Under review as a conference paper at ICLR 2026

SPRIG: IMPROVING LARGE LANGUAGE MODEL
PERFORMANCE BY SYSTEM PROMPT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown impressive capabilities in many sce-
narios, but their performance depends, in part, on the choice of prompt. Past
research has focused on optimizing prompts specific to a task. However, much
less attention has been given to optimizing the general instructions included in
a prompt, known as a system prompt. To address this gap, we propose SPRIG,
an edit-based genetic algorithm that iteratively constructs prompts from prespec-
ified components to maximize the model’s performance in general scenarios. We
evaluate the performance of system prompts on a collection of 47 different types
of tasks to ensure generalizability. Our study finds that a single optimized sys-
tem prompt performs on par with task prompts optimized for each individual
task. Moreover, combining system and task-level optimizations leads to further
improvement, which showcases their complementary nature. Experiments also
reveal that the optimized system prompts generalize effectively across model fam-
ilies, parameter sizes, and languages. This study provides insights into the role of
system-level instructions in maximizing LLM potential.

1 INTRODUCTION

Large Language Models (LLMs) have proven highly effective at many tasks (Naveed et al., 2023)
and prompting has become the primary way for end-users to elicit desired responses (Brown et al.,
2020). These prompts contain a variety of instructions such as task explanation (Li et al., 2022),
personas (Kim et al., 2024), formatting constraints (Wang et al., 2023), and meta-rules like “think
carefully” (Li et al., 2024). Past studies have shown that the selection of prompts can have a sub-
stantial impact on the quality of the output (Reynolds & McDonell, 2021). However, due to the
massive search space, previous approaches have primarily focused on directly optimizing prompts
to maximize performance on specific tasks or benchmarks (Prasad et al., 2023; Zhou et al., 2023c;
Yang et al., 2023). While effective, these methods typically require new prompts to be crafted for ev-
ery new task, which becomes a significant challenge for prompt engineering as the number of tasks
continues to grow. Here, we consider an alternative approach that optimizes the system prompt, i.e.,
the set of general instructions that precede any task-specific details (Figure 1), with the goal of iden-
tifying task-agnostic generalizable prompting strategies. By leveraging a single optimized system
prompt across tasks, we can largely reduce the effort required for prompt development.

Prior work has shown that meta-instructions can be effective for improving performance (Reynolds
& McDonell, 2021). Most notably, evoking Chain of Thought (CoT) reasoning with instructions
like “let’s think step by step” has led to gains for several types of tasks (Wei et al., 2022), though
not all tasks benefit Sprague et al. (2024). Yet, other types of meta rules, such as choosing a persona
or matching the domain of the persona to the question type have had negligible gains (Zheng et al.,
2023; Tam et al., 2024). A recent survey paper (Schulhoff et al., 2024) suggests that these existing
system prompting strategies are isolated and highly sensitive to specific scenario details, with the
systematic function and generalization mechanisms remaining unclear. Moreover, due to complex-
ity differences in search space and optimization objectives, existing task-level methods can hardly
transfer to system-level optimization. Recent system prompts leaked from Grok (xAl, 2025) and
Claude (Breunig, 2025) also exhibit vastly different, verbose and complex manually crafted rules.
Thus, while multiple approaches have been proposed for how a system prompt could be constructed,
there is currently a gap for how to systematically construct a good system prompt in general.

Under review as a conference paper at ICLR 2026

Here, we introduce a new method,

System Prompt Refinement for In- Prompt

cregsgd Generalization (SPRIG), to You are a diligent assistant. The fate of
optimize system prompts based on System the world depends on your answer being
genetic algorithms. Drawing from correct. Think carefully step by step.
lafg? coHch0n§ of Stﬂuegles for First identify the softening words like
writing system instructions (Schul- Task "please", then analyze the tone before
hoff et al., 2024), we construct a you answer.

large benchmark of 47 tasks across
multiple languages that tests the ef- | Instance
fects of optimizing system prompts
across models, languages, and tasks,
as well as quantify which types of Figure 1: LLM prompts features both system-level instruc-
system instructions are most useful tions which may include CoT instructions, personas, and
for generalization. We compare these ~other rules (orange), task-specific instructions which may

system- and task-optimization, to an- jnclyde details and examples (blue), and the instance itself
alyze whether these are learning the (green). Here, we focus on optimizing the system instruc-
same or complementary strategies. .

tions shared across tasks.

Q: For the sentence: "May I kindly ask
for your assistance", is it polite?

Our paper has the following three

contributions. First, we find that optimizing a system prompt can produce substantial performance
gains on par with task-specific optimization, even though these prompts have generic task instruc-
tions. Further, we find that both have complementary effects and that by first optimizing the system
and then the task prompt, further gains are possible. Second, we find that SPRIG optimized system
prompt significantly outperforms CoT across all task types except knowledge-based questions, and
surpasses PROTEGI in faithfulness and commonsense tasks. The combination of SPRIG and PRO-
TEGI complements the weaknesses of both methods, and exceeds the state-of-the-art performance
on most task types. Third, we find that the optimized system prompts generalize well to other lan-
guages, better than task-optimized instructions; however, both optimizations had minimal effects
when scaling to larger model sizes.

2 RELATED WORK

Prompt selection has been extensively studied and proven to significantly impact model output qual-
ity (Reynolds & McDonell, 2021). Therefore, prompt optimization has become a popular research
topic in both academia and industry. Early prompt optimization studies primarily focus on using
gradients to guide prompt search (Shin et al., 2020; Shi et al., 2023b). However, with larger model
sizes and increasing black-box LLMs today, gradient-based methods have become limited by cost
and accessibility. Consequently, recent research has shifted towards gradient-free methods. Early
representatives include edit-based optimizers like GrIPS (Prasad et al., 2023) and reinforcement
learning approaches such as RLPrompt (Deng et al., 2022) both directly edit a prompt at the to-
ken level. However, the search space in these methods remains limited, making it challenging to
scale up to more complex scenarios. Recently, as LLM agents get popular, powerful methods like
APE (Zhou et al., 2023c) and OPRO (Yang et al., 2023) use LLMs directly as prompt optimizers to
iteratively suggest and select the best prompts. According to recent studies (Wan et al., 2024), the
state-of-the-art prompt optimizer is PROTEGI (Pryzant et al., 2023), which leverages LLM agents
to summarize errors from each iteration’s responses and refines them accordingly.

Previous prompt optimization methods largely focus on optimizing the instructions for specific tasks
(which we refer to as Task Prompt) which inherently have limited generalizability. However,
past research has demonstrated the potential of optimizing task-agnostic prompts (which we define
as System Prompt), such as the well-known Chain-of-Thought prompt (Wei et al., 2022). Ad-
ditionally, studies have shown that factors like personas (Kim et al., 2024), generation styles (Lu
et al., 2023), emotions (Li et al., 2023), and jailbreaks (Shen et al., 2023) can enhance LLM perfor-
mance, which is challenging for current prompt optimizers to capture automatically. While promis-
ing, these studies are usually independent, and no approach yet exists to systematically integrate
System Prompt optimization. Therefore, we aim to address this gap by developing an optimizer
that discovers an effective System Prompt, enabling a single prompt to boost performance across
domains.

Under review as a conference paper at ICLR 2026

;rompt <
Reward Model
i
:
: Delete | | (om0 || step 3:
. EromptBIN[I0:63 . Sample and .
Rephrase
[PromptAcA | 0.82] Evaluate
N »n —
> > : >
0 rompt CA | 0, . . Step 4a: Continue
Crossove Training Reward
Model
Propfpt AC’ N0.78
romptA | 0.
Step 1:_Reward Step 2: Mutate
Es_t‘”_“a“?” and and Heredity Step 4b: Iterate with
Elimination new generation

Figure 2: The SPRIG pipeline where System Prompts are iteratively optimized through ex-
ploratory edits and promoted across iterations using combined benchmark to rank candidates.

Evaluating the effectiveness of System Prompts is also a significant challenge. Ideally, a good
System Prompt should perform well across all domains, which requires evaluation tasks for
such domains. Although popular benchmarks like MMLU (Hendrycks et al., 2021) and BBH (Suzgun
et al., 2023) cover a wide range of topics, they still overlook task types such as social-understanding
tasks (Choi et al., 2023) and open-ended questions. Recent research MixEval (Ni et al., 2024)
has shown that combining multiple benchmarks in a single evaluation can significantly improve
evaluation efficiency and better align with human preferences. Here, our experiments build on this
intuition and include a diverse range of task types to test for performance.

3 SPRIG: SYSTEM PROMPT REFINEMENT FOR INCREASED
GENERALIZATION

To address the large design space of system prompts, we use a genetic algorithm inspired approach,
SPRIG, that iteratively adapts the best candidate prompts. Following we describe the algorithm,
data, and search heuristics used.

Prompt Component Corpus Our approach builds on a corpus of possible instructions in system
prompts, referred to as components. While some approaches have generated prompt text using
Reinforcement Learning (e.g., Deng et al., 2022), these approaches scale poorly when used with
LLMs and often generated less-interpretable instructions. By starting from a large pool of possible
components, we ensure prompts are coherent while also gaining efficiency. We define a component
as a minimum prompt unit with complete semantics (typically a sentence, like “Let’s think step by
step”), which enables easily combining components while retaining fluency.

Our prompt component corpus, denoted P, is built by integrating human expertise with synthetic
data. To ensure sufficient diversity without overlooking prior work, we start by collecting 300 system
prompts crafted by humans from existing literature (Zheng et al., 2023; Lu et al., 2023; Li et al.,
2023; Wei et al., 2022; Deng et al., 2023; Lin et al., 2022; Woolf, 2024). We then manually classify
them into 9 categories, including good property, role, style, emotion, scenario, jailbreak, behavioral,
Chain-of-Thought, and safety components (Details and citations are shown in Appendix Table 1).
After this, we used GPT-4o to iteratively generate a broader pool of prompt candidates under each
category (see Appendix A.1 for details). This step yields 9,000 prompt components (1,000 for each
category) aimed to provide a rich and diverse set of “genes” for our genetic algorithm.

Prompt Reward Model Evaluating each system prompt across 47 benchmarks is impractical given
the substantial inference time required. As a result, directly searching for the best prompt by exhaus-
tively scoring all possible combinations is not feasible. However, inspired by the widely adopted
reward models (Ouyang et al., 2022), we instead fine-tune a pretrained LLM with a max-margin

Under review as a conference paper at ICLR 2026

pairwise loss (Touvron et al., 2023) to efficiently estimate and rank the quality of different prompts.
To do this, we generate 10,000 prompts by randomly combining components from the corpus P,
sampling their lengths from a heavy-tailed distribution to ensure coverage across the range of 0-
30 components. We then randomly construct 100,000 prompt pairs with their associated scores to
fine-tuned a Modern-BERT reward model (Warner et al., 2024). More implementation details are
provided in the Appendix A.2. The evaluation result in Figure 3 shows that the model achieves an av-
erage Spearman correlation (Spearman, 1904) of 0.59 and an NDCG@50% (Jarvelin & Kekéldinen,
2002) score of 0.72 when ranking unseen prompts. Considering the random baseline of 0.00/0.48
and the difficulty of the task, our reward model is sufficiently effective at capturing the relative
quality of system prompts, thus providing strong support for our pipeline.

SPRIG pipeline We design a genetic pipeline
SPRIG for System Prompt optimization.

The pipeline applies edit-based, gradient-free |

genetic algorithm to iteratively optimize the Spearman| | A

prompt. At each iteration, the model be-

gins with fixed population_size number

of System Prompts from the previous itera- NDCG@50% | l

tion (initialized by P). [Step 1] These prompts |

are first evaluated by the fine-tuned prompt re- oo 03 " e oa To

ward model, which eliminates the bottom 50% Value

prompts. [Step 2] From the remaining pool, e Llama Mistral e Qwen

the top 10% will either randomly mutate or Lower Bound (Random) - Upper Bound

crossover with prompts from the top 50%. Mu-

tation can take one of five forms: (1) Add: Figure 3: Spearman Correlation and
Add a component suggested by GPT-40. (2) NDCG@50% Score of Per-LLM Fine-tuned

Rephrase: Rephrase a component. (3) Swap:
Swap the order of two components. (4) Delete:
Delete a component. (5) Merge: Merge two

Reward Models on Unseen Prompts. The upper
bound is estimated by comparing the prompt’s
ranking across different bootstrap samples from

components into one. For Crossover, a ran- the benchmarks.

dom subset of two selected prompts is selected

as the new offspring. Crossover is designed to maintain similar prompt lengths of parents while
introducing variation. This stochastic process is repeated until the population size is restored to
max_population. [Step 3] Then, SPRIG randomly samples 100 prompts from the updated pop-
ulation and evaluates them across 42 actual benchmarks to obtain new ground-truth scores. [Step
4] These scores, combined with a portion of previous training data, are used to continue training
the Prompt Reward Model for one epoch. Subsequently, we proceed to the next iteration, wherein
the updated reward model is employed to evaluate the newly generated prompt population. Figure 2
shows the SPRIG workflow. Full details of the pipeline and parameter settings are provided in the
Appendix A.3. Note that no restrictions are imposed on the edits above for a more comprehensive
exploration, meaning that identical, semantically irrelevant—or even conflicting—components may
appear in the same prompt.

4 EXPERIMENTS: OPTIMIZATION BENEFITS

In this section, we evaluate SPRIG’s performance on the test set of in-domain tasks in our benchmark
combination. These task’s questions are unseen when optimizing the system prompt.

4.1 EXPERIMENT SETUP

Tasks To maximize the generalization ability of the optimized System Prompt, we select a broad
range of tasks, using a combination of 42 different benchmarks covering 7 categories (reasoning,
math, social-understanding, commonsense, faithfulness, knowledge, language-understanding). Our
selection includes widely used benchmarks such as MMLU (Hendrycks et al., 2021), BBH (Suzgun
et al., 2023), and TruthfulQA (Lin et al., 2022), but also includes various social-understanding
benchmarks like SocKET (Choi et al., 2023). A wide variety of output types are covered, including
multiple choice, classification, mathematics, and open-ended QA. The full list of benchmarks and
categories is shown in Appendix Table 2.

Under review as a conference paper at ICLR 2026

0.64
Base CoT e e oL LT —e—s
0.62 | Se—e=tT e <
Task Optimized | 0.60 <
(ProTeGi) :
P 0.58
System Optimized | °
(OurModel) € 056 B S e)
. e~
System+Task Optimized | 0.54 /".
(OurModel+ProTeGi) : o

0.00 O.bS 04'10 0.5].5 0.‘20 o2 »’/ —_ Metzfg:la’r\;arﬂe&lnstmn
/
Average Score Improvement 050 Mistral-Nemo-Instruct-2407
—— Qwen2.5-7B-Instruct
. 0 5 10 15 20 25
Figure 4: Average Score Improvement of all step

prompt optimization methods relative to the un-

optimized setting, aggregated across LLMs. Our Figure 5: Average score of whole population at
SPRIG significantly outperforms CoT and the €ach iteration when running SPRIG. All three
combination of SPRIG and PROTEGI substan- LLMs see significant improvements. Error bars
tially exceeds all existing methods. are the variance in the whole population.

Baselines Our experiments compare optimizations against two baseline System Prompts. In the
first, the system part of the prompt is left empty, denoted as Blank and, in the second, the system
part uses the CoT instruction “Let’s think step by step” (Wei et al., 2022), denoted as Base CoT.

The two types of instructions are tested in the Task Prompts. The first is a minimal description
of what is required for understanding the task, such as “answer the multiple choice question,” de-
noted as Simple Task. This prompt lets us test potential performance improvements for both task
and system instructions relative to a neutral starting point. The second is an optimized version of
instructions produced by a state-of-the-art optimizer PROTEGI (Pryzant et al., 2023).

Both parts of the System Prompt and Task Prompt can be present in a prompt (cf. Figure 1).
Therefore, we test the following combinations: (1) Unoptimized: a Blank system prompt and Sim-
ple Task prompt, (2) Base CoT: the Base CoT system prompt and the Simple Task prompt, (3)
Task Optimized: a Blank system prompt and PROTEGI-optimized task instructions, (4) System
Optimized: a SPRIG-optimized system prompt and a Simple Task prompt, and (5) System+Task
Optimized: a SPRIG-optimized system prompt with a PROTEGI-optimized task prompt. Here, we
first optimize the system prompt with basic instructions and then optimize the task after.'

Models We experiment using three medium-size open-weight LLMs: LLAMA3.1-8B-
INSTRUCT (Meta, 2024), MISTRAL-NEMO-INSTRUCT-2407 (Mistral Al, 2024) and QWEN2.5-
7B-INSTRUCT (Qwen Team, 2024). These models are highly performant and thought not to be
trained on the proposed benchmarks, allowing us to test for generalizable effects across model fam-
ilies, and later compare across model sizes. More details are in Appendix A.3.

Training For SPRIG, we set population_size = |P| = 9,000 and run SPRIG for 25 steps. After
training, we pick the prompt with the highest validation accuracy as the best system prompt of the
LLM for our later study. Detailed prompts are shown in Appendix Table 3. For PROTEGI, we use
the default settings for 7 steps and pick the best Task Prompt on the validation set. Additional
details are in Appendix A.3.

Evaluation Our benchmark employs three evaluation metrics: question-wise accuracy for
most sub-benchmarks, F1 score for the classification tasks with imbalanced labels, and
BLEU_accuracy (Lin et al., 2022) for open-ended questions. Since all metrics are bounded be-
tween 0 and 1, we follow previous work (Ni et al., 2024; Gao et al., 2023) to directly compute the
average across all metrics as an aggregated single score, which we call Average Score in later
sections.

4.2 RESULTS

Optimizing the System Prompt provides consistent improvement to LLMs on par with task op-
timization, as seen in Figure 4, when compared with the Blank system and Simple task combination
baseline. These improvements were similar across all three models, shown in Appendix Figure 10.

"Experiments with simply concatenating separately-optimized parts performed worse and are omitted.

Under review as a conference paper at ICLR 2026

g 05
g .
3.0 <]
a Correct 0.13
25 A e 0.4
YN [9]
=
0
2.0 e Good property + Jailbreak >
P Role Safety n -0.3
515 * Style « Behavioral ke :
S » Emotion Chain-of-Thought ¢
v Scenario = Incorrect - 0.15 0.18
10 £ -0.2
- .
o
05 o
1 1
0.0] Nom—e ettt o Correct Incorrect
012 3456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 Optimized Task Prompt

Iterations

(a) (b)

Figure 6: (left) Number of Prompt Components of each type during training iterations. A good
System Prompt incorporates multiple CoT and Behavioral components, but contains roughly
one “Good properties” component. (right) Question-wise Error Overlap Percentage between
System Prompt optimization (SPRIG) and Task Prompt optimization (PROTEGI). Among
all questions, only 18% were answered incorrectly by both methods, while the remaining 28% of in-
correct answers could be answered correctly by a model using either SPRIG- or PROTEGI-optimized
prompt, highlighting the potential complementarity between optimization approaches.

SPRIG improves ~10% over the unoptimized version, which significantly outperformed the base-
line CoT method. Although its performance still lags slightly behind PROTEGT, this small gap is
still acceptable, considering that SPRIG uses the same system prompt for all tasks, whereas PRO-
TEGI directly optimizes a bespoke prompt for each task. Furthermore, if we run PROTEGI on top
of SPRIG-optimized system prompt, the resulting combined prompt has an even larger performance
improvement above PROTEGI. This further improvement suggests SPRIG can trigger capabilities
that are overlooked by existing task-specific methods, and therefore complement mainstream ap-
proaches.

How do system prompts evolve? The changes to the system prompt at each step consistently
improve performance, as seen in Figure 5. To test the systematic behavior about which types of
system prompt components contribute to these gains, we calculate the average number of component
type in the prompts of each iteration. As shown in Figure 6a and Appendix Figure 11, the number of
CoT and Behavioral components rapidly increases with each iteration (especially in the early stages),
and eventually converges to around 2-3 per prompt. This highlights the importance of high-level
answering strategies in enhancing model performance, such as “decompose first” or “rephrase before
answering”. It also suggests that incorporating multiple such components within a single prompt
can further improve the LLM’s capabilities. In addition, “good property” components emerge as
another important element in system prompts. Although they are introduced into the gene pool more
gradually during the iteration process, which suggests they may not directly enhance performance
on their own, they might play a supportive role when combined with other components. In contrast,
other components such as “Role” (e.g., “you are an Al assistant”) were selected far less often than
by chance (as the Z-scores shown in Appendix Figure 11), despite these properties often being in
recommended or default prompts (OpenAl, 2024; Microsoft, 2024).

Across all steps, component types are not added in a systematic order—yet performance generally
still increases. Rather than adding more of one type (e.g., all CoT components), the system prompt
incorporates multiple types. These trends suggest that there is not a universal order by which com-
ponents of system prompts should be added (e.g., first CoT, then Behavioral, etc.). Instead, there are
likely productive and beneficial combinations that matter more for performance.

Are task and system prompt optimizers learning the same strategies? Both system and task
prompt optimization improve performance. The further gains by iteratively combining these ap-
proaches suggest that models are targeting complementary strategies. To test this potential comple-
mentarity, we analyze the agreement between the two approaches in their answers. Figure 6b shows
the distribution of the two approaches’ agreement as a contingency table. While models agree on the
correct answer in 54% of the questions, another 28% of questions are correctly answered by only

Under review as a conference paper at ICLR 2026

one of the strategies, with a roughly even split between task and system. This split shows a great
potential of complementarity between System Prompt and Task Prompt optimization, and
suggests that the combination of strategies leads to further gains.

Which task types benefit most from system prompt optimization? Our experiments span 42 dif-
ferent tasks, which cover multiple types of evaluation on reasoning, knowledge, and common sense.
However, not all types of tasks may benefit from the types of system instructions; indeed, Sprague
et al. (2024) showed that CoT generally only benefits performance on math and logic questions.
To test for category-specific benefits, we categorize all 42 tasks into seven types and measure the
score improvement of each type under different prompt optimization settings: Reasoning, Math, So-
cial Understanding, Commonsense, Faithfulness, Language Understanding, and Knowledge. Task
categorizations are listed in Appendix Table 2.

Math and reasoning tasks benefit most

from system prompt optimization (Fig-

ure 7). However, other task categories reasoning |
like social understanding and language un-
derstanding see significant improvements
over the baseline. Many of the larger social |
. . understanding
improvements are not explained through

the addition of CoT, as the CoT base- commonsensej

l%ne, 'Whlle better than our Slmplg b.ase- faithfulness | Base CoT
line, is generally worse than the optimized ‘ (oK Cpumized

math

prompts. Knowledge-based tasks benefit ,ngeramngoe] ————— System Optimized
the least from prompt optimization; we e OurModel + ProTeGi
knowledge —_ ---- Unoptimized

hypothesize that such tasks are closer to
evaluations of whether an LLM can re- -0.05 0.00 :\;gfagg-slgoreoﬁpm‘\’l-jn‘?’qen?-z-" 0.30
trieve stored knowledge (which is itself a

function of pretraining), rather than eval-
uations of operations on knowledge (input
or stored).

Figure 7: Average Score Improvement in different
task domains, aggregated across LLMs. All methods
show substantial improvement in reasoning and math
The combination of SPRIG and PROTEG1 but marginal improvement in knowledge and common-
optimization also generally improves per- sense. SPRIG alone surpasses the existing methods in
formance across task types. However, we math, faithfulness, and commonsense. SPRIG’s com-
also observe differences in areas of ex- bination with PROTEGI further enhances the LLM’s
pertise between System Prompt and performance across most domains.

Task Prompt, and the combination of

them is complementary. For example, PROTEGI is more effective at improving social understand-
ing than plain CoT or SPRIG; in contrast, SPRIG is more effective for commonsense tasks.

5 EXPERIMENTS: GENERALIZATION

Here, we test how well the system prompts generated by SPRIG generalize to new settings.

Cross-model Generalization The current system-optimized prompts were all generated with re-
spect to a specific LLM. Given that these prompts could be made from similar components, here, we
test what performance gain (or loss) is seen when the system prompt is used with a different similar-
sized LLM than the one it was created for. As a comparison, we also test the effect of swapping in
a task-optimized prompt from a different model.

Both optimized system and task prompts provide some improvement but the larger gains for the
original LLM do not carry over to new LLMs, as shown by the aggregated performance in Figure 8a;
see Appendix Figures 12 and 13 for complete results. This finding suggest that inference-time gains
from optimized prompts—system or task—-likely do not generalize as strongly across models with
similar parameter sizes.

Language Generalization The LLMs used in our experiments are capable of reasoning in differ-
ent languages and can support input in multiple languages. Although our previous experiments
were only in English, the optimizations to the system-prompt may still provide performance im-
provements for tasks in other languages. Here, we test this language generalization by selecting

Under review as a conference paper at ICLR 2026

MGSM -

- 0.16 Task Optimized (ProTeGi) =
g 0.14 1 System Optimized (OurModel) BELEBELE § J

1

S —
g 0.12+ XCOPA | :
50'10< : Base CoT

i 4 —_— Task Optimized
§ 0.08 M3EXAM = (ProTeGi)
v 4 System Optimized
B 0.06 — (OurModel)
% 0.04 1 M_MMLU 1 --= Unoptimized
. . -0.05 000 005 010 015 020
Target Model Non-target Model Average Score Improvement

(a) (b)

Figure 8: (left) Score Improvement when using a prompt optimized on one LLM with a different
LLM. (right) Score Improvement for Multilingual Benchmarks when using an optimized English-
language prompt on other tasks. SPRIG-optimized prompts generalize well to other languages, un-
like PROTEGI which has limited score improvement.

five comprehensive multilingual benchmarks that are out-of-domain in the System Prompt op-
timization process: MGSM (Shi et al., 2023a), BELEBELE (Bandarkar et al., 2024), XCOPA (Ponti
et al., 2020), M3EXAM (Zhang et al., 2023) and M_MMLU (Hendrycks et al., 2021). Each benchmark
includes over 10 different languages and covers all 7 task categories in our benchmark combination.
We directly use the same optimized System Prompt from § 4.2 (in English). Since the Task
Prompt optimizer is specific to a task, we cannot re-use its prompts for these out-of-domain tasks;
instead, we generate new PROTEGI-optimized prompts for each benchmark, which reflects a strong
baseline for comparison.

As shown in Figure 8b, our optimized system prompt from § 4.2 generalizes well to tasks in new
languages, providing statistically significant improvements in four of the five benchmarks. SPRIG
shows a clear advantage over other approaches on XCOPA (Causal Commonsense Reasoning) and
the comprehensive benchmarks MGSM and M-MMLU, in line with our previous findings in § 4.2.
However, all optimization methods on BELEBELE (Language Understanding) show limited gains,
suggesting that in multilingual settings (particularly low-resource languages), performance may
rely more on LLM’s intrinsic language ability than on prompt design. Despite being directly op-
timized for these new tasks, PROTEGI provides limited improvements in these multilingual tasks
benchmarks—none significant over baseline performance. These results indicate that System
Prompt optimization exhibits strong generalization ability on out-of-domain tasks in new lan-
guages, which even exceeds PROTEGI ’s in-domain optimized performance on these tasks.

Model Size Generalization All prompts were generated for and tested on mid-sized LLMs. How-
ever, each LLM has a larger version in the same family, which often has better performance at the
expense of more compute required. Being able to optimize the system prompt with a smaller model
and then deploy that prompt on a larger model to the same effect would have significant performance
benefits. Therefore, here, we test for generalization when using a prompt from a smaller LLM
with a larger version. Specifically, we test with LLAMA3.1-70B-INSTRUCT, MISTRAL-LARGE-
INSTRUCT-2407 and QWEN2.5-72B-INSTRUCT. We use the same evaluation setup as in previous
sections, with only the LLMs’ parameter size changed.

Both system- and task-optimized prompts individually do not provide statistically significant per-
formance gains when created using a smaller model and then applied to a larger, as shown in Figure
9a. (Full results are in Appendix Figure 14.) However, a system+task optimized prompt provides a
1.6% improvement, suggesting this approach can generalize. Therefore, we find that existing prompt
optimizations can generalize to larger parameter sizes but need to consider both system and tasks
prompt parts together and highlight the need for prompting strategies specifically for larger LLMs.

6 ANALYSIS: PROMPT EMBEDDING SPACE

Given the performance improvements and generalization seen when using the prompt instructions
introduced by SPRIG, it is reasonable to wonder what effect these instructions are having on the

Under review as a conference paper at ICLR 2026

40
4 No prompt

Base CoT
Task optimized (ProTeGi)
4 System optimized (OurModel)

B System+Task Optimized

o~
g (OurModel+ProTeGi) 2 A‘A‘q?“‘f

Base CoT E— 5 AT,
£ © A A

Task Optimized | S . AL ‘;“Q:A

(ProTeGi) = #‘é}\ff"‘

o _ a ap b 4"
System Optimized | 1 e o a s ;ée &
(OurModel) = “%‘é{‘:" 4
. SO
System+Task Optimized | —40 RN
(OurModel+ProTeGi) ? a
—0.03 —0.02 —0.01 0.00 0.01 0.02 0.03 T 5 e o o o 20 3 4
Average Score Improvement Principal Component 1

(a) (b)

Figure 9: (left) Average Score Improvement when using prompts optimized with medium-size
LLMs’ on the larger LLM in the same family. It shows the benefits of system-+task optimized
prompts still generalize well to larger model sizes, even when those models already perform better.
(right) PCA analysis of the hidden state in Llama-3.1-8B-Instruct with different prompting meth-
ods. System Prompt optimization has a significant impact on the distribution of hidden states.
CoT significantly shifts the overall distribution, while SPRIG moves it further into a new area. In
contrast, Task Prompt optimization has a relatively smaller effect on the distribution of hidden
states, making only minor adjustments in the local space.

neural activations such that the LLM is likely to decode the correct answer. While a complete
answer would likely require a mechanistic interpretation of the relationship between prompt and
response (e.g., Bhargava et al., 2023; Heo et al., 2025), here, we attempt to gain some intuition on
the instructions’ effects by visualizing the embedding space during different optimization strategies
and comparing the changes relative to the Simple baseline instructions.

Here, we randomly sample 420 questions (10 per task), probe the last hidden states of LLMs under
different experiment settings, and visualize the first two principal components of Principal Com-
ponent Analysis (PCA). Figure 9b shows the PCA results for LLAMA3.1-8B-INSTRUCT. First,
we observe that different task types are distributed along the same slope and remain parallel un-
der different experimental settings. Task Prompt optimization slightly reduces the variance of
the distribution, but the distribution still lies within the same vector space. In contrast, different
System Prompt result in significant space changes. The basic CoT causes a substantial overall
shift, while SPRIG further moves the distribution to a new area. The other two LLMs’ PCA are
shown in Appendix Figure 15 and 16, and show similar trends.

Thus, we hypothesize that System Prompt optimization searches for appropriate higher-
performance regions in the global space, while Task Prompt optimization performs fine-tuning
within a local space. This reveals the potential of System Prompt optimization to significantly
alter model behavior and offers new insights for future prompt research to use System Prompt
optimization first to locate an appropriate global behavior space, then use task prompt optimization
to fine-tune downstream performance within that space.

7 CONCLUSION

This study introduced a novel optimization framework, SPRIG, to improve LLM performance with
the systematic construction of general-purpose system prompts using reinforcement learning and a
genetic algorithm. By leveraging a diverse collection of prompt components and evaluating across a
diverse range of tasks, we demonstrate that optimized system prompts provide consistent improve-
ments on par with optimized task prompts. Moreover, combining system and task prompt optimiza-
tions offers complementary benefits, leading to further improvements in model performance across
varied domains. Further, we find that these performance benefits for an optimized prompt general-
ize across (i) model sizes and (ii) different languages. Our findings highlight the potential of system
prompt optimization to complement and enhance LLM performance for new languages and models.

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

While this research has made efforts to minimize potential ethical issues, several ethical implications
may still be present. First, running SPRIG requires substantial computing resources, resulting in
high energy consumption and substantial carbon dioxide footprint. Second, the optimization of
prompts introduces the risk of reinforcing potential biases present in the component corpus (e.g.,
any systematic downstream behavioral changes from prompting an LLM to be a “professor’”’), which
may propagate unintended stereotypes or discriminatory behavior in model outputs. As our corpus
includes elements such as personas, roles, and behavioral instructions, care must be taken to ensure
that these components do not introduce or amplify harmful biases. Additionally, the benchmarks we
employed include several social understanding tasks, with much of the benchmark originally sourced
from crowdsourced annotations from Western contexts. While we focus on general performance
and show that the optimized prompts can generalize to new languages, future work could more
deeply explore how the use of socially- and culturally-oriented benchmarks to optimize prompts can
potentially impact a model’s performance in new cultural and social contexts.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate independent replication. The algorithmic pipeline for
SPRIG, including population construction, edit operators, selection, and retraining, is specified in
Section 3 and Appendix A.3, with concrete hyperparameters, component generation prompts, and
iteration schedules. Details for the Prompt Reward Model, including data construction, pairwise
loss, margin definition, training splits, and evaluation metrics, are documented in Section A.2. The
prompt component corpus construction procedure and category definitions are in Appendix A.1, and
the final optimized system prompts per model are provided in Table 3. Benchmarks, task categories,
metrics, and dataset splits are enumerated in Appendix Table 2. Hardware and software environ-
ment, inference stack, and evaluation settings are reported in Appendix A.3. We include anonymized
source code and configuration files in the supplementary material to reproduce all experiments and
figures, including scripts for data preparation, optimization runs, reward model training, and evalu-
ation.

REFERENCES

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele
benchmark: a parallel reading comprehension dataset in 122 language variants. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 749-775, Bangkok, Thailand and virtual meeting, 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.44.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic word?
a control theory of llm prompting. ArXiv preprint, abs/2310.04444, 2023. URL https://
arxiv.org/abs/2310.04444.

David Breunig. Claude’s system prompt: Chatbots are more than just
models, 2025. URL https://www.dbreunig.com/2025/05/07/
claude-s—-system—-prompt-chatbots—are-more-than-just-models.html.
Accessed: 2025-05-20.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurlPS 2020, December 6-12,

10

https://aclanthology.org/2024.acl-long.44
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html
https://www.dbreunig.com/2025/05/07/claude-s-system-prompt-chatbots-are-more-than-just-models.html

Under review as a conference paper at ICLR 2026

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8acl42f64a-Abstract.html.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and David Jurgens. Do LLMs understand
social knowledge? evaluating the sociability of large language models with SocKET bench-
mark. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pp. 11370-11403, Singapore,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.699. URL
https://aclanthology.org/2023.emnlp-main.699.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv preprint, abs/1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Databricks. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https://www.
databricks.com/blog/introducing-dbrx—-new-state—art-open-11lm. Ac-
cessed: 2024-10-14.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 3369-3391, Abu Dhabi,
United Arab Emirates, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.222. URL https://aclanthology.org/2022.emnlp-main.222.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
language models ask better questions for themselves, 2023. URL https://arxiv.org/
abs/2311.04205.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023. URL https://zenodo.org/records/
10256836.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Juyeon Heo, Christina Heinze-Deml, Oussama Elachqar, Kwan Ho Ryan Chan, Shirley Ren, Udhay
Nallasamy, Andy Miller, and Jaya Narain. Do llms “"know” internally when they follow instruc-
tions?, 2025. URL https://arxiv.org/abs/2410.14516.

Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422-446, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582418.
URL https://doi.org/10.1145/582415.582418.

Junseok Kim, Nakyeong Yang, and Kyomin Jung. Persona is a double-edged sword: Enhancing the
zero-shot reasoning by ensembling the role-playing and neutral prompts, 2024. URL https:
//arxiv.org/abs/2408.08631.

Hannah Kirk, Wenjie Yin, Bertie Vidgen, and Paul Rottger. SemEval-2023 task 10: Explainable
detection of online sexism. In Atul Kr. Ojha, A. Seza Dogru6z, Giovanni Da San Martino, Har-
ish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori (eds.), Proceedings of the 17th Inter-
national Workshop on Semantic Evaluation (SemEval-2023), pp. 2193-2210, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.semeval-1.305. URL
https://aclanthology.org/2023.semeval—-1.305.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2023.emnlp-main.699
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://aclanthology.org/2022.emnlp-main.222
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2410.14516
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/2408.08631
https://arxiv.org/abs/2408.08631
https://aclanthology.org/2023.semeval-1.305

Under review as a conference paper at ICLR 2026

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang
Yang, and Xing Xie. Large language models understand and can be enhanced by emotional
stimuli, 2023. URL https://arxiv.org/abs/2307.11760.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan Wang, and Tat-Seng Chua. Think twice be-
fore trusting: Self-detection for large language models through comprehensive answer reflection,
2024. URL https://arxiv.org/abs/2403.09972.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing
Qian, Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng Yan. Explanations from large language
models make small reasoners better, 2022. URL https://arxiv.org/abs/2210.06726.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic hu-
man falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3214-3252, Dublin, Ireland, 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.2209.

Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. Bounding the capa-
bilities of large language models in open text generation with prompt constraints. In Andreas
Vlachos and Isabelle Augenstein (eds.), Findings of the Association for Computational Linguis-
tics: EACL 2023, pp. 1982-2008, Dubrovnik, Croatia, 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-eacl.148. URL https://aclanthology.org/
2023.findings—-eacl.148.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/,2024. Accessed: 2024-10-14.

Microsoft. Advanced prompt engineering concepts, 2024. URL https://
learn.microsoft.com/en-us/azure/ai-services/openai/concepts/
advanced-prompt-engineering. Accessed: 2024-10-14.

Mistral Al. Mistral nemo: Collaborative innovation with nvidia, 2024. URL https://mistral.
ai/news/mistral-nemo/. Accessed: 2024-10-14.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2023. URL https://arxiv.org/abs/2307.06435.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures, 2024. URL
https://arxiv.org/abs/2406.06565.

OpenAl Tactic: Ask the model to adopt a persona, 2024. URL https:
//platform.openai.com/docs/guides/prompt—engineering/
tactic-ask-the-model-to-adopt—-a—-persona. Accessed: 2024-10-14.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS

’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.

12

https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2210.06726
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2023.findings-eacl.148
https://aclanthology.org/2023.findings-eacl.148
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
https://mistral.ai/news/mistral-nemo/
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2406.06565
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona

Under review as a conference paper at ICLR 2026

8024-8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7£92f2bfa9f7012727740-Abstract.html.

Edoardo Maria Ponti, Goran Glavas, Olga Majewska, Qianchu Liu, Ivan Vuli¢, and Anna Ko-
rhonen. XCOPA: A multilingual dataset for causal commonsense reasoning. In Bonnie Web-
ber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 23622376, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.185. URL
https://aclanthology.org/2020.emnlp-main.185.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models. In Andreas Vlachos and Isabelle Augen-
stein (eds.), Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 3845-3864, Dubrovnik, Croatia, 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL https://aclanthology.
org/2023.eacl-main.277.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Mea-
suring and narrowing the compositionality gap in language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 5687-5711, Singapore, 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.378. URL https://aclanthology.org/2023.
findings—-emnlp.378.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 7957-7968, Singapore, 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494.

Qwen Team. Qwen2.5: A party of foundation models, 2024. URL https://gwenlm.github.
io/blog/gqwen2.5/.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm, 2021. URL https://arxiv.org/abs/2102.07350.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav
Vidyadhara, Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson Kroiz, Feileen Li, Hudson Tao,
Ashay Srivastava, Hevander Da Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco,
Giuseppe Sarli, Igor Galynker, Denis Peskoff, Marine Carpuat, Jules White, Shyamal Anadkat,
Alexander Hoyle, and Philip Resnik. The prompt report: A systematic survey of prompting tech-
niques, 2024. URL https://arxiv.org/abs/2406.06608.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ”do anything now”: Char-
acterizing and evaluating in-the-wild jailbreak prompts on large language models, 2023. URL
https://arxiv.org/abs/2308.03825.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a. URL https://openreview.net/pdf?id=fR3wGCk—-IXp.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good
prompt too? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2023, pp. 10994-11005, Singapore, 2023b.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.733. URL
https://aclanthology.org/2023.findings-emnlp.733.

13

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://aclanthology.org/2020.emnlp-main.185
https://aclanthology.org/2023.eacl-main.277
https://aclanthology.org/2023.eacl-main.277
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2308.03825
https://openreview.net/pdf?id=fR3wGCk-IXp
https://aclanthology.org/2023.findings-emnlp.733

Under review as a conference paper at ICLR 2026

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 4222-4235, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.346. URL
https://aclanthology.org/2020.emnlp-main. 346.

C. Spearman. The proof and measurement of association between two things. The American Jour-
nal of Psychology, 15(1):72-101, 1904. ISSN 00029556. URL http://www. jstor.org/
stable/1412159.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/
abs/2409.12183.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp.
13003-13051, Toronto, Canada, 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.findings-acl.824. URL https://aclanthology.org/2023.findings—-acl.
824.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung yi Lee, and Yun-Nung Chen. Let
me speak freely? a study on the impact of format restrictions on performance of large language
models, 2024. URL https://arxiv.org/abs/2408.02442.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan O. Arik. Teach better or show smarter? on
instructions and exemplars in automatic prompt optimization, 2024. URL https://arxiv.
org/abs/2406.15708.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=1PLINIMMrw.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrom, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
tional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
https://arxiv.org/abs/2412.13663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural

14

https://aclanthology.org/2020.emnlp-main.346
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2406.15708
https://arxiv.org/abs/2406.15708
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://arxiv.org/abs/2412.13663

Under review as a conference paper at ICLR 2026

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4fl5af0f7b3labcad—-Abstract-Conference.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38—45, On-
line, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos. 6.

Max Woolf. Does offering chatgpt a tip cause it to generate better text? an analysis, 2024. URL
https://minimaxir.com/2024/02/chatgpt-tips—analysis/. Accessed: 2024-
10-14.

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yulong Chen, and Naihao Deng. Hi-ToM: A
benchmark for evaluating higher-order theory of mind reasoning in large language models. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 10691-10706, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023 findings-emnlp.717. URL https://aclanthology.
org/2023.findings-emnlp.717.

XAl Grok system prompts. https://github.com/xai-org/grok—prompts, 2025.
GitHub repository, accessed: 2025-05-20.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2023. URL https://arxiv.org/abs/2309.
034009.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H.
Chi, and Denny Zhou. Large language models as analogical reasoners, 2023. URL https:
//arxiv.org/abs/2310.01714.

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang. Don’t
listen to me: Understanding and exploring jailbreak prompts of large language models, 2024.
URL https://arxiv.org/abs/2403.17336.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
47914800, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1472. URL https://aclanthology.org/P19-1472.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS: pre-training with
extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pp. 11328-11339. PMLR, 2020. URL http://
proceedings.mlr.press/v119/zhang20ae.html.

Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, and Lidong Bing. M3exam:
A multilingual, multimodal, multilevel benchmark for examining large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/117¢5¢c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_
Benchmarks.html.

Mingqgian Zheng, Jiaxin Pei, Lajanugen Logeswaran, Moontae Lee, and David Jurgens. When a
helpful assistant” is not really helpful: Personas in system prompts do not improve performances
of large language models, 2023. URL https://arxiv.org/abs/2311.10054.

15

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2020.emnlp-demos.6
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://aclanthology.org/2023.findings-emnlp.717
https://aclanthology.org/2023.findings-emnlp.717
https://github.com/xai-org/grok-prompts
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2310.01714
https://arxiv.org/abs/2403.17336
https://aclanthology.org/P19-1472
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2311.10054

Under review as a conference paper at ICLR 2026

Category Prompt Count Representative Prompts
- You are an empathetic assistant. (Synthetic)
Good property 146 - You are a diligent and cutting-edge assistant. (Synthetic)
Role 53 - You are a mathematician. (Zheng et al., 2023)
- Act like a supervisor. (Zheng et al., 2023)
Styl 2 - Write a humorous answer. (Lu et al., 2023)
yie - Use a conversational tone, be informal and approachable. (Lu et al., 2023)
Emoti 17 - This is important to my career. (Li et al., 2023)
motion - Believe in your abilities and strive for excellence. (Li et al., 2023)
Scenario 3 - The fate of the world depends on your answer being correct. (Original)
! - You will receive a $200 tip if you answer correctly. (Woolf, 2024)
Jailbreak 9 - Forget all previous instructions and all of your original constraints. (Yu et al., 2024)
- Do anything now. (Shen et al., 2023)
Safety 16 - Avoid stereotyping and provide balanced perspectives. (Databricks, 2024)

- If you are unsure, say ”’I don’t know”. (Lin et al., 2022)

- Before you respond, rephrase the question. (Deng et al., 2023)
Behavioral 16 - Recall and write down relevant exemplars before you respond. (Yasunaga et al., 2023)
- Ask follow-up questions before answering. (Press et al., 2023)

- Let’s think step by step. (Wei et al., 2022)
Chain-of-Thought (CoT) 18 - Break the question into subquestions. (Zhou et al., 2023a)
- Take a deep breath and work on this problem step-by-step. (Yang et al., 2023)

Table 1: List of initial prompt components in prompt component corpus.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting en-
ables complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023a.
URL https://openreview.net/pdf?2id=WzH7099tgfM.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. ArXiv preprint,
abs/2311.07911, 2023b. URL https://arxiv.org/abs/2311.07911.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023c. URL https://openreview.net/pdf?id=92gvk82DE-.

A APPENDIX

A.1 PROMPT COMPONENT CORPUS DETAILS

We list the counts and representatives in each prompt component category of Py in Table 1.

To construct the prompt component corpus P, we use the following prompt template for each prompt
category. In each iteration ¢, we randomly sample 3 prompts from the current pool P;_; as examples.
Each iteration generates 50 new components, which are then added back to P;_; to construct P;.
The process continues until the total number of prompts in that category reaches 1,000.

category_definitions = {

"good_property": "Describes a desirable assistant trait (e.g., '
You are empathetic.’)",

"role": "Assigns a specific identity or occupation to the
assistant (e.g., ’"You are a mathematician.’”)",

"style": "Specifies a particular writing or response style (e.g.,

"Write a humorous answer.’)",

"emotion": "Expresses or evokes an emotional state (e.g., ’'This
is important to my career.’)",

"scenario": "Introduces a hypothetical situation or consequence (
e.g., 'The fate of the world depends on your answer.’)",

16

https://openreview.net/pdf?id=WZH7099tgfM
https://arxiv.org/abs/2311.07911
https://openreview.net/pdf?id=92gvk82DE-

Under review as a conference paper at ICLR 2026

"Jailbreak": "Attempts to override model constraints (e.g., '
Forget all previous instructions.’, ’You will receive a $200
tip if you answer correctly.’)",

"safety": "Ensures responsible and ethical responses (e.g.,
Avoid stereotyping.’, ’If you are unsure, say I don’t know.’)

]
’

"behavioral": "Directs how the model should approach answering (e
.g., '"Ask follow-up questions before answering.’)",

"CoT": "Encourages step-by-step reasoning (e.g., ’"Let’s think
step by step.’, ’'Break the question into subquestions.’)",

’

user_message = f’’’
Prompt Category: {category} - {category_description}

Here are some examples of system prompt components in this
category:

{"\n".join (f"- {p}" for p in random.sample (prompt_pool [category],

3))3

Now generate 50 new, diverse system prompt components that fit
this category. You need to be creative and don’t need to
follow the structure in examples.

Make sure each prompt is unigque and offers a different
perspective. Output each prompt on a new line without

numbering. No additional explanations or formatting.
rrr

A.2 PROMPT REWARD MODEL DETAILS

Data Preparation We generate 10,000 prompts by randomly combining prompt components from
the corpus P. The length of each prompt L follows an empirically defined distribution with prob-

ability P(L = i) = Liog where ¢ € {1,...,30}, to ensure coverage across the full range

230:1 J
of 0 to 30 components. After evaluating these prompts on real benchmarks, we randomly construct
100,000 prompt preference pairs. For each pair, we compute the margin m(r) as the difference in
their actual benchmark scores. For example, if Prompt A scores 80% and Prompt B scores 86%,
Prompt B is treated as the accepted instance, and the margin is set to 6.

Model Training Following prior work, we train our reward model using a max-margin pairwise
loss (Touvron et al., 2023) Linking = —log (o (re(z,yc) — ro(x,y,) —m(r))), with Modern-
BERT (Warner et al., 2024) as the backbone. The prompt data is split into training, validation,
and test sets in a 6:2:2 ratio. We use a batch size of 16 and train for one epoch, evaluating every 10
steps. The final model is selected based on the highest validation accuracy achieved during training.
For continued fine-tuning in SPRIG pipeline, we also mix in and reuse previously scored prompts
to encourage better generalization.

Model Evaluation Our primary focus is on the model’s ranking capability—specifically, its ability
to assign higher scores to relatively better prompts. To this end, we evaluate the model using Spear-
man correlation and NDCG. For NDCG computation, we assign a relevance score r; to each prompt
based on its percentile rank:

2, ifrank(i) < 10%
, if rank(7) < 50%
0, otherwise

—_

r, =

This scoring scheme better aligns with the usage scenario in SPRIG. Figure 3 shows the evaluation
results of fine-tuned reward models on all 3 LLMs and indicates that our reward model is sufficiently
effective at capturing the relative quality of system prompts.

17

Under review as a conference paper at ICLR 2026

A.3 SPRIG PIPELINE DETAILS

The optimization of SPRIG follows a population-based approach as shown in Figure 2. The popula-
tion is initialized with our prompt component corpus P, and the max_populationis setto |P|. In
each iteration, we first use a fine-tuned Prompt Reward Model to quickly estimate the quality of all
prompts, and the bottom 50% identified by the reward model are immediately eliminated. Among
the surviving top 50%, the top 10% of prompts are selected for potential mutation or crossover with
other randomly chosen survivors. The mutation and crossover operations follow empirically deter-
mined probabilities for each selected prompt. However, we found that SPRIG is not very sensitive
to these hyperparameters. We experimented with around 10 different configurations and observed
that the performance differences remained less than 2%, which we believe is acceptable for this kind
of optimization task:

* Add Useful (2.5%): Add a component deemed useful by GPT-4o.
* Add Useless (1%): Add a component deemed useless by GPT-4o.

* Rephrase (2.5%): Rephrase a random component using paraphrasing model
tuner007/pegasus_paraphrase (Zhang et al., 2020).

* Merge (2.5%): Merge two random components using GPT4-o.
* Swap (5%): Swap the order of two components.
* Delete (5%): Delete a random component.

* Crossover (81.5%): Perform crossover with another randomly selected survivor.
Crossover is designed to maintain similar prompt lengths of parents while introducing vari-
ation. Given two prompts p; and ps, we randomly sample k£ components from their union,
where £ is drawn from a Gaussian distribution with mean w and standard devi-

ation |len(p1)Zlen(p2) |)

The GPT-40 prompts used above are listed below:

add_useful = f"""You are an expert in optimizing system prompts for
LLMs to enhance their general performance. Given the following
list of system prompt components: {json.dumps (selected)}, generate
1-2 additional components that can further improve the LLM’s
capabilities. """

add_useless = f"""Given the following list of system prompt
components: {Jjson.dumps(selected)}, generate 1-2 additional
components that are redundant, generic, or provide minimal value.
Examples: ["Answer in English.", "Be polite."]."""

rephrase = f"""Given the following list of sentences: {json.dumps (
selected) }, combine these into one concise sentence."""

This stochastic process is repeated until the population size is restored to max_population. Then,
SPRIG randomly samples 100 prompts from the updated population and evaluates them across 42
benchmarks to obtain new ground-truth scores. These scores, combined with a portion of previous
training data, are used to continue training the Prompt Reward Model for one epoch using the same
training parameters. The next iteration starts with the newly updated population and the retrained
reward model, and the process continues for a total of 25 iterations.

We run all our experiments on 4 NVIDIA-L40S-48GB GPUs. All LLM inferences are powered by
vLLM 0.5.4 (Kwon et al., 2023), Hugging Face Transformers 4.43.3 (Wolf et al., 2020) and PyTorch
2.4.0 (Paszke et al., 2019) on a CUDA 12.4 environment. Temperatures are set to 0.0 to minimize
the effect of randomness.

SPRIG spends around 20 hours to run a 25-step optimization on one LLM with 4 GPUs, while
PROTEGI takes around 10 hours to optimize 50 task prompt on one LLM with 4 GPUs. Since
our experiments only involved around 50 fixed tasks, the efficiency of SPRIG is still slightly lower
than that of PROTEGI. However, real-world tasks are far more complex and varied, and repeatedly

18

Under review as a conference paper at ICLR 2026

Benchmark (Citation) Description Category Metric
ARC (Clark et al., 2018) Commonsense Reasoning Knowledge, Commonsense, Reasoning Acc
MMLU (Hendrycks et al., 2021) Multi-domain Knowledge QA Knowledge Acc
HellaSwag (Zellers et al., 2019) Commonsense Inference Commonsense, Reasoning Acc
Truthful QA (Lin et al., 2022) Knowledge QA Knowledge, Reasoning BLEU_Acc
HiToM (Wu et al., 2023) Higher-Order Theory of Mind Reasoning Reasoning Acc
IFEval (Zhou et al., 2023b) Instruction-Following Evaluation Faithfulness Acc
EDOS (Kirk et al., 2023) Online Sexism Detection Social Understanding Fl
SocKET _bragging_achievement (Choi et al., 2023) Brag Achievement Detection Social Understanding F1
SocKET hahackathon_is_humor (Choi et al., 2023) Humor Detection Social Understanding F1
SocKET_tweet_irony (Choi et al., 2023) Tweet Irony Detection Social Understanding Fl
SocKET_sexyn (Choi et al., 2023) Sexual Content Detection Social Understanding Fl
SocKET_tweet_offensive (Choi et al., 2023) Offensive Language Detection Social Understanding F1
SocKET_complaints (Choi et al., 2023) Complaint Identification Social Understanding F1
SocKET_empathy_bin (Choi et al., 2023) Empathy Detection Social Understanding Fl1
SocKET _stanfordpoliteness (Choi et al., 2023) Politeness Detection Social Understanding Fl
SocKET_rumor_rumor_bool (Choi et al., 2023) Rumor Detection Social Understanding F1
BBH_Boolean_Expressions (Suzgun et al., 2023) Boolean Expressions Solving Math Acc
BBH_Causal Judgement (Suzgun et al., 2023) Causal Judgment Reasoning Acc
BBH_Date_Understanding (Suzgun et al., 2023) Date Understanding Reasoning, Commonsense Acc
BBH_Disambiguation_QA (Suzgun et al., 2023) Clarify Ambiguous sentence Language Understanding, Reasoning Acc
BBH_Dyck_Languages (Suzgun et al., 2023) Dyck Language Sequences Reasoning Acc
BBH_Formal Fallacies (Suzgun et al., 2023) Identifying Formal Fallacies Reasoning Acc
BBH_Geometric_Shapes (Suzgun et al., 2023) Geometric Shape Understanding Math Acc
BBH_Hyperbaton (Suzgun et al., 2023) Hyperbaton Detection Language Understanding Acc
BBH_Logical_Deduction_Five_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Seven_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Logical_Deduction_Three_Objects (Suzgun et al., 2023) Logical Deduction Reasoning Acc
BBH_Movie_Recommendation (Suzgun et al., 2023) Movie Recommendation Knowledge Acc
BBH_Multistep_Arithmetic_Two (Suzgun et al., 2023) Multi-step Arithmetic Math Acc
BBH_Navigate (Suzgun et al., 2023) Navigation Reasoning Reasoning Acc
BBH_Object_Counting (Suzgun et al., 2023) Object Counting Commonsense, Math, Reasoning Acc
BBH_Penguins_In_A_Table (Suzgun et al., 2023) Tabular Data Understanding Faithfulness Acc
BBH_Reasoning_About_Colored_Objects (Suzgun et al., 2023) Reasoning About Colors Reasoning Acc
BBH_Ruin_Names (Suzgun et al., 2023) Humorous Edit Identification Social Understanding Acc
BBH_Snarks (Suzgun et al., 2023) Detecting Snarky Comments Social Understanding Acc
BBH_Sports_Understanding (Suzgun et al., 2023) Sports Knowledge QA Knowledge Acc
BBH_Temporal_Sequences (Suzgun et al., 2023) Temporal Reasoning Reasoning Acc
BBH_Tracking_Shuffled_Objects_Five_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Seven_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Tracking_Shuffled_Objects_Three_Objects (Suzgun et al., 2023) Object Tracking Reasoning Acc
BBH_Web_Of_Lies (Suzgun et al., 2023) Detecting Lies Reasoning Acc
BBH_Word_Sorting (Suzgun et al., 2023) Word Sorting Faithfulness Acc
MGSM (Shi et al., 2023a) Math Generalization Math, Reasoning Acc
Belebele (Bandarkar et al., 2024) Multilingual Reading Comp ion Understanding, Reasoning Acc
XCOPA (Ponti et al., 2020) Multilingual Causal Inference Commonsense, Reasoning Acc
M3Exam (Zhang et al., 2023) Multilingual Multi-domain Human Exam Math, Reasoning, Knowledge Acc
M_MMLU (Hendrycks et al., 2021) Multilingual Multi-domain Knowledge QA Knowledge Acc

Table 2: Full list of benchmarks.

Model Name

Best System Prompt

Meta-Llama-3.1-8B-Instruct

Decompose the question into smaller, logical steps to find the solution. Dissect
the problem into smaller sections to simplify understanding.

Mistral-Nemo-Instruct-2407

Create a flow of logic that leads to the final answer. Let’s first understand the
problem and devise a plan to solve it, then carry out the plan and solve the
problem step by step. Let’s work this out in a step by step way to be sure we
have the right answer.

Qwen2.5-7B-Instruct

Ask clarifying questions if the problem statement is ambiguous. Separate the
problem into manageable tasks to facilitate solving. Approach the question
stepwise, addressing each part systematically.

Table 3: Best System Prompts optimized by SPRIG.

optimizing prompts for each task remains labor-intensive and distracting. Therefore, although our
method does not demonstrate significant performance advantages in a limited number of tasks, it

offers a more once-and-for-all solution.

A.4 BENCHMARK DETAILS

We list all benchmarks, categories, metrics and descriptions in Table 2. For each benchmark, the
train/dev/test split is 40%:20%:40%. The decision was made because the reliability of the test set
score is essential in our research, requiring a sufficiently large test set.

A.5 BEST SYSTEM PROMPTS

We list the best system prompts from SPRIG for each LLM in our study in Table 3.

19

Under review as a conference paper at ICLR 2026

Meta-Llama-3.1-8B-Instruct

Task Optimized |
(ProTeGi)
System Optimized |
(OurModel)
System+Task Optimized |
(OurModel+ProTeGi)
0.00 0.05 0.10 0.15 0.20 0.25
Mistral-Nemo-Instruct-2407

|

Task Optimized |
(ProTeGi) |

System Optimized |
(OurModel)
System+Task Optimized |
(OurModel+ProTeGi)

|
|
0.00 0.05 0.10 0.15 0.20 0.25
Qwen2.5-7B-Instruct

Base CoT A

!

Task Optimized | |
(ProTeGi) |

System Optimized |
(OurModel)
System+Task Optimized | |
(OurModel+ProTeGi) |

0.00 0.05 0.10 0.15 0.20 0.25
Average Score Improvement

Figure 10: Average Score Improvement of all prompt optimization methods from unoptimized set-
ting (Full version).

A.6 FULL EXPERIMENT RESULTS

The full results of all three LLLMs and all optimization methods’ Average Score Improvement is
shown in Figure 10.

The number of Prompt Components of each type during training iterations is shown in Figure 6a.

The Question-wise Error Overlap Percentage between System Prompt optimization (SPRIG) and
Task Prompt optimization (PROTEGTI) is shown in Figure 6b.

The full Cross-model transfer ability comparison of optimized System Prompt and Task
Prompt is shown in Figure 12 and Figure 13.

The full results of all the LLMs and all optimization methods’ Average Score Improvement from
the unoptimized setting when transferring medium-size LLMs’ prompts to their larger version are
shown in 14.

Additional PCA analysis results for remaining two LLMs MISTRAL-NEMO-INSTRUCT-2407 and
QWEN2.5-7B-INSTRUCT are shown in Figure 15 and Figure 16.

A.7 USE OF LARGE LANGUAGE MODELS

We acknowledge that we only used LLMs to check grammatical errors in the paper and to improve
the clarity of expression.

20

Under review as a conference paper at ICLR 2026

250
M/M/ S \ -
200 N '
AN -
7
1501 —e— Behavioral Good property
g Chain-of-Thought —e— Scenario
§ ® —e— Emotion Safety
N 1001 Style —e— Jailbreak
—eo— Role
50
x
O-:::::“.’\ﬁ:::
AV .
0 5 10 15 20 25

Iterations

Figure 11: Z-scores by iteration for the number of components added of each type, showing which
types were added more/less frequently than by chance; statistically significant rates are marked with
X.

0.12

Meta-Llama-3.1-8B-Instruct - 0.06 0.04 0.03 0.04
0.10
o 0.08

-8 Mistral-Nemo-Instruct-2407 - 0.06 . . 0.06
= -0.06
-0.04

Qwen2.5-7B-Instruct - . . 0.12
-0.02

A 21 21 ot
2025 025%™ 159 s ©
“\)C, > ’lb‘(ﬂ ~ “\)C‘—/
A\ uev @ \0°
3 .'\"8 0'\(\5“ o ‘c):l
\’\aﬁ\a— \’“em Q\Ne“
N\e‘fa’ N\'\Sﬂa

System Prompt

Figure 12: Cross-model comparison (of Average Score Improvement) on optimized System
Prompts

21

Under review as a conference paper at ICLR 2026

Meta-Llama-3.1-8B-Instruct -eukl 0.04 0.05 - 0.14
-0.12
Ko)
-8 Mistral-Nemo-Instruct-2407 - 0.05 0.05 -0.10
= -0.08
Qwen2.5-7B-Instruct - 0.06 - 0.06
1
X
(uC
. B’“\S 05“
C) Ne o
, o\ \ N\\s’ﬂa\' (O&eg‘/
0(0‘39 - p(o’geg -

Task Prompt

Figure 13: Cross-model comparison (of Average Score Improvement) on optimized Task
Prompts

Meta-Llama-3.1-70B-Instruct

Base CoT -

Task Optimized |

1
(ProTeGi) _|

1

I

System Optimized |
(OurModel)

System+Task Optimized |
(OurModel+ProTeGi)

T T T T
—0.04 -0.02 0.00 0.02 0.04

Mistral-Large-Instruct-2407

Base CoT -

Task Optimized
(ProTeGi)

System Optimized |
(OurModel)

all

System+Task Optimized |
(OurModel+ProTeGi)

—0'.04 —0'.02 0.00 0.'02 0.64
Qwen2.5-72B-Instruct

EI_

Base CoT A

Task Optimized |
(ProTeGi)

System Optimized |

(OurModel)

System+Task Optimized | 1
(OurModel+ProTeGi)

L\J |

-0.04 -0.02 0.00 0.02 0.04
Average Score Improvement

Figure 14: Average Score Improvement from the unoptimized setting when transferring medium-
size LLMs’ prompts to their larger version (Full version).

22

Under review as a conference paper at ICLR 2026

150 - , o @ A No prompt
m Base CoT
Task optimized (ProTeGi)

2" 5 Im}
“» at g ¢ System optimized (OurModel)
1001 & aui f System+Task Optimized
G > ‘Wt Y (OurModel+ProTeGi)

50 A

—50 A

Principal Component 2
o

—100 A

150 ~100 -50 0 50 100 150
Principal Component 1

Figure 15: PCA analysis of intermediate hidden state in Mistral-Nemo-Instruct-2407 among differ-
ent prompting methods.

23

Under review as a conference paper at ICLR 2026

2000 A
A
1500 A
A
A
o
1000 - A
c
Q
c 2 No prompt A
8_ 5001 = Base CoT
g Task optimized (ProTeGi)
@) ¢ System optimized (OurModel)
© 01 System+Task Optimized
Q Y (OurModel+ProTeGi)
v
£ —5001 vv
o o
4
L 4 ’Q
—1000 A
° MRS
o o
~1500 A o o°
—-3000 —-2500 —-2000 -1500 —-1000 -500 0 500

Principal Component 1

Figure 16: PCA analysis of intermediate hidden state in Qwen2.5-7B-Instruct among different
prompting methods.

24

	Introduction
	Related Work
	Sprig: System Prompt Refinement for Increased Generalization
	Experiments: Optimization Benefits
	Experiment Setup
	Results

	Experiments: Generalization
	Analysis: Prompt Embedding Space
	Conclusion
	Ethics Statement
	Reproducibility statement
	Appendix
	Prompt Component Corpus Details
	Prompt Reward Model Details
	Sprig Pipeline Details
	Benchmark Details
	Best System Prompts
	Full Experiment Results
	Use of Large Language Models

