (2)) such as mean
field VI (Blei et al., [2017)), black box VI (Ranganath et al.| 2014), stochastic VI (Kingma & Welling,
2013) and normalizing flow VI (Rezende & Mohamed,|2015)). However, these methods are difficult
to be applied to real applications since prior p(x() is complicated and is usually learned by neural
networks. It is shown that learning the distribution of high dimensional data through score matching
(Vincent, 201 1)) directly is inaccurate since the existance of low density data regions (Song & Ermon,
2019). Also, perturbing data with Gaussian noise makes the data distribution more amenable to learn
(Song & Ermonl 2019) which is the core of score-based generative model.

@

2.3  SCORE-BASED GENERATIVE MODELS

Score-based generative models or diffusion models generate samples of a data distribution from
the reverse process of a diffusion process. The diffusion process is also called the forward process
where Gaussian noise is added gradually to the original data distribution until the noisy data are
approximately Gaussian-distributed. More specifically, the diffusion process is a Markov process
with joint probability of its latent states {xx }1_, given by
T—1
p(zT.0) = p(0) H p(xp+1]TE). (3)
k=0
Two classes of widely studied diffusion models, i.e., the variance preserving (VP) diffusion
model (Ho et al.,|2020) and the variance exploding (VE) diffusion model (Song & Ermon, 2019)
are distinguished by Markov diffusion kernel p(xy41|xr). For VE diffusion, p(xkii|xr) =

N(@pq1; Tk, (07 — op)I), where 07 > 07, > --- > of > o3 = 0, and for VP diffu-

sion, p(Trq1|Tr) = N(Trt1:v/1 — Brs1Tr, BerI) where fr > By > --- > 1 > fo = 0.
The learning of score function V, log p(x})) is essential to the sample generation for both diffusion
models, and thus such models are called score-based generative models. In VP diffusion models, a
variational reverse process is leaned to minimize the KL divergence between forward and reverse
process. The score functions of perturbed data distributions are trained with a variational bound.
Samples are generated from the learned reverse process with ancestral sampling method. In VE
diffusion models, the score functions of perturbed data distributions are learned with a score network
using denosing score matching (Vincent, 2011). Samples are generated with Langevin dynamics
method. It is worth noting that, similar to VE diffusion, the training of VP diffusion is also equivalent
to learning the score functions of perturbed data distributions (Song et al., |2020b)).
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3 DIFFUSION PROCESS AND POSTERIOR ESTIMATION

The measurement y in and diffusion states {wk}gzo in fo.rm a new Markov chain y —
xy — x1--- — o and the reverse conditional py(x|Tri+1,y) is given by pi(xk|Trr1,y) =
(Tt 1|®r)p(Tr|Y)

p(xk+1]Y)
pi(Tk|Tr+1,y). We relate the Markov chain {x }7_, to continuous stochastic process {z; };_, by
letting &, = Ti—pA¢, Where At = % Then, the discrete diffusion process (3)) becomes a continuous
process in the limit At — 0. We have the following results in the limit of At — 0.

,Vk =10,---T — 1. In this part, we focus on the property of reverse conditional

Proposition 1 For diffusion models with forward process (3), the reverse conditional
pr(xk|Tkt1,y), Yo =0,--- , T — 1, is Gaussian when At — 0. For VE and VP diffusion, the mean
and covariance of px(xg|TK11,Y) are tractable with mean given by

(et 1,Y) = Vea®rrr + Vi2Epzg|y) [2o] 4)
where Vi1 = (01 + Cmo)(a,%HI + Cyy) ' and Vi, 5 = (U%+1 — U%)(U,%HI + Cy,) " for
VE diffusion, and Vi, 1 = \/ar+1((1 — @) + @xCla,y)((1 — gy1)I + @ 41Ca,) " and Vi o =
Var(l — apg1)((1 = age1)I + axg1Co,) " for VP diffusion. Ep(g |y [®o] and Cq, are the

mean and covariance of p(xoly) respectively. ay = Hf:o o, a; = 1 — ;. The covariance of
pi(xk|TEt1,Yy) for VE and VP diffusion models are given respectively by

Crye = (011 — o) (k] + Cay ) (071 T + Ca) ™

—1 5
Cryp = ﬁ((l —ap) I + arClh,) ((5’““ +1- ozk) I+ aka()) . ©)
1= Brt1 1 — Brs1

Proposition [l generalizes the Gaussian property of p;(x:|xiya:) to the conditional case
pi(@t|Tryar, y) when At — 0. The essential is that the reverse process can also be expressed
by a reverse SDE (Song et al.,2020b) and the evolution of transaction probability py(xx|Tr+1,y)
can be described by the Kolmogorov backward equation in the proof of Fokker-Planck equation
Risken| (1996)); Jordan et al.|(1998]). Based on Propositionm we obtain the following main result.
Definition 1 The reverse mean propagation chain of a diffusion process is defined as
pr = pr—1(xr = pr,y) = - = pi (T2 = p2,y) = po(T1 = p1, y) (©6)

where pi(Tp+1 = pgr1,Y) is the mean of py(xi|Tr+1 = pk+1,Y), Vo =0,--- T — 1, and pr
and g are the initial point and the end point of the reverse chain respectively.
Theorem 1 For VE diffusion, when At — 0, the end point of the reverse chain, i.e., pg is given by

to = (051 + Cuy ) (071 + Co) "' + (07 — 93) (071 + Cag) " Ep(agly[o] (D)
and pro = Epzo|y) [xo] as o — oo. For VP diffusion, when At — 0, g is given by

to = vVar((1 — ao)I + aoCu,)((1 — ar)I + arCa,) ™ pr
+ (1 - dT)((l — dT)I + dTCmO)_lEp(mO|y) [:Bo]

and pro — Ep(a,|y) [20] as ar — 0.

(®)

According to Theorem I} the posterior mean can be obtained by tracking the mean at each reverse
step. By calculating the reverse mean and following the reverse chain in (6), we get a posterior
estimation framework termed Reverse Mean Propagation (RMP) for inverse problems as presented in
Algorithm[I] We note that when the initial point of the reverse chain p7 and y are given, the reverse
chain is deterministic and converges to the posterior mean K, 4|, [Zo]-

4 SCORE-BASED VARIATIONAL INFERENCE

In this section, we propose a score-based variational inference method to implement the RMP
framework. We show that tracking the mean of the reverse process of each step can be formulated
as a sequential of variational inference problems which we prove to be equivalent to a variational
inference problem for all latent variables. We solve the variational inference by stochastic natural
gradient descent with approximations that simplify the calculation.
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Algorithm 1: Reverse Mean Propagation (RMP)
Input :y, 7T, pr
fork=T—-1:0do
Propagate the reverse mean: g1 = fj41
Calculate the reverse mean of pi: pr(Tht1 = Mit1,Y) = Ep (@ |omsr—pns1,y) [Tk
end
Output : g

4.1 RMP AS VARIATIONAL INFERENCE

In Section[3] we present the RMP framework based on the reverse diffusion process. However, in
practice, the reverse mean in RMP cannot be calculated using (4)) since E;(z,|y)[®0] and Cq, are
unknown. We now show that the RMP framework can be implemented using variational inference.
Instead of applying variational inference on the conditional posterior of @ as in (2), we focus on the
joint conditional posterior of {z)}}_,, i.e., p(zo.7|y), which includes all the latent variables in the
diffusion process. The variational reverse process with joint conditional is defined by
T—1
q(@orly) = q(@rly) ] a(@rlzei, v), )
k=0

where gi(Zr|Tr+1,Y) = N(@k; e (Tr+1,Y), Ce(@it1,y)), Vh = 0: T — 1. We set g(z7|y) =
N (zr;0,I). The variational reverse process is chosen as a Markov chain since the reverse of the
diffusion process is a Markov process. The KL divergence between variational joint posterior
q(xo.7|y) and and joint posterior p(xo.7|y) is given by

KL(q|lp) = / a(@orly) 1ogmdx (10)

where the forward joint posterior p(xo.7|y) = p(x7|y) Hf;o p(xk|xK+1,y). For VE diffusion
p(xzr|y) = N(xr;0,0%1) and for VP diffusion p(zr|y) = N (xr;0, I). The following proposi-
tion simplifies the minimization of KL(g||p) with proof given in Appendix

Proposition 2 For a diffusion process with forward process (B), the KL divergence between varia-
tional q(xo.7|y) andjomt posterior p(xo.r|y) defined in (10) equals

ak (k| Tri1, Y)
L(ql|p) / (Trt1ly /Qk Tp|Tiy1,Y)log —————dxpdr, (1D
(alle) k;I +ly) (s, 9) Pr(Trk|®r i1, ) i

and the minimization of KL(q||p) is equivalent to the minimization of

Qk(wk\iﬂkﬂ, y)

dxy,Vk=0,---,T —1. (12)
pk(ﬂ?k\wkﬂ,y)

L(qx||pk) = /Qk(wklwarlvy)lOg

According to Proposition 2] we can minimize the KL divergence between ¢ and p by minimizing the
KL divergence KL(q||pk), i.e., solve the following VI problem at each reverse step k:

gy = arg min KL(qx||pk), Yk =0, -+, T — 1. (13)
9k

By propagating the mean of g;, and solving problem (I3)) at each reverse step k, we can approximate
the RMP framework in Algorithm E]based on variational inference, as detailed below.

4.2  VARIATIONAL INFERENCE BY NATURAL GRADIENT DESCENT

For g (zk|Tri1, y) = N(zk; p, A,;lI), the KL divergence between g;, and py, is given by

Qk(wk |5L'k+1a y)

KL(qx |lpx :/Qk T |Trr1,Y) log g
(ax!|px) (@ |Zrr1,9) Pe(Tr|Tri1,Y) (14)

N N
=-3 log(27/Ay) — 37 Eqy, [log pr(xk|Tit1,y)]-



Under review as a conference paper at ICLR 2025

A common practice to optimize KL(gg||ps) is to update variational parameters ¢, = {15, Ax } using
mini-batch stochastic gradient descent which involves the calculation of V4, KL(gx||px). Since g
is Gaussian, the gradient of E,, [log px(xx|k+1, y)] in (14) with respect to variational parameters
¢ = {px, Ax } have simple forms (Opper & Archambeaul,[2009) which are given by:

Vi Eg llog pr (x| k41, Y)] = Eq, [V, log pr(Tr|Trs1,y)]
1 _ (15)
Va,Eq, [log pr(xk|2ri1,y)] = —§Ak Eq, [Tr(V2, log pi(xi| i1, )]

where Vg, log pr(xi|Tri1,y) and V:ch log pr(xk|xri1,y) are the gradient and Hessian of
log p.(xk|xk+1, y) respectively, and Tr(+) returns the trace of the input matrix.

As a special case of steepest descent, gradient descent updates parameter that lies in the Euclidean
space. However, our objective is to optimize parameters that represent a distribution, it makes sense to
take the steepest descent direction in the distribution space. As in natural gradient descent (Martens,
2020), the parameter to be optimized lies on a Riemannian manifold and we choose the steepest
descent direction along that manifold. Thus, we choose KL-divergence as the metric of distribution
space and take steepest descent in this space. For KL-divergence metric, the natural gradient of
parameter of a loss function £ = Eg, [h(x)] is defined as V4L = F¢*1V¢£ (Martens, 2020), where
F is the Fisher information matrix of ¢ given by the variance of the gradient of log probability
of parameter, i.e., Covy, [V loggs(x)]. For q(x) = N(x;pu,X) = N(x; p, A~ I), the Fisher
information matrices of mean and precision are given respectively by F), = AT and F = %A‘QI .
Thus, the natural gradients of parameters { g, A} have concise forms given by

VoL = B 'V,E [h(@)] = A 'E,[Vah(a)]

. (16)
VAL = FU'VAE [h(z)] = —E,[Tr(VZh(z))].

Following the natural gradient given in , we update the variational parameters ¢, = { g, Ax} of

loss function in (T4) using natural gradient descent (NGD) as

B pi — 5105V KL(qi|[pr) = e + 5145, "By, [V, log pi(zk|Thi1, )]

)
Ag = Ap — 255 A7V A, KL(gk|lpr) = Ak — s2(NAg + Eq, [Tr(V3, log pi(@k|Tri1,y))))

where s1 and ss are step sizes. We obtain a stochastic NGD update when the expectations of gradient
and Hessian matrix in (I7)) are approximated by sample mean:

wkzw,(j)wq,(f)

L
. . N 1
i = w4 s (M) T 2 Y Ve log pi (@il y)
i=1

L (18)
i i 9, 1
A](CH) - AI(C) — 89 (NAI(C) + 7 ZTr(Vik log pr. (k| Tkt1, y))mk_mg)wqg)>
i=1

where L is the number of samples. The stochastic update of parameters of g, converges to the
local minima of KL divergence KL(gy||px) which is a Gaussian approximation of the posterior
pr(Tk|Trr1,y). Itis worth noting that we choose stochastic NGD since it achieves a good perfor-
mance and parameters involved are easy to tune in our experiments. Other optimization methods
may be applied. In stochastic NGD update (18), the gradient and Hessian of log py, (zx|@ 41, y) are
required. We next introduce some approximations to simplify the calculation.

4.3 SCORE-BASED GRADIENT CALCULATION

From Bayes’ rule, the score of reverse conditional p(xk|Tri1,y) = %

volved in (18) is given by Vg, logpr(xk|@rt1,y) = Vi, logp(xrti|er) + Ve, logp(ylzr) +
Vaz, log p(xy), where V4, log p(xy) is the noisy score function which can be approximated by
a well-trained score network sg(x, o) and V, log p(xk41|xk) can be calculated explicitly for

both VE and VP diffusion models. For VE diffusion Vg, log p(xr1|zr) = Z+—=5, and for VP
k+1 k
V 1=Br+1 1—Bri1

diffusion Vg, log p(it1|Tr) = TH TRl T 5o, The However, the likelihood score, i.e.,

in-
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the gradient of logarithm conditional V, log p(y|xy) is hard to handle in general. For linear inverse
problems, several SVD based approximations of V, log p(y|xy) are proposed in|Kawar et al.[(2021}
2022); Meng & Kabashima (2022) for linear measurements and Gaussian approximation for general
measurements are discussed in[Song et al.|(2023). In|Chung et al.|(2022a)), the authors propose the
following approximation that can be applied for general measurements:

log p(y|z1) =~ log p(ylao(zr)) (19)
where & () is the MMSE estimate of . For VE diffusion, according to the Tweedie formula:
&0(2k) = Ep(aolay) [T0] = T + 04 Va, log p(ay,). (20)
Similarly, for VP diffusion, the MMSE estimation of x given xy, is

1
Zo(xr) = Ep(ag|zs) [To] = \/—O_Tk(:ck + (1 — ax)Vaz, log p(xy)). 21

The approximation error of can be quantified with Jenson’s Gap as given in|Chung et al.| (2022a).
We choose the likelihood approximation of (I9) in our implementation, other approximation methods

can be applied to RMP as discussed in Appendix. As a conclusion, the gradient is calculated as
Va, log pr(wk|@hi1,y) = Va, log p(@pi1|Tr) + 9% Va, log p(y|@o(xk)) + so(@k, 08)  (22)
where the parameter vy, is added to balance the approximated likelihood score and prior score. We set
=( T llc‘)‘?p(“; 7:;;(!%)) B where ( is a hyper parameter to be tuned for different problems. The idea

behlnd the strategy is that we should keep a balance between the data score and the likelihood score.

Algorithm 2: VE/VP-RMP with Score-based Stochastic NGD

Input Y, S1, T7 Tin’ T, l‘l’g‘—l

fork=T7T—-1:0do

For VE ;' = ZEZhn =i > 7, else Ap' = 02, , — 02 (for VP A7 = Biy1)

k+1
fori=0:7;, —1do
T = u? + s1AT (Vi Log p(@sa| @) + 1 Ve, log p(ylEo (@) + se(@k, ox))
where z ~ N (z; ,u,,c ,A 1I) &o(zy) =k + 0789 (T, 0% ) for VE
(for VP &g (k) = F(wk + (1—ag)se(x, o))
end

mk’ “(TLTL) and u

O Tin

Output: u( Tin)

4.4 FIXED PRECISION UPDATE

In the update (18), the Hessian matrix V3 log py (k|2 k41, y) is difficult to acquire in general. Also,
the complexity involved in the calculation of Hessian may prevent the application of the algorithm.
Thus, we introduce an approximation that does not require the calculation of Hessian. According to

the Proposition|1} the update of precision ASH)

we can fix the update of A,(JH) in Algorithmto the precision of py(xg|xk1,y) and only update

fui; at each step. According to Proposition [T} for VE diffusion model, if we set Cy, = v, I, then

1 _ (UiJFvwo)(Ul%JA*Ui)
o Oyt Vag

converges to the precision of py (xg|xk+1,y). Thus,

the inverse of precision is given by (A,(f))_ . We cannot calculate (A,(j))_1

directly since vy, is unknown. However, for the cases that & is close to T', o7 is large enough
. 202 2

comparing to vg,. Thus, (A,(;))_1 can be approximated by w For the case that k is

k+1
close to 0, o}, |, 07 — 0, we have (A1 ~ 2 +1 — 07 Similarly, for VP diffusion model, if
B

. 7(1 Ak+agve,) .

we set Cpy = Vg, I, then (A7) 1 = s FUT0°  Since B ~ 0 and ay, ~ 0, we have

1_[324»1 +(1—ak+o¢kvw0 )
(A,(;))_1 ~ [k41. With stochastic NGD based VI and score-based approximations of gradient and
Hessian, we summarize an algorithm given in Algorithm[2] where T,, is the number of NGD steps.
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5 EXPERIMENTS
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Figure 2: Illustration of the process of VP-based RMP for Gaussian mixture model. Top-left:
Various measurement y with fixed zp = 0. Top-right: Random z7 with y = 0.2. Bottom-left:
(xr,y) = (=1,-1.5), (z7,y) = (0,0.2) and (z7,y) = (1,1.5). Bottom-right: MMSE estimation
Ep (20 |y=7)[T0] and VP-RMP outputs for different measurement y.

5.1 GAUSSIAN MIXTURE MODEL

We generate x from a Gaussian mixture prior p(z) = 3N (2o; p1,v3) + 3N (wo; 2, v3) and get
measurement from y = azg + voe, where € ~ A (0, 1), to demonstrate the rationale of RMP. In the
experiments, we set (1 = 1, o = —1,v1 = v = 0.2, v9 = 0.5, a = 1, and T' = 1000. Since the
model is simple, the data and likelihood score can be calculated exactly (given in Appendix [D). By
running VP-RMP in Algorithm [2] (with exact score), the propagation of the reverse mean is shown
in Figs. [1]and 2] In the right part of Fig. [1} z7 is initialized randomly from pr(zr) for various
measurement y. We see from the plot that the final output of VP-RMP, i.e., the reverse mean pg
converges to £, |,)[zo]. In the top-left plot of Fig. [2| for various measurement y, we initialize
xzp = 0. The final output of VP-RMP is almost the same as that in Fig. [T which converges to
Ep(z0]y) [To]. In the top-right plot of Fig. 2} x7 is initialized randomly from pr(x7) and y is set to
0.2. The reverse mean converges to the posterior mean E,, ,—0.2)[Z0] no matter what x7 is. In the
bottom-left plot of Fig. 2] 27 and y are fixed to three cases. We see that the evolution of reverse
mean is almost deterministic when the initial point z7 and y are fixed. In the bottom-right plot of Fig.
the theoretical results of E,,(,,|,—g) [7o] and estimations of 2y using VP-RMP for various y are
shown where points A, B, and C correspond to the outputs of VP-RMP for the three cases given in the
bottom-left respectively. We see that the outputs of VP-RMP consists with the posterior mean well.

5.2 IMAGE RECONSTRUCTION

We compare our proposed VE/VP-RMP in Algorithm [2] with baseline algorithms for different image
reconstruction tasks on FFHQ 256 x 256 dataset (Karras et al., 2019). For VP-based methods,
the pre-trained score network for FFHQ 256 x 256 is take from [Chung et al.| (2022a) and for
VE-based methods, the pre-trained score networks for FFHQ 256 x 256 is taken from|Song et al.
(2020b). The algorithms we compare include Diffusion Posterior Sampling (DPS) (Chung et al.,
2022a), Manifold Constrained Gradients (MCG) and Plug and Play ADMM (PnP-ADMM) (Chan
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Table 1: Quantitative results (PSNR, SSIM, FID, LPIPS) of solving linear inverse problems with
Gaussian noise (e = 0.05) on FFHQ validation dataset. Bold: best, Underline: second best.

Methods SR (4 x) Inpaint (box) Inpaint (random) Deblur (Gauss) Deblur (motion)

PSNR T SSIM T PSNR T SSIM T PSNRT SSIM T PSNR T SSIM T PSNR T SSIM T

VE-RMP (Ours) 29.26 0.8421 25.23 0.8361 34.58 0.9315 28.28 0.8214 27.74 0.8232
VP-RMP (Ours) 28.89 0.8410 25.78 0.8716 34.27 0.9291 27.96 0.8153 28.10 0.7921

DPS 2432 0.7016 24.68 0.8182 29.85 0.8554 2550 0.7210 2342 0.6712
MCG 18.16 0.2145 11.30 0.2450 11.06 0.0812 11.65 0.1317 11.53 0.1065
PnP-ADMM 2321 0.6744 13.06 0.4534 18.49 0.5154 27.13 0.7763 24.12 0.7812
Methods SR (4 x) Inpaint (box) Inpaint (random) Deblur(Gauss) Deblur (motion)

FID| LPIPS| FID] LPIPS| FID| LPIPS| FID| LPIPS| FID| LPIPS]

VE-RMP (Ours) 89.04 0.2278 96.36 0.2372 36.37 0.0948 94.43 0.2515 90.63 0.2438
VP-RMP (Ours) 57.27 0.1890 28.36 0.1250 22.41 0.0771 59.10 0.2024 62.80 0.2383
DPS 72.44 0.2484 53.35 0.1905 57.74 0.1887 60.18 0.2377 68.83 0.2576
MCG 227.65 0.6232 44324 0.7929 486.09 0.8224 354.01 0.7760 461.38 0.7222
PnP-ADMM 8632 04723 16531 0.5099 117.51 0.4628 125.63 0.3180 182.41 04212

Table 2: Quantitative evaluation (PSNR, SSIM, FID, LPIPS) of solving nonlinear inverse problems
on FFHQ validation dataset. Bold: best, Underline: second best.
Methods Phase retrieval Nonlinear deblur
PSNR SSIM FID LPIPS PSNR SSIM FID LPIPS
VE-RMP (Ours) 27.98 0.7860 72.84 0.1857 25.21 0.7222 143.02 0.3401
VP-RMP (Ours) 25.32 0.7632 62.11 0.1512 24.33 0.6872 66.47 0.2219
DPS 1275 0.4142 218.78 0.5828 23.62 0.6696 76.85 0.2685

ve-rmp vp-rmp

SR (x4)
inpaint (box)

motion deblur
phase retrieval

Figure 3: Part of the results on solving inverse problems with Gaussian noise (¢ = 0.05).

2016). Denoising Diffusion Restoration Models (DDRM) and IIGDM 2023) are

discussed in the appendix part since these methods have difference likelihood score approximation and
DDRM can only be applied for linear measurements. Unless otherwise specified, the measurement
noise is set to Gaussian. The four metrics are used for comparisons: Frechet Inception Distance (FID)

(Heusel et all 2017), Learned Perceptual Image Patch Similarity (LPIPS) 2018), Peak
Signal-to-Noise-Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (Wang et al.l 2004).
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For VP-based algorithms i.e., DPS, MCG and VP-RMP, §j; varies linearly with k in range from
0.0001 to 0.02 as given in [Ho et al.| (2020). The timesteps for DPS, MCG, and VP-RMP are all
fixed to T' = 400. The inner loop size T, = 1 for VP-RMP. For VE-RMP, we set 7' = 30 and
Ty, = 20 for all tasks. {op},k =1,2--- T is set as a positive geometric sequence as suggested

inSong & Ermon| (2019) that satisfies ;7% > 1. In all experiments, we set o), = amm(gmi)%
where 0,,,;,, = 0.01 and 0,4, = 100 that matches the pre-trained score network given in [Song
et al.| (2020b). The settings of step size s; and ¢ for VE/VP-RMP are given in Appendix |[E| Other
parameters in DPS, MCG are set according to the configurations provided by its’ authors. The code of
our algorithms is developed under the framework developed by DPS, and the measurement operator
used in our comparisons are the same for all algorithms such that the comparisons are fair enough for

all algorithms. Our code is available at https://github.com/neuripsrmp/rmp.git.

Linear Inverse Problems: We compare algorithms on image reconstruction problems including
super resolution, inpainting (box, random) and deblur (Gaussian, motion deblur). The evaluation
results on different metrics are given in Tables[I] We see from Tables[I]that VE/VP-RMP outperforms
other algorithms on almost all tasks and VP-RMP achieves the best performance in both FID and
LPIPS metrics in all tasks. We present some results in Fig. [3] More results on FFHQ and ImageNet
(Russakovsky et al., [2015) datasets are given in Appendix [F}

Nonlinear Inverse Problems: We compare VE/VP-based RMP with DPS on non-linear image
reconstruction tasks including phase retrieval and non-linear deblur on FFHQ dataset. The comparison
results are presented in Table 2] We see that similarly to the linear cases, RMP achieves better
performance comparing to DPS in most of the metrics.

30 T T T T T T T T T 180

251

PSNR (dB)
LPIPS

20

—e—PSNR (RMP) --@--FID (RMP) 05 ——SSIM (RMP) --@-=LPIPS (RMP)
—#—PSNR (DPS) --B--FID (DPS) —8—SSIM (DPS) --B-LPIPS (DPS)

10.15
- - 40 0.45 - -
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

NFE NFE

15

Figure 4: Performance comparisons of algorithms with different NFE on SR task.

5.3 COMPLEXITY VS PERFORMANCE

The complexity of diffusion-based methods dependent on the number of neural function evaluations
(NFE). RMP consists of T outer loops and each outer loop has T3, inner loops. The operations in
the outer loops can be ignored since only variable assignments and scalar calculation are involved.
In each inner loop, two main operations are involved: denoising with score network sg(xy, o))
and stochastic natural gradient descent step which requires the likelihood score. Thus, the NFE of
VE/VP-RMP is T'T;,,. To show the performance of RMPs with different NFE, we compare the curves
of NFE versus the performance of VP-RMP and DPS on SR task in Fig. ] From the figure, we see
that RMP outperforms DPS significantly on all metrics for all NFEs. We also note that for the PSNR
metric, VP-RMP with 50 NFEs achieves a higher PSNR than DPS with 1000 NFEs.

6 CONCLUSIONS

In this paper, we propose a score-based variational inference framework for inverse problems. By
optimizing the reverse KL divergence at each step of the reverse process and tracking the evolution
of reverse mean at each reverse step, a practical algorithm for general inverse problems is proposed.
Extensive experiments validate our theoretical results and demonstrate that our proposed algorithm
achieves superior performance on various image reconstruction tasks.

10
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A PROOF OF PROPOSITION ]

A.1 GAUSSIAN PROPERTY

First, the reverse conditional py (xk|Tk+1,y) is given by

p(xri1|zn)p(xr]y) (23)
p(Trt1]y)

pk(wk|$k+17 y) =

12
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where x; and 1 can be viewed as the discretization of continuous diffusion process of x;. We
relate {xk}fzo to continuous stochastic process {x;}}_, by letting &} = T;—xas, where At = %
The discrete {x)}7_, becomes a continuous process in the limit At — 0. Thus, we focus on the
continuous form of the reverse conditional, i.e., px(€k|Tr+1,Yy) = p(t|Titat,y). The reverse
conditional in a continuous form is given by

P(Tiyat|Te)p(Ti|y)
p(xeyaely)

(x| T e, Y) = (24)

As shown in|Song et al.| (2020b)), the forward process can be characterized by the following SDE:

dx = fi(x)dt + gi(x)dw (25)
where w is the standard Wiener process. For VE diffusion, f;(x) = 0 and g () = dg{g:)Q , and for
VP diffusion, f;(x) = —1B(t)x and g,(x) = /B(t). When At — 0 we have

wt+At — Ly = .ft (Il?t)At —+ gt (Il?t) V AtE (26)
where € ~ N (0, I). Then
P(@iyacl@e) = N (@i a0+ fi(@) At, g7 () At)
x exp (_ [Zrae — S;'t - ft(mt)Aﬂ%) 27
2g7 (z¢) At

and

_ |irar — @ — fi(x) At]]3
297 (@) At

p(@e|zs a0, ) o exp ( +1ogp<a:t|y>logp<mt+m|y>). 8)

When At — 0, log p(z+|y) can be expressed by Taylor expansion:

9
log p(x1-a¢ly) =~ log p(@:|y) + (Teae — )" Vo, log p(a:ly) + At& logp(x¢ly).  (29)

Thus, we have

|ziear — 0 — (fi(ze) — 97 (x1) Ve, log p(a:|y)) At[|3
- s O(At
p(wt‘mt“l‘At? y) X exp ( 2g§($t)At + ( )
(30)
which is Gaussian when At — 0. Thus, pg (x|€k+1, y) is Gaussian when At — 0.
A.2 VE DIFFUSION
For VE diffusion models, the mean of p(xy|y) is given by
o o] = [ @up(enly)dor
= /wk /P($k|il?0)p(wo\y)dwodivk
(3D

://wkp(:vklwo)dwkp(wow)dwo

= / zop(o|y)dxo = Ep(ayy)[T0]

13
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and its covariance matrix is given by

CoVy(ay |y) (k]
- / e, p(ay|y)day, — By, |y) [T0]Ep(ay)[®o]

= / TLTy, / p(@k|20)p(xo|y)daodar, — Bp(ay|y) [0 Ep(ay|y) (o]

= | [ exettandzoitesp ety By By ool G2

- / (zoxg + o7 d)p(@oly)dao — Ep(ay|y) [T0]Ep(ay|y) [@o]

= ol + CoVp(ao|y) [To] + Ep(ao ) [T0)Ep(ao ) [z0]" — Eop(oly) [To]Ep(aoly) 0]
= UzI —+ COVp(w0|y) [mo] = U]%I -+ Cmg~

Since py(xk|Tr+1,y) can be expanded as a Gaussian around x4 using the second order Taylor
approximation when At — 0 and p(zx41|€r) = N (ki1 g, (07,1 — op)I), then p(zk|y) can
also be expanded around x4 and approximately expressed in the form of a Gaussian when At — 0,
ie., p(xi|y) = N(@k; Epaoly) [®0), (071 + Cq,)). For two multivariate Gaussian distribution
Gi(z) = N(x, p1,X1) and Go(x) = N (x, p2, o), the product G1(x)Ga(x) is also Gaussian
with mean and covariance given by

ps = o(B1 4+ 20) T + 21(T1 + Z0) o

. (33)
5= 51(5) 4 5,) 7 13,.

Thus, the mean and covariance of py (xx|Tk+1,¥y) can be calculated according to and are given
respectively by:

M = (U%I + Cwo)(o'l%JrlI + Cﬂb‘o)_lwk+1 + (UI%Jrl - Uz)(0z+11 + Cwo)_lEp(woly) [330]
= Vk,plwk+1 + Vk,pz]Ep(woly) [mo] (34)
Cy = (0'1%4-1 - U}%)(”}il + Cwo)(0§+11 + Cwo)il-

A.3 VP DIFFUSION

For VP diffusion models, the mean of p(xx|y) is given by

Ep(@rly) [€r] :/mkp(a:k|y)dwk
= /wk/p(wklwo)p(woly)dfﬂodwk
_ / / @k o) dawp(ao|y)do
= /\/@wop(wowmxo = VkE (2, |y)[Zo]

(35)
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and its covariance matrix is given by
CoVp(ayly) [2r] = / 2@ Tk |y)dmr — OBy (e y) [T0]Ep(a|y) [T0]”
= /JikwkT-/p(mk|$o)l7($0\y)dxodmk — Ak (o) [T0)E p(azo ) [T0) "
_ / / 2 ply o) dayp(oly) Ao — ArE (o) [0 Ep(aofy) [Zo]”

(36)
= / (axzoxy + (1 — ar)I)p(xoly)dao — ArEp(w,|y) [©0]Ep(ay) [@0] "

= (1= G + ar(CoVy(ayly) [@o] + Epwoly) [0]Ep(ay ) (0] )
= GKEp(aoly) %0 Ep(ay ) [To]
= (1 = ap)I + arCoVp g,y [x0] = (1 — ar)I + @, Cx,
Similarly to the case of VE diffusion, since p(xyi1|Tr) = N(ki1; mwk, Br+11), the
mean and covariance of pi(xx|xr41,y) are given respectively by:

-1
Hi = ((1 — dk)I+dka0) ((@CH +1 _ak) I_'_akaO) Tr41

1= Br+1 V1= Brs1

—1
+ 1 fkg}jﬂ <(1 fk;;l +1- ak> I+ 07ka0> VaRE, (2o ]y) 0]
= ((1 = @I + arCay) (1 — @) + ax1Cay) " V/Ari1Thi

+ (1= agg1) (1= arg )T + @41Cag) ™ VarEp () [o]
= Vips®rr1 + Vi p, Ep(aoy) [To]

(37

and

-1
G = (1 —a+ axCq,) <<5’““ +1- ak> I+ dkao> - (Y
1 — Br+1 1= Br+1

B PROOF OF THEOREM [II

B.1 VE DIFFUSION

For VE diffusion model, if we set , = pr(xr+1 = pr+1,Y), Vk = 0 : T'—1, then from Proposition
[1} we have

to(x1,y)
= Vo T1 + Vo p, Ep(aoy) [T0]
=Vop, Vip, @2 + V1 Ep(aoly) [o]) + V(J,P'zEP(fBO\y)["BO}
= Voo, Vipi @2 + Vo5, Vi o Ep(ao ) [®0] + V0,00 Ep(aoy) [To]

T—1
= H val pr + (‘/0,171 (‘/1,171 ( o VT*27P1 (VT*L}Dz) + VT*Q,pz) + ‘/1-,172) + ‘/(),pQ)Ep(mg|y) [1130])
i=0
(39)
For the first part, the coefficient of pr equals
T—1 T—1
I Vie = [T (021 + Ca) (0?1 T + Cay) ™" = (081 + Cay) (071 + Cay) . (40)
i=0 i=0

For the second part, Vk = 1 : T — 1, we have
Vi 1.1 Vieps + Vie1.po = (041 I + Coy) (03 + Cuay) ' (0741 — 03) (0731 T 4+ Ca,) ™!
+ (0% = 0i_1) (0} + Cap) ™

= (‘71%+1 - 0271)(02+1I+ Cwo)_l-
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Similarly, we get

(‘/07171 (‘/17171 ( o VT*Q,P1 (VT*LPz) + VT*2,IJ2) + ‘/1,;02) + %7172) = (U% - U%)(U%I + Cwo )(;i)

Thus, we have
Ko = (O’%I + Cmo)(o—’%-[ + Cwo)ilu’T + (O—% - 08)(0—%‘[ + Cmo)ilEp(wo\y) [:130] (42)

When 6% — 00, po(®1,Y) = Ep(ao|y) [o], Which is the posterior mean.

B.2 VP DIFFUSION

Similarly to VE diffusion, for VP diffusion model,

po(z1,y)
= Vbapswl + ‘/07P4Ep(wo\y) [mO}
T-1
= 11 Viwstor + (Voo (Vs -+ Vi (Ve 1.0,) + V2. + Vi) + Vo s ) Ep(ao ) [0])
i=0
(43)
For the first part, the coefficient of pr equals
T-1 T-1
11 Viws = [T (0 = @) + @iCay) (1 = @) T + @i 1Cay) " V/aiga )
i=0 i=0
= Var((1 —ag)I + ayCq, ) (1 — ap)I + arCy,) "
For the second part, Vi = 1 : T'— 1, we have
Vict g Vips + Vicipy = (1= @) I + @i1Cly) (1 — @ + @;Cl,) ™
Vai(l = o) (1= @) + @i41Cay) ' Vau 43)

+(1—a)((1—a)I+@&Cu) " Vaia
= (1 — aiai+1)\/@i_1((l — 5[14_1).[ + 641-+1Cm0)’1.

Similarly, we obtain

‘/07173 (‘/17173(' e VT—2,p3(VT—1,p4) + VT—Q,P4) + ‘/1,P4) + ‘/07:04
= (1 - apas -~ ap)Vao((1 — ar)I + apCq,y) " (46)
=(1—ar)((1 —ar)I +arCy,)~".

Thus, we have

M0(5131,y) = \/@((1 - C_Yo)I + dOCEo)((l - aT)I + dTCmo)ilu'T

i ’ . 71 47
+ (1 —ar)((1 —ar)I + arCq,) Ep(fco\y) (0]

and po — Ep )y [To] as ar — 0.
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C PROOF OF PROPOSITION [2]

‘We have

p(xr.T,Y)
p(Tpr1.7,Y)
_ ['p(=o)p(ylxo)p(xhr|X0)daco
[ p(=o)p(y|@o)p(® Rt |T0)dao
__ P@kraer|mr) [ p(@o)p(yleo)p(ak|ao)dao 48)
p(Thro:r|Tet1) [ p(xo)p(ylao)p(Trit|xo)dag
_ pl®ryalzr) [ p(@o)p(yleo)p(es|zo)dao
B J p(xo)p(ylzo)p(®)t1|T0)d2o
p(Th, Tht1,Y)

=0 = pk(wk|ﬂ?k+1, y).
p(Tri1,Y)

p($k|mk+1:T7 y) =

We minimize the KL divergence between variational ~ joint posterior
a(zorly) = q(@rly)[T)_r_i ax(zk|lzrs1,y) and joint posterior p(zorly) =
p(xr|y) HZ:T—l p(xk|TE+1.7,y) to obtain the optimal variational distribution g:

o
IZ/Q(iBO:ﬂy)lOg wdﬁﬂow
p(xo.r|y

0
Qk(Tk|Th+1,
k=T—1 p(wk|mk+1:T7y)
: ar (@ |T041,Y)
k(Tk|Tr+1,
= > /q(wk:le) log — =2 dapy
k=T—1 p(wk|wk+l:T7y)
- ak (k| Trt1,Y) (49)
= > /q(wk:le) log == =2 Sy
k=T—-1 P (Tr|Try1,Y)
& @ (Tk|TKt1,Y)
k(Tk|Tr+1,
= Z /Q(mk:k+1|y) log—+dwkd:ck+1
k=T—1 Pr(Tk|Trt1,Y)
: g (@i, y)
k(Tk|TE+1,
= /Q(wk+1|y)/%($k\mk+1,y) log —+dmkdmk+1
k=T—1 pk(mk|wk+1yy)
where the last line follows from
T-1
q(Tr:k41ly) = /Q(ley) [T es(@il@is1, y)dapior
i=k
:/Qk(mk|$k+1vy)‘]k+1(mk+1|mk+27y)Q(xk+2:T|y)dmk+2:T (50)
:Qk(mk‘mk—&-lay)/Qk+1($k+1|mk+2,y)q($k+2:T|y)d.’1}k+2:T
= qe(Tr|Trt1, ¥)e(Tpt1ly).
Thus, the minimization of F is equivalent to the minimization of
xp|Try,
i = /Qk(wklwmuy) log wdwk,Vk =0,1,---T - 1. (51)
Pk(wk\wkﬂ,y)
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D GAUSSIAN MIXTURE MODEL

The data prior of z is given by

1 1
p(wo) = SN (@o; 1, v7) + SN (wo; p12, v3)

1 (52)

= 5(171(%) + p2(20))-

Then, the data score is
1 To — 1 To — 2

20 L = — — —_ . 53
V., log p(o) 5p(20) ( p1(o) p pa(wo) p ) (53)

The measurement y = axg + oge1 and for VP diffusion, & = v/arzg + /1 — areo where €1 and
g9 are i.i.d. from N (0, 1). Then,

Tr — 1 — apes
o = — (54)
Vay
and
T — V1 — ares
= . 55
y=a Jar + 0o€1 (55)
Thus, p(y|xg) ~ N(%, QQOT_:"“) + 02) and the likelihood score
Y — =
a V% (56)

V.. lo Tk) = —= ~ )
. log p(y|xs) \/@‘12(1&7:1’“)4-08

E RMP IMPLEMENTATION DETAILS

E.1 HYPERPARAMETERS SETTING

In the experiments presented in Tables (1| and [2| the step sizes s; and ( for different tasks on the
FFHQ dataset for VP/VE-RMP are set according to Tables [3]and ] respectively. Additionally, we
conducted a parameter sensitivity analysis for the hyperparameters s; € (0,1] and ¢ € (0, 1] of
VP/VE-RMP on SR tasks to demonstrate the process of selecting these parameters. The performance
of VP-RMP, measured by various metrics in relation to the hyperparameters, is shown in Fig. [5} From
these colormesh plots, we observe that the performance of RMP varies smoothly with respect to the
hyperparameters. Therefore, we can choose the hyperparameters based on the colormesh.

Table 3: Hyper-parameters of VP-RMP for different tasks
parameter | SR (4x) | box | random | Gauss | motion | nonlinear | phase
S1 0.9 0.6 10.6 09 |09 0.8 0.5
¢ 0.15 03 (03 0.5 0.5 0.8 0.5

Table 4: Hyper-parameters of VE-RMP for different tasks
parameter | SR (4x) | box |random | Gauss | motion | nonlinear | phase
S1 0.1 0.05 (0.1 0.05 |0.05 |0.05 0.05
¢ 0.07 0.1 [0.25 0.15 |0.15 |0.15 0.35
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Figure 5: Hyperparameters (s, and () versus metrics for VP-RMP on FFHQ dataset.
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Figure 6: Hyperparameters (s; and () versus metrics for VE-RMP on FFHQ dataset.
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Figure 7: Performance comparison of VP-RMP with different 7" and 7;,, on SR task.
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Figure 8: Running time of algorithms for different image reconstruction tasks.

E.2 ALGORITHM PERFORMANCE AND RUNNING TIME COMPARISONS

To demonstrate the performance of RMP when choosing different values of 7" and 73,,, we present
the performance of VP-RMP with respect to various numbers of loops in Fig. [7] From the figure, we
observe that the performance of VP-RMP improves with an increasing number of outer loops 1" and
inner loops 7;,,. We compare the running times of VE-RMP, VP-RMP, DPS, and PnP-ADMM for
different image reconstruction tasks on the FFHQ dataset in Fig. [§] From Fig. [§] it is evident that
VP-RMP achieves better performance with shorter running times across all tasks.

E.3 APPROXIMATION OF LIKELIHOOD SCORE FOR NATURAL IMAGES

In addition to the approximation of likelihood score we used in the main results for image reconstruc-
tion tasks, other approximation methods (Meng & Kabashima) 2022} [Song et al., 2023)) of likelihood
score can be employed to RMP. We present the performance of VP-RMP with the approximation
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method used in IIGDM in Table[3] It is shown that the performance of VP-RMP with likelihood
approximation method in|Song et al.|(2023)) achieves similar performance as that of VP-RMP with
DPS approximation.

Table 5: The performance of VP-RMPs with different approximations of likelihood score on FFHQ
dataset.

Methods SR (4 x)
PSNR SSIM FID  LPIPS
VP-RMP (with approximation in (19)) 28.86 0.8413 59.7112 0.1825

VP-RMP (with approximation in [IGDM (Sorget al}2023)) 28.70 0.8477 61.8101 0.1988

F IMAGE RECONSTRUCTION RESULTS

The image reconstruction results for inpainting (random) and Gaussian deblur tasks on FFHQ dataset
are shown in Fig. [§]and more results of various image reconstruction tasks on ImageNet are presented
in Fig. [I0] The hyperparameters are set according to Table|[6]

Table 6: Parameter settings of VP-RMP for different tasks on ImageNet.

hyperparameter | SR (4x) | box | random | Gauss | motion | nonlinear | phase
S1 0.6 0.6 [0.6 0.6 0.6 0.8 0.5
¢ 0.2 0.9 109 0.9 0.9 0.8 0.5

G LIMITATIONS OF RMP

Although RMP achieves better performance with lower computational complexity compared to
existing methods across a variety of inverse problems, as demonstrated by experiments, some
limitations may restrict its application to general settings. As a plug and play method, RMP requires a
pre-trained score network for the data. In our experiments, the pre-trained score networks were taken
from previous works. Training the score network can be challenging for certain data distributions,
and obtaining clean datasets can also be difficult in some fields. This is a common limitation shared
by all score-based methods for inverse problems, such as DPS, DDRM, and IIGDM. Additionally, the
complexity of solving the variational problems using stochastic NGD, which is involved in updating
the mean parameter in RMP, may hinder its application in real-time scenarios.

Table 7: Quantitative evaluation of algorithms on ImageNet dataset.

SR (4 x) Inpaint (box) Inpaint (random) Deblur (Gauss) Deblur (motion)

Method
eHO% " PSNRT SSIM T PSNRT SSIM T PSNR T SSIM T PSNR T SSIM T PSNR 1 SSIM T

VP-RMP (Ours) 26.21 0.7261 19.29 0.7830 29.71 0.8720 24.65 0.6806 25.30 0.6533

DPS 21.24 0.5655 1796 0.7274 27.11 0.7862 2249 0.5996 19.72 0.5118
DDRM 24.28 0.7137 19.01 0.7801 29.01 0.8742 23.81 0.7109 - -
Methods SR (4 x) Inpaint (box) Inpaint (random) Deblur(Gauss) Deblur (motion)

FID| LPIPS| FID| LPIPS| FID| LPIPS| FID| LPIPS| FID| LPIPS |

VP-RMP (Ours) 75.76 0.3021 106.73 0.2156 26.45 0.1400 85.92 0.3105 71.00 0.2933

DPS 187.14 0.4147 146.54 0.2664 7620 02424 86.28 0.3224 144.43 0.3795
DDRM 117.82 0.3086 119.65 0.2232 27.18 0.1066 95.07 0.2931 - -
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gauss deblur

input dps ve-rmp vp-rmp label

Figure 9: Inpainting (Random) and Gaussian deblur (¢ = 0.05).
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SR (x4)

inpainting (random)

Figure 10: SR (x4) and Gaussian deblur (¢ = 0.05).
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