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ABSTRACT

Modern state-of-the-art machine learning models are often trained using a com-
bination of heterogeneous data sources. However, the utility of different data
sources as support for learning some target tasks is often not equivalent, motivat-
ing the need for automated methods of optimizing the relative contribution of each
data source to the model. In this work, we propose a dataset optimization strat-
egy that slices a normal model training step into a series of data source-specific
updates and splices them back together in an optimal manner with respect to the
loss on some target task dataset. We demonstrate the effectiveness of our algo-
rithm across different scenarios and domains, including classification problems
for vision models and for next-token prediction tasks in the language domain.

1 INTRODUCTION

Many state-of-the-art machine learning models are trained on mixtures of data from multiple
sources. For example, The Pile (Gao et al., 2020), a commonly used large-scale language dataset,
is composed of data from 22 different sources, including text from ArXiv, GitHub and Wikipedia.
A natural question follows: How does each subset impact model performance, and how should
the mixture be reweighted to optimize downstream scores? The importance of optimizing the data
mixture is further pronounced when model users have specific downstream tasks in mind.

Many prior works investigated different strategies to automate the optimization process of data mix-
ture coefficients (Albalak et al., 2023; Liu et al., 2024; Ge et al., 2024; Thrush et al., 2024; Zhao
et al., 2024; Shimabucoro et al., 2024). Such methods tends to rely on heuristics or empirically
observed correlations between training data properties and downstream model performance.

In this paper, we construct an optimizer that directly minimizes loss on a downstream task using
gradient-based optimization. Central to our approach is the concept of a data mixture gradient –
the derivative of the downstream validation loss with respect to the dataset mixture weights used
during training. Computing the mixture gradient is unfortunately intractable due to the complex
dependency between the mixture coefficient and the model parameters. Therefore, we develop a
theoretically justified approximation of the mixture gradient that breaks the aforementioned depen-
dency, allowing tractable optimization for the mixture coefficients.

We propose a two-stage approach that optimizes model parameters and mixture coefficients sepa-
rately in each stage (see Figure 1). Assume we are optimizing a mixture over N subsets.

• In Stage-I optimization, we optimize the model using some initial mixture coefficients for
N data subsets. As the model trains, we accumulate the gradient contributions from each
of the N data subsets into N separate buffers.

• In Stage-II optimization, we aim to optimize the mixture coefficients to improve the out-
come of training, as measured on a validation set. Using the N individual gradient contri-
butions stored during Stage-I, the final model parameters can be written as the parameters
at initialization, plus a linear combination of the N accumulated gradients in these buffers.
We then optimize the N coefficients in this linear combination to find a synthetic iterate
that minimizes the validation loss. This simple optimization problem serves as a proxy for
re-weighting the data mixture.
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α2]

θ α - Optimization- Optimization

Figure 1: An illustration of our proposed two-stage algorithm to optimize dataset mixture coeffi-
cients α for a given task. In the first stage (left figure), we train the model to obtain θT and accu-
mulate subset-specific gradient ∇θLi to Gi. In the second stage, we represent the trained model
as θT = θ0 + α · G, and optimize α while keeping G fixed. The new coefficients α∗ is used to
produce a better model θ∗ = θT +∆α ·G.

We empirically demonstrate that Stage-II model obtained using linear combination of N gradients
weighted by the optimized coefficients indeed outperforms the Stage-I model. We further propose
a checkpointing variant of our algorithm that is more friendly to large-scale datasets, and a multi-
episode extension that performs the two-stage optimization in multiple rounds for better perfor-
mance.

We present an interpretable dataset remixing experiments on DyckGrammer (Schützenberger, 1963;
Yao et al., 2021; Wen et al., 2023), a synthetic language generation task, to visualize the effect of
our algorithm. We further conduct in-depth experiments on carefully constructed datasets based on
CIFAR-10 (Krizhevsky et al., 2009) to validate the effectiveness of our algorithm and its different
variants. Finally, we apply our algorithm to an object detection task, where we experiment with
DETR (Carion et al., 2020) trained on the COCO dataset (Lin et al., 2014). We show that our
algorithm improves test-time performance by reweighting the classes in the dataset.

2 OPTIMIZING DATASET MIXTURE THROUGH GRADIENT REMIXING

Consider a collection of datasets denoted as D = {Di}Ni=1, where each dataset Di = {(xj , yj)}mi
j=1

consists of mi training examples. Here, we have omitted the dataset-specific index on the training
examples (xj , yj) for notational simplicity. In practice, the dataset collection D may consist of
individual datasets from different sources, such as arXiv, code, or math. Alternatively, it can also be
constructed by partitioning a single dataset into multiple subsets if the partitioning criteria is known.

The standard approach of training a model f(:,θ) with parameters θ (alternatively denoted by fθ)
involves minimizing a loss that is a mixture of data from various sources.

L(θ;α) =

N∑
i=1

αiLi(θ) = α · L(θ). (1)

Here, Li(θ) = 1
|Di|

∑
x,y∈Di

ℓ (fθ(x), y) is the loss associated with dataset Di, L(θ) is a vector-
valued function containing each of the individual losses and α is a vector of mixture coefficients.

In many practical settings, the downstream performance of a model depends strongly on the choice
of the mixture coefficients. Our goal is to optimize the choice of α to achieve the lowest possible
loss on a test set. A dataset mixture can be evaluated by first training on the rebalanced data, and
then evaluating the resulting model on a validation set. More formally, we train a model on the data
mixture using gradient descent:
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θt = θt−1 − ηt−1L
′(θt−1;α) for t = 1, 2 . . . T, (2)

where {ηt} is a sequence of learning rates and L′(θt−1;α) is the gradient. Then, we evaluate the
validation loss V (θT ). The goal of dataset mixology is to optimize α to achieve low downstream
loss. In our proposed approach, we first train the model parameters θ, and optimize α to minimize
the downstream loss. A key feature of our approach is that we approximate the mixture gradient
– the derivative of the downstream loss with respect to the upstream mixture coefficients – thus
enabling efficient and effective optimization of α.

2.1 A DIFFERENTIABLE FORMULATION OF THE PROBLEM

We would like an efficient way to optimize α to minimize the validation loss V (θT ). Note that θT
implicity depends on α, although this dependence is fairly complex. We will make a simplifying
assumption to remove this complexity.

The simple idea behind our proposed method is to apply Equation (2) recursively to write

θT = θ0 −
T−1∑
t=1

ηtα · L′(θt)

= θ0 − α1

T−1∑
t=1

ηtL
′
1(θt)− α2

T−1∑
t=1

ηtL
′
2(θt) · · · − αN

T−1∑
t=1

ηtL
′
N (θt)

= θ0 − [α1G1 − α2G2 · · · − αNGn] = θ0 −α ·G. (3)

Where the gradient contribution of the ith dataset is Gi =
∑T−1

t=1 ηtL
′
i(θt). This expansion writes

the final iterate θT as θ0 plus all the individual gradient contributions from each dataset. Even
though α does not appear in the formula for Gi, these gradient contributions depend implicitly on
α because a different choice of α would result in a different trajectory of iterates.

Our proposed method uses a simplification to make dataset optimization tractable: we treat each Gi

like a constant. After running the training loop to find θT , we then formulate the dataset optimization
problem

min
α

V (θT ) ≈ V (θ0 −α ·G). (4)

We can easily minimize the objective using gradient-based optimization. The gradient of V with
respect to α can be computed using autograd, or using the formula

∂

∂α
V (θT ) ≈

∂

∂θ
V (θT )

∂

∂α
[θ0 −α ·G] = −V ′(θT ) ·G. (5)

Note that we use the ≈ symbol to emphasize that this gradient treats G as a constant and ignores its
implicit dependence on α.

2.2 THEORETICAL JUSTIFICATION

The approximate mixture gradient in Equation (5) results from treating G like a constant. In this
section, we show that our approximate gradient closely matches the true dataset mixture gradient
when the learning rate η is small.
Theorem 1. Consider the downstream validation loss

∇αV (θT ) :=
∂

∂α
V (θT ), (6)

where θT is given by Equation (2) and implicity depends on α. We then have

∂

∂α
V (θT ) = −V ′(θT ) ·G︸ ︷︷ ︸

first order term

−V ′(θT ) ·
T−1∑
t=0

ηtα · ∂

∂α
[L′(θt)]︸ ︷︷ ︸

higher order term

. (7)
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We provide the proof in Appendix C.

Our approximate mixture gradient in Equation (5) matches the first-order term in the expansion for
the true dataset gradient, while neglecting the terms involving higher-order derivatives. For small,
constant learning rate η, the first order term is O(η) because of the factor of η that is included in
the definition of G. Meanwhile, the term ∂

∂α [L′(θt)] =
∂
∂α [L′(θ0 − η

∑t−1
t=0 α · L′(θt))] ≈ O(η).

Combining this observation with the additional factor of η in front of the higher order term, we see
that this term has magnitude O(η2), making our approximation accurate for small η.

Note that we often train with as large a learning rate as possible, and some of the mixed partial
derivatives in the neglected higher order term may be large. In practice, we do not expect the higher
order terms in equation 7 to be vanishingly small. Nonetheless, we find that our simple first-order
approximation of the mixture gradient is good enough to succeed in many situations.

2.3 OUR METHOD

We discuss our method in detail in this section. The overall training process can be viewed as an
alternative optimization method that optimizes model parameters θ and mixture coefficients α in
two stages:

Stage I: (θ-optimization) We train our model parameters θ on the data mix given by Equation (1),
while keeping the mixture coefficients α fixed. As training proceeds, we store the cumulative gra-
dient from Di in vector Gi =

∑T−1
t=0 ηtL

′
i(θ), allowing us to separate out the contribution that

each dataset makes to the final iterate. Note that while we motivate our approach based on gradient
descent, our algorithm is not restrictive on the choice of model optimizers (as shown in Section 3.2).

Also note that both the loss Li(θt;α) and the gradient L′
i(θt;α) are computed using a mini-batch

sampled from Di. This mini-batch changes on each step t, although our gradient notation omits this
dependence to avoid clutter.

Stage II: (α-optimization) In the second stage, we keep the model parameters θ fixed and optimize
the mixture coefficients starting from α0 by minimizing the validation loss V (θT ) as defined in
Equation (6). This simple procedure remixes the gradient information from individual datasets and
results in an updated model with parameters θ∗ that achieves better validation performance.

Rather than rely directly on Equation (6), we make the change of variables β := α − α0. This
converts Equation (6) to the equivalent form

min
β

V (θT − β ·G). (8)

We refer to optimizing Equation (8) as the ‘wiggle’ method as it corresponds to letting the final iter-
ate wiggle around θT rather than starting optimization from the far-away iterate θ0. The optimized
β∗ can be used to compute the mixture coefficients α∗ = α0 + β∗ if further training is required.

Why use the wiggle method? Both Equation (6) and Equation (8) are the same when the gradi-
ent contributions G are calculated exactly. In situations where G is inexact (e.g., because of low
precision training), it is better to use Equation (8) as it always starts optimizing from the iterate θT .

For various reasons such as interpretability of α, it is sometime preferred to have the mixture con-
tributions sum up to one. In this case, we use a softmax function ϕ(.) to normalize α values during
training. We provide the details of this formalism in Appendix D.

2.4 EXTENSIONS

Gradient Approximation for Large Scale Training: The gradient storage step during Stage I
requires keeping track of N copies of model gradients, making the memory requirement infeasible
at a large scale if these copies are simply stored in memory. One can also store the model gradients
in disks, but this incurs infeasible computation overhead as each gradient copy must be moved
between memory and disk in each iteration whenever gradient accumulation happens. To overcome
this, we store P checkpoints of model θ evenly spanned across training steps during Stage I, and

4
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(a) (b) (c)

Figure 2: (a) The bracket distributions of different Dyck grammar training datasets, (b) the combined
bracket distribution of the training datasets, and (c) the landscape of the target dataset loss in the
mixture coefficient space. Lighter color corresponds to a lower loss value on the target distribution.
The optimization trajectory of α is shown as black lines with arrows, with the green star and red
circle marking the initialization and the end of optimization.

approximate the gradient information G as

Gi ≈
P∑

p=1

ηpL
′
i(θp;αp), (9)

where p indexes the checkpoint and ηp represents the corresponding learning rate at the training
step θp is stored. To further reduce the computation for large-scale datasets, we only calculate the
gradient gi(θp) on a random subset of the full training dataset. The frequency to recompute Gi using
a new random training subset is a hyperparameter and can be set based on computational budget.

Multi-episode Training: Here, we discuss how our method can be extended to run in multiple
episodes, where each episode is a single run of Stage I and Stage II optimization. Naively, after
finishing an episode µ to obtain θ∗ and α∗, one can simply set θ(µ+1)

0 = θ∗ and α
(µ+1)
0 = α∗ for

a new episode µ + 1, and continue to run another two-stage optimization. However, during stage
II, we normally only observe a minimal change in mixture coefficients α, particularly in the later
episodes (as shown in Appendix B). Consequently, while the resulting θ∗ can already substantially
improve the test-time performance over θT , the corresponding α∗ generally does not carry sufficient
difference to be impactful in the next episode. On the other hand, despite the small magnitude, these
changes still provide valuable information about the optimal direction for adjusting α. To leverage
this information, we apply discrete updates to α at the end of each episode based on the sign of the
α changes as follows

α
(µ+1)
0 = α

(µ)
0 + γ sgn(α∗ −α

(µ)
0 ). (10)

Here, γ controls the magnitude of the update and represents the step size of optimization in the
dataset space. This allows us to make more substantial updates to the mixture coefficients, poten-
tially overcoming local optima and encouraging further exploration of the optimization landscape.

The above process is repeated until the validation loss converges, with each new episode building on
the previous one. In Appendix B, we provide additional experiments that motivated different design
choices of our algorithm.

3 EXPERIMENTAL RESULTS

3.1 DYCK GRAMMAR: A TOY EXAMPLE

To illustrate the inner workings of our algorithm, we present an interpretable experiment on the
bounded Dyck grammar Schützenberger (1963); Yao et al. (2021); Wen et al. (2023). The Dyck
grammar consists of balanced brackets of multiple types, constituting a formal language grammar.
For two types of brackets {},

()
, an example string looks like: {

()
{}}

()
{{}}.

We consider Dyck grammar with 16 types of brackets and a maximum nested depth of 8. We con-
struct three training datasets, each with a different distribution for the brackets —(1) an increasing

5
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power-law, (2) a decreasing power-law, and (3) an exponentially decreasing distribution from the
center. Figure 2(a, b) illustrates these distributions, along with the combined training dataset distri-
bution with uniform dataset mixture, i.e., {αi = 1}N=3

i=1 .

For the target dataset, we consider a uniform distribution of the brackets. The goal of our algorithm
is to determine the optimal dataset mixture coefficient {α∗

i }N=3
i=1 that minimizes the loss on the

uniform distribution. Intuitively, we expect α1, α2 to increase and α3 to decrease. Specifically,
larger values of α1 and α2 increase the probability of underrepresented brackets, while a smaller
value of α3 reduces the probability of over-represented central brackets.

Figure 2c shows the loss landscape on target dataset with respect to normalized coefficient ϕ(α),
generated by running model optimization with α0 initialized as the sets of coefficients whose
normalization supports the whole landscape. In this landscape, the value of α2 is inferred by
ϕ(α2) = 1 − ϕ(α1) − ϕ(α3). As expected, the target dataset loss is small for large values of
ϕ(α1), ϕ(α2) and small values of ϕ(α3).

Next, we show the effectiveness of our algorithm in finding the optimal data mixture coefficient in
this loss landscape. We initialize α0 with a uniform mixture (marked by a green star in Figure 2c),
and run the multi-episode variant of our algorithm. As the training episode progresses, our algorithm
gradually updates α to reduce the loss on the target distribution and eventually converges close to
the minimum, as marked by the red circle. Further discussion, including model and optimization
details, are provided in Appendix A.1.

3.2 IMAGE CLASSIFICATION

We perform an in-depth study on our algorithm and its different extensions on image classifica-
tion tasks using CIFAR-10 (Krizhevsky et al., 2009). We construct two different datasets based on
different splitting of the original CIFAR-10.

• Mislabeled CIFAR-10. This dataset contains two training subsets. One is the ordinary
CIFAR-10. We construct the other one by intentionally reassigning the target of each ex-
ample in CIFAR-10 with an incorrect label. In this scenario, the optimal mixing coefficient
is clearly 1 on the correctly-labeled dataset and 0 on the other.

• Imbalance CIFAR-10. For this dataset, we construct an imbalance training set from
CIFAR-10 as described in (Cao et al., 2019) with a balance ratio of 10, and split training set
into 10 subsets based on class labels. As the class distribution between the training set and
the test set is different, model trained with uniform α will typically result in unsatisfactory
performance.

We perform different experiments on the aforementioned two datasets summarized as follows.

• We examine how our algorithm paris with different model optimizers.

• We validate and ablate our checkpointing extension for further use in larger scale experi-
ments described in Section 3.3.

• We compare our algorithm with direct fine-tuning of the model on the validation set to
understand how well our algorithm leverages the additional data.

• We examine our multi-episode extension and its performance improvement relative to the
single-episode version.

Additional experimental details are discussed in appendix A.2.

Single-episode: Different optimizers. We experiment with SGD, SGD with momentum and
weight decay (SGD-wdm), and Adam as our model optimizer. All three optimizers use the same
learning rate of 0.1. SGD-wdm is set up with momentum 0.9 and weight decay 0.0005. Adam is
setup with (β1, β2) = (0.9, 0.999). We run a single episode of our algorithm on both mislabeled
CIFAR-10 and imbalance CIFAR-10, and report the performance on test-set after Stage-I and Stage-
II optimization in Table 1. From the results, we observe that for all three optimizers, our stage II
optimization consistently discovers an α∗ that better remixes the θT with gradient information G
into θ∗ with significantly improved test-time performance. The results for SGD optimizer show that

6
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Model Optimizer Mislabeled CIFAR-10 Imbalance CIFAR-10

SGD Stage I 0.416 0.688
Stage II 0.910 0.771

SGD-wdm Stage I 0.568 0.725
Stage II 0.918 0.834

Adam Stage I 0.500 0.631
Stage II 0.639 0.714

Table 1: Test-time accuracy for a single-episode run of our algorithm on mislabeled CIFAR-10 and
imbalance CIFAR-10. Stage-I indicates the performance of model θT after θ-optimization. Stage-II
indicates the performance of θ∗ after α-optimzation.

our simple approximation of the mixture gradient is effective. The results on SGD-wdm and Adam
show that G still provides valuable information toward recreating a better model even if Equation (2)
does not hold.

Checkpoint # Random Example # Mislabeled CIFAR-10 Imbalance CIFAR-10
Stage I 0.568 0.725
Exact 0.918 0.834

Stage II

5
1000 0.745 0.746
5000 0.915 0.768
10000 0.923 0.787

10
1000 0.886 0.738
5000 0.913 0.751
10000 0.859 0.765

Table 2: Test-time accuracy for a single-episode run of our checkpointing extension on mislabeled
CIFAR-10 and imbalance CIFAR-10. We show the results on different combinations of checkpoint
number P and the amount of random training examples. “Exact” indicates the results obtained using
our normal algorithm.

Single-episode: Checkpointing. In this experiment, we validate the checkpointing extension of
our algorithm, where the gradient information is approximated in Stage II with P checkpoints of
model {θp}Pp=1 recorded in different training steps. We perform an ablation study on the effect of
the number of checkpoints P and the number of random training examples used to approximate the
gradient information G. For this experiment, we recompute the approximation of G with different
random samples in each iteration. We summarize the results on mislabeled CIFAR-10 and imbal-
ance CIFAR-10 in Table 2. The results indicate that the checkpointing variant of our algorithm also
consistently discovers θ∗ that outperforms θT on the evaluation set, and the best results are achieved
with P = 5 and 10000 random training examples. While the best performance is not always com-
parable to the normal variant, our checkpointing extension is still an effective variant more suitable
for large-scale datasets.

Val. Size Mislabeled CIFAR-10 Imbalance CIFAR-10
Stage I 0.568 0.725

5000 Fine-tune 0.920 0.841
Stage II 0.915 0.814

2500 Fine-tune 0.924 0.830
Stage II 0.917 0.815

500 Fine-tune 0.906 0.820
Stage II 0.917 0.830

250 Fine-tune 0.878 0.799
Stage II 0.916 0.812

Table 3: Test-time accuracy for a single-episode run of our method versus simple fine-tuning on
mislabeled CIFAR-10 and imbalance CIFAR-10.

7
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(a) Acc. for Mislabeled CIFAR (b) Acc. for Imbalance CIFAR (c) α curve for Mislabeled CIFAR

Figure 3: Multi-episode experiment on mislabeled CIFAR-10 and imbalance CIFAR-10. In Fig-
ure 3c, α1 is the weight of the correctly labeled dataset, and α2 is for the incorrectly labeled dataset.

Fintuning vs Stage-II optimization. In this experiment, we perform an ablation study to under-
stand how effective our Stage-II optimization leverages the additional validation sets to improve the
model. We compare our algorithm with a simple baseline where θT is directly fine-tuned on the val-
idation set with the same optimizer configuration in Stage I except for the learning rate, which we
set to 0.0001. We summarize the results in Table 3. We observe that our Stage-II optimization out-
performs simple fine-tuning when the size of the validation set is small, and the gap further increases
when the validation set size gets smaller. This makes our algorithm more attractive empirically as a
smaller validation set requires fewer resources to collect.

SE ME
Mislabeled 0.918 0.941
Imbalance 0.834 0.851

Table 4: Final Stage II ac-
curacy. SE: single-episode.
ME: multi-episode.

Multi-episode Optimization with Qunatized Update Finally, we
examine the effectiveness of our algorithm when extended to multi-
episode optimization through the quantized update rule as described
in Equation (10). We perform 10-epsiode optimization and ex-
periment with γ ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0001} on both
CIFAR-10 tasks, and illustrate the results with the best γ in Figure 3.
We also summarize the final Stage-II accuracy in Table 4. From Fig-
ure 3a and Figure 3b, our algorithm consistently outperforms the nor-
mally trained model θ(0)

T after multi-episode optimization, and fur-
ther improves upon the θ∗ obtained by single-episode optimization
as shown in Table 4. Our quantized update rule is also capable of
guiding the trajectory of α toward the optimal data mixture, as shown in Figure 3c.

3.3 OBJECT DETECTION

Base Ours.
Avg. AP 41.9 42.4
AP@50 62.3 62.5
AP@75 44.1 44.9

Table 5: Performance of our
algorithm applied to DETR
trained on COCO.

In this experiment, we test our algorithm on object detection models
trained on COCO (Lin et al., 2014) datasets. We experiment with
DETR Carion et al. (2020), an end-to-end object detection model
based on transformers. Compared to previous experiments, COCO
features complicated object detection tasks in a larger scale, and
DETR is a much larger model that is computationally intensive to
train. Each example in the COCO dataset can be represented as
(x, {bj , yj}mx

j=1), where mx is the number of the bounding boxes as-
sociated with image x, and (bj , yj) is the j-th bounding box and the
corresponding class labels.

We test the checkpointing variant of our algorithm in this scenario,
where we separate the gradient information based on class label into
a total of 91 buffers. We store 5 checkpoints during θ-optimization stage. In Stage II, we sample
new random training examples every 100 iteration and recompute Gi accordingly. To determine a
specific gradient approximation Gi on a checkpoint θp, we compute the model gradient for θp on
each of the random examples, and sum over individual gradients whose corresponding image x has
at least one yj = i.

8
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We summarize the results of our algorithm in Table 5, where average AP is the average of AP whose
IoU ranges from 0.5 to 0.95. The results show up to 0.8 of improvement in average precision score.
Note that unlike the previous scenarios, evaluation distribution and training distribution stays the
same in this experiment. Furthermore, the training loss does not directly correspond to the evalu-
ation metric, and therefore the performance improvement is significantly harder to achieve. Still,
the results verify the usefulness of individual gradient information, and show that our algorithm can
leverage such information to consistently improve the model with a better mix of gradient informa-
tion.

4 RELATED WORKS

Here we briefly review related literature, which broadly fits into three categories.

Dataset Mixture Optimization. This line of works focuses on optimizing data mixture for a pre-
trained model, particularly in language domain, and does not consider optimization for specific
given tasks (Albalak et al., 2023; Liu et al., 2024; Ge et al., 2024; Thrush et al., 2024; Zhao et al.,
2024; Shimabucoro et al., 2024). For example, Liu et al. (2024) constructs a linear model to predict
the performance from mixture coefficients, where the data pair comes from training multiple small
models with different coefficients, and obtain optimal coefficients by reverse optimization. Albalak
et al. (2023) models the data mixture selection as a multi-armed bandit problem where a selection
policy is used to sample training batches. A reward is estimated based on the losses for the batch,
and the policy is updated accordingly. Contrary to these works, our paper focuses on obtaining
optimal mixture coefficients and the corresponding model for a given target task.

Data Selection via Influence Function/Attribution. Broadly speaking, this line of works focuses
on emphasizing the beneficial training examples for a given task during the training, where different
strategies are proposed to gauge the benefit of a training example. For instance, Xie et al. (2023)
computes the n-gram statistics from a reference dataset that has the same distribution as the target
task, and calculates the importance score of each training example based on the statistics. They then
factor in the importance score by performing importance reweighting during the model training.
Pruthi et al. (2020) focuses on improving the scalability of influence function calculation, where
they propose to approximate the influence using a subset of network layers and a number of saved
layer checkpoints from a normal training run, and use the influence score for data selection. To
handle a new target task, a user generally needs to fully repeat these algorithms, making adaptation
between target tasks less efficient. On the other hand, our two-stage approach allows users to shift
between target tasks on the fly without additional model training runs.

Active Learning and Coreset. Active learning algorithms naturally generate optimized selections
of training data as a byproduct, and the coreset optimization problem Sener & Savarese (2018) is key
to many related literature Sener & Savarese (2018); Mirzasoleiman et al. (2020); Xia et al. (2023);
Coleman et al. (2019), where the optimization determines a fixed number of most informative exam-
ples out of the training dataset. However, the corset optimization depends on distance measurements
between examples, which is known to be inaccurate in high-dimensional space. Furthermore, the
scalability of active learning algorithms remains an open question.

5 CONCLUSION

In this paper, we propose an algorithm to optimize data mixture coefficients for a given target task.
Our algorithm is a two-stage approach that alternates between optimization of model parameters
θ and mixture coefficients α. We develop an approximation for the mixture gradient backed by
theoretical analysis, which allows us to efficiently optimize α in Stage II by keeping gradient in-
formation G constant. The approximation also allows us to efficiently resemble a new model with
improved test-time performance. We further propose a checkpointing extension that is computa-
tionally feasible for large-scale datasets, and the multi-episode extension which guides α to the
optimal mixture coefficients and further improves the performance on the target task. We visually
demonstrate the effectiveness of our algorithm in Dyck Grammer experiment, and validate different
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variants of our algorithms in the CIFAR-10 experiment. We also show that our algorithm is effective
for modern-scale datasets and models in the object detection experiment.

REPRODUCIBILITY STATEMENT

We provide hyperparameters and other details of experiment settings of all our experiments in Ap-
pendix A as well as relevant sections. We also provide further detail and derivation to implement α
normalization in Appendix D. The proof of Theorem 1 is detailed in Appendix C.
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A EXPERIMENTAL DETAILS

A.1 DYCK GRAMMAR

Datasets: We consider Dyck grammar with k = 16 types of brackets and a maximum nested
depth of D = 8, with a minimum length of 10 brackets and a maximum length of 50 brackets. We
construct three training datasets with different bracket distributions, with i indexing the brackets:

1. Increasing power-law: The bracket probability decreases with index as

P (i) ∼ 1/i.

2. Decreasing power-law: The bracket probability increases with index as as
P (n) ∼ 1/(k − i).

3. Exponentially decreasing from the center: The bracket probability decreases exponen-
tially from the central bracket as

P (i) ∼ exp(−d),

where d is the distance from the centeral bracket.

Figures 2a and 2b shows these distributions, along with the combined training dataset distribution
with equal contributions. For the target dataset, we consider the uniform distribution P (i) = 1/k
for the brackets. We generate 106 tokens for each dataset, resulting in approximately 42, 000 exam-
ples. We use around 24, 000 examples for training and 8, 000 examples for both validation and test
datasets.

Transformer model: We use GPT-style Transformers Vaswani et al. (2017) with learnable posi-
tional encodings. The model consists of 4 layers, 4 attention heads, and an embedding dimension
of nembd = 768. For activation, we use GeLU activation. Notably, we do not use biases and do not
employ weight tying.

θ-optimization: For Stage I, we use SGD optimizer with a learning rate η = 0.3 and a batch size
of B = 512, without momentum. We use a linear warmup of 512 steps. Each θ optimization stage
consists of T = 1000 training steps.

α-optimization: For the α stage, we employ GD optimizer with a learning rate ηα = 10−4 and,
utilizing the entire validation dataset. We do not employ learning rate warmup during this stage.
Each α-optimization stage lasts for Tα = 100 steps. For the quantized method, we use γ = 0.1.

Dataset Landscape Generation: To generate the dataset landscape, we train the Transformer
models for T = 5000 steps, with α’s fixed throughout training; no α optimization was performed.
All other hyperparameters are the same as described above.

A.2 CIFAR-10

For all of our CIFAR-10 experiments, unless otherwise noted, we use ResNet-18 (He et al., 2016)
as our model architecture. For all stage I optimization, we train the model θ for 200 epochs, using
batch size of 100 and SGD optimizer with learning rate of 0.1, momentum of 0.9 and weight decay
of 0.0005. For all stage II optimization, we optimize α for 2000 iterations, using default Adam
optimizer with learning rate 0.0001. We partition a subset of 500 examples from CIFAR-10 test
set as the validation set, and use the rest for evaluation. Our experiment starts with uniform dataset
mixture coefficients.

B ADDITIONAL RESULTS

B.1 DYCK GRAMMAR

In this section, we provide additional results that motivate the quantized update method. We consider
the Dyck Grammar setup discussed in Section 3.1. Figures 4 and 5 compare the test loss and α
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(a) (b) (c)

Figure 4: (a, b) Test loss trajectories of different datasets in the multi-episode setting, without quan-
tized α updates (c) the corresponding α values during Stage II. The vertical dashed lines separate
different episodes.

(a) (b) (c)

Figure 5: (a, b) Test loss trajectories of different datasets in the multi-episode setting, with quantized
α updates (c) the corresponding α values during Stage II. The vertical dashed lines separate different
episodes. The mixture coefficients α1 and α2 overlap in this experiment.

trajectories without and with quantized updates applied to α. We observe that the α values do not
change appreciably in the non-quantized case. In comparison, the α values change significantly in
the quantized case and result in an optimal dataset mixture.

C PROOF OF THEOREM THEOREM 1

Proof. Our goal is to approximate the gradient of the validation loss with respect to α

∇αV (θT ) =
∂

∂α
V (θT ). (11)

Note that in the above equation, the trained model parameters θT implicitly depend on α. To
approximate this mixture gradient, we start with the chain rule, which expands Equation (11) to

∇αV (θT ) =
∂V

∂θT

∂θT
∂α

. (12)

We now differentiate Equation (2) to with respect to α get

∂θt
∂α

=
∂θt−1

∂α
− ηt−1

∂

∂α
L′(θt−1;α)

=
∂θt−1

∂α
− ηt−1

∂

∂α
[α · L′(θt−1)]

=
∂θt−1

∂α
− ηt−1L

′(θt−1)− ηt−1α · ∂

∂α
[L′(θt−1)] . (13)

By induction (and noting that θ0 is constant and has zero gradient), we have
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∂θT
∂α

= −
T−1∑
t=0

ηtL
′(θt)︸ ︷︷ ︸

first order terms

−α

T−1∑
t=0

ηt
∂

∂α
[L′(θt)]︸ ︷︷ ︸

higher order terms

(14)

∂θT
∂α

= −G− E. (15)

where E is an error term representing higher-order derivatives. Combining this with equation 12
gives us our result.

∂

∂α
V (θT ) = −V ′(θT ) · (G+ E) (16)

∂

∂α
V (θT ) ≈ −V ′(θT ) ·G. (17)

D NORMALIZED MIXTURE COEFFICIENT FORMULATION

In this section, we describe normalized α formalism in which the mixture coefficients are normal-
ized. Let ϕ(.) denote the normalizing function (for example, softmax), such that

∑N
i=1 ϕi(α) = 1.

L(θ;α) =

N∑
i=1

ϕi(α)Li(θ) = ϕ(α) · L(θ). (18)

Under this normalization, the total change in the model parameters after T steps is given by

θT = θ0 −
T−1∑
t=1

ηtϕ(α) · L′(θt) = θ0 − ϕ(α) · G̃. (19)

The derivative the θT wrt α is given by

∂θT
∂α

≈ −
T−1∑
t=1

ϕ′(α)⊙ G̃. (20)

Finally, the derivative of the validation loss is given by

∂

∂α
V (θT ) ≈ −V ′(θT ) · (ϕ(α)⊙ G̃). (21)
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