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Abstract

AI-generated image detectors have historically concen-
trated on generalization across generative models, often
overlooking the critical challenge of cross-semantic gener-
alizability. This limitation constrains the adaptability of de-
tectors to new semantic content in real-world settings. We
propose Adaptive Test-Time Semantic Debiasing (ATTSD),
a zero-shot approach that utilizes the visual-semantic space
of large pretrained vision-language models to dynamically
align feature representations during testing—without re-
quiring additional training data or annotations. To further
enhance adaptability, we introduce Semantic-Suppression
for hard sample mining, adjusting the degree of seman-
tic debiasing for each sample based on Fourier transform
properties. To assess cross-semantic generalizability, we
present the Cross-Semantic AI-generated Image Detection
dataset (CSAIID), a benchmark comprising diverse seman-
tic categories reflective of real-world complexities. Exten-
sive experiments show that ATTSD achieves state-of-the-art
performance, particularly excelling in cross-semantic sce-
narios, positioning it as a promising solution for detecting
evolving AI-generated content. The CSAIID dataset is pub-
licly available here.

1. Introduction
As generative AI technologies have advanced in recent
years, AI-generated visual content is flooding the online
information ecosystem at an unprecedented rate. This in-
flux has posed significant challenges to the trustworthi-
ness of online media, cybersecurity, and copyright protec-
tion [1, 37]. Detecting AI-generated images (AGIs) has be-
come an important research topic [18, 28]. From generative
adversarial networks (GANs) [2, 13] to the recent diffusion
models (DMs) [6, 23], the rapid evolution of image gen-
erators poses ongoing challenges for AGI detection. As a
result, mainstream detection paradigms have focused their
efforts on improving cross-generator generalizability.

A common strategy is to train detectors on images gen-
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Figure 1. Comparison of detection accuracy on forgeries across
various semantic categories. Existing detectors demonstrate lim-
ited cross-semantic generalizability. In contrast, our method
achieves superior detection accuracy. Note, these detectors are
trained on 20 single-object categories from the training set [29]
(e.g., horse, cat). The test set, sampled from LCM subset of the
cross-semantic dataset proposed in this work, is organized into
broader categories. For example, “Animals” subset includes a di-
verse range of animals such as bears, cats, and birds, reflecting
more complex and varied semantics than isolated categories in the
training set.

erated by a particular model (e.g., ProGAN [13]) and
then evaluate them on images from various unseen gener-
ators [18, 28, 32]. However, this strategy mainly focuses
on generalization relative to different generators, neglecting
another essential factor: the impact of image semantics on
detector performance.

Our analysis demonstrates that image semantics are cru-
cial to a detector’s generalizability. Prior research has not
comprehensively investigated generalization across varying
image semantics, particularly when detectors encounter im-
ages with unseen semantic content absent from the training
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set. Can an AGI detector trained on specific semantic cate-
gories still identify semantically distinct images?

As shown in Fig. 1, we evaluate the performance of ex-
isting AGI detectors on images across diverse semantic con-
tent. Most detectors show limited effectiveness, achieving
only moderate accuracy on specific semantic subsets (e.g.,
Vehicles and Animals), likely due to the presence of objects
similar to those in the training set. This highlights a spu-
rious correlation in current detection formulations, which
tend to overfit specific semantic bias present in the training
set. While expanding the diversity of training data could
potentially address this issue, it is impractical to encompass
all possible semantic variations in open-world scenarios.

In this work, we introduce a new perspective on gener-
alizable AGI detection: How can a detector trained on a
closed-set dataset adapt dynamically to emerging, unseen
semantic content? To mitigate the semantic bias between
test and training data, we propose performing adaptive se-
mantic debiasing at test time. This approach must satisfy
two key requirements: (i) employ unbiased and reliable se-
mantic representations for test samples, and (ii) function
in a self-supervised manner, as manually labeling semantic
annotations for newly encountered samples is both labor-
intensive and potentially introduces human bias.

To this end, we propose visual-semantic alignment as an
auxiliary task, built upon the visual space of large-scale pre-
trained vision-language models. As an instantiation of this
idea, we utilize the visual features of CLIP [22], which ful-
fills aforementioned requirements through two merits: (i)
Pretrained on internet-scale datasets through tasks unrelated
to forgery, CLIP provides a rich and less biased visual-
semantic representation, ideal for semantic alignment; (ii)
Each sample can thus be self-labeled by its CLIP visual em-
beddings, eliminating the need for additional annotations.

Based on this, we propose our Test-Time Semantic De-
biasing (TTSD) strategy via a multitask framework where
AGI detection serves as the main task and visual-semantic
alignment operates as an auxiliary task. Inspired by test-
time training [26], we organize these two tasks in a two-
branch architecture with a sharing a common feature extrac-
tor as their foundation. Upon encountering new test data,
the visual-semantic alignment is conducted by distilling the
CLIP visual embeddings through the pathway of the auxil-
iary task. Thereafter, the semantic features learned by the
detector are adjusted as the shared feature extractor dynam-
ically adapts to the test distribution. Furthermore, we intro-
duce a Semantic-Suppression strategy for hard sample min-
ing that operates in conjunction with TTSD. This adaptive
component adjusts the degree of semantic debiasing applied
to each individual sample, forming our complete Adaptive
TTSD (ATTSD) method.

We also introduce a new benchmark specifically de-
signed to evaluate the cross-semantic generalizability of

AGI detectors. Existing benchmarks rarely consider the
semantic dimension. When they do, they typically or-
ganize datasets into narrowly defined, single-object cate-
gories, such as “car” or “cat,” overlooking more complex
scenarios and multi-object compositions [29, 38]. In con-
trast, our Cross-Semantic AI-generated Image Detection
dataset (CSAIID) categorizes images under broader con-
ceptual groups, capturing diverse objects and scenarios to
better reflect real-world semantic diversity.

Our main contributions are as follows: (1) We iden-
tify and address the overlooked challenge of cross-semantic
generalizability in the current AGI detection field, reveal-
ing the impact of semantic diversity on the generalization;
(2) We propose an Adaptive Test-Time Semantic Debias-
ing (ATTSD) strategy, enabling detectors to dynamically
adjust feature learning according to evolving semantic dis-
tributions. Our ATTSD retains the zero-shot generalization
setting as it requires no additional training data or annota-
tions; (3) We develop the CSAIID benchmark, specifically
designed to assess cross-semantic generalizability, and or-
ganize it into multiple high-level semantic categories en-
compassing diverse and multi-object scenarios to reflect
real-world visual complexity; (4) Extensive experiments on
multiple datasets demonstrate that our approach achieves
state-of-the-art generalization performance, particularly in
cross-semantic detection scenarios.

2. Related work

2.1. AI-generated image detection
Existing AGI detection methods can be categorized into two
types: artifact-based methods and semantic-based methods.
Artifact-based methods capture inherent forgery artifacts
left by generative models [4, 29, 30, 33]. CNNSpot [29]
simulates the artifacts of generative models to detect var-
ious GAN-generated fakes. NPR [28] identifies common
up-sampling artifacts present in both GAN and DM forg-
eries. DIRE [30] and DRCT [4] use diffusion-based im-
age reconstruction to detect DM-generated fakes. In con-
trast, semantic-based methods aim to avoid overfitting to
low-level artifacts. UniFD [18] uses the fixed CLIP visual
space through linear probing to learn common properties of
fake images. De-fake [24] combines image and caption in-
puts into CLIP’s visual and text encoders to detect images
created with text-to-image generative models. AIDE [32]
proposes to improve detection generalization by combining
ConvNeXt-based CLIP semantic features with noise pat-
terns. However, none of the above methods have examined
AGI detection from a cross-semantic perspective.

2.2. Test-Time Training
Test-time training (TTT) is a methodology initially de-
signed to enhance a target task by incorporating a self-
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supervised auxiliary task during the testing phase, enabling
the model to dynamically adapt to distribution shifts be-
tween training and test data. TTT is primarily derived from
object recognition tasks. Sun et al. designed a rotation pre-
diction task as an auxiliary task to update model weights
and help the main task adapt to test domains. TTT-MAE [8]
trains a masked autoencoder to reconstruct test images, im-
proving object recognition under distribution shifts. Due to
its flexibility and effectiveness, TTT has been introduced
to more mainstream tasks. TPT [25] and DiffTPT [7] en-
hance vision-language models with test-time prompt tun-
ing, generating augmented views of test samples via Aug-
Mix [11] or diffusion-based augmentation tools to ensure
prediction consistency with the original views. The pri-
mary assumption in these works is that applying strong
augmentations to test samples will not significantly alter
the predictions from the original, as these are all semantic-
related tasks. Both reconstruction and diffusion-based gen-
eration are semantic-invariant augmentations, as the high-
level semantic patterns (i.e., task-specific patterns) remain
preserved. However, this strategy may not be directly appli-
cable to AGI detection tasks, as aggressive augmentations
could disrupt the low-level artifact patterns that are critical
for classification. Given the inverse nature of task-specific
patterns, a forgery-invariant augmentation would be more
ideal for TTT-involved AGI detection tasks.

3. Methodology
3.1. Preliminaries
To establish notation, consider a standard AGI detector
composed of a feature extractor, θext, and a forgery classi-
fier, θcls. The vector of stacked parameters θ = (θext, θcls)
specifies the entire detection model. Following TTT termi-
nology, we refer to this as the main task. We assume access
to a training dataset: {(x1, y1det), . . . , (x

n, yndet)}. ydet de-
notes the binary real/fake label. The training process can be
formulated via binary cross entropy (BCE) loss as follows:

min
θext,θcls

1

n

n∑
i=1

Lbce

(
xi, yidet; θext, θcls

)
. (1)

3.2. Visual-semantic alignment
Following the TTT approach, our ATTSD-based detection
employs a self-supervised auxiliary task of visual-semantic
alignment, i.e., distilling the CLIP visual features. CLIP
visual features have proven effective across various visual-
language tasks. Given its training on large-scale datasets,
CLIP’s visual space offers rich semantic representation and
is less biased toward specific semantics. Another advantage
is that, instead of relying on hard semantic representations
such as image captions or numeric class labels, we can di-
rectly use the dense representations output by CLIP’s visual

encoder as soft labels. This manner covers more compre-
hensive visual content without losing any indescribable vi-
sual patterns. We use the original CLIP embeddings with-
out any dimensionality reduction or projection, preserving
the integrity of CLIP’s semantic representation.
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Figure 2. The training scheme of multitask learning for ATTSD.
The main task is AGI detection, utilizing the branch composed of
the Forgery Classifier and Feature Extractor. The Forgery Classi-
fier predicts the binary real/fake label ydet, optimized using the
BCE loss Lbce. The auxiliary task, visual-semantic alignment,
is designed for subsequent test-time training. It operates on the
shared Feature Extractor and aligns output features with CLIP’s
visual semantic space via the Semantic Adaptor, optimized using
the semantic alignment loss Lsem.

The auxiliary task shares the feature extractor with the
main task but requires its task-specific parameters. To fa-
cilitate this, we embed a semantic adaptor, θsem, between
the feature extractor and the forgery classifier. Pictorially,
this joint architecture forms a Y-shaped model with a shared
base and two branches. Following typical TTT work [26],
the auxiliary branch mirrors the architecture of the main
branch, except for the output dimensionality in the final
layer to account for the differing ground truth label between
the two tasks. Given CLIP visual embeddings, ysem, as soft
labels for the auxiliary task, the visual-semantic alignment
performs distillation of the CLIP visual space, thereby up-
dating the feature extractor through the semantic adaptor.
This process calibrates the detector’s visual features to an
unbiased semantic space, as illustrated in Fig. 2.

Training is conducted in a multitask learning fashion on
the same training data. The losses for each task are com-
bined, and the gradients are calculated using all the param-
eters. The joint training objective is therefore formulated as
follows:

min
θext,θsem,θcls

1

n

n∑
i=1

[
Lbce

(
xi, yidet; θext, θcls

)
+Lsem

(
xi, yisem; θext, θsem

) ]
,

(2)
where Lsem is the semantic alignment loss, aligning the
output of the semantic adaptor, ŷsem, with the soft semantic
label, ysem, by maximizing their cosine similarity.
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Figure 3. Comparison of test procedures between Classic AI-generated image (AGI) Detection (a) and ATTSD-based AGI Detection (b). In
the classic detection procedure, the model remains fixed when encountering unseen data. In contrast, ATTSD-based detection dynamically
updates the feature extractor, θext, via the semantic adaptor, θsem, for new test samples. Our detection paradigm allows the model’s
features to align with evolving semantic distributions in a self-supervised manner, leading to improved detection accuracy.

3.3. Adaptive Test-Time Semantic Debiasing
As shown in Fig. 3, we aim to dynamically update the de-
tector during the test phase to adapt to new test data. In
the following, we first describe the test phase of our TTSD-
based detection.

Benefiting from the self-supervised visual-semantic
alignment, the auxiliary task operates independently of the
main task during testing, enabling a zero-shot generaliza-
tion setting for the main task. During the test, the forgery
classifier keeps frozen. TTSD is achieved by finetuning the
shared feature extractor towards the objective of the aux-
iliary task on test images, thereby adapting the model to
evolving test distributions.:

min
θext,θsem

1

n

n∑
i=1

Lsem

(
xi, yisem; θext, θsem

)
. (3)

We keep the semantic adaptor tuning during the test phase,
as empirical evidence shows that freezing it results in de-
graded performance (see discussion in Sec. 5.4). Freezing
the semantic adaptor forces the feature extractor to adjust
excessively to meet the auxiliary task objectives, which can
cause it to forget the knowledge required for the main task.
Therefore, we maintain the tuning setup throughout all of
our experiments.

Let θ̃ext denote the (approximate) minimizer of Eq. (3).
Inference is then completed by making a prediction using
the updated feature extractor and the original forgery clas-
sifier, defined as θ(x) = θcls

(
θ̃ext(x)

)
.

Semantic-Suppression for hard sample mining. Se-
mantic bias manifests differently across individual sam-
ples, necessitating a sample-specific approach to debiasing.
To address this heterogeneity, we introduce a Semantic-
Suppression strategy that dynamically modulates the inten-
sity of TTSD. This mechanism assigns adaptive weights to

each test sample, precisely adjusting the degree of semantic
debiasing applied to its feature representations. The inte-
gration of this adaptive component with TTSD yields our
complete framework, Adaptive TTSD (ATTSD), which op-
timizes debiasing on a per-sample basis.

𝜶 01

Figure 4. Visualization of the Semantic-Suppression effect by re-
ducing the phase component. As the scaling factor α decreases,
the semantic structure of the image progressively deteriorates.

We aim to create a forgery-invariant augmented version
for each sample to evaluate its hardness. Inspired by a
well-known property of Fourier transformation of an im-
age: the phase component, P(x), preserves the high-level
semantics of the original signal, while the amplitude com-
ponent, A(x), contains low-level statistics [19, 20, 31]. We
suppress image semantics by applying a modified inverse
Fourier transform:

xaug = F−1
(
A(x) · e−j·α·P(x)

)
, (4)

where F−1 denotes operator of inverse Fourier transform.
This modified transform generates an augmented version
of x, denoted as xaug , where high-level semantics are sup-
pressed by applying a scaling factor α ∈ {0, 1} on the phase
component while keeping the amplitude component intact.
Thereby, the image semantics are suppressed while retain-
ing low-level statistics crucial for forgery-related patterns to
the greatest extent possible (see samples in Fig. 4). The pre-
diction discrepancy D between the original and augmented
image is computed to inform the adaptive weight, with more
significant discrepancies indicating a need for more inten-
sive semantic debiasing. This measure underlies our hard
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sample mining strategy, where an adaptive weight w is de-
fined for each sample as follows:

D = ∥θ(x)− θ(xaug)∥2, (5)

w = σ(D), (6)

where σ represents the sigmoid function for normalization.
The final ATTSD objective function, integrating the Seman-
tic Suppression strategy, is given by:

min
θext,θsem

1

n

n∑
i=1

wiLsem

(
xi, yisem; θext, θsem

)
. (7)

4. Cross-Semantic AI-generated Image Detec-
tion Dataset

We now describe the construction of our CSAIID dataset.
To maximize semantic coverage, we utilize the COCO
dataset [14] as our real image source due to its complex
scenes and inclusion of multiple objects. For synthetic im-
ages, we employ two complementary approaches. First, we
use the original captions from the COCO validation set to
generate corresponding fakes. Since current image forgery
techniques can not only manipulate real scenarios but also
generate entirely fictional content, we further incorporate
the PartiPrompts dataset [35], which contains over 1,600 di-
verse prompts spanning various categories, such as abstract
concepts, world knowledge, and fantastical illustrations.

Combining the original annotations of COCO and cate-
gories from PartiPrompts, we summarize five dominant se-
mantic categories reflecting real-world scenarios: “Outdoor
Scenes”, “People”, “Animals”, “Vehicles”, “Food”, along
with an additional “Complex” category, to organize images
into corresponding subsets. The “Complex” category in-
cludes images with intricate scenes that defy clear catego-
rization, as well as fakes generated by prompts from some
intricate categories, such as abstract concepts, world knowl-
edge, and fantastical illustrations. Since synthetic images
generated from PartiPrompts lack corresponding real coun-
terparts, we sample real images from the COCO training set
within the same category to maintain balance.

To facilitate semantic control, all synthetic images are
created using text-to-image models. We synthesize images
using three generators: Stable Diffusion v2 (SDv2) [23],
Latent Diffusion Model (LDM) [23], and Latent Consis-
tency Model (LCM) [16], ensuring a balanced 1:1:1 distri-
bution of images from each generator across subsets. Each
subset consists of 1,000 real images and 1,000 synthetic im-
ages, resulting in a total dataset size of 12,000 images.

5. Experiments
5.1. Settings
Datasets: Besides our proposed CSAIID dataset, we
also use two other widely-used benchmark datasets, Uni-

Foren [18] and GenImage [38], to evaluate our method.
To optimize the test-time setup of ATTSD before practical
evaluation on target test data, we introduce DF3 [12] dataset
as a validation set. Its moderate scale allows for an efficient
assessment of each component’s contribution.
• UniForen [18]. This dataset extends the GAN-based
dataset in [29] by incorporating DM-based images. The
training set consists of fake images generated by ProGAN
and real images from the LSUN [34] dataset, with each im-
age featuring a single object from 20 classes (e.g., horse and
cat). The test set comprises 19 subsets generated by various
models, including both GAN and DM generators.
• GenImage [38]. This dataset mainly focuses on DMs-
based fake images using ImageNet [5] as the real source. It
includes fakes generated by eight different models. Follow-
ing the experimental setup of GenImage, we use SDv1.4 as
training set and evaluate the test subset of each generator.
• DF3 [12]. This face-centered dataset contains six forgery
generators. It is used as the validation set due to its nonover-
lapping image semantics with the training sets of exist-
ing benchmarks, satisfying both cross-generator and cross-
semantic requirements for evaluating generalizability.
Implementation details: The detector is a simplified
ResNet50 model [10], utilizing only the first two stages of
the network. The blocks from the first stage act as the fea-
ture extractor, while the second stage, combined with a fully
connected (FC) layer, serves as the forgery classifier. The
semantic adaptor shares the same structure as the forgery
classifier. We employ the visual encoder of CLIP: ViT-
L/14 to extract semantic embeddings. Following [27], we
preprocess input images by extracting NPR-based upsam-
pling artifacts before feeding them into the detector. The
α in Eq. (4) is set to 0.9 to minimize excessive disruption
to the image. We use the Adam optimizer with a learning
rate of 0.0002 and a batch size of 32 for training. During
the test phase, the learning rate is 0.0001. Following the
standard TTT setup [26], we set batch size as 1 during test.
We perform six gradient steps for each sample to adapt the
model. These parameters were selected through empirical
experiments on the DF3 dataset to balance computational
efficiency and adaptation performance.

5.2. Cross-semantic generalization
We first evaluate the performance of state-of-the-art open-
source detection models on our proposed CSAIID dataset.
To highlight the impact of training data semantics, we
group the results based on the source data of the training
sets, i.e., LSUN serves as the real source for the UniForen
dataset, while ImageNet provides the source for the GenIm-
age dataset. As the creation of fake images inherently simu-
lates the content of their source images, the choice of source
data strongly shapes the semantic distribution of each detec-
tor learned during training.
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Method
Real

Source
Forgery
Model

Outdoor
Scenes People Animals Vehicles Food Complex

Avg.
Acc.(%)

GLFF [12] LSUN PG 63.03 61.68 55.88 63.93 61.58 62.00 61.35
NoDown [9] LSUN PG 52.53 51.08 50.28 53.18 51.03 53.10 51.87

NoDown-S [9] LSUN SG 51.78 52.88 51.88 51.63 50.73 51.30 51.70
UniFD [18] LSUN PG 64.28 64.73 62.38 72.19 61.73 63.35 64.78
DIRE [30] LSUN SG 50.23 49.87 49.67 50.08 50.03 49.45 49.89
AIDE [32] LSUN PG 53.83 52.08 53.88 54.88 50.78 52.70 53.03
NPR∗ [28] LSUN PG 71.64 73.54 66.68 71.09 70.89 74.15 71.33

Ours LSUN PG 76.59 82.74 87.64 80.94 81.89 84.00 82.30
DIRE [30] ImageNet ADM 50.03 49.52 48.82 49.57 49.52 49.15 49.44
AIDE [32] ImageNet SD1.4 71.04 69.93 74.79 72.79 77.34 74.45 73.38
NPR∗ [28] ImageNet SD1.4 86.19 79.79 80.74 87.09 86.04 84.30 84.02
DRCT [4] ImageNet SD1.4 63.42 63.78 64.48 63.63 58.68 64.05 62.85

Ours ImageNet SD1.4 86.14 90.75 92.90 90.70 91.25 90.75 90.42

Table 1. Accuracy (ACC, %) comparison of our method with existing generated image detectors across various semantic subsets on the
proposed CSAIID dataset. Results are grouped based on different training sources. Except for NoDown-S and DIRE, all methods with
each group are trained on the same training set. i.e., the training sets of the UniForen and GenImage benchmarks, respectively. The results
of previous detectors are reproduced using official provided weights, while ∗ denotes our re-implemented training with the official codes.
“Real Source” and “Forgery Model” specify the real data and forgery model used for training, and “PG” and “SG” denote abbreviations
for ProGAN and StyleGAN, respectively.

Method
Generative Adversarial Networks Deep

fakes
Low level vision Perceptual loss

Guided
LDM Glide

DALL-E
Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE

200
steps

200
w/ CFG

100
steps

100
27

50
27

100
10

Avg.
Acc.(%)

CNNSpot [29] 99.99 85.20 70.20 85.70 78.95 91.70 53.47 66.67 48.69 86.31 86.26 60.07 54.03 54.96 54.14 60.78 63.80 65.66 55.58 69.58
Patchfor [3] 75.03 68.97 68.47 79.16 64.23 63.94 75.54 75.14 75.28 72.33 55.30 67.41 76.50 76.10 75.77 74.81 73.28 68.52 67.91 71.24

NoDown∗ [9] 100.00 89.97 93.10 97.08 94.27 50.83 98.77 51.67 70.00 94.11 94.12 91.30 60.80 64.00 61.30 66.35 71.15 67.15 60.50 77.71
Co-occurence [17] 97.70 63.15 53.75 92.50 51.10 54.70 57.10 63.06 55.85 65.65 65.80 60.50 70.70 70.55 71.00 70.25 69.60 69.90 67.55 66.86

Spec [36] 49.90 99.90 50.50 49.90 50.30 99.70 50.10 50.00 48.00 50.60 50.10 50.90 50.40 50.40 50.30 51.70 51.40 50.40 50.00 55.45
AIDE∗ [32] 99.99 98.48 83.95 99.64 73.25 99.91 52.21 64.17 50.91 80.05 86.74 53.10 81.35 62.90 82.00 64.20 65.20 64.20 71.30 75.45
UniFD [18] 100.0 98.50 94.50 82.00 99.50 97.00 66.60 63.00 57.50 59.50 72.00 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 81.38
NPR∗ [28] 99.99 86.83 87.70 96.90 84.49 99.52 66.88 64.44 70.09 50.00 50.00 74.65 90.90 93.15 92.20 95.20 95.95 95.90 87.95 83.30

Ours 99.80 98.64 93.75 97.86 98.03 100.00 74.26 50.83 53.88 98.12 99.15 89.50 99.20 99.15 99.60 99.45 99.45 99.80 99.60 92.11

Table 2. Accuracy (ACC, %) comparison of cross-generator generalization on the UniForen dataset. All methods were trained on the
ProGAN subset and evaluated on subsets from different generators. ∗ indicates results obtained using the re-implemented or official
pretrained model. The results of the remaining methods are cited from UniFD [18].

As shown in Tab. 1, our method outperforms existing
approaches under both training settings, demonstrating su-
perior generalizability in cross-semantic scenarios. No-
tably, when the training set transitions from LSUN-based
to ImageNet-based sources, many methods exhibit signifi-
cant improvements. For example, AIDE achieves a notable
gain of 20.27%, NPR improves by 12.69%, and our method
achieves an increase of 8.12%. These improvements arise
because ImageNet’s broader semantic coverage mitigates
the overfitting relative to LSUN’s narrow scope. The com-
paratively smaller gain of our method suggests it is inher-
ently less sensitive to shifts in the semantic distribution of
training data. Although these improvements are partially
influenced by changes in generators (examined in following
subsection), they reaffirm our earlier observations: seman-
tic factors play a crucial role in generalizable detection.

The overall results highlight the semantic limitations
commonly associated with closed-set training. Neverthe-
less, our ATTSD demonstrates substantial improvements
across both training sources, suggesting its capability to bet-
ter adapt to diverse semantic content.

5.3. Cross-generator generalization

We examine cross-generator generalization on two bench-
marks: UniForen and GenImage. According to the gener-
ators of their training sets, generalization can be assessed
from GAN-based and DM-based generators, respectively.
Generalization from GAN-based generators. The mod-
els were trained on UniForen’s ProGAN-based training
set. The results across different generators are presented
in Tab. 2. The overall performance of previous methods
reveals that generalizing across different generative model
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Method Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.
CNNSpot [29] 84.92 99.88 99.76 53.48 53.80 99.68 55.50 49.93 74.62

F3Net [21] 77.85 98.99 99.08 51.20 54.87 97.92 58.99 49.21 73.51
GramNet [15] 73.68 98.85 98.79 51.52 55.38 95.38 55.15 49.41 72.27
De-fake [24] 79.88 98.65 98.62 71.57 78.05 98.42 78.31 74.37 84.73
UniFD [18] 91.46 96.41 96.14 58.07 73.40 94.53 67.83 57.72 79.45
NPR∗ [28] 79.03 99.52 99.48 62.69 93.18 97.79 55.80 61.97 81.18
DIRE [30] 50.40 99.99 99.92 52.32 67.23 99.98 50.10 49.99 71.24
AIDE [32] 79.38 99.74 99.76 78.54 91.82 98.65 80.26 66.89 86.88
DRCT [4] 91.50 95.01 94.41 79.42 89.18 94.67 90.03 81.67 89.49

Ours 91.77 94.72 93.82 84.98 97.34 91.44 81.22 90.18 90.68

Table 3. Accuracy (ACC, %) comparison of cross-generator generalization on the GenImage dataset. All methods were trained on the
SDv1.4 training set and evaluated on subsets from different generators. ∗ indicates results obtained using the re-implemented or official
pretrained model. Results for AIDE [32] are cited from its original paper. The remaining methods are cited from DRCT [4].

Components Different Generators Avg.

Method TTSD SS 3DGAN LDM LSGM StyleGAN2 StyleGAN3 Transformers Acc.(%)
Baseline é é 59.85 67.70 70.80 65.60 66.95 67.11 66.34
JointCLIP N.A N.A 71.95 79.25 88.04 69.90 73.40 81.13 77.28
JointTrain é é 58.10 74.25 75.13 72.10 72.95 68.28 70.13
Ours-TTSD Ë é 58.40 95.20 96.18 70.95 81.30 95.41 82.91
Ours-ATTSD Ë Ë 63.70 95.25 96.59 73.50 82.25 94.59 84.31

Table 4. Ablation results on the DF3 dataset. TTSD and SS abbreviate Test-Time Semantic Debiasing and Semantic Suppression strategy,
respectively. JointCLIP combines features before the last FC layer with CLIP visual embeddings via concatenation. JointTrain refers to
regular testing of the variant jointly trained with the semantic alignment task, without the test-time debiasing phase.

families is significantly more challenging than generaliz-
ing within the same family. For example, methods such
as NoDown, UniFD, and AIDE achieve nearly 90% accu-
racy on all GAN-based subsets but experience a substantial
drop in performance on DM-based fakes. This indicates that
only when it comes to generalizing across generator fami-
lies does the generator factor become a primary constraint.
Our method, by directly adapting feature learning to the test
distribution, consistently outperforms existing approaches
for both GAN-based and DM-based fakes. Among existing
methods, NPR stands out by identifying shared up-sampling
artifacts common to both GAN and DM families, making
it less sensitive to generator variations. Nevertheless, our
method still outperforms NPR by 8.8% in accuracy.
Generalization from DM-based generators. Following
the setting of GenImage, we train the model on the SDv1.4-
based training set and evaluate it on test subsets of various
generative models. The comparative results with existing
methods are presented in Tab. 3. The GenImage test set
contains 7 DM subsets and 1 GAN subset. Although the
training generator shifts to DM, a similar limitation persists.
Almost all previous methods suffer significant performance
drops on the BigGAN subset, as it originates from a gener-
ator family different from the training set. DRCT, the lat-
est state-of-the-art method, demonstrates relatively strong

generalizability by generating reconstructed images to cap-
ture generative artifacts. Rather than generative factors, our
method places greater emphasis on addressing limitations
posed by semantic factors, making our generalization less
sensitive to generator shifts during testing.

Overall, the performance on both datasets underscores
the exceptional generalizability of our method in cross-
generator detection. These results demonstrate that our gen-
eralizability is not confined to cross-semantic scenarios but
also encompasses generator variations.

5.4. Ablation study
As aforementioned, we use the DF3 dataset—composed en-
tirely of face-centered images—as the validation set to final-
ize test settings and assess the contributions of each compo-
nent. The variants in following experiments are trained on
UniForen’s training set and evaluated on different genera-
tors of DF3, enabling a simultaneous examination of cross-
generator and cross-semantic generalization.
Effect of each component. We denote the detector with the
same backbone as “Baseline”, which consists solely of the
main branch of our architecture without the auxiliary task.
Another variant jointly trained with the auxiliary task but
excluding the test-time optimization process is denoted as
“JointTrain”. To demonstrate that the benefits of our ap-
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proach are not solely derived from the inclusion of CLIP’s
semantic space, we introduce a variant referred to as “Joint-
CLIP”. This variant concatenates CLIP visual features with
the features before the final FC layer for classification.

As shown in Tab. 4, the “Baseline” detector achieves
only 66.34% average accuracy. Concatenating CLIP vi-
sual features (“JointCLIP”) into the model yields an im-
provement, confirming the effectiveness of CLIP’s seman-
tic representations. However, its performance still lags sig-
nificantly behind our approach. The “JointTrain” variant
also shows performance gains. Nevertheless, without test-
time optimization, the improvement remains limited. The
TTSD variant, without the Semantic-Suppression (SS) strat-
egy, improves baseline performance by 16.57%, highlight-
ing the impact of test-time semantic debiasing. Our final
ATTSD version, which integrates the SS strategy, further
enhances accuracy to 84.31%. These results collectively
emphasize the critical role of each proposed component in
effective generalization.
Effect of the Semantic Adaptor. We present the empiri-
cal results of finalizing the design of the Semantic Adap-
tor (SA) through two variants. The first variant, denoted
as “Share”, allows the SA to share its entire structure and
weights with the forgery classifier. It is supplemented only
by an additional projection layer to map the output fea-
tures to the CLIP space. The second variant, denoted as
“Frozen”, retains the same architecture as our implementa-
tion but keeps the SA frozen during the test phase.

As shown in Tab. 5, the “Share” variant exhibits inferior
performance. We attribute this to the tightly coupled struc-
ture between the two tasks, where the forgery classifier is
updated during testing by the semantics-related task, caus-
ing it to compromise its ability to maintain a robust forgery
classification boundary. Similarly, keeping the SA frozen
underperforms, as it forces the feature extractor to compen-
sate excessively for the auxiliary task’s objectives, leading
to suboptimal adjustments. Our finalized implementation
adopts a Y-branch architecture, where the SA is loosely cou-
pled with the forgery classifier and remains finetuned during
the test phase. This design achieves the best performance
by serving two key merits: decoupling the tasks to mini-
mize interference and maintaining the flexibility necessary
for effective adaptation.
Effect of gradient steps. In real-world detection scenarios,
it is impractical to predefine the optimal number of gradi-
ent steps for evolving unknown data. Therefore, we analyze
the effect of gradient steps on the DF3 dataset to determine
the best configuration and ensure consistency across various
test datasets. As shown in Fig. 5, detection accuracy across
different subsets improves as the step increases. The overall
detection accuracy reaches a saturation point after 6 steps.
We thus finalize 6 gradient steps for ATTSD-based AGI de-
tection, striking a balance between computational efficiency

SA
3D-

GAN
L

DM
LS
GM

Style-
GAN2

Style-
GAN3

Transf-
ormers

Avg.
Acc.(%)

Share 55.05 75.90 79.14 81.25 80.10 78.44 74.98
Frozen 56.75 74.75 63.30 68.30 63.45 93.01 69.93
Ours 63.70 95.25 96.59 73.50 82.25 94.59 84.31

Table 5. Effect of Semantic Adaptor (SA) design. “Share” de-
notes a tightly coupled adaptor sharing weights with the forgery
classifier, “Frozen” refers to a fixed adaptor during the test phase,
and “Ours” represents the finalized Y-branch architecture with a
loosely coupled and finetuned adaptor.

and detection performance.

Figure 5. Effect of gradient steps. We present accuracy trends on
the DF3 dataset as the number of gradient descent steps increases.

6. Discussion
Limitation and future work. During testing, our method
takes 2 × number of steps longer than standard inference,
which performs only a single forward pass per sample. As
the first work addressing semantic bias for AGI detection,
this paper is not as concerned about computational effi-
ciency as improving generalizability. Future work could
explore enhancing computational efficiency by designing
models that are explicitly optimized during training for
faster updates during test time.
Conclusion. This paper introduces Adaptive Test-Time Se-
mantic Debiasing (ATTSD), a new method for AGI de-
tection that dynamically aligns the detector’s feature space
with evolving semantic distributions during testing. By
leveraging CLIP’s semantic visual space and a semantic-
suppression strategy, our method effectively mitigates se-
mantic bias and enhances generalization across diverse se-
mantic and generative model variations. Extensive evalu-
ations on CSAIID, UniForen, and GenImage benchmarks
demonstrate that our approach outperforms existing meth-
ods, achieving superior cross-semantic and cross-generator
generalization. While ATTSD involves additional computa-
tional overhead, the significant gains in detection accuracy
validate its effectiveness, offering a promising direction for
addressing real-world AGI detection challenges.
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