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Abstract—Machine Learning (ML) jobs significantly benefit
when trained on abundant GPU resources. It leads to resource
contention when several ML training jobs are scheduled con-
currently on a single GPU in the compute cluster. A job’s
performance is susceptible to its competitor’s task on a single
GPU. We, in this paper, propose PriRecT, a novel ML job
recommendation tool that preserves user privacy for scheduling
ML training jobs in the GPU compute cluster. We perform
workload characterization for several ML training scripts, and
the Futurewei mini-ML Workload Dataset is released publicly
[1]. We build a knowledge base of inter and intra-cluster
task interference for GPU sharing through a clustering-based
approach. For scheduling purposes, PriRecT blinds the user-
sensitive information and assigns the job to an existing cluster.
Based on clustering results, PriRecT recommends jobs that
should run concurrently on a single GPU to minimize task
interference and additionally assigns an uncertainty score to
account for job variations in the recommendation.

Index Terms—Futurewei mini-ML Workload Dataset, Cluster-
ing, GPU Sharing, Task Interference

I. INTRODUCTION

Deep Neural Network (DNN) training is resource-intensive

and time-consuming, even on GPUs. Therefore, enterprises

build large GPU compute clusters wherein these jobs are to

be deployed onto hardware accelerators [2]. Given the costs of

these computing clusters, enterprises encourage multi-tenancy.

Concurrent scheduling of ML training jobs on the same GPU

is mostly managed by traditional schedulers like Kubernetes

[3], or through exploiting DNN job characteristics [4]. DNN

cluster schedulers are mostly designed to improve one or

multiple objectives regarding GPU scheduling. Gandiva [5]

focuses on improving cluster utilization, Tiresias [6] addresses

job completion time requirements to improve system through-

put, while Themis [7] focuses on scheduling fairness. Some

also explore performance heterogeneity to accentuate fulfilling

compute cluster requirements [8] [9].

Sensitive user metadata like model architecture, the dataset

used, and hyperparameters like epochs and batch size are

sometimes considered influential in minimizing task interfer-

ence for GPU sharing. Therefore in ML workload characteri-

zation, and thereby for its scheduling decision, sensitive meta-

data plays its part in intelligent decision-making. DNN sched-

ulers for GPU compute cluster [4] [10] [5] [7] does not take

into account user privacy while making scheduling decisions.

We propose PriRecT, an intelligent privacy-preserving ML job

recommendation tool that refrains from collecting sensitive

user data for scheduling decisions while helping minimize task

interference for GPU sharing.

PriRecT is based on the design principle of clustering

ML workloads and building a knowledge base of inter and

intra-cluster task interference. For workload characterization,

we built the Futurewei mini-ML Workload Dataset which

characterizes five ML training jobs for varied hyperparameters

and model architectures across 66 different attributes. The

dataset is released publicly for open access [1]. We propose

ML techniques to expand the dataset for selected features

through synthetic data generation. We build a knowledge

base of intra- and inter-cluster task interference based on

clustering results. Task interference is measured as individual
slowdown and packing saving metrics. Individual slowdown

refers to the percent of added time required to complete

the job compared to when it was deployed on the same

GPU individually. Packing saving refers to the percent time

saved by executing two jobs concurrently compared to them

being deployed sequentially. For a given user-defined ML

job, the tool runs the job for one epoch in the compute

cluster and assigns it to a cluster based on the privacy-

preserving metadata. We also assign uncertainty scores to the

recommendations on which two jobs be deployed concurrently

based on the euclidean squared distance of the job from its

cluster center. Our experiments show promising results as we

can identify clusters that ensure high packing saving with the

least individual slowdown. The key contributions of our work

are as follows:

• We characterize ML workload in Futurewei mini-ML
Workload Dataset for five ML training jobs over 66

metrics and released publicly. This dataset can have

widespread utility ranging from designing intelligent

GPU schedulers to monitoring network parameters and

memory usage for ML jobs and several others.

• We propose a clustering-based approach to determine task

interference for concurrent scheduling of ML training

jobs in a single GPU in the compute cluster. The designed

tool preserves user privacy by refraining from accessing

sensitive metadata and recommends which jobs must be

deployed concurrently in the GPU compute cluster along

with an uncertainty score.
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Section II delves deeper into design methodology, while

the evaluation results are presented in Section III. Section IV

concludes the paper.

II. DESIGN METHODOLOGY

Volumes of user-defined ML jobs are requested by users

for training purposes in GPU compute cluster. These ML

training jobs require high GPU utilization and are GPU-affine.

As training ML jobs require several hours, users are always

concerned about the Job Completion Time of the task. Multi-

tenancy of user-defined ML training jobs is encouraged to

acknowledge the costs of hardware accelerators. Deploying

two or more jobs on the same GPU concurrently instead of

sequentially saves time, which we refer to as packing saving.

However, sharing a GPU-affine job with another, termed the

competitor job, has its downfalls. When two GPU-affine tasks

share a GPU concurrently, they cause interference, resulting

in an individual slowdown of each job. Depending on the

competing job, the slowdown and packing saving percentages

vary. Minimization of slowdown and maximization of packing

savings remains our sole objective.

We embark on investigating task interference for GPU

sharing through characterization of ML workloads for an

array of various categories of tasks, which is one of our key

contributions. Next, we delve into exploratory data analytics

(EDA) to assess the importance of the attributes over our two

target variables, namely, Maximum GPU utilization percent,
and Maximum GPU memory allocation percent. To preserve

the user-privacy, we do away with sensitive metadata like

dataset, the number of epochs, and batch size. Before moving

on to ML techniques to analyze task interference for GPU

sharing, we perform a design exploration of synthetic data

generation techniques to upscale the dataset concerning the

predictor and outcome variables. We also analyze the quality

of the generated synthetic samples and quantify uncertainties

in the synthetic data. Following on, clustering helps group the

tasks. We hypothesize that owing to inter-cluster dissimilarity

and intra-cluster similarity, competing tasks from any two

clusters will show similar behavior.

Interference analysis of clustered tasks leads us to the design

of our privacy-preserving AI job recommendation tool. For any

submitted job, the tool can execute the job for one epoch to

assess the predictor attributes and assign it to a pre-existing

cluster. Given the knowledge base for inter and intra-cluster

task interference, the tool can recommend a competitor job that

would help minimize individual job slowdown and maximize

packing saving. While addressing this min-max optimization

problem, the tool can also come up with an uncertainty score,

accounting for the distance of the task from its assigned

cluster’s center. We discuss the same in detail as follows:

• AI Workload Characterization: Every ML model

training job has specific characteristics over GPU and

CPU utilization requirements, network parameters, mem-

ory/disk usage parameters, and impacts several system

parameters according to the user-defined task. To cap-

ture these variations for standard ML architectures over

various datasets and across varied hyper-parameters, we

run several ML scripts and document our findings in

Futurewei mini-ML Workload Dataset [1]. In brief, we

characterize ML training jobs from five categories: image

classification, image segmentation, generative adversarial

networks, reinforcement learning, and sentiment analysis

from the natural language processing domain. We charac-

terize over 66 different attributes for 49 training instances.

• Exploratory Data Analysis: To determine the most

critical features on task interference for GPU sharing,

we perform feature selection on the Futurewei mini-ML
Workload Dataset. We delve into the statistical correlation

of predictors to target attributes using the coefficient of

determination. We also explore random forests, ridge

regression, and lasso regression as feature selection tools.

• Synthetic Dataset Generation: Resorting to ML-based

task interference prediction for GPU sharing would re-

quire the dataset to be sufficiently large. To bolster the

size of the dataset, we generate synthetic data from

our collected ground truth. We generated synthetic data

only for selected predictor(s) and outcome variables. For

quality assessment of the generated synthetic data, we

re-generate the collected data while having the generated

synthetic data as pseudo-ground truth. We explore dif-

ferent interpolation methods, namely linear, barycentric,

krogh, pchip, cubicspline, and spline of order two, for the

same according to varying batch sizes.

Fig. 1. Synthetic Data Generation Methodology

• Predicting Task Interference and Recommending AI
Jobs for GPU Sharing: We perform clustering based on

the privacy-preserving metadata to group similar tasks.

Then, we build a knowledge base of individual slow-

down and packing saving for inter and intra-cluster tasks

deployed concurrently. For a given user-defined task,

the tool executes it for one epoch, collects the required

metadata for clustering, and recommends a competitor

job based on the knowledge base, to address the min-max

optimization. The tool keeps a tab on the distance of the

task from the cluster center as an indicative measure of

the uncertainty introduced in the recommendation system.

III. EVALUATIONS

A. Data Collection

This section documents the Futurewei mini-ML Workload
Dataset developed to bolster ML workload characterization

and garner insights into task interference for GPU sharing

purposes. The dataset consists of 49 instances, capturing 66

parameters, as detailed in Table I. The ML scripts include

98

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:29:20 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
ATTRIBUTE DESCRIPTION OF Futurewei mini-ML Workload Dataset

Attribute ID Attribute Attribute Description
1 ID Task ID
2 Model Architecture of ML model used
3 Dataset Dataset used for the task
4 Epoch Number of iterations for training the ML model
5 BS Batch Size
6 Run Env Runtime Environment
7 CPU Util % ran CPU Utilization percent range
8 Max CPU Util % Maximum CPU Utilization percent
9 Min CPU Util % Minimum CPU Utilization percent
10 GPU Util % ran GPU Utilization percent range
11 MGUP Maximum GPU Utilization percent
12 Min GPU Util % Minimum GPU Utilization percent
13 Sys Mem Util % ran System Memory Utilization percent range
14 Max Sys Mem Util % Maximum System Memory Utilization percent
15 Min Sys Mem Util % Minimum System Memory Utilization percent
16 MaPMiU(non swap) Maximum Process Memory in Use (non swap)
17 PMiU(non swap) % Process Memory in Use (non swap) percent
18 CPU Thds CPU Threads
19 GPU Temp ran GPU Temperature range
20 Max GPU Temp Maximum GPU Temperature
21 Min GPU Temp Minimum GPU Temperature
22 GTSAMPR GPU Time spent accessing memory percent range
23 MaGTSAMP Maximum GPU Time spent accessing memory percent
24 MiGTSAMP Minimum GPU Time spent accessing memory percent
25 MGMAP Maximum GPU Memory Allocated percent
26 GPUPR GPU Power Usage percent range
27 MaGPUPR Maximum GPU Power Usage percent
28 MiGPUPR Minimum GPU Power Usage percent
29 SCT user In user mode, execution time of normal processes
30 SCT nice In user mode, execution time of priority processes
31 SCT sys In kernel mode, execution time of processes
32 SCT idle System idle time
33 SCT iowait Input-output completion time (not accounted in idle time counter)
34 SCT irq Time to service hardware interrupts
35 SCT softirq Time to service software interrupts
36 SCT steal Time consumed by operating systems (OS) running in virtualized environment
37 SCT guest Time consumed to run a virtual CPU for guest OS under the control of the Linux kernel
38 SCT guest nice Time consumed running a virtual CPU for guest OS while executing priority processes executing in user mode
39 Cor in Sys Number of Cores in the System
40 CS ctx switches Number of context switches since boot
41 CS interrupts Number of interrupts since boot
42 CS soft interrupts Number of software interrupts since boot
43 CS syscalls Number of system calls since boot. Always set to 0 in Ubuntu.
44 SMU total Total available physical memory (excluding swap)
45 SMU available Memory that can be assigned to processes without any system swap
46 SMU percent Percent of memory used
47 SMU used Memory used
48 SMU free Available memory
49 SMU active Memory currently in use (or very recently used)
50 SMU inactive Memory marked as unused
51 SMU buffers Cache data like file system, storing metadata
52 SMU cached Cached data
53 SMU shared Memory that may be accessed by multiple processes
54 SMU slab In-kernel data structures cache
55 DU total Total disk space
56 DU used Used disk space
57 DU free Free disk space
58 DU percent Disk usage percent
59 NIOB sent Number of bytes sent
60 NIOB received Number of bytes received
61 NIOP sent Number of packets sent
62 NIOP received Number of packets received
63 NIO errin Total number of errors while receiving I/O signals
64 NIO errout Total number of errors while sending I/O signals
65 NIO dropin Total number of dropped incoming packets
66 NIO dropout Number of dropped outgoing packets
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TABLE II
ILLUSTRATION EVALUATION OF SOME SYNTHETIC DATA GENERATION TECHNIQUES

ML Model/ Dataset Number of Synthetic Interpolation MGUP MGMAP MaGTSAMP
Task Data Points Generated Technique RMSE MAE RMSE MAE RMSE MAE

MobileNet 2.25 1.99 5.20 3.73 2.18 1.95
NasnetMobile 4.64 4.16 8.48 6.28 3.79 3.25
EfficientNetV2 GTSRB 7.18 6.25 10.69 8.39 8.24 7.40

ResNet50 16 Linear 3.65 3.25 4.42 2.65 2.97 2.47
InceptionV3 1.98 1.82 4.43 2.65 3.17 2.44

Image Segmentation Oxford-IIIT 3.98 3.65 16.27 11.71 3.038 2.66
Reinforcement Learning Cart-Pole 0.59 0.48 0.66 0.001 0.0 0.0

DCGAN MNIST 17 4.77 4.4 1.47 1.24 1.59 1.40
MobileNet 1.68 1.06 1.89 1.2 1.39 0.88

NasnetMobile 2.73 1.73 7.95 5.03 2.99 1.89
EfficientNetV2 GTSRB 6.53 4.13 7.95 5.03 5.23 3.30

ResNet50 16 Barycentric 2.35 1.49 1.5E-11 9.5E12 1.30 0.82
InceptionV3 0.63 0.4 7.4E-11 3.8E-11 1.88 1.84

Image Segmentation Oxford-IIIT 3.20 10.28 15.91 10.06 2.73 1.73
Reinforcement Learning Cart-Pole 0.29 0.18 7.7E-13 3.8E-13 0.0 0.0

DCGAN MNIST 17 5.9E-10 4.1E-10 9.5E-11 6.7E-11 2.5E-10 1.8E-10
MobileNet 1.68 1.06 1.89 1.2 1.39 0.88

NasnetMobile 2.73 1.73 7.95 5.03 2.99 1.89
EfficientNetV2 GTSRB 6.53 4.13 7.95 5.03 5.23 3.30

ResNet50 16 Krogh 2.35 1.49 1.7E-11 8.07E-12 1.30 0.82
InceptionV3 0.63 0.4 3.2E-11 1.7E-11 2.90 1.84

Image Segmentation Oxford-IIIT 3.20 2.02 15.91 10.06 2.73 1.73
Reinforcement Learning Cart-Pole 0.29 0.18 1.59E-12 1.01E-12 0.0 0.0

DCGAN MNIST 17 1.9E-10 1.3E-10 9.9E-11 7.0E-11 7.7E-11 5.4E-11
MobileNet 1.64 1.05 2.04 1.42 1.40 0.92

NasnetMobile 2.79 1.80 7.97 5.08 3.03 1.92
EfficientNetV2 GTSRB 6.39 4.31 8.11 5.25 5.04 3.69

ResNet50 16 Pchip 2.41 1.54 0.48 0.30 1.34 0.88
InceptionV3 0.69 0.48 0.48 0.30 2.94 1.88

Image Segmentation Oxford-IIIT 3.21 2.10 15.76 9.98 2.73 1.77
Reinforcement Learning Cart-Pole 0.31 0.20 0.0003 0.0002 0.0 0.0

DCGAN MNIST 17 0.46 0.44 0.13 0.10 0.10 0.09
MobileNet 1.64 1.05 1.90 1.20 1.39 0.87

NasnetMobile 2.74 1.73 7.95 5.03 3.00 1.89
EfficientNetV2 GTSRB 6.52 4.12 7.96 5.03 5.19 3.28

ResNet50 16 Cubicspline 2.36 1.49 0.01 0.007 1.31 0.82
InceptionV3 0.63 0.40 0.01 0.007 2.91 1.84

Image Segmentation Oxford-IIIT 3.20 2.02 15.90 10.05 2.73 1.72
Reinforcement Learning Cart-Pole 0.29 0.18 1.1E-5 5.1E-6 0.0 0.0

DCGAN MNIST 17 4.4E-14 3.3E-14 8.05E-15 6.4E-15 3.7E-15 2.7E-15
MobileNet 1.55 1.03 4.62 3.66 2.53 2.41

NasnetMobile 4.61 4.12 8.66 5.89 4.09 3.17
EfficientNetV2 GTSRB 5.38 4.57 10.16 7.43 3.94 3.26

ResNet50 16 Spline, order=2 4.08 3.50 2.72 2.23 2.98 3.12
InceptionV3 2.82 2.65 2.72 2.23 18.633 2.64

Image Segmentation Oxford-IIIT 4.35 4.09 15.44 11.48 3.30 3.08
Reinforcement Learning Cart-Pole 0.66 0.49 0.004 0.004 0.0 0.0

DCGAN MNIST 17 2.93 2.90 2.40 2.38 2.52 2.50

image classification, image segmentation, generative adversar-

ial networks, natural language processing, and Reinforcement

Learning (RL). Referring to Table I, Attribute ID 1 to 6

refers to the metadata of the ML scripts. Attribute ID 7 to

28 is collected while monitoring the script’s system memory

utilization, GPU memory utilization, CPU threads, and several

others through an MLOps platform, Wandb [11]. Wandb

provided a resolution of 30 secs to monitor these attributes.

Attribute ID 29 to 66 is collected using a Python library, psutil,

which tracks various resource utilization parameters in the

system, ranging from memory usage, interrupts, system calls,

context switches, network traffic statistics, and several others.

In regards to image classification, standard ML architec-

tures were used, like ResNet-50 [12], EfficientNetv2 [13],

NasnetMobile [14], MobileNet [15], and Inceptionv3 [16] for

classifying traffic signs in German Traffic Sign Recognition

Benchmark (GTSRB) dataset [17]. GTSRB dataset consists

of 39209 RGB training images spread across 43 classes,

with 12630 testing images. For image segmentation, data

points were collected across various hyper-parameters while

segmenting the Oxford-IIIT pet dataset [18] (version-3.2.0). It

consists of 37 different categories of pets with approximately

200 RGB images per class. The standard architecture of Deep

Convolutional Generative Adversarial Network (DCGAN) was
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TABLE III
INTER CLUSTER TASK INTERFERENCE PREDICTION

Task Cluster Distance from Time for Completion Individual Packing
ID Centroid (real) (Secs) Slow Down Saving

Inceptionv3 (BS=20, Epoch=5)
+ 0,1 115.14, 150.17 338.8, 294.5 7.14%, 15.99% 40.5%

Small BERT L2-H128-A2 (BS=256, Epoch=1)
Inceptionv3 (BS=20, Epoch=5)

+ 0,1 115.14, 211.28 336.8, 306.1 6.51%, 25.7% 39.8%
RL (BS=1024, Epoch=5000)

NasnetMobile (BS=562, Epoch=5)
+ 0,1 123.82, 150.17 277.6, 274.7 6.2%, 8.19% 46.11%

Small BERT L2-H128-A2 (BS=256, Epoch=1)
NasnetMobile (BS=562, Epoch=5)

+ 0,1 123.82, 211.28 272.5, 271.3 4.2%, 11.4% 46.01%
RL (BS=1024, Epoch=5000)
ResNet-50 (BS=20, Epoch=5)

+ 0,1 109.95, 129.13 341.9, 75.0 2.7%, 8.2% 14.9%
DCGAN (BS=256, Epoch=5)

MobileNet (BS=205, Epoch=5)
+ 0,1 114.8, 131.43 255.7, 78.3 1.7%, 6.2% 21.34%

DCGAN (BS=230, Epoch=5)
Inceptionv3 (BS=20, Epoch=5)

+ 0,2 115.14, 139.96 470.1,342.6 48.67%, 28.7% 19.2%
ResNet50 (BS=205, Epoch=5)
Inceptionv3 (BS=20, Epoch=5)

+ 0,2 115.14, 204.2 364.6,341.8 9.6%, 16.1% 43.22%
Small BERT L4-H512-A8 (BS=256, Epoch=1)

NasnetMobile (BS=562, Epoch=5)
+ 0,2 123.82, 139.96 290.5,343.0 11.11%, 28.9% 34.9%

ResNet50 (BS=205, Epoch=5)
NasnetMobile (BS=562, Epoch=5)

+ 0,2 123.82,204.2 265.6,317.5 1.64%, 7.8% 42.8%
Small BERT L4-H512-A8 (BS=256, Epoch=1)

MobileNet (BS=205, Epoch=5)
+ 0,2 114.8, 122.4 253.7, 35.5 0.9%, 3.4% 11.19%

Image Segmentation (BS=256, Epoch=5)
RL (BS=1024, Epoch=5000)

+ 1,2 211.28, 204.2 260.19, 307.33 6.8%, 4.4% 42.8%
Small BERT L4-H512-A8 (BS=256, Epoch=1)
Small BERT L2-H128-A2 (BS=256, Epoch=1)

+ 1,2 150.17, 139.96 305.6, 276.5 20.3%, 3.9% 41.2%
ResNet50 (BS=205, Epoch=5)

Small BERT L2-H128-A2 (BS=256, Epoch=1)
+ 1,2 150.17, 204.2 267.2, 303 5.2%, 2.9% 44.7%

Small BERT L4-H512-A8 (BS=256, Epoch=1)
RL (BS=1024, Epoch=5000)

+ 1,2 211.28, 139.96 303.1, 273.8 24.4%, 2.9% 40.5%
ResNet50 (BS=205, Epoch=5)
DCGAN (BS=230, Epoch=5)

+ 1,2 131.43, 122.4 81.1, 46 10%, 34.11% 24.9%
Image Segmentation (BS=256, Epoch=5)

opted for re-generating grayscale 28x28 MNIST images. Mov-

ing on to RL, the Cart-Pole problem in the OpenAI Gym

suite environment was implemented using Deep Q-Networks

(DQN). Cart-pole problem, also known as the inverted pen-

dulum, refers to balancing an unstable pole placed atop the

center of mass of a cart by moving the cart in either direction

of a 1D plane. The DQN-based RL algorithm considers the

cart’s position and velocity, the pole’s inclination angle to

the cart, and its angular momentum to maintain the pole’s

stability. Moving onto workload characterization in regards

to natural language processing, it revolved around fine-tuning

seven different pre-trained BERT models [19] for sentiment

analysis in the IMDB movie review dataset.

The scripts were executed in the Google Colaboratory Pro

platform, on a Tesla P100 GPU, with all implementations in

the TensorFlow environment. The dataset is publicly released

through GitHub [1], along with the scripts used for Futurewei
mini-ML Workload Dataset generation.

B. Feature Selection

With 66 features at our disposal, we manually trim a few

non-relevant features like attribute ID 1, which acts as the

task identifier, referring to Table I, at the very outset. We also

let go of some other attributes like Attribute ID 44, 45, 55,

56, and 57. These refer to the total availability of memory and

101

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:29:20 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
INTRA CLUSTER TASK INTERFERENCE PREDICTION

Task Cluster Distance from Time for Completion Individual Packing
ID Centroid (real) (Secs) Slow Down Saving

Inceptionv3 (BS=20, Epoch=5)
+ 0,0 115.14, 123.82 394.5, 272.17 24.7%, 4.1% 31.6%

NasnetMobile (BS=562, Epoch=5)
Inceptionv3 (BS=20, Epoch=5)

+ 0,0 115.14, 114.8 364.24, 269.7 15.2%, 7.2% 35.8%
MobileNet(BS=205, Epoch=5)

NasnetMobile (BS=562, Epoch=5)
+ 0,0 123.82, 114.8 269.53, 255.08 3.1%, 1.4% 47.4%

MobileNet(BS=205, Epoch=5)
NasnetMobile (BS=562, Epoch=5)

+ 0,0 123.82, 109.95 275.15, 420.13 5.3%, 26.3% 29.2%
ResNet-50 (BS=20, Epoch=5)

MobileNet (BS=205, Epoch=5)
+ 0,0 114.8, 109.95 270.44, 392.40 7.5%, 17.9% 32.8%

ResNet-50 (BS=20, Epoch=5)
Small BERT L2-H128-A2 (BS=256, Epoch=1)

+ 1,1 150.17, 131.43 276.49, 77.51 8.8%, 5.1% 15.6%
DCGAN (BS=230, Epoch=5)

Small BERT L2-H128-A2 (BS=256, Epoch=1)
+ 1,1 150.17, 129.13 278.69, 69.4 9.7%, 0.1% 13.7%

DCGAN (BS=256, Epoch=5)
RL (BS=1024, Epoch=5000)

+ 1,1 211.28, 131.43 249.36, 75.19 2.4%, 2.0% 21.3%
DCGAN (BS=230, Epoch=5)
RL (BS=1024, Epoch=5000)

+ 1,1 211.28, 129.13 247.50, 69.87 1.6%, 0.8% 20.8%
DCGAN (BS=256, Epoch=5)
DCGAN (BS=230, Epoch=5)

+ 1,1 131.43, 129.13 88.45, 83.63 20.0%, 20.6% 38.1%
DCGAN (BS=256, Epoch=5)

ResNet-50 (BS=205, Epoch=5)
+ 2,2 136.96, 204.2 300.97, 357.77 13.1%, 21.5% 36.1%

Small BERT L4-H512-A8(BS=256, Epoch=1)
ResNet-50 (BS=205, Epoch=5)

+ 2,2 136.96, 122.4 268.90, 35.33 1.0%, 3.0% 10.4%
Image Segmentation (BS=256, Epoch=5)

ResNet-50 (BS=205, Epoch=5)
+ 2,2 136.96, 117.25 359.10, 298.06 34.9%, 12.6% 32.3%

Inceptionv3(BS=205, Epoch=5)
Small BERT L4-H512-A8(BS=256, Epoch=1)

+ 2,2 204.2, 122.4 303.27, 35.08 3%, 2.2% 7.7%
Image Segmentation (BS=256, Epoch=5)

Small BERT L4-H512-A8(BS=256, Epoch=1)
+ 2,2 204.2, 117.25 332.95, 283.29 13.1%, 7.1% 40.4%

Inceptionv3(BS=205, Epoch=5)
Image Segmentation (BS=256, Epoch=5)

+ 2,2 122.4, 117.25 35.66, 272.34 3.9%, 2.9% 8.8%
Inceptionv3(BS=205, Epoch=5)

disk space. We do so as redundantly available memory or disk

space would not affect task interference.

We explore four feature extraction techniques for our two

target variables, attribute ID 11 Maximum GPU utilization
percent, and attribute ID 25 Maximum GPU Memory Allocated
percent. We measure the variation or relationship of all the

attributes for our two regressor variables through Pearson,

Spearman, and Kendall’s coefficient of determination. We

observe that maximum GPU time spent accessing memory

percent holds the highest correlation for Maximum GPU

Utilization percent. However, our other target variable, Max-

imum GPU memory allocated percent, demonstrates a weak

correlation to mostly all the predictors. The correlation of all

attributes for the predictor variables is visualized in our public

GitHub repository [1].

Next, we delve into feature selection by random forests,

ridge regression, and lasso regression. For random forests, we

perform a feature space exploration by varying decision tree

depth over 3, 4, 6, 8, 10, 15, and 20; with exploration in the

number of considered features for constructing the decision

trees as 3, 4, 6, 8, 10, 15, and 20; alongside model estimators

of 50, 100, and 150. In regards to ridge and lasso regression,

we perform a exploration over 0.001, 0.01, 0.1, 1, 10, 100, and

1000 for the best fit L2 and L1 multipliers. Fig. 2 demonstrates

the relative ranking of all the attributes for our target variable,

Maximum GPU Utilization percent.
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Fig. 2. Relative ranking of all the attributes for our target variable, Maximum
GPU Utilization percent. Orange bars indicate the mean rank, with blue bars
indicating the standard deviation of the attributes over all the four feature
importance techniques used. The red line refers to the mean average rank,
which grows by unity with added features.

Fig. 3. Uncertainty Quantification for Volume of Data Generated

C. Synthetic Data Generation

Through Table II, we visualize the synthetic data genera-

tion results for Maximum GPU utilization percent using all

the interpolation methods to varying batch sizes, for image

classification on the GTSRB dataset using MobileNet archi-

tecture. We demonstrate the quality assessment results, as

demonstrated in Fig. 1 of the generated synthetic samples

using Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) metrics. We infer that synthetic data yield quality

differs depending on the ML architecture.

Next, we quantify the uncertainty in synthetic samples for

quality assessment over the volume of generated synthetic

data. Roughly speaking, with a small quantity of synthetic

data, regenerating the ground truth accurately is improbable.

On the other hand, with more synthetic data, the regener-

ated ground truth would be wayward. Fig. 3 shows a bell-

shaped curve for krogh interpolation technique for regener-

ating ground truth from the interpolated synthetic data for

image classification on the GTSRB dataset using MobileNet

architecture.

D. Clustering

We perform K-means clustering for our two target vari-

ables, maximum GPU Utilization percent and maximum GPU

memory allocation percent, alongside maximum time spent

accessing memory percent. The clustering is performed on

the three attributes over the collected and synthetic instances.

We refrain from harnessing attributes like model architecture,

dataset, and sensitive hyper-parameters like epochs and batch

size to preserve user privacy. With the aid of the elbow method

and distortion score calculation, we find the number of clusters

to be three. Fig. 4 shows the three clusters and their cluster

centers.

Fig. 4. Cluster Visualization

Fig. 5. Cluster-wise Individual Slowdown Visualization. (Intf. 0 (0,1) refers
to individual slowdown of for tasks from Cluster 0 when concurrently run
with Cluster 1.)

E. Evaluating Task Cluster Interference

We assess the task interference for GPU sharing in our

Futurewei GPU compute cluster, consisting of NVIDIA v100

GPUs. We determine the execution time of some randomly

selected jobs when implemented individually on the GPU

cluster. We also measure the euclidean square distance of the

job from the cluster center. The relative measure of the jobs

from the cluster center induces a proportional measure of the

uncertainty. The table is presented in our GitHub repository [1]

and omitted from this paper owing to presentation constraints.

Now, we execute the selected jobs parallel to other jobs

from the same or different clusters. We evaluate the individual

slowdown and packing saving of the same and build a knowl-

edge base for task interference of inter and intra-cluster jobs,

as demonstrated in Table III and Table IV, respectively. Fig.

5 demonstrates the individual slowdown for inter and intra-

cluster jobs. We can infer from the box-and-whisker plot that

jobs of cluster 1 when run in parallel with jobs from cluster

2, show the least individual slowdown. Fig. 6 demonstrates

the packing saving for inter and intra-cluster jobs. We can
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Fig. 6. Cluster-wise Packing Saving Visualization. ((0,1) refers to packing
saving for tasks from Cluster 0 when concurrently run with Cluster 1.)

infer that jobs of cluster 1 when run in parallel with jobs from

cluster 2, gives the maximum packing saving.

For any given ML training job, we can run the job for one

epoch and note the three attributes: maximum GPU utilization,

maximum GPU time spent accessing memory percent, and

maximum GPU memory allocation percent, and be able to

assign it to one of the three clusters. The tool can recommend

which two jobs should be executed concurrently from our

knowledge base of individual slowdown and packing saving

for the jobs from different cluster centers when run concur-

rently in a single GPU. Also, given how far away the job is

from the cluster center, the tool can proportionally assign an

uncertainty score to the recommendations.

IV. CONCLUSION

To summarize, we have characterized a wide variety of

ML training workloads over 66 attributes and released it

publicly [1]. Through our knowledge base of inter and intra-

cluster task interference, for any user-defined ML training job,

our designed tool can recommend a competitor job that can

minimize individual job slowdown while maximizing packing

saving, with an assigned uncertainty score. PriRecT refrains

from collecting user-sensitive metadata like the number of

epochs, batch size, model architecture, and the dataset used in

its scheduling decision. Our proposed privacy-preserving job

recommendation tool for GPU sharing, PriRecT, is thereby

successful to meet our proposed objectives. The validation

results complements the same. As a part of our future work,

we aim to delve deeper into building our knowledge base for a

wide variety of workload characterization and having an online

reinforcement learning-based design as a upgradation to our

designed PriRecT tool.
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