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ABSTRACT

In this paper, we introduce a novel variation of multi-armed bandits called bandits
with ranking feedback. Unlike traditional bandits, this variation provides feedback
to the learner that allows them to rank the arms based on previous pulls, without
quantifying numerically the difference in performance. This type of feedback is
well-suited for scenarios where the arms’ values cannot be precisely measured
using metrics such as monetary scores, probabilities, or occurrences. Common
examples include human preferences in matchmaking problems. Furthermore,
its investigation answers the theoretical question on how numerical rewards are
crucial in bandit settings. In particular, we study the problem of designing no-
regret algorithms with ranking feedback both in the stochastic and adversarial
settings. We show that, with stochastic rewards, differently from what happens
with non-ranking feedback, no algorithm can suffer a logarithmic regret in the time
horizon T in the instance-dependent case. Furthermore, we provide two algorithms.
The first, namely DREE, guarantees a superlogarithmic regret in T in the instance-
dependent case thus matching our lower bound, while the second, namely R-LPE,
guarantees a regret of Õ(

√
T ) in the instance-independent case. Remarkably, we

show that no algorithm can have an optimal regret bound in both instance-dependent
and instance-independent cases. We also prove that no algorithm can achieve a
sublinear regret when the rewards are adversarial. Finally, we numerically evaluate
our algorithms in a testbed, and we compare their performance with some baseline
from the literature.

1 INTRODUCTION

Multi-armed bandits are well-known sequential decision-making problems where a learner is given
a number of arms whose reward is unknown (Lattimore & Szepesvari, 2017). At every round, the
learner can pull an arm and observe a realization of the reward associated with that arm, which
can be generated stochastically (Auer et al., 2002) or adversarially (Auer et al., 1995). The central
question in multi-armed bandits concerns how to address the exploration/exploitation tradeoff to
minimize the regret between the reward provided by the learning policy and the optimal clairvoyant
algorithm. Interestingly, multi-armed bandits come with several flavors capturing a wide range
of different applications, e.g., with delayed feedback (Vernade et al., 2017; 2020), combinatorial
constraints (Combes et al., 2015), and a continuous set of arms (Kleinberg et al., 2019).

In this paper, we introduce a novel variation of multi-armed bandits that, to the best of our knowledge,
is unexplored so far. We name the model as bandits with ranking feedback. This feedback provides
the learner with a partial observation over the rewards given by the arms. More precisely, the learner
can rank the arms based on the previous pulls they experienced, but they cannot quantify numerically
the difference in performance. Thus, the learner is not allowed to asses how much an arm is better
or worse than another. This type of feedback is well-suited for scenarios where the arms’ values
cannot be precisely measured using metrics such as monetary scores, probabilities, or occurrences,
and naturally applies to various settings, e.g., when dealing with human preferences such as in
matchmaking settings among humans and when the scores cannot be revealed for privacy or security
reasons. This latter case can be found, e.g., in online advertising platforms offering automatic bidding
services as they have no information on the actual revenue of the advertising campaigns since the
advertisers prefer not to reveal these values being sensible data for the companies.1 Remarkably, our

1Notice that a platform can observe the number of clicks received by an advertising campaign, but it cannot
observe the revenue associated with that campaign.
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model poses the interesting theoretical question whether the lack of numerical scores precludes the
design of sublinear regret algorithms or worsens the regret bounds that are achievable when numerical
scores are available.

Related Works. The field most related to bandits with ranking is preference learning, which
aims at learning the preferences of one or more agents from some observations (Fürnkranz &
Hüllermeier, 2010). Let us remark that preference learning has recently gained a lot of attention
from the scientific community, as it enables the design of AI artifacts capable of interacting with
human-in-the-loop (HTL) environments. Indeed, human feedback may be quite misleading when it is
asked to report numerical values, while humans are far more effective at reporting ranking preferences.
The preference learning literature mainly focuses on two kinds of preference observations: pairwise
preferences and ranking. In the first case, the data observed by the learner involves preferences
between two objects, i.e., a partial preference is given to the learner. In the latter, a complete ranking
of the available data is given as feedback. Our work belongs to the latter branch. Preference learning
has been widely investigated by the online learning community, see, e.g., (Bengs et al., 2018).

Precisely, our work presents several similarities with the dueling bandits settings (Yue et al., 2012;
Saha & Gaillard, 2022; Lekang & Lamperski, 2019), where, in each round, the learner pulls two
arms and observes a ranking over them. Nevertheless, although dueling bandits share similarities
to our setting, they present substantial differences. Specifically, in our model, the learner observes
a ranking depending on the arms they have pulled so far. In dueling bandits, the learner observes
an instantaneous comparison between the arms they have just pulled; thus, the outcome of such a
comparison does not depend on the arms previously selected, as is the case of bandits with ranking
feedback. As a consequence, while in bandits with ranking feedback the goal of the learner is to
exploit the arm with the highest mean, in dueling bandits the goal of the learner is to select the arm
winning with the highest probability. Furthermore, while we adopt the classical notion of regret used
in the bandit literature to assess the theoretical properties of our algorithms, in dueling bandits, the
algorithms are often evaluated with a suitable notion of regret, which differs from the classical one.

Dueling bandits have their reinforcement learning (RL) counterpart in the preference-based reinforce-
ment learning (PbRL), see, e.g., (Novoseller et al., 2019) and (Wirth et al., 2017). Interestingly, PbRL
techniques differ from the standard RL approaches in that they allow an algorithm to learn from
non-numerical rewards; this is particularly useful when the environment encompasses human-like
entities (Chen et al., 2022). Furthermore, PbRL provides a bundle of results, ranging from theory (Xu
et al., 2020) to practice (Christiano et al., 2017; Lee et al., 2021). In PbRL, preferences may concern
both states and actions; contrariwise, our framework is stateless since the rewards gained depend only
on the action taken during the learning dynamic. Moreover, the differences outlined between dueling
bandits and bandits with ranking feedback still hold for preference-based reinforcement learning, as
preferences are considered between observations instead of the empirical mean of the accumulated
rewards.

Original Contributions. We investigate the problem of designing no-regret algorithms for bandits
with ranking in both stochastic and adversarial settings. With stochastic rewards, we show that
ranking feedback does not preclude sublinear regret. However, it worsens the upper bounds achievable
by the algorithms. In particular, in the instance-dependent case, we show that no algorithm can
suffer from a logarithmic regret in the time horizon (as instead is possible in the non-ranking
case), and we provide an algorithm, namely DREE (Dynamical Ranking Exploration-Exploitation),
guaranteeing superlogarithmic regret that matches the lower bound. In the instance-independent
case, a crucial question is whether there is an algorithm providing a regret bound better than the
well-known Explore-then-Commit algorithm which trivially guarantees a regret of Õ(T 2/3) in our
case. We design an algorithm, namely R-LPE (Ranking Logarithmic Phased Elimination), which
guarantees a regret of Õ(

√
T ) in the instance-independent case. More importantly, we show that no

algorithm can have an optimal regret bound in both instance-dependent and instance-independent
cases. Furthermore, with adversarial rewards, we show that ranking feedback precludes sublinear
regret, and therefore numerical rewards are strictly necessary in adversarial online learning settings.
Finally, we numerically evaluate our DREE and R-LPE algorithms in a testbed, and we compare their
performance with some baseline from the literature in different settings. We show that our algorithms
dramatically outperform the baselines in terms of empirical regret.
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2 PROBLEM FORMULATION

In this section, we formally state the model of bandits with ranking feedback and discuss the learner-
environment interaction. Subsequently, we define policies and the regret notion both in the stochastic
and in the adversarial settings.

Setting and Interaction. Differently from standard bandits—see, e.g., the work by (Lattimore
& Szepesvari, 2017)—in which the learner observes the reward associated with the pulled arm, in
bandits with ranking feedback the learner can only observe a ranking over the arms based on the
previous pulls. Formally, we assume the learner-environment interaction to unfold as follows.2

(i) At every round t ∈ [T ], where T is the time horizon, the learner chooses an arm it ∈ A :=
[n], where A is the set of available arms and n = |A| < +∞.

(ii) We study both stochastic and adversarial rewards. In the stochastic setting, the environment
draws the reward rt(it) associated with arm it from a probability distribution νit , i.e.,
rt(it) ∼ νit , whereas, in the adversarial setting, rt(it) is chosen adversarially by an
opponent from a bounded set of reward functions.

(iii) There is a bandit feedback on the reward of the arm it ∈ A pulled at round t leading to the
estimate of the empirical mean of it as follows:

r̂t(i) :=

∑
j∈Wt(i)

rj(i)

Zi(t)
,

whereWt(i) := {τ ∈ [t] | iτ = i} and Zi(t) := |Wt(i)|.3 However, the learner observes
the rank over the empirical means {r̂t(i)}i∈A We denote with SA the set containing all
the possible permutations of the elements of set A. Formally, we assume that the ranking
Rt ∈ SA observed by the learner at round t is such that:

r̂t(Rt,i) ≥ r̂t(Rt,j) ∀t ∈ [T ] ∀i, j ∈ [n] s.t. i ≥ j,

whereRt,i ∈ A denotes the i-th element in the rankingRt at round t ∈ [T ].

For the sake of clarity, we provide an example to illustrate bandits with ranking feedback and the
corresponding learner-environment interaction.

Example. We consider an environment with two arms, i.e., A = {1, 2}, in which the learner
plays the first action at rounds t = 1 and t = 3 and the second action at round t = 2, so that
W3(1) = {1, 3} andW3(2) = {2}. Let r1(1) = 1 and r3(1) = 5 be the rewards when playing the
first arm at rounds t = 1 and t = 3, respectively, while let r2(2) = 5 be the reward when playing
the second arm at round t = 2. The empirical means of the two arms and resulting rankings at every
round t ∈ [3] are given by:

r̂t(1) = 1, r̂t(2) = 0 Rt = ⟨1, 2⟩ t = 1

r̂t(1) = 1, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 2

r̂t(1) = 3, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 3

.

Policies and Regret. At every round t, the action played by the learner is prescribed by a policy π. In
both the stochastic and adversarial settings, we let the policy π be a randomized map from the history
of the interaction Ht−1 = (R1, i1,R2, i2, . . .Rt−1, it−1) to the set of all the probability distributions
with support A. Formally, we let π : Ht−1 → ∆(A), for t ∈ [T ], such that it ∼ π(Ht−1). As it is
customary in bandits, the learner’s goal is to design a policy π minimizing the cumulative expected
regret, whose formal definition is as follows:

RT (π) = E

[
T∑

t=1

rt(i
∗)− rt(it)

]
,

2Given n ∈ N>0 we denote with [n] := {1, . . . , n}.
3Note that the latter definition is well-posed as long as |Wt(i)| > 0. For each i ∈ A and t ∈ [T ] such that

|Wt(i)| = 0, we let r̂t(i) = 0.
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where the expectation is over the randomness of both the policy and environment in the stochastic
setting, and we let i∗ ∈ argmaxi∈A µi with µi = E [νi], whereas the expectation is over the
randomness of the policy in the adversarial setting and we let i∗ ∈ argmaxi∈A

∑T
t=1 rt(i). For

the sake of simplicity, from here on, we omit the dependence on π, referring to RT (π) as RT .
The impossibility of observing the reward realizations raises several technical difficulties when
designing no-regret algorithms since the approaches adopted for standard (non-ranking) bandits do
not generalize to our case. In the following sections, we discuss how the lack of this information
degrades the performance of the algorithms when the feedback is ranking.

3 ANALYSIS IN THE STOCHASTIC SETTING

Initially, we observe that approaches based on optimism-vs.-uncertainty, such as UCB1, might be
challenging to apply within our framework. This is because the learner lacks the information to
estimate the reward associated with an arm, making it difficult to infer a confidence bound. Therefore,
the most popular class of algorithms one can employ in bandits with ranking feedback is that of
explore-then-commit (EC) algorithms, where the learner either exploits a single arm or explores the
others according to a deterministic or randomized exploration strategy.

In the following, we distinguish the instance-dependent case from the instance-independent one. In
particular, we provide two algorithms, each guaranteeing a sublinear regret in one of the two cases.

3.1 INSTANCE-DEPENDENT LOWER BOUND

It is well-known that standard bandits admit algorithms guaranteeing a regret that is logarithmic in
time horizon T in the instance-dependent case. We show in this section that such a result does not
hold when the feedback is provided as a ranking. More precisely, our result rules out the possibility
of having a logarithmic regret. However, in the next section, we prove that we can get a regret whose
dependence on T is arbitrarily close to a logarithm, thus showing that the extra cost one has to pay in
the instance-dependent case to deal with ranking feedback is asymptotically negligible in T .

Our impossibility result exploits a connection between random walks and arms’ cumulative rewards.
Formally, we define an (asymmetric) random walk as follows.
Definition 1. A random walk is a stochastic process {Gt}t∈N such that:

Gt =

{
0 t = 1

Gt−1 + ϵt t > 1
,

where {ϵt}t∈N is an i.i.d. sequence of random variables, and E[ϵt] is the drift of the random walk.

We model the cumulative reward collected by a specific arm during the learning process as a random
walk, where the drift represents the expected reward associated with that arm. Let us notice that, in
bandits where the feedback is not given as a ranking, the learner can completely observe the evolution
of the random walks, being able to observe the realizations of the reward associated with each pulled
arm. Such observations allow the learner to estimate the difference between the performance of each
pair of arms. For instance, the learner can observe whether two arms perform similarly or, instead,
whether the gap between their performances is significant. Differently, in our case, the learner only
observes the rank without quantify numerically the performance.

This loss of information raises several technical issues that are crucial, especially when the random
walks never switch. Intuitively, in bandits with ranking feedback, we can observe how close the
expected rewards of two arms are only by observing subsequent switches of their positions in the
ranking. However, there is a strictly positive probability that two random walks never switch (thus
leading to no intersection) when they have a different drift E[ϵt] and therefore we may not evaluate
how two arms are close. This is shown in the following lemma.
Lemma 1 (Separation lemma). Let Gt, G

′
t be two independent random walks defined as:

Gt+1 = Gt + ϵt and G′
t+1 = G′

t + ϵ′t,

where G0 = G′
0 = 0 and the drifts satisfy E[ϵt] = p > q = E[ϵ′t],. Then:

P
(
∀t, t′ ∈ N∗ Gt/t ≥ G′

t′/t
′
)
> 0.
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The rationale of the above lemma is that, given two random walks with different drifts, there is a line
separating them with a strictly positive probability. Therefore, with a non-negligible probability, the
empirical mean corresponding to the process with the higher drift upper bounds forever the empirical
mean of the process with the lower drift. In bandits with ranking feedback, such a separation lemma
shows that the problem of distinguishing two different instances is harder than in the standard,
non-ranking feedback case. Before stating our result, as is customary in bandit literature, let us
denote with ∆i := µ∗

i − µi, where we let i∗ ∈ argmaxi∈A µi and µi := E [νi]. Now, we can state
the following result for the instance-dependent case.

Theorem 1 (Instance-dependent lower bound). Let π be any policy for the bandits with ranking
feedback, then, for any C(·) : [0,+∞) → [0,+∞), there is {∆i}i∈[n] and a time horizon T > 0

such that RT >
∑n

i=1 C(∆i) log(T ).

Proof sketch. It is well-known in the bandit literature that, to achieve logarithmic regret, it is necessary
to pull any suboptimal arm at least ∼ log(T )

∆2
i

times. The values of ∆i cannot be estimated without a
switch in the ranking. Since even when ∆is are very small, the optimal arm may remain in the first
position for the whole process, ∆i cannot be estimated, and it is necessary to pull the suboptimal
arms more than O(log(T )) times.

3.2 INSTANCE-DEPENDENT UPPER BOUND

We introduce the Dynamical Ranking Exploration-Exploitation algorithm (DREE). The pseudo-code
is provided in Algorithm 1. As usual in bandit algorithms, in the first n rounds, a pull for each arm is
performed (Lines 2–4). At every subsequent round t > n, the exploitation/exploration tradeoff is
addressed by playing the best arm according to the received feedback unless there is at least one arm
whose number of pulls at t is smaller than a superlogarithmic function f(t) : (0,∞)→ R+.4 More
precisely, the algorithm plays an arm i at round t if it has been pulled less than f(t) times (Lines 5–6),
where ties due to multiple arms pulled less than f(t) times are broken arbitrarily. Instead, if all arms
have been pulled at least f(t) times, the arm in the highest position of the last ranking feedback is
pulled (Lines 7–9). Each round ends once the learner receives the feedback in terms of ranking over
the arms (Line 10). Let us observe that the exploration strategy of Algorithm 1 is deterministic, and
the only source of randomness concerns the realization of the arms’ rewards.

Algorithm 1 Dynamical Ranking Exploration-Exploitation (DREE)

1: for t ∈ [T ] do
2: if t ≤ n then
3: play arm it
4: end if
5: if There is an arm i played less than f(t) times then
6: Play it = i
7: else
8: Play it = Rt−1,1

9: end if
10: Receive updated rankingRt

11: end for

We state the following result, providing the upper regret bound of Algorithm 1 as a function of f .

Theorem 2 (Instance-dependent upper bound). Assume that the reward distribution of every arm is
1-subgaussian. Let f : (0,∞)→ R be a superlogarithmic function in t, then there is a term C(f,∆i)
for each sub-optimal arm i ∈ [n] which does not depend on T , such that Algorithm 1 satisfies:

RT ≤ f(T )

n∑
i=1

∆i + log(T )

n∑
i=1

C(f,∆i).

4A function f(t) is superlogarithmic when lim
t→∞

f(t)
log(t)

= +∞.
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To minimize the asymptotic dependence in T of the cumulative regret suffered by the algorithm,
we can choose, e.g., f : (0,∞) → R as f(t) = log(t)1+δ, where parameter δ > 0 is as small as
possible. However, the minimization of δ comes at the cost of increasing the terms C(f,∆i) as they
grow exponentially as δ > 0 goes to zero as long as ∆i < 1. In particular, the terms C(f,∆i) are
defined as stated in the following corollary.

Corollary 3. Let δ > 0 and f(t) = log(t)1+δ be the sperlogarithmic function used in Algorithm 1,
then we have:

C(f,∆i) =

2∆i

(
e

(
(2/∆2

i )
1/δ

)
+ 1

)
1− e−∆2

i /2

We remark that the term C(f,∆i) depends exponentially on ∆i, suggesting that C(f,∆i) may be
large even when adopting values of δ that are not arbitrarily close to zero.

Furthermore, let us observe that Algorithm 1 satisfies important properties in the instance-dependent
stochastic setting. More precisely, (i) it matches the instance-dependent regret lower-bound, since
f(·) can be chosen arbitrarily close to log(t), (ii) it works without requiring the knowledge of the
time horizon T , thus being an any-time algorithm.

3.3 INSTANCE DEPENDENT/INDEPENDENT TRADE-OFF

In this section, we provide a negative result, showing that no algorithm can perform well in both the
instance-dependent and instance-independent cases, thus suggesting that the two cases need to be
studied separately. Initially, we state the following result that relates to the upper regret bounds in the
two (instance-dependent/independent) cases.

Theorem 4 (Instance Dependent/Independent Trade-off). Let π be any policy for the bandits with
ranking feedback problem. If π satisfies the following properties:

• (instance-dependent upper regret bound) RT ≤
∑n

i=1 C(∆i)T
α

• (instance-independent upper regret bound) RT ≤ nCT β

then, 2α+ β ≥ 1, where α, β ≥ 0.

From Theorem 4, we can easily infer the following impossibility result.

Corollary 5. There is no algorithm for bandits with ranking feedback achieving both subpolynomial
regret in the instance-dependent case, i.e., ∀α > 0, ∃C(·) : RT ≤

∑n
i=1 C(∆i)T

α, and sublinear
regret in the instance-independent case.

To ease the interpretation of Corollary 5, we discuss the performance of Algorithm 1 in the instance-
independent case in the following result.

Corollary 6. For every choice of δ > 0 in f(t) = log(t)1+δ, there is no value of η > 0 for which
Algorithm 1 achieves an instance-independent regret bound of the form RT ≤ O(T 1−η).

The above result shows that Algorithm 1 suffers from linear regret in T in the instance-independent
case except for logarithmic terms.

3.4 INSTANCE-INDEPENDENT UPPER BOUND

The impossibility result stated by Corollary 5 pushes for the need for an algorithm guaranteeing a
sublinear regret in the instance-independent case. Initially, we observe that the standard Explore-then-
Commit algorithm (from here on denoted with EC) proposed by Lattimore & Szepesvari (2017) can
be applied, achieving a regret bound O(T 2/3) in the instance-independent case.

Let us briefly summarize the functioning of the EC algorithm. It divides the time horizon into two
phases as follows: (i) exploration phase: the arms are pulled uniformly for the first m · n rounds,
where m is a parameter of the algorithm one can tune to minimize the regret; (ii) commitment phase:
the arm maximizing the estimated reward is pulled.

6
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In the case of bandits with ranking feedback, the EC algorithm explores the arms in the first m · n
rounds and subsequently pulls the arm in the first position of the ranking feedback received at round
t = m · n. As is customary in standard (non-ranking) bandits, the best regret bound can be achieved
by setting m = ⌈T 2/3⌉, thus obtaining O(T 2/3).

We show that we can get a regret bound better than that of the EC algorithm. In particular, we
provide the Ranking Logarithmic Phased Elimination (R-PLE) algorithm, which breaks the barrier
of O(T 2/3) guaranteeing a regret Õ(

√
T ) when neglecting logarithmic terms. The pseudocode of

R-PLE is reported in Algorithm 2.

R-LPE Algorithm. In order to proper analyze the algorithm, we need to introduce the two following
definitions. Initially, we introduce the definition of the loggrid set as follows,

Definition 2 (Loggrid). Given two real numbers a, b s.t a < b and a constant value T , we define

LG(a, b, T ) :=

{
⌊Tλjb+(1−λj)a⌋ : λj =

j

⌊log(T )⌋ , ∀j = 0, . . . , ⌊log(T )⌋
}
.

Next, we give the notion of active set, which the algorithm employs to cancel out sub-optimal arms.

Definition 3 (Active set). We define the active set Ft(ζ) at the timestep t of the algorithm, the set of
arms

Ft(ζ) :=

a ∈ A : ∀b ∈ A

t∑
τ=1:n|τ

{Rτ (a) > Rτ (b)} ≥ ζ

 .

Where the symbol | stands for ”divide”, so that the condition τ |n means that we are summing only
over the τ which are multiple of n. This condition will be called filtering condition.

Algorithm 2 Ranking Logarithmic Phased Elimination (R-LPE)

1: Initialize S = [n]
2: Initialize L = LG(1/2, 1, T )
3: for t ∈ [T ] do
4: Play it ∈ argmini∈S Zi(t)
5: Update Zi(t) number of times it has been pulled
6: Observe rankingRt

7: if mini∈S Zi(t) ∈ L then
8: α = log(mini∈S Zi(t))

log(T ) − 1
2

9: S = Ft(T
2α)

10: end if
11: end for

Initially, we observe that R-LPE differs from Algorithm 1, as it takes into account the whole history
of the process and not only the last rankingRt received. It also requires the knowledge of T .

Set S denotes the active set of arms used by the algorithm. Initially, set S comprises all the possible
arms available in the problem (Line 1). Furthermore, the set which drives the update of the decision
space S, namely L, is initialized as the loggrid built on parameters 1/2, 1, T (Line 2).

At every round t ∈ [T ], R-LPE chooses the arm from active set S with the minimum number of
pulls, namely i s.t. Zi(t) is minimized (Line 4); ties are broken by index order. Next, the number of
times arm it has been pulled, namely Zi(t), is updated accordingly (Line 5). The peculiarity of the
algorithm is that set S changes every time the condition mini Zi(t) ∈ L is satisfied (Line 7). When
the aforementioned condition is met, the set of active arms S is filtered to avoid the exploration on
sub-optimal arms. Precisely, S is filtered given the time dependent parameter α (Line 8- 9).

Regret Bound. We state the following theorem providing a regret bound to Algorithm 2 in the
instance-independent case.
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Figure 1: Cumulative regret for ∆min < 0.05 (averaged over 50 runs; 95% confidence interval).

Theorem 7. In the stochastic bandits with ranking feedback setting, Algorithm 2 achieves the
following regret bound:

RT ≤ Õ
(
n
√
T
)
,

when n arms are available to the learner.

At first glance, the result presented in Theorem 7 may seem unsurprising. Indeed, there are several
elimination algorithms achieving O(

√
T ) regret bounds in different bandit settings (see, for example,

(Auer & Ortner, 2010; Lattimore et al., 2020; Li & Scarlett, 2022)). Nevertheless, our setting poses
several additional challenges compared to existing ones. For instance, in our framework, it is not
possible to rely on concentration bounds, as the current feedback is heavily correlated with the past
ones. For such a reason, our analysis employs non-trivial arguments, drawing from recent results in
the theory of Brownian Motions, which allow to properly model the particular feedback we propose.

4 ANALYSIS IN THE ADVERSARIAL SETTING

We focus on bandits with ranking feedback in adversarial settings. In particular, we show that no
algorithm provides sublinear regret without statistical assumptions on the rewards.

Theorem 8. In adversarial bandits with ranking feedback, no algorithm achieves o(T ) regret with
respect to the best arm in hindsight with a probability of 1− ϵ for any ϵ > 0.

Proof sketch. The proof introduces three instances in an adversarial setting in a way that no algorithm
can achieve sublinear regret in all the three. The main reason behind such a negative result is that
ranking feedback obfuscates the value of the rewards so as not to allow the algorithm to distinguish
two or more instances where the rewards are non-stationary. The three instances employed in the
proof are divided into three phases such that the instances are similar in terms of rewards for the
first two phases, while they are extremely different in the third phase. In summary, if the learner
receives the same ranking when playing in two instances with different best arms in hindsight, it is
not possible to achieve a small regret in both of them.

5 NUMERICAL EVALUATION

This section presents a numerical evaluation of the algorithms proposed in the paper for the stochastic
settings, namely, DREE and R-LPE. The goal of such a study is to show two crucial results: firstly, the
comparison of our algorithms with a well-known bandit baseline, and secondly, the need to develop
distinct algorithms tailored for instance-dependent and instance-independent scenarios.
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Figure 2: Cumulative regret for ∆min ≥ 0.25 (averaged over 50 runs; 95% confidence interval).

To establish a benchmark for comparison, we consider the EC (Explore-Then-Commit) algorithm,
which is one of the most popular algorithms among the explore-then-commit class providing sub-
linear regret guarantees. In the following, we evaluate the DREE algorithm with different choices
of the δ parameter in the function f(t) = log(t)1+δ; precisely, we choose δ ∈ {1.0, 1.5, 2.0}.
Furthermore, we consider four stochastic instances whose specific parameters are discussed below.
In all these instances, we assume the rewards to be drawn from Gaussian random variables with
unit variance, i.e., σ2 = 1, and we let the time horizon be equal to T = 2 · 105. Finally, for each
algorithm, we evaluate the cumulative regret averaged over 50 runs.

We structure the presentation of the experimental results into two groups. In the first, the instances
have a small ∆min, while in the second, the instances have a large ∆min.

Small Values of ∆min We focus on two instances with ∆min < 0.05. In the first of these two
instances, we consider n = 4 arms, and a minimum gap of ∆min = 0.03. In the second instance, we
consider n = 6 arms, with ∆min = 0.03. The expected values of the rewards of each arm are reported
in Appendix D, while the experimental results in terms of average cumulative regret are reported in
Figures 1a–1b. We observe that in the first instance (see Figure 1a) all the DREE algorithms exhibits
a linear regret bound, confirming the strong sensitivity of this family of algorithms on the parameter
∆min in terms of regret bound. In contrast, the R-LPE algorithm exhibits better performances in terms
of regret bound, as its theoretical guarantee are independent on the values of ∆min. Furthermore,
Figure 1b shows that the DREE algorithms (with δ ∈ 1.0, 1.5) achieve a better regret bound when the
number of arms is increased. Indeed, these regret bounds are comparable to the ones achieved by
the R-LPE algorithm. The previous result is reasonable as the presence of ∆i-s in the regret bound
lowers the dependence on the number of arms. It is worth noticing that all our algorithms outperform
the baseline EC.

Large Values of ∆min We focus on two instances with ∆min ≥ 0.25. In the first instance, we
consider n = 4 arms with a minimum gap of ∆min = 0.5 among their expected rewards. In the
second instance, we instead consider a larger number of arms, specifically n = 8, with a minimum
gap equal to ∆min = 0.25. The expected values of the rewards are reported in Appendix D, while the
experimental results in terms of average cumulative regret are provided in Figures 2a–2b. As it clear
from both Figures 2a–2b when ∆min is sufficiently large, the DREE algorithms (with δ ∈ {1.0, 1.5})
achieves better performances with respect both the EC and R-PLE algorithms in terms of cumulative
regret. Furthermore, there is empirical evidence that a small δ guarantees better performance, which
is reasonable according to theory. Indeed, when δ is small, the function f(t), which drives the
exploration, is closer to a logarithm. Also, as shown in Corollary 3, when ∆min is large enough, the
parameter δ affects the dimension of C(f,∆i) more weakly, which results in a better regret bound.
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online learning with dueling bandits: A survey. 2018. doi: 10.48550/ARXIV.1807.11398. URL
https://arxiv.org/abs/1807.11398.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 3773–3793. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/chen22ag.html.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2017. URL https://arxiv.org/abs/
1706.03741.

Richard Combes, M. Sadegh Talebi, Alexandre Proutiere, and Marc Lelarge. Combinatorial bandits
revisited, 2015. URL https://arxiv.org/abs/1502.03475.
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