RoboNet: A Sample-Efficient Robot co-design
Generator

Kishan Reddy Nagiredla, Arun Kumar AV, Thommen George Karimpanal and Santu Rana
Applied Artificial Intelligence Institute (A%I?)
Deakin University
Melbourne, Australia
Email: knagiredla@deakin.edu.au

Abstract—Co-design of robots involves designing the control
mechanism and physical form together. This intertwined design
process is inherently challenging and sample-inefficient because
of the large design and control search spaces. Our key idea is
to navigate this combinatorial search space more intelligently
than earlier methods to reduce dependence on excessive samples
while still generating capable, complex designs. Our proposed
framework RoboNet, leverages a GFlowNet-based approach, a
recent advancement in graph synthesis to explore the vast, high-
dimensional space of robot co-designs efficiently. RoboNet learns
to generate robots from scratch and evaluates designs based
only on partially trained control policies. Specifically, we use
GFlowNet in combination with a rate-based design prioritizing
and cost-aware sampling strategy to evaluate robots based on
the future promise under full-training and across different
complexities. Our experiments show the proposed framework’s
utility in various robot design tasks.

I. INTRODUCTION

Designing robots involves numerous challenges, from defin-
ing the robot’s structure to integrating various components and
developing control algorithms. Traditional approaches often
tackle these challenges sequentially, but recent advancements
have led to more integrated methodologies commonly referred
to as co-design methods [10]. Co-design proposes simulta-
neously optimizing a robot’s physical structure and control
signals to achieve a target behavior [5]. However, the vast
search space of possible configurations and the interdepen-
dence of design and control behavior make co-design costly
and complex.

To address these challenges, researchers have increasingly
turned to machine learning (ML) techniques. Relying on
learning from data has shown promise in several areas of
robotics including morphology and control optimization [[11]],
robotic manipulation [9]], locomotion [7], and perception and
decision-making [14]]. Integrating co-design principles with
machine learning techniques promises to create bespoke robots
that are truly novel [2]. Recent work from Ha [5] optimizes an
initial design by parameterizing parts of the design as part of
the environment and uses a genetic algorithm to learn a policy-
parameter combination. Other notable work such as Trans-
from2Act [19], learned a parameter-attribution policy using
RL in the outer loop by employing a graph neural network
capable of making design and control decisions over a given
initial design. To address the inherent sample-inefficiency of
Transform2Act, SARD [4] identifies symmetrical designs in

the design space to traverse a much smaller space and applies
a similar learning strategy as Transform2Act. While this may
limit their designs in challenging environments, they can
handle simpler environments sample-efficiently. Unfortunately,
most methods do not optimize across different morphologies,
and the few that do so [3], [19]], [4] often produce a single
optimal design. Single optimal design is often less useful in
practice where multi-objective optimisation dominates neces-
siating discovery of several design options for enforcing trade-
offs later on. Hence, efficiently exploring the vast design space
to identify such diverse design candidates remains a significant
challenge in co-design methods. In this context, a recently
developed probabilistic machine learning framework known
as GFlowNet (Generative Flow Network) has emerged as a
promising approach to address these limitations [[1]].

GFlowNets represent a recent advancement in the generative
modeling of graphs where a graph is constructed step-by-
step, deciding at each step whether to stop the construction
or to grow by selecting the node of the existing graph and the
component to attach. In GFlowNets, a trajectory (or sequence
of decisions) from an initial state (source) to a terminal state
(sink) is akin to a path in a flow network (imagine a water
pipe network). The model assigns a flow (probability) to each
possible path, with paths that lead to a higher reward receiving
greater flow. This ensures that: a) paths leading to high-
reward terminal states are sampled more frequently, and b)
flow is spread across different trajectories, allowing for diverse
solutions rather than a single optimal one. During training, the
policy network adjusts the flow at each state to ensure that it
is consistent with both the reward and the flow conservation
property. This way, the model learns a probability distribution
over trajectories that encourages diverse, high-reward graphs.
GFlowNets have already been explored in tasks requiring
diverse and high-quality solutions, such as drug discovery [S]]
and material design [3]. We believe it can also offer significant
benefit when adopted appropriately for robot design.

In this study, we introduce RoboNet, a novel sample-
efficient co-design strategy that uses GFlowNets at its core.
In a co-design process, one must deal with the core issue of
finding the utility of a design especially because the budget for
learning control mechanisms for each design may be small to
make it feasible to evaluate a large number of co-designs. In
such a scenario the control mechanism would be only partially

learned and we have to estimate the utility of the design under
a fully-learned control policy from the performance of the
design under the partially-learned control policy. In addition,
as we deal with robots having different morphological struc-
tures some more complex (i.e. more nodes) than others we
need to provide them not with equal control learning budgets
but equivalent budgets. The complex design should use higher
resources so that the degree of maturity of control learning is
similar to that of a simpler design so that they can be compared
against each other. We solve these issues in the following ways
(also illustrated in Fig. [I):

Rate-based Design \

Candidate
Prioritization

RoboMet
Online Learning
and MuJoCo Simulation for
Cost-aware Generated Designs variable timesteps
Sampling Adaptation (dependent on design
Cycle complexity)

Candidate Designs
[with cost awareness

Joint Sampling Model

Fig. 1: RoboNet Framework illustrating the ideas of Joint
Sampling, Rate-based Design Candidate Prioritization, and
Cost-aware sampling strategies.

o Rate-Based Prioritization: When providing a suitable
reward to GFlowNet, it may be tempting to provide
the current sum of rewards value of the partially-trained
robots, however, this value may not be indicative of
future performance with full training. A good future
performance is often indicated by the rapid rate of growth
in reward instead of saturation to a high value. Thus,
RoboNet employs a rate-based approach to prioritize
design candidates that showcase a steep learning curve.

o Cost Aware Designs: RoboNet employs a cost coding
mechanism where the robots are optimized in the joint
space of performance and the training budget used. In
essence, the use of higher cost-coded components are
allowed only if the penalty of using them is outweighed
by the marginal gain in performance.

We implement our method in the Ant-v5 OpenAl MuJoCo
environment [16] where we modify the terrains to make the
walking task challenging. We show how our contributions help
produce robots that learn to walk sample-efficiently while the
designs from other methods struggle.

II. RELATED WORKS

The field of robot co-design has advanced significantly, with
various approaches emerging to optimize both morphology and
control policies simultaneously. Early work by Von Neumann,
in 1966, laid the foundation for co-design through evolutionary
mechanisms, which Karl Sims extended on in 1994 to demon-
strate how evolutionary strategies could generate intelligent

virtual agents. While some subsequent works retained the
essence of Sims’ approach, focusing on skeletal structure
optimization, others optimized over pre-selected skeletons.
However, evolutionary methods such as those in Howard et al.
[6] and Yu et al. [18] are highly sample-inefficient, as each
design in the population requires evaluation.

To address this inefficiency, recent works have proposed
more sample-efficient strategies. David Ha’s work [3] intro-
duced joint learning of policy and physical structure using
a parameterized environment and the implicit function theo-
rem, allowing task-specific design adaptations. This approach
highlights the adaptability of co-designed agents but still
faces challenges when exploring vast design spaces. Other
methods, such as Schaff et al. [15] and Luck et al. [11],
used policy transfer mechanisms to reduce the evaluation
cost of evolving new designs, transferring learned policies
from previous designs to new ones. However, these strategies
still struggle with generalization across different designs and
dynamic environments.

A notable alternative is Transform2Act [19]], which uses
graph neural networks to encode robot designs and RL to
optimize control policies. Although Transform2Act effectively
integrates morphology and control, it remains computationally
demanding and struggles with sample efficiency in high-
dimensional spaces. Model-based methods [17, [13] also of-
fer solutions but lack robustness when faced with changes
to design parameters or environment dynamics, emphasizing
the need for more generalizable approaches. Another work
Symmetry-aware design framework (SARD) [4] has intro-
duced additional innovations by leveraging structural prop-
erties to simplify optimization, improving sample efficiency.
While effective in structured domains, SARD is limited by it’s
dependence on symmetry. GFlowNets [1]] have been proposed
as a promising solution to generate diverse candidates in
complex design spaces by addressing mode collapse. Initially
applied to molecular design [8]], GFlowNets have shown
potential for robot co-design but are hindered by challenges
in sample efficiency and the exploration-exploitation balance.

RoboNet builds upon these foundational works by introduc-
ing rate-based design candidate prioritization and cost-aware
sampling, significantly improving sample efficiency compared
to methods like Transform2Act. RoboNet’s adaptive sampling
strategies, integration of domain-specific heuristics, and novel
reward formulation enable more effective exploration of the
design space while balancing performance and resource con-
straints. Unlike SARD, which is constrained by symmetry,
RoboNet offers a flexible framework adaptable to a broader
range of design challenges. By addressing key limitations in
previous co-design methods, RoboNet paves the way for more
efficient and diverse robot designs in scenarios where uncon-
ventional configurations may offer significant advantages.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) problems are modeled as a
Markov Decision Process (MDP), represented as (S, A, T, R),

where S is the state-space, A is the action-space, T
S x A — S is the transition function governing the next state
reached by taking an action a € A in a state s € S, and
R : S§x A — R is the scalar-valued reward producing function
for taking action a in state s.

The learning problem is to find the optimal policy that
maximizes the returns E,.,7(7), where 7 is the policy, 7
is a trajectory sampled from m, and r(7) = }_(, e, R(s,a)
is shorthand for sum of the rewards over the trajectory .

B. Generative Flow Networks

GFlowNets aim to generate diverse, high-reward candidates
in structured spaces by learning a policy that samples from
a distribution proportional to a reward function R(57). This
approach is distinct from traditional generative models, as it
explicitly seeks diversity, critical in robot co-design where
multiple design candidate solutions could be possible, and is
beneficial to explore.

1) Definition: A GFlowNet defines a trajectory T =
(S0,a0,-..,57) in a Markov decision process (MDP) with
states 5 € S and actions @ € A. The objective is to sample
terminal states sp from policy space P according to:

P(ET) x R(ET) (D
The flow consistency condition ensures balance across states:
F(s)=) P |5a)F() o)

acA

where F'(3) is the flow through state 3.

2) Learning Objective : To ensure the sampling model
learns a policy that can generate samples according to a
target distribution, GFlowNets uses the Trajectory Balance
(TB) objective [12], given by:

Lrn(7:0) = (log (% HEZZSFQ(S/ | S)))2 3)

where Zy is the partition function ensuring consistency
across state transitions. TB aims to ensure that the marginal
likelihood of a trajectory terminating at a terminal state Sp
becomes proportional to the reward R(37) through efficient
credit assignment and robustness to long trajectories.

3) Application to co-design: In robot co-design,
GFlowNets can generate diverse designs, avoiding the
mode collapse typical of RL approaches. The reward
R(57) can reflect task-specific performance, and GFlowNets
effectively balance exploration and exploitation via flow
consistency, optimizing sampling in high-dimensional spaces.

Our method, RoboNet, extends GFlowNet by introduc-
ing rate-based boosting and cost-aware sampling, improving
sample efficiency and addressing the challenges of high-
dimensional co-design spaces in the robotics domain.

IV. METHODOLOGY

We aim to search a discrete space of robot designs X to
find designs x; € X that can perform a given task effectively.
Given the complexity of the robot design search space, a naive
random search for x; can be impractical, thus, advanced search
techniques must be employed. This section outlines the key
components and innovations in our approach to tackle this
high-dimensional search space.

A. RoboNet Framework and Contributions

In RoboNet, we build upon the GFlowNet framework,
which aims to sample from a distribution proportional to
a given reward function. In the context of robot co-design,
we define our state space X as the set of all possible
robot configurations, including both morphology and control
parameters. The action space A represents the design decisions
that can be made at each construction process step. This
decision/action space is a high-dimensional space composed
of multiple lengths, sizes, joint gear ratios, and slot options
for the insertion of each new link.

The core objective of RoboNet is to learn a policy that gen-
erates terminal states S7 (complete robot designs) according to
P(37) o< R(37), where P(57) is the policy and R(37) is the
reward function evaluating the performance of the complete
robot design. To train RoboNet, we employ the Trajectory
Balance (TB) objective (described in [3). Following are the
contributions RoboNet proposes for co-designing robots:

1) Rate Based Design Candidate Prioritization: To address
the sample inefficiency of standard GFlowNets, we introduce
rate-based prioritization. This prioritization module generates
an initial set of candidate designs, evaluates their performance
over a limited number of timesteps in a simulator, and updates
the RoboNet policy to bias towards designs with higher
performance rates during the training period. This approach
can be formalized as:

Or+1 = 0; + aVEsy ~ PO[Vs,. R(5r)) “)

where « is the learning rate, P is the policy space and
Vs R(37) is the rate of change of the reward with respect
to the terminal state 5. In the context of robot co-design,
this rate indicates how quickly the robot’s performance im-
proves during training specifically immediately before the
cutoff timesteps window (i.e. the evaluation during the last n
timesteps). A steeper rate indicates that the robot design has
a comparatively greater potential for rapid improvement over
the long run. Thus, through RoboNet, we prioritize and bias
policy updates toward robot designs that have the potential to
keep learning and reach higher reward eventually.

2) Cost Aware Sampling: Allocating a fixed amount of
training resources to all candidate designs can lead to two
issues: (i) If the allocated timesteps window is too low,
the generator may become biased toward producing simpler
designs that underperform when given more resources, due
to learning behaviors only beneficial in the short-term. (ii)
If the allocated window is too high, unpromising designs
receive excessive resources, resulting in sample inefficiency

and potential difficulties in convergence. It is also challenging
to pin down what the right resource level might be for
fair evaluation per task. Hence, we present our cost-aware
sampling strategy which is formalized as:

Psample(gT) X R(§T>_wc(§T) (5)

where C'(57) is a cost function reflecting the computational
complexity of evaluating design 57, and w is a hyperparameter
controlling the trade-off between performance and evaluation
cost. Through this formulation, we enforce the idea that
designs will be sampled proportionally to their performances,
with a penalty associated with larger resource consumption.
Thereby, we integrate the C(x) into RoboNet’s sampling
space. Thus, we encourage RoboNet to learn a joint sampling
strategy to optimize effectively over the robot design search
space and cost for each evaluation.

Algorithm 1 RoboNet co-design Algorithm

1: Init: Policy Parameters 6, Partition function Z, Design Space X,
Policy Space P, Environment E, Batch Size M, Max Training
timesteps K

2: while not converged do

3: Sample batch {7}, using Eq. |l| and Eq. E]

4: for 7; = (d;, pi,r:) in batch do

5: /I d;: design, p;: policy, r;: reward

6: Update Reward: R(57) =
f (Performance in E(d, p), complexity strategy(d)) using
Eq. @ and Eq. [j]

7: Calculate loss £(7;) using TB objective (Eq.

8: end for

9: Update 6, Z via gradient descent on £(7;)

10: Adjust sampling probabilities for promising design regions

11: if converged then

12: Sample final batch using the updated sampler

13: Train batch using timesteps K

14: end if

15: end while
16: return top performance designs d* and policies p*

B. Exploration vs Exploitation

To balance exploration and exploitation, we use the follow-
ing technique that adjusts the sampling distribution based on
the number of designs sampled:

1) Annealing Exploration: In the standard GFlowNet
framework, an inverse temperature parameter /3 is employed
to control the balance between exploration and exploitation
in the forward policy [1]. Higher values of 8 lead to more
exploitative behavior, focusing on high-reward states, while
lower values encourage more exploration of the overall state
space. In RoboNet, we introduce a novel formulation for (8
that adapts over the course of its training:

ﬂdecay = Vﬁinit + (1 — V)ﬂinit(l — d,u)(tfdd)/ds (6)

where,
0 ift>dy
dg,t) = - 7
7(da; 1) {1 if ¢ < dy 2
where t is the current iteration, d, is the selected window
after which the annealing starts, d, is the decay step size,

and dg is the decay delay parameter which controls when the
gradual decrease in exploration starts. The gradual decay in
this formulation ensures a smooth transition from exploration
to exploitation, avoiding abrupt changes in the sampling dis-
tribution that could destabilize training.

By incorporating this adaptive temperature schedule,
RoboNet aims to efficiently explore the vast robot design space
in the early stages of training, while progressively focusing on
high-performing regions as training progresses.

This temperature-controlled forward policy, combined with
our rate-based candidate prioritization and cost-aware sam-
pling strategies, enables RoboNet to navigate the complex
robot design space more effectively than standard GFlowNets
or traditional optimization approaches to address the robot co-
design problem.

V. Toy EXPERIMENT

In the toy experiment, instead of using a simulator, we use a
simple reward function that incentivizes RoboNet to generate
the desired robot designs. The problem is setup such that
the action space includes 5 different lengths, and 5 different
size options, totalling to a 25-dimensional space. Specifically,
the objective is to model robots with the longest chain of
interconnected bodies. To achieve this, RoboNet must select
actions that progressively increase the overall length of the
robot. The action space includes discrete length options for
each selected body, requiring RoboNet to choose robot bodies
with the highest length values and form the graph such that
the graph has a long branch. In each iteration, the observed
lengths of each design candidate are collected and averaged
to calculate the mean value and is plotted against the longest
possible robot length in Fig. [2| The reward is given as 10 times
the length of the robot.

40
Highest Length
35
[
E
€30
e
0
®25
=
20 Toy Experiment (Smoothed Medians)
~~~~~ Highest Length Possible: 39.6 units
15 0 200 400 600 800 1000
Iterations

Fig. 2: RoboNet training curves for the toy experiment, where
Median length (per batch) of the robots is plotted against the
iteration. The dotted red line shows the maximum robot length
possible.

Fig. [2] shows the median robot length per batch (batch size
= 32) after 1000 iterations. Remarkably, RoboNet was able to
sample 14 distinct longest (i.e. 39.6 units) robots as shown
in Fig. 3] Hence, instead of converging onto one design that
follows the reward function for reward maximization, we have



14 distinct top performers which vary in other properties like
size and angle of connection. In the following section, we
present complex experiments that use a simulator for feedback
on the quality of designs instead of a toy reward function.

H ns”

s~ Ny

H \'
N~
Fig. 3: Top fourteen generated robots in the last iteration of
the toy experiment. All these designs have two initial links i.e.
head(H) and neck(N), and six-links added by RoboNet, and
have the highest possible length of 39.6 units.

_\

VI. EXPERIMENTS AND RESULTS
A. Environment

We use the OpenAl Ant-v5 Mujoco environment where we
retain all the original physics settings. However, instead of
using the default Ant robot, we allow our algorithm to con-
struct robots of its choice using monolithic geometries called
capsules. The maximum number of capsules RoboNet can use
is limited based on the type of terrain the agent is tested in. The
goal of these candidate-design robots is to move forward and
collect rewards while ensuring they do not lose balance and hit
their head on the ground, upon which the episode terminates.
We also modified the environment reward for staying alive to
0.5 instead of 1.0, and there is no control cost associated with
joint movements. This expands RoboNet’s action space to 625
dimensions, incorporating 5 different options for link-cost (to
employ the cost-aware sampling strategy), as well as 5 distinct
choices for length, size, and gear ratio.

B. Baselines

We evaluate our method against the following baselines.

1) Transform2Act: Transform2act uses graph-based rep-
resentation for agents with limbs represented as edges and
joints as nodes in a 3-stage policy optimization - first for
skeleton design, second for parameter learning, and then for
learning control policy. In our implementation, we present
their algorithm with the same problem of the high-dimensional
and open design space RoboNet solves.

2) GFlowNet: A naive GFlowNet implementation, applied
directly to solve the robot design problem without the rate
based design prioritization and cost-awareness components.

We provide all baselines and our method a total timesteps
budget of 5 billion steps to Co-Design.

C. Results

We set up 2 different types of terrain to walk along, these
include a flat and a steep 15-degree inclined walking surfaces
and are further described below:

o Flat Terrain: Our flat terrain is the standard Ant-v5
environment terrain with all physics conserved as the
original Ant. RoboNet is allotted a maximum of 8 nodes
to build with and the training budget per candidate design
is limited to 450k timesteps.

o Inclined Terrain: Our inclined Terrain has similar dynam-
ics to the Ant-v5 environment, except that the slope of
the floor surface is tilted 15° to create a more challenging
walking task for the generated robots. RoboNet is allotted
a maximum of 10 nodes and the training budget is limited
to 600k timesteps per candidate design.

Flat Terrain Inclined Terrain
Transform2Act [[19] | 416.1 + 46.2 130.8 £ 37.3
GFlowNet [1] 590.3 £ 353 361.7 £+ 80.8
RoboNet (Ours) 9253 + 59.1 812.5 + 71.8

TABLE I: Average Rewards (as mean =+ standard error) for
the best-performing design after 400 GFlowNet iterations
equivalent samples from each of the three methods across
varying terrains when run for 5 independent trials and a
training budget of 5 million timesteps is provided.

1000 —— RoboNet's Design 1 \;/
—— RoboNet's Design 2
RoboNet's Design 3
—— Transform2Act's Design —
800 ~—aP
v
©
2 600
o
c
o 400
=
200
0

0 1 2 3 4 5
Timesteps (in millions)
Fig. 4: The training curves of RoboNet’s top 3 designs com-
pared to Transform2Act’s design when each robot design is
independently trained for 5 million timesteps in the flat terrain.
Similar behavior is also observed in the inclined terrain.

The results in Table [I] further prove the sample efficiency
of our method. Since Transform2Act sequentially upgrades
an initial design and focuses on training these intermediary
designs to maximize task performance, their final design might
still be too simple to handle difficult terrains similar to inclined
terrain. RoboNet and GFlowNet instead focus on a design-first
approach where more resources are allocated on identifying
the best design rather than training each design to completion,
thus saving up on a lot of samples. Though GFlowNet is
better at handling samples compared to Transform2Act, it
still struggles with distinguishing capable candidates amongst



designs. This is because it relies only on the performance
value but not the pace of learning, and does not take into
account that more complex designs might need more resources
than a simple design, like RoboNet does. Additionally, while
Tranform2Act outputs a single design, RoboNet outputs a
distribution of designs (as presented in Fig. [).

VII. DISCUSSION

RoboNet represents a significant step forward in the field of
robot co-design, leveraging the power of GFlowNets to explore
the vast space of possible robot configurations more efficiently.
However, as with any novel approach, RoboNet is a work in
progress with several challenges that need to be addressed to
fully unlock its potential in robotics applications.

A. Current Limitations

o Computational Complexity: While RoboNet demonstrates
improved sample efficiency compared to traditional meth-
ods, the computational cost of evaluating complex robot
designs remains a significant bottleneck. As the dimen-
sionality of the design space increases, so does the
computational burden of simulating and evaluating each
candidate design.

o Exploration vs Exploitation: Ensuring sufficient explo-
ration in a vast and heavily constrained robot design space
is a huge challenge. This is because while good levels of
exploration, in theory, have to be encouraged, the cost of
evaluation prohibits this to a large extent. We only trained
RoboNet with a batch size of 32 resulting in RoboNet
sampling only close to 10,000 robot designs to deliver
the results discussed, however, we believe exploring the
design space more with the possibility of adding more
robot-links will unlock truly unique design structures
across multiple tasks.

o Knowledge Propagation: While several robot candidate
designs are being evaluated, there is no knowledge ac-
cumulation currently in place that could help reduce
the need for extensive evaluations. This is challenging
because of the number of nodes each of these candidate
design robot graphs may contain.

VIII. CONCLUSION

This paper introduces RoboNet, a novel sample-efficient
framework for robot co-design that leverages Generative Flow
Networks (GFlowNets) to explore the vast space of robot
configurations. RoboNet’s key innovations include rate-based
design candidate prioritization, cost-aware sampling, and adap-
tive annealed exploration. These strategies enable RoboNet
to balance performance gains against computational costs
while gradually shifting from broad exploration to focused
exploitation. Our experimental results demonstrate RoboNet’s
superior performance compared to baseline methods such as
Transform2Act and vanilla GFlowNet in both flat and inclined
terrain scenarios. Despite these promising results, challenges
remain in reducing computational complexity and refining the
balance between exploration and exploitation. Future work

should address these limitations and explore RoboNet’s ap-
plication to more diverse and challenging robotic tasks.

REFERENCES

[1] Emmanuel Bengio, Moksh Jain, Maksym Korablyov,
Doina Precup, and Yoshua Bengio. Flow network based
generative models for non-iterative diverse candidate
generation. Advances in Neural Information Processing
Systems, 34:27381-27394, 2021.

[2] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient
machines through continuous self-modeling. Science,
314(5802):1118-1121, 2006.

[3] Flaviu Cipcigan, Jonathan Booth, Rodrigo Neumann Bar-
ros Ferreira, Carine Ribeiro dos Santos, and Mathias
Steiner. Discovery of novel reticular materials for carbon
dioxide capture using gflownets. Digital Discovery, 3(3):
449-455, 2024.

[4] Heng Dong, Junyu Zhang, Tonghan Wang, and Chongjie
Zhang. Symmetry-aware robot design with structured
subgroups. In International Conference on Machine
Learning, pages 8334-8355. PMLR, 2023.

[5] David Ha. Reinforcement learning for improving agent
design. Artificial life, 25(4):352-365, 2019.

[6] David Howard, Agoston E Eiben, Danielle Frances
Kennedy, Jean-Baptiste Mouret, Philip Valencia, and
Dave Winkler. Evolving embodied intelligence from
materials to machines. Nature Machine Intelligence, 1
(1):12-19, 2019.

[7] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

[8] Moksh Jain, Emmanuel Bengio, Alex Hernandez-
Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael
Kilgour, Dinghuai Zhang, et al. Biological sequence
design with gflownets. In International Conference on
Machine Learning, pages 9786-9801. PMLR, 2022.

[9] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian

Ibarz, and Deirdre Quillen. Learning hand-eye coor-

dination for robotic grasping with deep learning and

large-scale data collection. The International journal of

robotics research, 37(4-5):421-436, 2018.

Hod Lipson and Jordan B Pollack. Automatic design

and manufacture of robotic lifeforms. Nature, 406(6799):

974-978, 2000.

Kevin Sebastian Luck, Heni Ben Amor, and Roberto

Calandra. Data-efficient co-adaptation of morphology

and behaviour with deep reinforcement learning. In

Conference on Robot Learning, pages 854-869. PMLR,

2020.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen

Sun, and Yoshua Bengio. Trajectory balance: Improved

credit assignment in gflownets. Advances in Neural

Information Processing Systems, 35:5955-5967, 2022.

[13] Chandana Paul, Francisco J Valero-Cuevas, and Hod

(10]

(11]

[12]



[14]

[15]

[16]

[17]

[18]

[19]

Lipson. Design and control of tensegrity robots for
locomotion. IEEE Transactions on Robotics, 22(5), 2006.
Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland
Siegwart, and Cesar Cadena. From perception to de-
cision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. In 2017 ieee
international conference on robotics and automation
(icra), pages 1527-1533. IEEE, 2017.

Charles Schaff, David Yunis, Ayan Chakrabarti, and
Matthew R Walter. Jointly learning to construct and con-
trol agents using deep reinforcement learning. In 2079
International Conference on Robotics and Automation
(ICRA), pages 9798-9805. IEEE, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026-5033. IEEE, 2012.

Miguel G Villarreal-Cervantes, Carlos A Cruz-Villar,
Jaime Alvarez-Gallegos, and Edgar A Portilla-Flores.
Robust structure-control design approach for mechatronic
systems. IEEE/ASME Transactions on Mechatronics, 18
(5):1592-1601, 2012.

Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and
Sehoon Ha. Learning fast adaptation with meta strategy
optimization. IEEE Robotics and Automation Letters, 5
(2), 2020.

Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and
Kris M Kitani. Transform2act: Learning a transform-and-
control policy for efficient agent design. In International
Conference on Learning Representations, 2021.



	Introduction
	Related Works
	Background
	Reinforcement Learning
	Generative Flow Networks
	Definition
	Learning Objective 
	Application to co-design


	Methodology
	RoboNet Framework and Contributions
	Rate Based Design Candidate Prioritization
	Cost Aware Sampling

	Exploration vs Exploitation
	Annealing Exploration


	Toy Experiment
	Experiments and Results
	Environment
	Baselines
	Transform2Act
	GFlowNet

	Results

	Discussion
	Current Limitations

	Conclusion

