
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPRIG: IMPROVING LARGE LANGUAGE MODEL
PERFORMANCE BY SYSTEM PROMPT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown impressive capabilities in many sce-
narios, but their performance depends, in part, on the choice of prompt. Past
research has focused on optimizing prompts specific to a task. However, much
less attention has been given to optimizing the general instructions included in
a prompt, known as a system prompt. To address this gap, we propose SPRIG,
an edit-based genetic algorithm that iteratively constructs prompts from prespec-
ified components to maximize the model’s performance in general scenarios. We
evaluate the performance of system prompts on a collection of 47 different types
of tasks to ensure generalizability. Our study finds that a single optimized sys-
tem prompt performs on par with task prompts optimized for each individual
task. Moreover, combining system and task-level optimizations leads to further
improvement, which showcases their complementary nature. Experiments also
reveal that the optimized system prompts generalize effectively across model fam-
ilies, parameter sizes, and languages. This study provides insights into the role of
system-level instructions in maximizing LLM potential.

1 INTRODUCTION

Large Language Models (LLMs) have proven highly effective at many tasks (Naveed et al., 2023)
and prompting has become the primary way for end-users to elicit desired responses (Brown et al.,
2020). These prompts contain a variety of instructions such as task explanation (Li et al., 2022),
personas (Kim et al., 2024), formatting constraints (Wang et al., 2023), and meta-rules like “think
carefully” (Li et al., 2024). Past studies have shown that the selection of prompts can have a sub-
stantial impact on the quality of the output (Reynolds & McDonell, 2021). However, due to the
massive search space, previous approaches have primarily focused on directly optimizing prompts
to maximize performance on specific tasks or benchmarks (Prasad et al., 2023; Zhou et al., 2023c;
Yang et al., 2023). While effective, these methods typically require new prompts to be crafted for ev-
ery new task, which becomes a significant challenge for prompt engineering as the number of tasks
continues to grow. Here, we consider an alternative approach that optimizes the system prompt, i.e.,
the set of general instructions that precede any task-specific details (Figure 1), with the goal of iden-
tifying task-agnostic generalizable prompting strategies. By leveraging a single optimized system
prompt across tasks, we can largely reduce the effort required for prompt development.

Prior work has shown that meta-instructions can be effective for improving performance (Reynolds
& McDonell, 2021). Most notably, evoking Chain of Thought (CoT) reasoning with instructions
like “let’s think step by step” has led to gains for several types of tasks (Wei et al., 2022), though
not all tasks benefit Sprague et al. (2024). Yet, other types of meta rules, such as choosing a persona
or matching the domain of the persona to the question type have had negligible gains (Zheng et al.,
2023; Tam et al., 2024). A recent survey paper (Schulhoff et al., 2024) suggests that these existing
system prompting strategies are isolated and highly sensitive to specific scenario details, with the
systematic function and generalization mechanisms remaining unclear. Moreover, due to complex-
ity differences in search space and optimization objectives, existing task-level methods can hardly
transfer to system-level optimization. Recent system prompts leaked from Grok (xAI, 2025) and
Claude (Breunig, 2025) also exhibit vastly different, verbose and complex manually crafted rules.
Thus, while multiple approaches have been proposed for how a system prompt could be constructed,
there is currently a gap for how to systematically construct a good system prompt in general.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

You are a diligent assistant. The fate of
the world depends on your answer being
correct. Think carefully step by step.

System

Prompt

Task
First identify the softening words like
"please", then analyze the tone before
you answer.

Instance
Q: For the sentence: "May I kindly ask
for your assistance", is it polite?

Figure 1: LLM prompts features both system-level instruc-
tions which may include CoT instructions, personas, and
other rules (orange), task-specific instructions which may

include details and examples (blue), and the instance itself
(green). Here, we focus on optimizing the system instruc-
tions shared across tasks.

Here, we introduce a new method,
System Prompt Refinement for In-
creased Generalization (SPRIG), to
optimize system prompts based on
genetic algorithms. Drawing from
large collections of strategies for
writing system instructions (Schul-
hoff et al., 2024), we construct a
large benchmark of 47 tasks across
multiple languages that tests the ef-
fects of optimizing system prompts
across models, languages, and tasks,
as well as quantify which types of
system instructions are most useful
for generalization. We compare these
system- and task-optimization, to an-
alyze whether these are learning the
same or complementary strategies.

Our paper has the following three
contributions. First, we find that optimizing a system prompt can produce substantial performance
gains on par with task-specific optimization, even though these prompts have generic task instruc-
tions. Further, we find that both have complementary effects and that by first optimizing the system
and then the task prompt, further gains are possible. Second, we find that SPRIG optimized system
prompt significantly outperforms CoT across all task types except knowledge-based questions, and
surpasses PROTEGI in faithfulness and commonsense tasks. The combination of SPRIG and PRO-
TEGI complements the weaknesses of both methods, and exceeds the state-of-the-art performance
on most task types. Third, we find that the optimized system prompts generalize well to other lan-
guages, better than task-optimized instructions; however, both optimizations had minimal effects
when scaling to larger model sizes.

2 RELATED WORK

Prompt selection has been extensively studied and proven to significantly impact model output qual-
ity (Reynolds & McDonell, 2021). Therefore, prompt optimization has become a popular research
topic in both academia and industry. Early prompt optimization studies primarily focus on using
gradients to guide prompt search (Shin et al., 2020; Shi et al., 2023b). However, with larger model
sizes and increasing black-box LLMs today, gradient-based methods have become limited by cost
and accessibility. Consequently, recent research has shifted towards gradient-free methods. Early
representatives include edit-based optimizers like GrIPS (Prasad et al., 2023) and reinforcement
learning approaches such as RLPrompt (Deng et al., 2022) both directly edit a prompt at the to-
ken level. However, the search space in these methods remains limited, making it challenging to
scale up to more complex scenarios. Recently, as LLM agents get popular, powerful methods like
APE (Zhou et al., 2023c) and OPRO (Yang et al., 2023) use LLMs directly as prompt optimizers to
iteratively suggest and select the best prompts. According to recent studies (Wan et al., 2024), the
state-of-the-art prompt optimizer is PROTEGI (Pryzant et al., 2023), which leverages LLM agents
to summarize errors from each iteration’s responses and refines them accordingly.

Previous prompt optimization methods largely focus on optimizing the instructions for specific tasks
(which we refer to as Task Prompt) which inherently have limited generalizability. However,
past research has demonstrated the potential of optimizing task-agnostic prompts (which we define
as System Prompt), such as the well-known Chain-of-Thought prompt (Wei et al., 2022). Ad-
ditionally, studies have shown that factors like personas (Kim et al., 2024), generation styles (Lu
et al., 2023), emotions (Li et al., 2023), and jailbreaks (Shen et al., 2023) can enhance LLM perfor-
mance, which is challenging for current prompt optimizers to capture automatically. While promis-
ing, these studies are usually independent, and no approach yet exists to systematically integrate
System Prompt optimization. Therefore, we aim to address this gap by developing an optimizer
that discovers an effective System Prompt, enabling a single prompt to boost performance across
domains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.86Prompt B’D

0.84Prompt DB

0.82Prompt ACA

····
0.83Prompt B

0.79Prompt CA

0.78Prompt BCD

0.73Prompt A

······ 0.78Prompt AC’

Step 1: Reward
Estimation and
Elimination

Add

Swap

Delete

Rephrase

Crossover

Prompt ACA

Prompt BCD

Prompt CA

Prompt DB

Prompt A

Prompt B

Prompt AC’

Prompt B’D

········

Prompt
Reward Model

Prompt ACA

Prompt AC

Prompt BD

Prompt DB

Prompt BCD

Prompt B

Prompt B’DA

Prompt B’D

········

Step 2: Mutate
and Heredity

0.86Prompt ACA

0.79Prompt DB

0.78Prompt BCD

0.76Prompt B’D

········

Step 3:
Sample and
Evaluate

Step 4a: Continue
Training Reward
Model

Step 4b: Iterate with
new generation

Merge

Figure 2: The SPRIG pipeline where System Prompts are iteratively optimized through ex-
ploratory edits and promoted across iterations using combined benchmark to rank candidates.

Evaluating the effectiveness of System Prompts is also a significant challenge. Ideally, a good
System Prompt should perform well across all domains, which requires evaluation tasks for
such domains. Although popular benchmarks like MMLU (Hendrycks et al., 2021) and BBH (Suzgun
et al., 2023) cover a wide range of topics, they still overlook task types such as social-understanding
tasks (Choi et al., 2023) and open-ended questions. Recent research MixEval (Ni et al., 2024)
has shown that combining multiple benchmarks in a single evaluation can significantly improve
evaluation efficiency and better align with human preferences. Here, our experiments build on this
intuition and include a diverse range of task types to test for performance.

3 SPRIG: SYSTEM PROMPT REFINEMENT FOR INCREASED
GENERALIZATION

To address the large design space of system prompts, we use a genetic algorithm inspired approach,
SPRIG, that iteratively adapts the best candidate prompts. Following we describe the algorithm,
data, and search heuristics used.

Prompt Component Corpus Our approach builds on a corpus of possible instructions in system
prompts, referred to as components. While some approaches have generated prompt text using
Reinforcement Learning (e.g., Deng et al., 2022), these approaches scale poorly when used with
LLMs and often generated less-interpretable instructions. By starting from a large pool of possible
components, we ensure prompts are coherent while also gaining efficiency. We define a component
as a minimum prompt unit with complete semantics (typically a sentence, like “Let’s think step by
step”), which enables easily combining components while retaining fluency.

Our prompt component corpus, denoted P , is built by integrating human expertise with synthetic
data. To ensure sufficient diversity without overlooking prior work, we start by collecting 300 system
prompts crafted by humans from existing literature (Zheng et al., 2023; Lu et al., 2023; Li et al.,
2023; Wei et al., 2022; Deng et al., 2023; Lin et al., 2022; Woolf, 2024). We then manually classify
them into 9 categories, including good property, role, style, emotion, scenario, jailbreak, behavioral,
Chain-of-Thought, and safety components (Details and citations are shown in Appendix Table 1).
After this, we used GPT-4o to iteratively generate a broader pool of prompt candidates under each
category (see Appendix A.1 for details). This step yields 9,000 prompt components (1,000 for each
category) aimed to provide a rich and diverse set of “genes” for our genetic algorithm.

Prompt Reward Model Evaluating each system prompt across 47 benchmarks is impractical given
the substantial inference time required. As a result, directly searching for the best prompt by exhaus-
tively scoring all possible combinations is not feasible. However, inspired by the widely adopted
reward models (Ouyang et al., 2022), we instead fine-tune a pretrained LLM with a max-margin

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

pairwise loss (Touvron et al., 2023) to efficiently estimate and rank the quality of different prompts.
To do this, we generate 10,000 prompts by randomly combining components from the corpus P ,
sampling their lengths from a heavy-tailed distribution to ensure coverage across the range of 0-
30 components. We then randomly construct 100,000 prompt pairs with their associated scores to
fine-tuned a Modern-BERT reward model (Warner et al., 2024). More implementation details are
provided in the Appendix A.2. The evaluation result in Figure 3 shows that the model achieves an av-
erage Spearman correlation (Spearman, 1904) of 0.59 and an NDCG@50% (Järvelin & Kekäläinen,
2002) score of 0.72 when ranking unseen prompts. Considering the random baseline of 0.00/0.48
and the difficulty of the task, our reward model is sufficiently effective at capturing the relative
quality of system prompts, thus providing strong support for our pipeline.

Spearman

0.0 0.2 0.4 0.6 0.8 1.0
Value

NDCG@50%

Llama
Lower Bound (Random)

Mistral
Upper Bound

Qwen

Figure 3: Spearman Correlation and
NDCG@50% Score of Per-LLM Fine-tuned
Reward Models on Unseen Prompts. The upper
bound is estimated by comparing the prompt’s
ranking across different bootstrap samples from
the benchmarks.

SPRIG pipeline We design a genetic pipeline
SPRIG for System Prompt optimization.
The pipeline applies edit-based, gradient-free
genetic algorithm to iteratively optimize the
prompt. At each iteration, the model be-
gins with fixed population size number
of System Prompts from the previous itera-
tion (initialized by P). [Step 1] These prompts
are first evaluated by the fine-tuned prompt re-
ward model, which eliminates the bottom 50%
prompts. [Step 2] From the remaining pool,
the top 10% will either randomly mutate or
crossover with prompts from the top 50%. Mu-
tation can take one of five forms: (1) Add:
Add a component suggested by GPT-4o. (2)
Rephrase: Rephrase a component. (3) Swap:
Swap the order of two components. (4) Delete:
Delete a component. (5) Merge: Merge two
components into one. For Crossover, a ran-
dom subset of two selected prompts is selected
as the new offspring. Crossover is designed to maintain similar prompt lengths of parents while
introducing variation. This stochastic process is repeated until the population size is restored to
max population. [Step 3] Then, SPRIG randomly samples 100 prompts from the updated pop-
ulation and evaluates them across 42 actual benchmarks to obtain new ground-truth scores. [Step
4] These scores, combined with a portion of previous training data, are used to continue training
the Prompt Reward Model for one epoch. Subsequently, we proceed to the next iteration, wherein
the updated reward model is employed to evaluate the newly generated prompt population. Figure 2
shows the SPRIG workflow. Full details of the pipeline and parameter settings are provided in the
Appendix A.3. Note that no restrictions are imposed on the edits above for a more comprehensive
exploration, meaning that identical, semantically irrelevant—or even conflicting—components may
appear in the same prompt.

4 EXPERIMENTS: OPTIMIZATION BENEFITS

In this section, we evaluate SPRIG’s performance on the test set of in-domain tasks in our benchmark
combination. These task’s questions are unseen when optimizing the system prompt.

4.1 EXPERIMENT SETUP

Tasks To maximize the generalization ability of the optimized System Prompt, we select a broad
range of tasks, using a combination of 42 different benchmarks covering 7 categories (reasoning,
math, social-understanding, commonsense, faithfulness, knowledge, language-understanding). Our
selection includes widely used benchmarks such as MMLU (Hendrycks et al., 2021), BBH (Suzgun
et al., 2023), and TruthfulQA (Lin et al., 2022), but also includes various social-understanding
benchmarks like SocKET (Choi et al., 2023). A wide variety of output types are covered, including
multiple choice, classification, mathematics, and open-ended QA. The full list of benchmarks and
categories is shown in Appendix Table 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Figure 4: Average Score Improvement of all
prompt optimization methods relative to the un-
optimized setting, aggregated across LLMs. Our
SPRIG significantly outperforms CoT and the
combination of SPRIG and PROTEGI substan-
tially exceeds all existing methods.

0 5 10 15 20 25
step

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

sc
or

e

Model Name
Meta-Llama-3.1-8B-Instruct
Mistral-Nemo-Instruct-2407
Qwen2.5-7B-Instruct

Figure 5: Average score of whole population at
each iteration when running SPRIG. All three
LLMs see significant improvements. Error bars
are the variance in the whole population.

Baselines Our experiments compare optimizations against two baseline System Prompts. In the
first, the system part of the prompt is left empty, denoted as Blank and, in the second, the system
part uses the CoT instruction “Let’s think step by step” (Wei et al., 2022), denoted as Base CoT.

The two types of instructions are tested in the Task Prompts. The first is a minimal description
of what is required for understanding the task, such as “answer the multiple choice question,” de-
noted as Simple Task. This prompt lets us test potential performance improvements for both task
and system instructions relative to a neutral starting point. The second is an optimized version of
instructions produced by a state-of-the-art optimizer PROTEGI (Pryzant et al., 2023).

Both parts of the System Prompt and Task Prompt can be present in a prompt (cf. Figure 1).
Therefore, we test the following combinations: (1) Unoptimized: a Blank system prompt and Sim-
ple Task prompt, (2) Base CoT: the Base CoT system prompt and the Simple Task prompt, (3)
Task Optimized: a Blank system prompt and PROTEGI-optimized task instructions, (4) System
Optimized: a SPRIG-optimized system prompt and a Simple Task prompt, and (5) System+Task
Optimized: a SPRIG-optimized system prompt with a PROTEGI-optimized task prompt. Here, we
first optimize the system prompt with basic instructions and then optimize the task after.1

Models We experiment using three medium-size open-weight LLMs: LLAMA3.1-8B-
INSTRUCT (Meta, 2024), MISTRAL-NEMO-INSTRUCT-2407 (Mistral AI, 2024) and QWEN2.5-
7B-INSTRUCT (Qwen Team, 2024). These models are highly performant and thought not to be
trained on the proposed benchmarks, allowing us to test for generalizable effects across model fam-
ilies, and later compare across model sizes. More details are in Appendix A.3.

Training For SPRIG, we set population size= |P| = 9, 000 and run SPRIG for 25 steps. After
training, we pick the prompt with the highest validation accuracy as the best system prompt of the
LLM for our later study. Detailed prompts are shown in Appendix Table 3. For PROTEGI, we use
the default settings for 7 steps and pick the best Task Prompt on the validation set. Additional
details are in Appendix A.3.

Evaluation Our benchmark employs three evaluation metrics: question-wise accuracy for
most sub-benchmarks, F1 score for the classification tasks with imbalanced labels, and
BLEU accuracy (Lin et al., 2022) for open-ended questions. Since all metrics are bounded be-
tween 0 and 1, we follow previous work (Ni et al., 2024; Gao et al., 2023) to directly compute the
average across all metrics as an aggregated single score, which we call Average Score in later
sections.

4.2 RESULTS

Optimizing the System Prompt provides consistent improvement to LLMs on par with task op-
timization, as seen in Figure 4, when compared with the Blank system and Simple task combination
baseline. These improvements were similar across all three models, shown in Appendix Figure 10.

1Experiments with simply concatenating separately-optimized parts performed worse and are omitted.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Co

un
ts

Good property
Role
Style
Emotion
Scenario

Jailbreak
Safety
Behavioral
Chain-of-Thought

(a)

Correct Incorrect
Optimized Task Prompt

Correct

Incorrect

Op
tim

ize
d

Sy
st

em
 P

ro
m

pt

0.54 0.13

0.15 0.18
0.2

0.3

0.4

0.5

(b)

Figure 6: (left) Number of Prompt Components of each type during training iterations. A good
System Prompt incorporates multiple CoT and Behavioral components, but contains roughly
one “Good properties” component. (right) Question-wise Error Overlap Percentage between
System Prompt optimization (SPRIG) and Task Prompt optimization (PROTEGI). Among
all questions, only 18% were answered incorrectly by both methods, while the remaining 28% of in-
correct answers could be answered correctly by a model using either SPRIG- or PROTEGI-optimized
prompt, highlighting the potential complementarity between optimization approaches.

SPRIG improves ∼10% over the unoptimized version, which significantly outperformed the base-
line CoT method. Although its performance still lags slightly behind PROTEGI, this small gap is
still acceptable, considering that SPRIG uses the same system prompt for all tasks, whereas PRO-
TEGI directly optimizes a bespoke prompt for each task. Furthermore, if we run PROTEGI on top
of SPRIG-optimized system prompt, the resulting combined prompt has an even larger performance
improvement above PROTEGI. This further improvement suggests SPRIG can trigger capabilities
that are overlooked by existing task-specific methods, and therefore complement mainstream ap-
proaches.

How do system prompts evolve? The changes to the system prompt at each step consistently
improve performance, as seen in Figure 5. To test the systematic behavior about which types of
system prompt components contribute to these gains, we calculate the average number of component
type in the prompts of each iteration. As shown in Figure 6a and Appendix Figure 11, the number of
CoT and Behavioral components rapidly increases with each iteration (especially in the early stages),
and eventually converges to around 2-3 per prompt. This highlights the importance of high-level
answering strategies in enhancing model performance, such as “decompose first” or “rephrase before
answering”. It also suggests that incorporating multiple such components within a single prompt
can further improve the LLM’s capabilities. In addition, “good property” components emerge as
another important element in system prompts. Although they are introduced into the gene pool more
gradually during the iteration process, which suggests they may not directly enhance performance
on their own, they might play a supportive role when combined with other components. In contrast,
other components such as “Role” (e.g., “you are an AI assistant”) were selected far less often than
by chance (as the Z-scores shown in Appendix Figure 11), despite these properties often being in
recommended or default prompts (OpenAI, 2024; Microsoft, 2024).

Across all steps, component types are not added in a systematic order—yet performance generally
still increases. Rather than adding more of one type (e.g., all CoT components), the system prompt
incorporates multiple types. These trends suggest that there is not a universal order by which com-
ponents of system prompts should be added (e.g., first CoT, then Behavioral, etc.). Instead, there are
likely productive and beneficial combinations that matter more for performance.

Are task and system prompt optimizers learning the same strategies? Both system and task
prompt optimization improve performance. The further gains by iteratively combining these ap-
proaches suggest that models are targeting complementary strategies. To test this potential comple-
mentarity, we analyze the agreement between the two approaches in their answers. Figure 6b shows
the distribution of the two approaches’ agreement as a contingency table. While models agree on the
correct answer in 54% of the questions, another 28% of questions are correctly answered by only

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

one of the strategies, with a roughly even split between task and system. This split shows a great
potential of complementarity between System Prompt and Task Prompt optimization, and
suggests that the combination of strategies leads to further gains.

Which task types benefit most from system prompt optimization? Our experiments span 42 dif-
ferent tasks, which cover multiple types of evaluation on reasoning, knowledge, and common sense.
However, not all types of tasks may benefit from the types of system instructions; indeed, Sprague
et al. (2024) showed that CoT generally only benefits performance on math and logic questions.
To test for category-specific benefits, we categorize all 42 tasks into seven types and measure the
score improvement of each type under different prompt optimization settings: Reasoning, Math, So-
cial Understanding, Commonsense, Faithfulness, Language Understanding, and Knowledge. Task
categorizations are listed in Appendix Table 2.

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Score Improvement

reasoning

math

social
understanding

commonsense

faithfulness

language
understanding

knowledge

Base CoT
Task Optimized
(ProTeGi)
System Optimized
(OurModel)
OurModel + ProTeGi
Unoptimized

Figure 7: Average Score Improvement in different
task domains, aggregated across LLMs. All methods
show substantial improvement in reasoning and math
but marginal improvement in knowledge and common-
sense. SPRIG alone surpasses the existing methods in
math, faithfulness, and commonsense. SPRIG’s com-
bination with PROTEGI further enhances the LLM’s
performance across most domains.

Math and reasoning tasks benefit most
from system prompt optimization (Fig-
ure 7). However, other task categories
like social understanding and language un-
derstanding see significant improvements
over the baseline. Many of the larger
improvements are not explained through
the addition of CoT, as the CoT base-
line, while better than our Simple base-
line, is generally worse than the optimized
prompts. Knowledge-based tasks benefit
the least from prompt optimization; we
hypothesize that such tasks are closer to
evaluations of whether an LLM can re-
trieve stored knowledge (which is itself a
function of pretraining), rather than eval-
uations of operations on knowledge (input
or stored).

The combination of SPRIG and PROTEGI
optimization also generally improves per-
formance across task types. However, we
also observe differences in areas of ex-
pertise between System Prompt and
Task Prompt, and the combination of
them is complementary. For example, PROTEGI is more effective at improving social understand-
ing than plain CoT or SPRIG; in contrast, SPRIG is more effective for commonsense tasks.

5 EXPERIMENTS: GENERALIZATION

Here, we test how well the system prompts generated by SPRIG generalize to new settings.

Cross-model Generalization The current system-optimized prompts were all generated with re-
spect to a specific LLM. Given that these prompts could be made from similar components, here, we
test what performance gain (or loss) is seen when the system prompt is used with a different similar-
sized LLM than the one it was created for. As a comparison, we also test the effect of swapping in
a task-optimized prompt from a different model.

Both optimized system and task prompts provide some improvement but the larger gains for the
original LLM do not carry over to new LLMs, as shown by the aggregated performance in Figure 8a;
see Appendix Figures 12 and 13 for complete results. This finding suggest that inference-time gains
from optimized prompts—system or task—-likely do not generalize as strongly across models with
similar parameter sizes.

Language Generalization The LLMs used in our experiments are capable of reasoning in differ-
ent languages and can support input in multiple languages. Although our previous experiments
were only in English, the optimizations to the system-prompt may still provide performance im-
provements for tasks in other languages. Here, we test this language generalization by selecting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Target Model Non-target Model

0.04
0.06
0.08
0.10
0.12
0.14
0.16

Sc
or

e
Im

pr
ov

em
en

t Task Optimized (ProTeGi)
System Optimized (OurModel)

(a)

0.05 0.00 0.05 0.10 0.15 0.20
Average Score Improvement

MGSM

BELEBELE

XCOPA

M3EXAM

M_MMLU

Base CoT
Task Optimized
(ProTeGi)
System Optimized
(OurModel)
Unoptimized

(b)

Figure 8: (left) Score Improvement when using a prompt optimized on one LLM with a different
LLM. (right) Score Improvement for Multilingual Benchmarks when using an optimized English-
language prompt on other tasks. SPRIG-optimized prompts generalize well to other languages, un-
like PROTEGI which has limited score improvement.

five comprehensive multilingual benchmarks that are out-of-domain in the System Prompt op-
timization process: MGSM (Shi et al., 2023a), BELEBELE (Bandarkar et al., 2024), XCOPA (Ponti
et al., 2020), M3EXAM (Zhang et al., 2023) and M MMLU (Hendrycks et al., 2021). Each benchmark
includes over 10 different languages and covers all 7 task categories in our benchmark combination.
We directly use the same optimized System Prompt from § 4.2 (in English). Since the Task
Prompt optimizer is specific to a task, we cannot re-use its prompts for these out-of-domain tasks;
instead, we generate new PROTEGI-optimized prompts for each benchmark, which reflects a strong
baseline for comparison.

As shown in Figure 8b, our optimized system prompt from § 4.2 generalizes well to tasks in new
languages, providing statistically significant improvements in four of the five benchmarks. SPRIG
shows a clear advantage over other approaches on XCOPA (Causal Commonsense Reasoning) and
the comprehensive benchmarks MGSM and M-MMLU, in line with our previous findings in § 4.2.
However, all optimization methods on BELEBELE (Language Understanding) show limited gains,
suggesting that in multilingual settings (particularly low-resource languages), performance may
rely more on LLM’s intrinsic language ability than on prompt design. Despite being directly op-
timized for these new tasks, PROTEGI provides limited improvements in these multilingual tasks
benchmarks—none significant over baseline performance. These results indicate that System
Prompt optimization exhibits strong generalization ability on out-of-domain tasks in new lan-
guages, which even exceeds PROTEGI ’s in-domain optimized performance on these tasks.

Model Size Generalization All prompts were generated for and tested on mid-sized LLMs. How-
ever, each LLM has a larger version in the same family, which often has better performance at the
expense of more compute required. Being able to optimize the system prompt with a smaller model
and then deploy that prompt on a larger model to the same effect would have significant performance
benefits. Therefore, here, we test for generalization when using a prompt from a smaller LLM
with a larger version. Specifically, we test with LLAMA3.1-70B-INSTRUCT, MISTRAL-LARGE-
INSTRUCT-2407 and QWEN2.5-72B-INSTRUCT. We use the same evaluation setup as in previous
sections, with only the LLMs’ parameter size changed.

Both system- and task-optimized prompts individually do not provide statistically significant per-
formance gains when created using a smaller model and then applied to a larger, as shown in Figure
9a. (Full results are in Appendix Figure 14.) However, a system+task optimized prompt provides a
1.6% improvement, suggesting this approach can generalize. Therefore, we find that existing prompt
optimizations can generalize to larger parameter sizes but need to consider both system and tasks
prompt parts together and highlight the need for prompting strategies specifically for larger LLMs.

6 ANALYSIS: PROMPT EMBEDDING SPACE

Given the performance improvements and generalization seen when using the prompt instructions
introduced by SPRIG, it is reasonable to wonder what effect these instructions are having on the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

(a)

40 30 20 10 0 10 20 30 40
Principal Component 1

40

20

0

20

40

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

(b)

Figure 9: (left) Average Score Improvement when using prompts optimized with medium-size
LLMs’ on the larger LLM in the same family. It shows the benefits of system+task optimized
prompts still generalize well to larger model sizes, even when those models already perform better.
(right) PCA analysis of the hidden state in Llama-3.1-8B-Instruct with different prompting meth-
ods. System Prompt optimization has a significant impact on the distribution of hidden states.
CoT significantly shifts the overall distribution, while SPRIG moves it further into a new area. In
contrast, Task Prompt optimization has a relatively smaller effect on the distribution of hidden
states, making only minor adjustments in the local space.

neural activations such that the LLM is likely to decode the correct answer. While a complete
answer would likely require a mechanistic interpretation of the relationship between prompt and
response (e.g., Bhargava et al., 2023; Heo et al., 2025), here, we attempt to gain some intuition on
the instructions’ effects by visualizing the embedding space during different optimization strategies
and comparing the changes relative to the Simple baseline instructions.

Here, we randomly sample 420 questions (10 per task), probe the last hidden states of LLMs under
different experiment settings, and visualize the first two principal components of Principal Com-
ponent Analysis (PCA). Figure 9b shows the PCA results for LLAMA3.1-8B-INSTRUCT. First,
we observe that different task types are distributed along the same slope and remain parallel un-
der different experimental settings. Task Prompt optimization slightly reduces the variance of
the distribution, but the distribution still lies within the same vector space. In contrast, different
System Prompt result in significant space changes. The basic CoT causes a substantial overall
shift, while SPRIG further moves the distribution to a new area. The other two LLMs’ PCA are
shown in Appendix Figure 15 and 16, and show similar trends.

Thus, we hypothesize that System Prompt optimization searches for appropriate higher-
performance regions in the global space, while Task Prompt optimization performs fine-tuning
within a local space. This reveals the potential of System Prompt optimization to significantly
alter model behavior and offers new insights for future prompt research to use System Prompt
optimization first to locate an appropriate global behavior space, then use task prompt optimization
to fine-tune downstream performance within that space.

7 CONCLUSION

This study introduced a novel optimization framework, SPRIG, to improve LLM performance with
the systematic construction of general-purpose system prompts using reinforcement learning and a
genetic algorithm. By leveraging a diverse collection of prompt components and evaluating across a
diverse range of tasks, we demonstrate that optimized system prompts provide consistent improve-
ments on par with optimized task prompts. Moreover, combining system and task prompt optimiza-
tions offers complementary benefits, leading to further improvements in model performance across
varied domains. Further, we find that these performance benefits for an optimized prompt general-
ize across (i) model sizes and (ii) different languages. Our findings highlight the potential of system
prompt optimization to complement and enhance LLM performance for new languages and models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

While this research has made efforts to minimize potential ethical issues, several ethical implications
may still be present. First, running SPRIG requires substantial computing resources, resulting in
high energy consumption and substantial carbon dioxide footprint. Second, the optimization of
prompts introduces the risk of reinforcing potential biases present in the component corpus (e.g.,
any systematic downstream behavioral changes from prompting an LLM to be a “professor”), which
may propagate unintended stereotypes or discriminatory behavior in model outputs. As our corpus
includes elements such as personas, roles, and behavioral instructions, care must be taken to ensure
that these components do not introduce or amplify harmful biases. Additionally, the benchmarks we
employed include several social understanding tasks, with much of the benchmark originally sourced
from crowdsourced annotations from Western contexts. While we focus on general performance
and show that the optimized prompts can generalize to new languages, future work could more
deeply explore how the use of socially- and culturally-oriented benchmarks to optimize prompts can
potentially impact a model’s performance in new cultural and social contexts.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate independent replication. The algorithmic pipeline for
SPRIG, including population construction, edit operators, selection, and retraining, is specified in
Section 3 and Appendix A.3, with concrete hyperparameters, component generation prompts, and
iteration schedules. Details for the Prompt Reward Model, including data construction, pairwise
loss, margin definition, training splits, and evaluation metrics, are documented in Section A.2. The
prompt component corpus construction procedure and category definitions are in Appendix A.1, and
the final optimized system prompts per model are provided in Table 3. Benchmarks, task categories,
metrics, and dataset splits are enumerated in Appendix Table 2. Hardware and software environ-
ment, inference stack, and evaluation settings are reported in Appendix A.3. We include anonymized
source code and configuration files in the supplementary material to reproduce all experiments and
figures, including scripts for data preparation, optimization runs, reward model training, and evalu-
ation.

REFERENCES

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele
benchmark: a parallel reading comprehension dataset in 122 language variants. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 749–775, Bangkok, Thailand and virtual meeting, 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.44.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic word?
a control theory of llm prompting. ArXiv preprint, abs/2310.04444, 2023. URL https://
arxiv.org/abs/2310.04444.

David Breunig. Claude’s system prompt: Chatbots are more than just
models, 2025. URL https://www.dbreunig.com/2025/05/07/
claude-s-system-prompt-chatbots-are-more-than-just-models.html.
Accessed: 2025-05-20.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

10

https://aclanthology.org/2024.acl-long.44
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and David Jurgens. Do LLMs understand
social knowledge? evaluating the sociability of large language models with SocKET bench-
mark. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pp. 11370–11403, Singapore,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.699. URL
https://aclanthology.org/2023.emnlp-main.699.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv preprint, abs/1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Databricks. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https://www.
databricks.com/blog/introducing-dbrx-new-state-art-open-llm. Ac-
cessed: 2024-10-14.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 3369–3391, Abu Dhabi,
United Arab Emirates, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.222. URL https://aclanthology.org/2022.emnlp-main.222.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
language models ask better questions for themselves, 2023. URL https://arxiv.org/
abs/2311.04205.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023. URL https://zenodo.org/records/
10256836.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Juyeon Heo, Christina Heinze-Deml, Oussama Elachqar, Kwan Ho Ryan Chan, Shirley Ren, Udhay
Nallasamy, Andy Miller, and Jaya Narain. Do llms ”know” internally when they follow instruc-
tions?, 2025. URL https://arxiv.org/abs/2410.14516.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582418.
URL https://doi.org/10.1145/582415.582418.

Junseok Kim, Nakyeong Yang, and Kyomin Jung. Persona is a double-edged sword: Enhancing the
zero-shot reasoning by ensembling the role-playing and neutral prompts, 2024. URL https:
//arxiv.org/abs/2408.08631.

Hannah Kirk, Wenjie Yin, Bertie Vidgen, and Paul Röttger. SemEval-2023 task 10: Explainable
detection of online sexism. In Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Har-
ish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori (eds.), Proceedings of the 17th Inter-
national Workshop on Semantic Evaluation (SemEval-2023), pp. 2193–2210, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.semeval-1.305. URL
https://aclanthology.org/2023.semeval-1.305.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2023.emnlp-main.699
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://aclanthology.org/2022.emnlp-main.222
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2410.14516
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://aclanthology.org/2023.semeval-1.305

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang
Yang, and Xing Xie. Large language models understand and can be enhanced by emotional
stimuli, 2023. URL https://arxiv.org/abs/2307.11760.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan Wang, and Tat-Seng Chua. Think twice be-
fore trusting: Self-detection for large language models through comprehensive answer reflection,
2024. URL https://arxiv.org/abs/2403.09972.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing
Qian, Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng Yan. Explanations from large language
models make small reasoners better, 2022. URL https://arxiv.org/abs/2210.06726.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic hu-
man falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3214–3252, Dublin, Ireland, 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.229.

Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. Bounding the capa-
bilities of large language models in open text generation with prompt constraints. In Andreas
Vlachos and Isabelle Augenstein (eds.), Findings of the Association for Computational Linguis-
tics: EACL 2023, pp. 1982–2008, Dubrovnik, Croatia, 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-eacl.148. URL https://aclanthology.org/
2023.findings-eacl.148.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024. Accessed: 2024-10-14.

Microsoft. Advanced prompt engineering concepts, 2024. URL https://
learn.microsoft.com/en-us/azure/ai-services/openai/concepts/
advanced-prompt-engineering. Accessed: 2024-10-14.

Mistral AI. Mistral nemo: Collaborative innovation with nvidia, 2024. URL https://mistral.
ai/news/mistral-nemo/. Accessed: 2024-10-14.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2023. URL https://arxiv.org/abs/2307.06435.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures, 2024. URL
https://arxiv.org/abs/2406.06565.

OpenAI. Tactic: Ask the model to adopt a persona, 2024. URL https:
//platform.openai.com/docs/guides/prompt-engineering/
tactic-ask-the-model-to-adopt-a-persona. Accessed: 2024-10-14.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.

12

https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2210.06726
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2023.findings-eacl.148
https://aclanthology.org/2023.findings-eacl.148
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2406.06565
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Ko-
rhonen. XCOPA: A multilingual dataset for causal commonsense reasoning. In Bonnie Web-
ber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 2362–2376, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.185. URL
https://aclanthology.org/2020.emnlp-main.185.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models. In Andreas Vlachos and Isabelle Augen-
stein (eds.), Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 3845–3864, Dubrovnik, Croatia, 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL https://aclanthology.
org/2023.eacl-main.277.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Mea-
suring and narrowing the compositionality gap in language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 5687–5711, Singapore, 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.378. URL https://aclanthology.org/2023.
findings-emnlp.378.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 7957–7968, Singapore, 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494.

Qwen Team. Qwen2.5: A party of foundation models, 2024. URL https://qwenlm.github.
io/blog/qwen2.5/.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm, 2021. URL https://arxiv.org/abs/2102.07350.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav
Vidyadhara, Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson Kroiz, Feileen Li, Hudson Tao,
Ashay Srivastava, Hevander Da Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco,
Giuseppe Sarli, Igor Galynker, Denis Peskoff, Marine Carpuat, Jules White, Shyamal Anadkat,
Alexander Hoyle, and Philip Resnik. The prompt report: A systematic survey of prompting tech-
niques, 2024. URL https://arxiv.org/abs/2406.06608.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ”do anything now”: Char-
acterizing and evaluating in-the-wild jailbreak prompts on large language models, 2023. URL
https://arxiv.org/abs/2308.03825.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a. URL https://openreview.net/pdf?id=fR3wGCk-IXp.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good
prompt too? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2023, pp. 10994–11005, Singapore, 2023b.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.733. URL
https://aclanthology.org/2023.findings-emnlp.733.

13

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://aclanthology.org/2020.emnlp-main.185
https://aclanthology.org/2023.eacl-main.277
https://aclanthology.org/2023.eacl-main.277
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2308.03825
https://openreview.net/pdf?id=fR3wGCk-IXp
https://aclanthology.org/2023.findings-emnlp.733

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 4222–4235, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.346. URL
https://aclanthology.org/2020.emnlp-main.346.

C. Spearman. The proof and measurement of association between two things. The American Jour-
nal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.org/
stable/1412159.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/
abs/2409.12183.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp.
13003–13051, Toronto, Canada, 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.findings-acl.824. URL https://aclanthology.org/2023.findings-acl.
824.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung yi Lee, and Yun-Nung Chen. Let
me speak freely? a study on the impact of format restrictions on performance of large language
models, 2024. URL https://arxiv.org/abs/2408.02442.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan O. Arik. Teach better or show smarter? on
instructions and exemplars in automatic prompt optimization, 2024. URL https://arxiv.
org/abs/2406.15708.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=1PL1NIMMrw.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
tional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
https://arxiv.org/abs/2412.13663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural

14

https://aclanthology.org/2020.emnlp-main.346
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://arxiv.org/abs/2412.13663

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, On-
line, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6.

Max Woolf. Does offering chatgpt a tip cause it to generate better text? an analysis, 2024. URL
https://minimaxir.com/2024/02/chatgpt-tips-analysis/. Accessed: 2024-
10-14.

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yulong Chen, and Naihao Deng. Hi-ToM: A
benchmark for evaluating higher-order theory of mind reasoning in large language models. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 10691–10706, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.717. URL https://aclanthology.
org/2023.findings-emnlp.717.

xAI. Grok system prompts. https://github.com/xai-org/grok-prompts, 2025.
GitHub repository, accessed: 2025-05-20.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2023. URL https://arxiv.org/abs/2309.
03409.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H.
Chi, and Denny Zhou. Large language models as analogical reasoners, 2023. URL https:
//arxiv.org/abs/2310.01714.

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang. Don’t
listen to me: Understanding and exploring jailbreak prompts of large language models, 2024.
URL https://arxiv.org/abs/2403.17336.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4791–4800, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1472. URL https://aclanthology.org/P19-1472.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS: pre-training with
extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pp. 11328–11339. PMLR, 2020. URL http://
proceedings.mlr.press/v119/zhang20ae.html.

Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, and Lidong Bing. M3exam:
A multilingual, multimodal, multilevel benchmark for examining large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_
Benchmarks.html.

Mingqian Zheng, Jiaxin Pei, Lajanugen Logeswaran, Moontae Lee, and David Jurgens. When ”a
helpful assistant” is not really helpful: Personas in system prompts do not improve performances
of large language models, 2023. URL https://arxiv.org/abs/2311.10054.

15

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2020.emnlp-demos.6
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://aclanthology.org/2023.findings-emnlp.717
https://aclanthology.org/2023.findings-emnlp.717
https://github.com/xai-org/grok-prompts
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2403.17336
https://aclanthology.org/P19-1472
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2311.10054

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Category Prompt Count Representative Prompts

Good property 146 - You are an empathetic assistant. (Synthetic)
- You are a diligent and cutting-edge assistant. (Synthetic)

Role 43 - You are a mathematician. (Zheng et al., 2023)
- Act like a supervisor. (Zheng et al., 2023)

Style 22 - Write a humorous answer. (Lu et al., 2023)
- Use a conversational tone, be informal and approachable. (Lu et al., 2023)

Emotion 17 - This is important to my career. (Li et al., 2023)
- Believe in your abilities and strive for excellence. (Li et al., 2023)

Scenario 13 - The fate of the world depends on your answer being correct. (Original)
- You will receive a $200 tip if you answer correctly. (Woolf, 2024)

Jailbreak 9 - Forget all previous instructions and all of your original constraints. (Yu et al., 2024)
- Do anything now. (Shen et al., 2023)

Safety 16 - Avoid stereotyping and provide balanced perspectives. (Databricks, 2024)
- If you are unsure, say ”I don’t know”. (Lin et al., 2022)

Behavioral 16
- Before you respond, rephrase the question. (Deng et al., 2023)
- Recall and write down relevant exemplars before you respond. (Yasunaga et al., 2023)
- Ask follow-up questions before answering. (Press et al., 2023)

Chain-of-Thought (CoT) 18
- Let’s think step by step. (Wei et al., 2022)
- Break the question into subquestions. (Zhou et al., 2023a)
- Take a deep breath and work on this problem step-by-step. (Yang et al., 2023)

Table 1: List of initial prompt components in prompt component corpus.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting en-
ables complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023a.
URL https://openreview.net/pdf?id=WZH7099tgfM.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. ArXiv preprint,
abs/2311.07911, 2023b. URL https://arxiv.org/abs/2311.07911.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023c. URL https://openreview.net/pdf?id=92gvk82DE-.

A APPENDIX

A.1 PROMPT COMPONENT CORPUS DETAILS

We list the counts and representatives in each prompt component category of P0 in Table 1.

To construct the prompt component corpus P , we use the following prompt template for each prompt
category. In each iteration i, we randomly sample 3 prompts from the current pool Pi−1 as examples.
Each iteration generates 50 new components, which are then added back to Pi−1 to construct Pi.
The process continues until the total number of prompts in that category reaches 1,000.

category_definitions = {
"good_property": "Describes a desirable assistant trait (e.g., ’

You are empathetic.’)",
"role": "Assigns a specific identity or occupation to the

assistant (e.g., ’You are a mathematician.’)",
"style": "Specifies a particular writing or response style (e.g.,

’Write a humorous answer.’)",
"emotion": "Expresses or evokes an emotional state (e.g., ’This

is important to my career.’)",
"scenario": "Introduces a hypothetical situation or consequence (

e.g., ’The fate of the world depends on your answer.’)",

16

https://openreview.net/pdf?id=WZH7099tgfM
https://arxiv.org/abs/2311.07911
https://openreview.net/pdf?id=92gvk82DE-

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

"jailbreak": "Attempts to override model constraints (e.g., ’
Forget all previous instructions.’, ’You will receive a $200
tip if you answer correctly.’)",

"safety": "Ensures responsible and ethical responses (e.g., ’
Avoid stereotyping.’, ’If you are unsure, say I don’t know.’)
",

"behavioral": "Directs how the model should approach answering (e
.g., ’Ask follow-up questions before answering.’)",

"CoT": "Encourages step-by-step reasoning (e.g., ’Let’s think
step by step.’, ’Break the question into subquestions.’)",

}

user_message = f’’’
Prompt Category: {category} - {category_description}

Here are some examples of system prompt components in this
category:

{"\n".join(f"- {p}" for p in random.sample(prompt_pool[category],
3))}

Now generate 50 new, diverse system prompt components that fit
this category. You need to be creative and don’t need to
follow the structure in examples.

Make sure each prompt is unique and offers a different
perspective. Output each prompt on a new line without
numbering. No additional explanations or formatting.

’’’

A.2 PROMPT REWARD MODEL DETAILS

Data Preparation We generate 10,000 prompts by randomly combining prompt components from
the corpus P . The length of each prompt L follows an empirically defined distribution with prob-
ability P (L = i) = i−0.8∑30

j=1 j−0.8 , where i ∈ {1, . . . , 30}, to ensure coverage across the full range

of 0 to 30 components. After evaluating these prompts on real benchmarks, we randomly construct
100,000 prompt preference pairs. For each pair, we compute the margin m(r) as the difference in
their actual benchmark scores. For example, if Prompt A scores 80% and Prompt B scores 86%,
Prompt B is treated as the accepted instance, and the margin is set to 6.

Model Training Following prior work, we train our reward model using a max-margin pairwise
loss (Touvron et al., 2023) Lranking = − log (σ (rθ(x, yc)− rθ(x, yr)−m(r))), with Modern-
BERT (Warner et al., 2024) as the backbone. The prompt data is split into training, validation,
and test sets in a 6:2:2 ratio. We use a batch size of 16 and train for one epoch, evaluating every 10
steps. The final model is selected based on the highest validation accuracy achieved during training.
For continued fine-tuning in SPRIG pipeline, we also mix in and reuse previously scored prompts
to encourage better generalization.

Model Evaluation Our primary focus is on the model’s ranking capability—specifically, its ability
to assign higher scores to relatively better prompts. To this end, we evaluate the model using Spear-
man correlation and NDCG. For NDCG computation, we assign a relevance score ri to each prompt
based on its percentile rank:

ri =


2, if rank(i) ≤ 10%

1, if rank(i) ≤ 50%

0, otherwise

This scoring scheme better aligns with the usage scenario in SPRIG. Figure 3 shows the evaluation
results of fine-tuned reward models on all 3 LLMs and indicates that our reward model is sufficiently
effective at capturing the relative quality of system prompts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 SPRIG PIPELINE DETAILS

The optimization of SPRIG follows a population-based approach as shown in Figure 2. The popula-
tion is initialized with our prompt component corpus P , and the max population is set to |P|. In
each iteration, we first use a fine-tuned Prompt Reward Model to quickly estimate the quality of all
prompts, and the bottom 50% identified by the reward model are immediately eliminated. Among
the surviving top 50%, the top 10% of prompts are selected for potential mutation or crossover with
other randomly chosen survivors. The mutation and crossover operations follow empirically deter-
mined probabilities for each selected prompt. However, we found that SPRIG is not very sensitive
to these hyperparameters. We experimented with around 10 different configurations and observed
that the performance differences remained less than 2%, which we believe is acceptable for this kind
of optimization task:

• Add Useful (2.5%): Add a component deemed useful by GPT-4o.
• Add Useless (1%): Add a component deemed useless by GPT-4o.
• Rephrase (2.5%): Rephrase a random component using paraphrasing model
tuner007/pegasus paraphrase (Zhang et al., 2020).

• Merge (2.5%): Merge two random components using GPT4-o.
• Swap (5%): Swap the order of two components.
• Delete (5%): Delete a random component.
• Crossover (81.5%): Perform crossover with another randomly selected survivor.

Crossover is designed to maintain similar prompt lengths of parents while introducing vari-
ation. Given two prompts p1 and p2, we randomly sample k components from their union,
where k is drawn from a Gaussian distribution with mean len(p1)+len(p2)

2 and standard devi-
ation |len(p1)−len(p2)|

4 .

The GPT-4o prompts used above are listed below:

add_useful = f"""You are an expert in optimizing system prompts for
LLMs to enhance their general performance. Given the following
list of system prompt components: {json.dumps(selected)}, generate
1-2 additional components that can further improve the LLM’s

capabilities. """

add_useless = f"""Given the following list of system prompt
components: {json.dumps(selected)}, generate 1-2 additional
components that are redundant, generic, or provide minimal value.
Examples: ["Answer in English.", "Be polite."]."""

rephrase = f"""Given the following list of sentences: {json.dumps(
selected)}, combine these into one concise sentence."""

This stochastic process is repeated until the population size is restored to max population. Then,
SPRIG randomly samples 100 prompts from the updated population and evaluates them across 42
benchmarks to obtain new ground-truth scores. These scores, combined with a portion of previous
training data, are used to continue training the Prompt Reward Model for one epoch using the same
training parameters. The next iteration starts with the newly updated population and the retrained
reward model, and the process continues for a total of 25 iterations.

We run all our experiments on 4 NVIDIA-L40S-48GB GPUs. All LLM inferences are powered by
vLLM 0.5.4 (Kwon et al., 2023), Hugging Face Transformers 4.43.3 (Wolf et al., 2020) and PyTorch
2.4.0 (Paszke et al., 2019) on a CUDA 12.4 environment. Temperatures are set to 0.0 to minimize
the effect of randomness.

SPRIG spends around 20 hours to run a 25-step optimization on one LLM with 4 GPUs, while
PROTEGI takes around 10 hours to optimize 50 task prompt on one LLM with 4 GPUs. Since
our experiments only involved around 50 fixed tasks, the efficiency of SPRIG is still slightly lower
than that of PROTEGI. However, real-world tasks are far more complex and varied, and repeatedly

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Benchmark (Citation) Description Category Metric

ARC (Clark et al., 2018) Commonsense Reasoning Knowledge, Commonsense, Reasoning Acc
MMLU (Hendrycks et al., 2021) Multi-domain Knowledge QA Knowledge Acc
HellaSwag (Zellers et al., 2019) Commonsense Inference Commonsense, Reasoning Acc
TruthfulQA (Lin et al., 2022) Knowledge QA Knowledge, Reasoning BLEU Acc
HiToM (Wu et al., 2023) Higher-Order Theory of Mind Reasoning Reasoning Acc
IFEval (Zhou et al., 2023b) Instruction-Following Evaluation Faithfulness Acc
EDOS (Kirk et al., 2023) Online Sexism Detection Social Understanding F1
SocKET bragging achievement (Choi et al., 2023) Brag Achievement Detection Social Understanding F1
SocKET hahackathon is humor (Choi et al., 2023) Humor Detection Social Understanding F1
SocKET tweet irony (Choi et al., 2023) Tweet Irony Detection Social Understanding F1
SocKET sexyn (Choi et al., 2023) Sexual Content Detection Social Understanding F1
SocKET tweet offensive (Choi et al., 2023) Offensive Language Detection Social Understanding F1
SocKET complaints (Choi et al., 2023) Complaint Identification Social Understanding F1
SocKET empathy bin (Choi et al., 2023) Empathy Detection Social Understanding F1
SocKET stanfordpoliteness (Choi et al., 2023) Politeness Detection Social Understanding F1
SocKET rumor rumor bool (Choi et al., 2023) Rumor Detection Social Understanding F1
BBH Boolean Expressions (Suzgun et al., 2023) Boolean Expressions Solving Math Acc
BBH Causal Judgement (Suzgun et al., 2023) Causal Judgment Reasoning Acc
BBH Date Understanding (Suzgun et al., 2023) Date Understanding Reasoning, Commonsense Acc
BBH Disambiguation QA (Suzgun et al., 2023) Clarify Ambiguous sentence Language Understanding, Reasoning Acc
BBH Dyck Languages (Suzgun et al., 2023) Dyck Language Sequences Reasoning Acc
BBH Formal Fallacies (Suzgun et al., 2023) Identifying Formal Fallacies Reasoning Acc
BBH Geometric Shapes (Suzgun et al., 2023) Geometric Shape Understanding Math Acc
BBH Hyperbaton (Suzgun et al., 2023) Hyperbaton Detection Language Understanding Acc
BBH Logical Deduction Five Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH Logical Deduction Seven Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH Logical Deduction Three Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH Movie Recommendation (Suzgun et al., 2023) Movie Recommendation Knowledge Acc
BBH Multistep Arithmetic Two (Suzgun et al., 2023) Multi-step Arithmetic Math Acc
BBH Navigate (Suzgun et al., 2023) Navigation Reasoning Reasoning Acc
BBH Object Counting (Suzgun et al., 2023) Object Counting Commonsense, Math, Reasoning Acc
BBH Penguins In A Table (Suzgun et al., 2023) Tabular Data Understanding Faithfulness Acc
BBH Reasoning About Colored Objects (Suzgun et al., 2023) Reasoning About Colors Reasoning Acc
BBH Ruin Names (Suzgun et al., 2023) Humorous Edit Identification Social Understanding Acc
BBH Snarks (Suzgun et al., 2023) Detecting Snarky Comments Social Understanding Acc
BBH Sports Understanding (Suzgun et al., 2023) Sports Knowledge QA Knowledge Acc
BBH Temporal Sequences (Suzgun et al., 2023) Temporal Reasoning Reasoning Acc
BBH Tracking Shuffled Objects Five Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH Tracking Shuffled Objects Seven Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH Tracking Shuffled Objects Three Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH Web Of Lies (Suzgun et al., 2023) Detecting Lies Reasoning Acc
BBH Word Sorting (Suzgun et al., 2023) Word Sorting Faithfulness Acc

MGSM (Shi et al., 2023a) Math Generalization Math, Reasoning Acc
Belebele (Bandarkar et al., 2024) Multilingual Reading Comprehension Language Understanding, Reasoning Acc
XCOPA (Ponti et al., 2020) Multilingual Causal Inference Commonsense, Reasoning Acc
M3Exam (Zhang et al., 2023) Multilingual Multi-domain Human Exam Math, Reasoning, Knowledge Acc
M MMLU (Hendrycks et al., 2021) Multilingual Multi-domain Knowledge QA Knowledge Acc

Table 2: Full list of benchmarks.

Model Name Best System Prompt

Meta-Llama-3.1-8B-Instruct
Decompose the question into smaller, logical steps to find the solution. Dissect
the problem into smaller sections to simplify understanding.

Mistral-Nemo-Instruct-2407

Create a flow of logic that leads to the final answer. Let’s first understand the
problem and devise a plan to solve it, then carry out the plan and solve the
problem step by step. Let’s work this out in a step by step way to be sure we
have the right answer.

Qwen2.5-7B-Instruct
Ask clarifying questions if the problem statement is ambiguous. Separate the
problem into manageable tasks to facilitate solving. Approach the question
stepwise, addressing each part systematically.

Table 3: Best System Prompts optimized by SPRIG.

optimizing prompts for each task remains labor-intensive and distracting. Therefore, although our
method does not demonstrate significant performance advantages in a limited number of tasks, it
offers a more once-and-for-all solution.

A.4 BENCHMARK DETAILS

We list all benchmarks, categories, metrics and descriptions in Table 2. For each benchmark, the
train/dev/test split is 40%:20%:40%. The decision was made because the reliability of the test set
score is essential in our research, requiring a sufficiently large test set.

A.5 BEST SYSTEM PROMPTS

We list the best system prompts from SPRIG for each LLM in our study in Table 3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20 0.25

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Meta-Llama-3.1-8B-Instruct

0.00 0.05 0.10 0.15 0.20 0.25

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Mistral-Nemo-Instruct-2407

0.00 0.05 0.10 0.15 0.20 0.25
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Qwen2.5-7B-Instruct

Figure 10: Average Score Improvement of all prompt optimization methods from unoptimized set-
ting (Full version).

A.6 FULL EXPERIMENT RESULTS

The full results of all three LLMs and all optimization methods’ Average Score Improvement is
shown in Figure 10.

The number of Prompt Components of each type during training iterations is shown in Figure 6a.

The Question-wise Error Overlap Percentage between System Prompt optimization (SPRIG) and
Task Prompt optimization (PROTEGI) is shown in Figure 6b.

The full Cross-model transfer ability comparison of optimized System Prompt and Task
Prompt is shown in Figure 12 and Figure 13.

The full results of all the LLMs and all optimization methods’ Average Score Improvement from
the unoptimized setting when transferring medium-size LLMs’ prompts to their larger version are
shown in 14.

Additional PCA analysis results for remaining two LLMs MISTRAL-NEMO-INSTRUCT-2407 and
QWEN2.5-7B-INSTRUCT are shown in Figure 15 and Figure 16.

A.7 USE OF LARGE LANGUAGE MODELS

We acknowledge that we only used LLMs to check grammatical errors in the paper and to improve
the clarity of expression.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Iterations

0

50

100

150

200

250
Z-

sc
or

e

Behavioral
Chain-of-Thought
Emotion
Style
Role

Good property
Scenario
Safety
Jailbreak

Figure 11: Z-scores by iteration for the number of components added of each type, showing which
types were added more/less frequently than by chance; statistically significant rates are marked with
×.

Meta-Llama-3.1-8B-Instruct_20250311

Mistral-Nemo-Instruct-2407_20250127

Qwen2.5-7B-Instruct_20250127
base CoT

System Prompt

Meta-Llama-3.1-8B-Instruct

Mistral-Nemo-Instruct-2407

Qwen2.5-7B-Instruct

M
od

el

0.06 0.04 0.03 0.04

0.06 0.12 0.01 0.06

0.09 0.10 0.13 0.12
0.02

0.04

0.06

0.08

0.10

0.12

Figure 12: Cross-model comparison (of Average Score Improvement) on optimized System
Prompts

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

protegi_Meta-Llama-3.1-8B-Instruct

protegi_Mistral-Nemo-Instruct-2407

protegi_Qwen2.5-7B-Instruct

Task Prompt

Meta-Llama-3.1-8B-Instruct

Mistral-Nemo-Instruct-2407

Qwen2.5-7B-Instruct

M
od

el
0.11 0.04 0.05

0.05 0.12 0.05

0.06 0.07 0.15 0.06

0.08

0.10

0.12

0.14

Figure 13: Cross-model comparison (of Average Score Improvement) on optimized Task
Prompts

0.04 0.02 0.00 0.02 0.04

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Meta-Llama-3.1-70B-Instruct

0.04 0.02 0.00 0.02 0.04

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Mistral-Large-Instruct-2407

0.04 0.02 0.00 0.02 0.04
Average Score Improvement

Base CoT

Task Optimized
(ProTeGi)

System Optimized
(OurModel)

System+Task Optimized
(OurModel+ProTeGi)

Qwen2.5-72B-Instruct

Figure 14: Average Score Improvement from the unoptimized setting when transferring medium-
size LLMs’ prompts to their larger version (Full version).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

150 100 50 0 50 100 150
Principal Component 1

150

100

50

0

50

100

150

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

Figure 15: PCA analysis of intermediate hidden state in Mistral-Nemo-Instruct-2407 among differ-
ent prompting methods.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3000 2500 2000 1500 1000 500 0 500
Principal Component 1

1500

1000

500

0

500

1000

1500

2000

Pr
in

cip
al

 C
om

po
ne

nt
 2

No prompt
Base CoT
Task optimized (ProTeGi)
System optimized (OurModel)
System+Task Optimized
(OurModel+ProTeGi)

Figure 16: PCA analysis of intermediate hidden state in Qwen2.5-7B-Instruct among different
prompting methods.

24

	Introduction
	Related Work
	Sprig: System Prompt Refinement for Increased Generalization
	Experiments: Optimization Benefits
	Experiment Setup
	Results

	Experiments: Generalization
	Analysis: Prompt Embedding Space
	Conclusion
	Ethics Statement
	Reproducibility statement
	Appendix
	Prompt Component Corpus Details
	Prompt Reward Model Details
	Sprig Pipeline Details
	Benchmark Details
	Best System Prompts
	Full Experiment Results
	Use of Large Language Models

