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Abstract

A binary supervised model outperforms chance if and only if the determinant of the confusion
matrix is positive. This is equivalent to saying that the associated point in the ROC space is
above the random guessing line. This also means that Youden’s J, Cohen’s κ and Matthews’
correlation coefficient are positive. We extend these results to any number of classes: for
a target variable with m ≥ 2 classes, we show that a model does better than chance if
and only if the entries of the confusion matrix verify m(m − 1) homogeneous polynomial
inequalities of degree 2, which can be expressed using generalized likelihood ratios. We also
obtain a more theoretical formulation: a model does better than chance if and only if it is a
maximum likelihood estimator of the target variable. When this is the case, we find that the
multiclass versions of the previous metrics remain positive. If m > 2, we notice that no-skill
classifiers are only a small part of the topological boundary between better-than-random
models and bad models. For m = 3, we show that bad models occupy exactly 90% of the
ROC space, far more than the 50% of the two-class problems. Finally, we propose to define
weak multiclass classifiers by conditions on these generalized likelihood ratios.

1 Introduction

In machine learning, supervised multiclass modeling seeks to predict as correctly as possible the values of a
categorical target variable that takes at least m ≥ 3 distinct values. The necessary and sufficient condition
for correct binary modeling is well known: we must have sensitivity ≥ 1 − specificity, equality corresponding
to random models. The ROC curve of a probabilistic model must therefore lie above the line segment of
no-skill classifiers, and the area under the ROC curve is between that of the perfect model and the area
under this line.

The conditions for correct modeling have not received much attention when m ≥ 3. Practitioners have
successfully focused on designing good multiclass algorithms, with model performance measured, for example,
by macro-averaging classical binary metrics. But this doesn’t provide a clear understanding of the multiclass
case, especially when it comes to generalizing theoretical concepts such as AUC or other metrics. From
a more algorithmic perspective, ensemble learning combines weak classifiers, that is models that perform
slightly better than random guessing. Weak multiclass classifiers have been built by avoiding, for example,
conditions on accuracy that are too strong or too weak (Schapire & Freund 2012, Chapter 10). Knowing
the exact conditions to be satisfied can thus help in the design of these algorithms. Our main objective is
to obtain a mathematical characterization of multiclass models that do better than chance, which we call
decent models. However, it is beyond the scope of this article to study cost-sensitive models, multiclass
probabilistic classification or which multiclass metric is best suited to a given use case, be it Matthews’
correlation coefficient, Cohen’s κ or the volume under the ROC surface, for example.
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Researchers have concentrated on the actual construction of the ROC hypersurface and the calculation of
the associated volume (see Kleiman & Page 2019), which do not require defining what a better-than-random
model is. The only notable exception is in Ferri et al. (2003), which characterizes these models when m = 3.
Edwards et al. (2005) state a second theoretical result: for any m > 2, and with a certain choice of axes in the
ROC space, the hypervolumes under the ROC hypersurface of a perfect model ("perfect ideal observer") and
a no-skill classifier ("guessing observer") are equal to 0. The authors therefore observe that we no longer have
a continuous variation of the AUC when the difficulty of the task to be modelled varies from the simplest
to the most complex, unlike binary classification. And Powers (2011) proposes multiclass generalizations of
several binary metrics, for example in the form of fractions with a positive denominator and as numerator
the determinant of the confusion matrix. In what follows, we show that some of these results are incorrect,
that others are confusing, and that the definitions of some multiclass metrics are unconvincing.

To get to the multiclass setting, we need concepts that are simpler to state and understand when m = 2.
The first section recalls the definitions of classical metrics as well as those of lifts, which are metrics mainly
used in marketing. We then describe how to characterize decent binary models using these different metrics.

The second section formalizes a well-known property of certain binary metrics, the prevalence-invariance.
These metrics do not depend on prevalence and therefore measure model characteristics. We establish links
between lifts, which depend on prevalence, and positive and negative likelihood ratios, which are prevalence-
invariant. These links are decisive in achieving our main result.

The third section is devoted to the new results we derive for the multiclass case. We first characterize random
models and generalize some of the metrics seen in the two-class tasks. We relate these metrics to binary One
versus Rest models, and we state the theorem that links lifts and generalized likelihood ratios. This result
makes it possible to define decent (or random) multiclass models as follows: all likelihood ratios must be
greater than or equal to one. It is easy to reformulate these conditions for any m ≥ 2: a model does better
than chance if and only if it is a maximum likelihood estimator of the target variable. The properties of these
models are illustrated on different examples. In particular, we show that a bad model can look good on one
data set and bad on the over- or undersampled data set. This phenomenon does not appear to have been
noted before and only occurs for m > 2. We then check that multiclass versions of Cohen’s κ, Matthews’
correlation coefficient and a generalization of Youden’s J take positive values on decent models. And we
prove that the multiclass balanced accuracy of a decent model is always greater than 1

m , this bound being
optimal. We also establish that our multiclass version of Youden’s J satisfies a property not verified by an
analogous formula proposed by Powers (2011). In the next section, we characterize the topological boundary
between decent and bad models. In particular, we note that random models are only a small subset of
this boundary, which leads us to qualify Edwards et al. (2005)’s conclusions. We then examine an earlier
criterion in Ferri et al. (2003) and show that it is too restrictive in its characterization of bad three-class
models. This leads us to recalculate the volume occupied by bad three-class models in the six-dimensional
space of all three-class models. This volume represents 90% of the total volume, much more than the 50%
of the ROC space when m = 2. We conclude with a proposed definition of weak multiclass models based
on generalized likelihood ratios. In particular, we derive minimum and maximum values for the multiclass
balanced accuracy of a weak classifier.

2 Reminders on Binary Models and Metrics

We review how to characterize binary models that do better than chance, using several metrics that we’ll
find again in the multiclass case.
Definition 1. • A binary target variable is a function y : O → {0, 1} defined on a set of observations,

and the class of interest is y = 1. A binary predictive model of y is a function ŷ : O → {0, 1}
obtained by a supervised learning algorithm.

• The confusion matrix mat(a, b, c, d) counts the crossed values of y and ŷ:

ŷ = 0 ŷ = 1
y = 0 a b
y = 1 c d
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• The number of observations is n = a+ b+ c+ d.

• The prevalence is λ = P(y = 1) = c+d
n . We assume that 0 < λ < 1, that is y(O) = {0, 1} (in other

words, each row of the confusion matrix contains at least one non-zero entry).

• The detection prevalence (or positivity rate) is µ = P(ŷ = 1) = b+d
n .

2.1 Classical Metrics

We recall the definitions of several well-known metrics. For two events A and B, P(A | B) = P(A∩B)
P(B) is the

conditional probability of A knowing B and Ac = O −A is the complementary of A.
Definition 2.

sensitivity = P(ŷ = 1 | y = 1) = d

c+ d
= d/n

λ

specificity = P(ŷ = 0 | y = 0) = a

a+ b
= a/n

1 − λ

precision = P(y = 1 | ŷ = 1) = d

b+ d
= d/n

µ

precision0 = P(y = 0 | ŷ = 0) = a

a+ c
= a/n

1 − µ

Youden’s index J = sensitivity + specificity − 1 = (ad− bc)/n2

λ(1 − λ)

Matthews’ correlation coefficient MCC = corr(y, ŷ) = (ad− bc)/n2√
λ(1 − λ)µ(1 − µ)

Cohen’s κ = P(y = ŷ) − λµ− (1 − λ)(1 − µ)
λ(1 − µ) + µ(1 − λ) = 2(ad− bc)/n2

λ(1 − µ) + µ(1 − λ)

Positive likelihood ratio LR+ = sensitivity
1 − specificity = d(1 − λ)

bλ

Negative likelihood ratio LR− = 1 − sensitivity
specificity = c(1 − λ)

aλ

Diagnostic odds ratio DOR = LR+

LR−
= ad

bc

Relative risk RR = precision
1 − precision0

= d(1 − µ)
cµ

The definition of κ requires some explanation: we start with the probability P(y = ŷ) = P(y = ŷ =
1) + P(y = ŷ = 0) = a+d

n . Then we subtract this same expression when y and ŷ are independent, which is
P(y = 1)P(ŷ = 1) + P(y = 0)P(ŷ = 0) = λµ + (1 − λ)(1 − µ). And we divide by 1 minus this expression to
normalize the result. The denominator is therefore 1−λµ−(1−λ)(1−µ) = λ+µ−2λµ = λ(1−µ)+µ(1−λ).

Finally, we recall the definitions of the ROC curve (or Receiver Operating Characteristic curve) and the
ROC space (see for example Davis & Goadrich 2006). The ROC space is the square [0, 1] × [0, 1] in which
each binary model is represented by the point with coordinates (1 − specificity, sensitivity). It is made up
of three distinct parts: the straight line with equation J = 0 corresponds to random models. The upper
triangular region defined by J > 0 corresponds to models that do better than chance, also called "decent
models" in the following. And the lower triangular region defined by J < 0 corresponds to models that do
worse than chance. If p : O → R is a predictive score of y, for any threshold t ∈ R we define a binary model
ŷt by ŷt = 1 if p ≥ t and ŷt = 0 otherwise. In ROC space, the ROC curve connects points ŷt and AUC
stands for Area Under the ROC Curve.

2.2 Lifts

In addition to the above, we will need the lift (see Berrar, 2019) so here’s a reminder of its main characteristics.
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Definition 3. For two events A and B with non-zero probability, lift is defined by

Lift(A,B) = P(A ∩B)
P(A)P(B) = P(A | B)

P(A) = P(B | A)
P(B)

Events A and B are said to attract (resp. are independent, repel) if Lift(A,B) > 1 (resp. = 1, < 1). And
for any model ŷ of a target variable y such that µ > 0, we note lift = Lift(y = 1, ŷ = 1) for short.

To say that A and B attract is equivalent to saying that we have P(A | B) > P(A) and P(B | A) > P(B). In
other words, if one of the two events occurs, the probability of observing the other event increases.

Lift has the following properties:

• Lift is symmetric: Lift(A,B) = Lift(B,A).

• Lift is easily interpreted: "model ŷ of y detects the positive class lift times better than chance",
because P(y = 1 | ŷ = 1) = liftP(y = 1).

• Lemma 1 shows that Lift(A,B) − 1 and Lift(Ac, B) − 1 have opposite signs.
Lemma 1. For two events A and B with 0 < P(A) < 1 and 0 < P(B), we have

P(A) (Lift(A,B) − 1) = P(Ac) (1 − Lift(Ac, B))

So for 0 < λ < 1 and 0 < µ < 1

Lift(y = 1, ŷ = 1) − 1 = 1 − λ

λ
(1 − Lift(y = 0, ŷ = 1))

= 1 − µ

µ
(1 − Lift(y = 1, ŷ = 0))

= (1 − λ)(1 − µ)
λµ

(Lift(y = 0, ŷ = 0) − 1)

Proof. By definition

P(A) (Lift(A,B) − 1) = P(A)
(
P(A ∩B)
P(A)P(B) − 1

)
= P(A | B) − P(A)

Replacing A by Ac gives P(Ac) (Lift(Ac, B) − 1) = P(Ac | B)−P(Ac). Then P(A | B)−P(A) = 1−P(Ac | B)−
P(A) = P(Ac) −P(Ac | B), giving P(A) (Lift(A,B) − 1) = −P(Ac) (Lift(Ac, B) − 1) = PAc) (1 − Lift(Ac, B))

We can have µ = 0 or µ = 1 when ŷ is a constant model equal to 0 or 1. If µ = 0, Lift(y = 1, ŷ = 1) and
Lift(y = 0, ŷ = 1) do not exist. If µ = 1, Lift(y = 1, ŷ = 0) and Lift(y = 0, ŷ = 0) do not exist.
Proposition 1. We have the following equalities (when all members are well defined):

Lift(y = 1, ŷ = 1) − 1 = (ad− bc)/n2

λµ

1 − Lift(y = 0, ŷ = 1) = (ad− bc)/n2

(1 − λ)µ

Lift(y = 0, ŷ = 0) − 1 = (ad− bc)/n2

(1 − λ)(1 − µ)

1 − Lift(y = 1, ŷ = 0) = (ad− bc)/n2

λ(1 − µ)

Proof. By definition, λµ(lift − 1) = P(y = ŷ = 1) −λµ = d(a+b+c+d)−(b+d)(c+d)
n2 = ad−bc

n2 . From Lemma 1, we
can deduce the formulas for the other lifts, assuming µ(1 −µ) to be non-zero. By positing µ = 0 then µ = 1,
we can check that the formulas remain true (when both members of the equation are well defined).
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2.3 Decent Binary Models

Models fall into three categories:

• Those that do better than chance.

• Models that work like chance.

• Models that do worse than chance.

For a model of the first category, we want the events {y = 1} and {ŷ = 1} to attract, and similarly for the
events {y = 0} and {ŷ = 0}. Proposition 1 shows that this is equivalent to ad− bc > 0. Models that proceed
randomly are those that are independent of the target variable, which is equivalent to saying that all lifts
are equal to 1, that is ad − bc = 0. The constants 0 and 1 are part of these models, and constants are not
random phenomena in the usual sense of the term. We therefore prefer to refer to them as uninformative
rather than random models. The other models are characterized by ad − bc < 0. For these, the events
{y = 1} and {ŷ = 0} attract each other, as well as {y = 0} and {ŷ = 1}. In other words, these models tend
to predict 0 instead of 1 and vice versa. This is most often the result of an accidental permutation of the
class labels. This leads us to the next definition.
Definition 4. • A model is decent if ad− bc > 0.

• A model is uninformative if ad− bc = 0.

• A model is erroneous if ad− bc < 0.

An erroneous model can be transformed into a decent model by replacing ŷ by 1 − ŷ (we will find out on an
example that in the multiclass setting, swapping the values taken by ŷ doesn’t transform every bad model
into a decent one). And an uninformative model ŷ is a model characterized by the value µ = P(ŷ = 1). It
has sensitivity P(ŷ = 1 | y = 1) = P(ŷ = 1) = µ and specificity P(ŷ = 0 | y = 0) = P(ŷ = 0) = 1 − µ.

The next proposition shows that the category of a binary model can be deduced from the values taken by
any of the usual metrics. We’ll see later that a single metric is no longer sufficient in the multiclass case.
Proposition 2. The following statements are equivalent:

• Model ŷ of y is decent

• Lift(y = 1, ŷ = 1) > 1

• Lift(y = 0, ŷ = 0) > 1

• Lift(y = 1, ŷ = 0) < 1

• Lift(y = 0, ŷ = 1) < 1

• J > 0

• MCC > 0

• κ > 0

• LR+ > 1

• LR− < 1

• DOR > 1

If any of these inequalities is an equality, the model is uninformative and all inequalities are equalities.
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Proof. This is obvious for the four lifts and metrics J , MCC, κ and DOR from Definition 2 and Proposition
1. Using J , a model is decent (resp. uninformative) if and only if sensitivity > 1 − specificity (resp.
= 1 − specificity) that is specificity > 1 − sensitivity (resp. = 1 − sensitivity). By division we deduce the
desired result for LR+ and LR−.

There are two other ways of interpreting the three categories of models, based on the sign of J or MCC:

• In the ROC space, a decent (resp. uninformative, erroneous) model is above (resp. on, below) the
diagonal line with equation sensitivity = 1 − specificity.

• We have models that are positively correlated with the target variable, those that are independent
of it, and finally models that are negatively correlated with the target variable.

3 Links between Prevalence and Metrics

Suppose we have a binary target variable y : O → {0, 1}. If we train a model on O and apply it to a test
data set T , the statistical distribution of the characteristics of observations verifying y = 1 (resp. y = 0)
must be approximately the same on O and T . On the other hand, the prevalence of the test data set may
differ from that of the training data set: we sometimes over- or under-sample the data to train the model.
In practice, therefore, a model is applied to different data sets, which differ from each other only in their
prevalence (apart from random variations). So a model ŷ applied to two data sets will have approximately
confusion matrices mat(a, b, c, d) and mat(ua, ub, vc, vd) with u > 0 and v > 0.

3.1 Prevalence-Invariance

We formalize a well-known property here, and obtain a first new result: Youden’s J allows us to characterize
models with poor predictive ability, whatever the values of λ and µ.
Definition 5. A metric is prevalence-invariant (also noted λ-invariant) if it does not depend on prevalence.
In other words, the metric applied to the confusion matrix below must not depend on the positive numbers u
and v.

ŷ = 0 ŷ = 1
y = 0 ua ub
y = 1 vc vd

This is equivalent to saying that such a metric is a function of b
a and c

d (by posing u = 1
a and v = 1

d ).
As specificity = 1

1+ b
a

and sensitivity = 1
1+ c

d
, λ-invariant metrics are functions of sensitivity and specificity.

Among the metrics we’ve already encountered, J , LR+, LR− and DOR are well known for being λ-invariant.

We note that the sign of ad− bc does not change if we multiply the rows of the matrix by u > 0 and v > 0.
In other words, whether a model is decent, uninformative or erroneous does not depend on prevalence. In
the multiclass case, we’ll see that this property isn’t automatic and that it’s an integral part of the definition
of a decent model. In general, λ-invariant metrics can be used to measure the absolute quality of a model,
as shown in Example 1.
Example 1. Consider a first data set D, a binary target variable y and a model ŷ of y described by the
following confusion matrix. We claim that this model is excellent, albeit imperfect.

ŷ = 0 ŷ = 1
y = 0 999 1
y = 1 1 999

We now consider a second data set E, obtained from the first by replicating the negative class millions of
times. The model ŷ applied to this second data set has the following confusion matrix. Model precision is
equal to 0.999 on D and 0.000998 on E.
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ŷ = 0 ŷ = 1
y = 0 999 000 000 1 000 000
y = 1 1 999

Does this mean that a model can be both good and bad? Obviously not. But if we use a non λ-invariant
metric, even the best model will look bad on a very unbalanced data set. On the other hand, with a λ-
invariant metric, the model quality estimate is independent of the prevalence of the data set used. It is
therefore a model-specific quality that is measured.

Suppose we want to detect poorly predictive models. This is a property of models, so only a λ-invariant
metric can reveal it. The metric J fits the bill perfectly, as the next proposition shows.
Proposition 3. Let K = max(|sensitivity − µ|, |specificity − 1 + µ|). We have

0 ≤ K ≤ |J | ≤ 2K

Proof. Given ϕ = sensitivity−µ and ψ = specificity−1+µ, we have ϕ = P(ŷ = 1 | y = 1)−µ = P(y=ŷ=1)
λ −µ =

µ lift − µ = (ad−bc)/n2

λ = (1 − λ)J according to Proposition 1. We deduce ψ = J − sensitivity + µ =
J − (1 − λ)J = λJ , hence 0 ≤ K ≤ |J |. Furthermore J = ϕ + ψ and these three quantities have the same
sign, that of ad− bc. So we have |J | = |ϕ| + |ψ| which gives |J | ≤ 2K.

According to this proposition, J is small if and only if the sensitivity and specificity of the model are close
to their values for uninformative models. This result had been observed numerically in Chicco et al. (2021).

3.2 Relationships between Likelihood Ratios and Lifts

Likelihood ratios are also λ-invariant metrics, and the next proposition shows their narrow links with lifts
(see Vu et al. 2019 for similar formulas): we can express likelihood ratios as functions of lifts and vice versa.
These formulas will be used to define generalized likelihood ratios and generalized diagnostic odds ratios in
the multiclass setting.
Proposition 4. We have the following equations:

LR+ = Lift(y = 1, ŷ = 1)
Lift(y = 0, ŷ = 1)

LR− = Lift(y = 1, ŷ = 0)
Lift(y = 0, ŷ = 0)

DOR = Lift(y = 1, ŷ = 1)Lift(y = 0, ŷ = 0)
Lift(y = 1, ŷ = 0)Lift(y = 0, ŷ = 1)

lift − 1 = (1 − λ) LR+ − 1
λ(LR+ − 1) + 1

1 − Lift(y = 1, ŷ = 0) = (1 − λ) 1 − LR−

1 − λ(1 − LR−)

Proof. By definition Lift(y = 1, ŷ = 1) = d/n
λµ , Lift(y = 0, ŷ = 1) = b/n

(1−λ)µ , Lift(y = 1, ŷ = 0) = c/n
λ(1−µ) and

Lift(y = 0, ŷ = 0) = a/n
(1−λ)(1−µ) . We then obtain the first three equalities by applying Definition 2. We also

have µ = P(ŷ = 1) = P({ŷ = 1} ∩ {y = 1}) + P({ŷ = 1} ∩ {y = 0}) = P(y = 1)P(ŷ = 1 | y = 1) + P(y =
0)P(ŷ = 1 | y = 0) = λ sensitivity + (1 − λ)(1 − specificity). This results in

lift − 1 = sensitivity
µ

− 1 = sensitivity
λ sensitivity + (1 − λ)(1 − specificity) − 1

= LR+

λLR+ + 1 − λ
− 1 = LR+ − λ(LR+ − 1) − 1

λ(LR+ − 1) + 1 = (1 − λ)(LR+ − 1)
λ(LR+ − 1) + 1
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We deduce the second equation by exchanging the values 0 and 1 of ŷ.

We can make a metric λ-invariant by making λ tend towards 0.
Corollary 1. If sensitivity and specificity are fixed:

LR+ = lim
λ→0

lift

LR− = lim
λ→0

Lift(y = 1, ŷ = 0)

DOR = lim
λ→0

Lift(y = 1, ŷ = 1)
Lift(y = 1, ŷ = 0) = lim

λ→0
RR

Proof. We make λ tend towards 0 in the last two equations of Proposition 4 to obtain the first two results.
We then apply the formulas DOR = LR+

LR−
and RR = d(1−µ)

cµ = Lift(y=1,ŷ=1)
Lift(y=1,ŷ=0) .

3.3 Normalized Likelihood Ratios

This section is not useful for preparing the definition of decent multiclass models. But the three new metrics
defined here may be of interest to practitioners of likelihood ratios and odds ratios : by applying the same
transformation to LR+, LR− and DOR, we obtain metrics with a wider definition domain, which are zero for
uninformative models and take the value 1 if the model is perfect. We briefly need the following notations,
with "CO" standing for "centered odds".
Definition 6.

CO(LR+) = LR+ − 1
LR+ + 1 = J

sensitivity + 1 − specificity

CO(LR−) = 1 − LR−

1 + LR−
= J

1 − sensitivity + specificity

CO(DOR) = DOR − 1
DOR + 1 = ad− bc

ad+ bc

Another simple way to make a metric λ-invariant is to set λ = 0.5. Using Proposition 4, we obtain

lift|λ=0.5 − 1 = CO(LR+) = 1 − 2
LR+ + 1

This metric has a larger domain of definition than LR+ as it is well defined as soon as µ ̸= 0. And it’s
clear that the best of a set of models for LR+ is also the best for this new metric. They have two similar
geometric interpretations. Let M be a point on the ROC curve and O the origin:

• LR+(M) is the tangent of the angle between the line segment [OM ] and the x-axis.

• CO(LR+)(M) is the tangent of the angle between the line segment [OM ] and the line of equation
y = x because tan

(
ω − π

4
)

= tan(ω)−1
tan(ω)+1 .

We also have 1 − Lift(y = 1, ŷ = 0)|λ=0.5 = CO(LR−) = 2
1+LR−

− 1. This metric is defined as soon as
µ ̸= 1 and here, too, the best model for one of the two metrics is the best for the other. Finally, the
metric CO(DOR) = 1 − 2

DOR+1 is defined for µ(1 − µ) ̸= 0 and both metrics always have the same best
model. It is clear that CO(LR+), CO(LR−) and CO(DOR) lie between 0 and 1 for decent models. These
transformations can be interpreted in terms of odds: for any x ≥ 0, there exists p ∈ [0, 1] such that x = p

1−p ,
and then we have x−1

x+1 = 2p− 1 ∈ [−1, 1].
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4 Multiclass Models and Metrics

We consider an integer m ≥ 3, a target variable y : O → {0, 1, ...,m− 1} such that y(O) = {0, 1, ...,m− 1}
and a model ŷ : O → {0, 1, ...,m − 1}. Let ni,j be the number of observations in the set {y = i} ∩ {ŷ = j}
and (ni,j)i,j the confusion matrix. We note ni. =

∑
j ni,j , n.j =

∑
i ni,j , n =

∑
j n.j =

∑
i ni., λi = ni.

n and
µj = n.j

n . By definition we have λi > 0 for any i, and when m = 2 we get λ0 = 1 − λ, λ1 = λ, µ0 = 1 − µ
and µ1 = µ.

All the results in this section are new, apart from the next characterization of uninformative models and the
multiclass definitions of Matthews’ correlation coefficient and Cohen’s κ.

4.1 Models

An uninformative model is one that tells us nothing about the target variable, that is y and ŷ are independent
variables. We can rephrase this condition as follows (see the "guessing" observer in Edwards et al. 2005).
Proposition 5. The model ŷ of y is uninformative if and only if the confusion matrix is of rank 1.

Proof. If ŷ is uninformative, we have P({y = i} ∩ {ŷ = j}) = P(y = i)P(ŷ = j) for any i and j, which is
equivalent to ni,jn = ni.n.j for any i and j. All the columns of the confusion matrix are then proportional
to the non-zero vector (ni.)i (and the rows are proportional to the vector (n.j)j), which implies that the
confusion matrix is of rank 1.

Conversely, if this matrix is of rank 1, the non-zero columns of the matrix are proportional to each other, and
therefore proportional to their sum (ni.)i. So there exists a family of numbers (βj)j such that ni,j = ni.βj

for any i and j. Summing this equations over i gives n.j = βjn, hence ni,jn = ni.n.j for any i and j.

This proposition shows that the model ŷ of y is uninformative if and only if there are two families of numbers
(αi)i and (βj)j such that P({y = i} ∩ {ŷ = j}) = αiβj for any i and j. On a balanced data set, the confusion
matrix of an uninformative model has all its rows equal, and its rate of well-classified observations is therefore
1
m . We’ll see later how to generalize this result to any data set, by replacing accuracy with balanced accuracy.
It may be tempting to extend the metric formulas of the binary case by replacing ad− bc by the determinant
of the confusion matrix (ni,j)i,j (see for example Powers 2011), but this is not a good idea: this determinant
is zero if and only if (ni,j)i,j is of rank < m, which is a much weaker condition than the one in the previous
proposition. We will see later an example of a decent multiclass model with a confusion matrix whose
determinant is zero.

We generalize part of Proposition 4 to define the following pointwise metrics.
Definition 7. For any i and j, let

Lift(y = i, ŷ = j) = P({y = i} ∩ {ŷ = j})
λiµj

LRi,j = P(ŷ = j | y = j)
P(ŷ = j | y = i) = Lift(y = j, ŷ = j)

Lift(y = i, ŷ = j) = nj,j

ni,j

λi

λj

DORi,j = DORj,i = LRi,jLRj,i = ni,inj,j

ni,jnj,i
= P(ŷ = j | y = j)/P(ŷ = i | y = j)

P(ŷ = j | y = i)/P(ŷ = i | y = i)

For m = 2 we find LR0,1 = LR+, LR1,0 = 1
LR−

and DOR0,1 = DOR. The next result generalizes Proposition
1 and shows a direct link between diagonal lifts Lift(y = i, ŷ = i) and One versus Rest binary models.
Definition 8. let y be a target variable and ŷ a model of y. For any i and j, we define the binary target
variable yi which is the indicator of event {y = i}, and the binary model ŷj of yi which is the indicator of
event {ŷ = j}. When i = j, each model ŷj of the target variable yj is referred to as a "One versus Rest"
model.
Proposition 6. Using the notations of Definition 8, we have

Lift(yi = 1, ŷj = 1) = Lift(y = i, ŷ = j)

9
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Proof. We want to calculate Lift(A,B) with A = {yi = 1} and B = {ŷj = 1}. We can also write A = {y = i}
and B = {ŷ = j}, which is enough to conclude.

We have seen with Proposition 4 and Corollary 1 that lifts can be expressed in terms of likelihood ratios and
converge towards them. This is always true in the multiclass case.
Theorem 1. For any j,

P(ŷ = j | y = j) − µj =
∑

i

λi(P(ŷ = j | y = j) − P(ŷ = j | y = i))

Equivalently, if all ni,j are non-zero:

1
Lift(y = j, ŷ = j) =

∑
i

λi

LRi,j

Proof. We have P(ŷ = j | y = j) − P(ŷ = j) = P(ŷ = j | y = j) −
∑

i λiP(ŷ = j | y = i) =
∑

i λi(P(ŷ =
j | y = j) − P(ŷ = j | y = i)). By dividing by P(ŷ = j | y = j) and subtracting 1, we deduce the second
formulation.

Corollary 2. If all probabilities P(ŷ = k | y = l) are fixed, for any i and j we have

lim
λi→1

(P(ŷ = j | y = j) − µj) = P(ŷ = j | y = j) − P(ŷ = j | y = i)

Equivalently, if all P(ŷ = k | y = l) are non-zero:

lim
λi→1

Lift(y = j, ŷ = j) = LRi,j

In the following, we sometimes write Lift(y = i, ŷ = j) ≥ 1 or LRi,j ≥ 1 because these expressions are simple,
but they are not always well defined. The reader can mentally replace them with P (ŷ = j | y = i) ≥ µj or
P(ŷ = j | y = j) ≥ P(ŷ = j | y = i) which are equivalent and always defined.

Intuitively, if a multiclass model is decent, we want the events {y = i} and {ŷ = i} to attract each other. In
other words we want to have Lift(y = i, ŷ = i) ≥ 1 for any i, which is equivalent to saying that all One versus
Rest binary models are decent according to Propositions 2 and 6. And being decent must be a characteristic
of the model, independent of the λi values. Corollary 2 then implies that the likelihood ratios are greater
than or equal to 1. Conversely, if the likelihood ratios are greater than or equal to 1, the previous theorem
shows that we have Lift(y = i, ŷ = i) ≥ 1 for any i, which leads us to the next definition. It does not involve
the vector of prevalences (λi)i, so it is indeed a characteristic of the model, independent of any oversampling
or undersampling of the data set under consideration.
Definition 9 (Decent multiclass model). A model ŷ of y is decent if the following conditions are met:

• For any j, we have maxi P(ŷ = j | y = i) = P(ŷ = j | y = j).

• There are i and j distinct such that P(ŷ = j | y = i) < P(ŷ = j | y = j).

A model that satisfies the first condition but not the second is uninformative, since we then have P({ŷ =
j} ∩ {y = i}) = P(y = i)P(ŷ = j | y = i) = P(y = i)P(ŷ = j | y = j) = αiβj for any i and j, using the
notations from a previous remark. We can rewrite the first condition in a more familiar way, noting x the
observed value of ŷ, θ the value to be estimated of y and θ̂(x) the set argmaxθP(x | θ): for any x we have
x ∈ θ̂(x). We deduce that a model is decent or uninformative if and only if it is a maximum likelihood
estimator of the target variable. When m = 2 we obtain that a model is decent or uninformative if we have
specificity ≥ 1 − sensitivity and sensitivity ≥ 1 − specificity, that is J ≥ 0. In the multiclass situation,
several equivalences become implications: a model is decent or uninformative if and only if LRi,j ≥ 1 for

10
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any i ̸= j, which implies DORi,j ≥ 1. According to Theorem 1, this also leads to Lift(y = j, ŷ = j) ≥ 1
for any j and one of these inequalities is strict if the model is decent. Applying Lemma 1, we finally have
Lift(y ̸= j, ŷ = j) ≤ 1 and Lift(y = j, ŷ ̸= j) ≤ 1 for any j.

Models that are neither decent nor uninformative cannot be called erroneous as in the two-class tasks: a
simple permutation of the confusion matrix columns is not enough to make them decent in general, as we
shall see a little further on. In other words, permuting the values predicted by the model does not correct
the model’s shortcomings. Any model that is not decent or uninformative in the multiclass setting is simply
referred to as a "bad model". Being a decent multiclass model is a rather demanding condition: if there is
a class k such that µk > 0 and nk,k = 0, the model is bad. Poor model performance on one of the classes
cannot therefore be compensated for by performance on the other classes.

The following two examples show that accuracy is a misleading metric when m > 2, even if we restrict
ourselves to balanced data sets: it is not sufficient on its own to determine the quality of a model.

Example 2. The confusion matrix B =

0 3 0
1 2 0
0 0 3

 is that of a bad model according to the previous remark.

However, 5 of the 9 observations are correctly classified. And we noticed after Proposition 5 that on a balanced
data set with m = 3, an uninformative model correctly classifies only a third of the observations.

Example 3. Let D =

11 10 9
10 10 10
9 9 12

 and U =

10 10 10
10 10 10
10 10 10

. The confusion matrix D is of rank 3, so

the model is not uninformative, and we have ni. = 30 for any i. When the sample is balanced, as it is here,
verifying that a model is decent or uninformative is easy: we need only check that each diagonal entry is
equal to the maximum value of its column, which is clear. The percentage of well-classified observations is
33
90 = 36, 66...% which may seem low, and we’ll come back to this rate in the next section. But our model is
clearly better than the uninformative model with confusion matrix U .

The model studied here looks good on one data set and bad on the oversampled data set, which shows that
examining binary One versus Rest models is not enough to judge the quality of a model either.

Example 4. Let B1 =

2 1 2
3 2 0
0 1 4

 and B2 =

2 1 2
9 6 0
0 1 4

. The confusion matrix B1 is defined on a

balanced data set, and the model is clearly bad. However, if we place the three binary One versus Rest models
in the ROC space, they are all above the line of uninformative models. The confusion matrix B2 is obtained
by oversampling the class "1", whose numbers have been tripled, and the "0" versus Rest associated model has

the confusion matrix
(

6 + 0 + 1 + 4 9 + 0
1 + 2 2

)
. This model is slightly below the random guessing line of the

ROC space, as (1 − specificity, sensitivity) = ( 9
20 ,

2
5 ) = (0.45, 0.4). Note that an over- or undersampling that

leads to such an apparently contradictory situation is impossible if m = 2. What the two confusion matrices
have in common is the value of the likelihood ratio LR1,0 = n0,0

n1,0
λ1
λ0

= 2
3 < 1.

We should also point out that the maximum value of each column of B1 is never in the first row. So no
permutation of the columns can transform this bad model into a decent one.

We now study a confusion matrix with a zero determinant, but corresponding to a decent model. For any
confusion matrix, we have lifts greater than or equal to 1 and less than or equal to 1 in each row and each
column: for any i we have

∑
j P({y = i} ∩ {ŷ = j}) = λi =

∑
j λiµj , that is 0 =

∑
j(P({y = i} ∩ {ŷ =

j})−λiµj), and similarly in each column. In the case of a decent model, one might think that the off-diagonal
lifts are less than 1, but the following example shows that this is not true.

Example 5. We denote D =

2 1 1
1 2 1
1 2 1

 and L =

 1.5 0.6 1
0.75 1.2 1
0.75 1.2 1

. The confusion matrix D is of rank 2

(the sum of the first two columns is proportional to the third column), it is therefore not that of a uninfor-
mative model and its determinant is zero. The data set is balanced and the model is clearly decent. We have

11
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λ0 = λ1 = λ2 = 1
3 , µ0 = 1

3 , µ1 = 5
12 , µ2 = 1

4 and (Lift(y = i, ŷ = j))i,j = L. Note in particular that the
off-diagonal lift Lift(y = 2, ŷ = 1) is greater than 1.

If a model is decent, Proposition 6 shows that merging all but one of the classes results in a decent One
versus Rest model. But this is not always the case if the mergers are partial.

Example 6. Let D =


3 1 2 2
2 2 2 2
2 2 2 2
3 2 1 2

. The confusion matrix D corresponds to a decent model on a balanced

data set. If we merge classes 0 and 1 and classes 2 and 3, we obtain the confusion matrix
(

8 8
9 7

)
of a bad

model.

We could try to imitate the definition of a decent model to compare two models: say that a decent model
ŷ1 of the target variable y is better than a decent model ŷ2 if all the diagonal lifts of ŷ1 are greater than
those of ŷ2, whatever the prevalences. This would be equivalent to saying that all likelihood ratios of ŷ1
are greater than those of ŷ2. But already when m = 2 this path leads nowhere: consider a convex ROC
curve (we know that we can always reduce ourselves to this situation). Let A be the point associated with
model ŷ1 and B with model ŷ2, and let O, P, Q, R be the points with coordinates (0,0), (1,0), (1,1) and
(0,1) respectively. We have LR+(ŷ1) > LR+(ŷ2) if and only if ÂOP > B̂OP , and LR−(ŷ1) < LR−(ŷ2) if
and only if ÂQR < B̂QR. This is equivalent to saying that ÂOQ > B̂OQ and ÂQO > B̂QO. We leave it
to the reader to convince himself that this is impossible due to convexity, unless A=B.

4.2 Global Metrics

To compare several models of the same target variable, we keep the decent models and estimate their
respective overall performance with a metric. Multiclass versions of Matthews’ correlation coefficient or
Cohen’s κ can be used, for example.
Definition 10.

MCC =
∑

i(P(y = ŷ = i) − λiµi)√
1 −

∑
i λ

2
i

√
1 −

∑
i µ

2
i

κ =
∑

i(P(y = ŷ = i) − λiµi)
1 −

∑
i λiµi

The denominator of κ never cancels, and that of MCC cancels only for constant models. Theorem 1 shows
that the numerator of these two metrics is positive if the model is decent. We have seen that lifts minus 1
are interpreted with One versus Rest models of Definition 8, so MCC and κ are forms of macro-average.

We can extend Youden’s J to the multiclass case. If we still want J to detect decent but not very informative
models, we can set J = 1

m−1 (
∑

i P(ŷ = i | y = i) − 1) = 1
m−1

∑
i(P(ŷ = i | y = i) − µi). As ŷ is decent or

uninformative, J lies between 0 and 1 and all terms of the last sum are non-negative, so ŷ is close to an
uninformative model if and only if all terms are small, that is if J is small. In this way, we’ve generalized
all the binary results of the Propositions 2 and 3, replacing certain equivalences with implications. The last
formula can be rewritten as J = 1

m−1
∑

i
1

λi
(P(y = ŷ = i) − λiµi). When all λi are equal (and therefore

equal to 1
m ), we obtain κ = J = m

m−1 (
∑

i P(y = ŷ = i) − 1
m ). Thus decent multiclass models have a rate of

well-classified observations greater than 1
m on balanced data sets, but we saw in Example 2 that the converse

is not true when m > 2. Multiclass balanced accuracy is easy to define: let balanced accuracy = 1
m

∑
i P(ŷ =

i | y = i), which is λ-invariant. On a balanced data set, this is the rate of well-classified observations. On
any data set, we have J = 1

m−1 (mbalanced accuracy − 1), and so decent multiclass models always have a
balanced accuracy greater than 1

m . It should be noted that our extension of Youden’s J differs from that of
Powers (2011), which is given by the formula B(R,P ) =

∑
i Prev(l)B(l) =

∑
i λi

(a(i,i)d(i,i)−b(i,i)c(i,i))/n2

λi(1−λi) =∑
i

λiµi(Lift(y=ŷ=i)−1)
1−λi

=
∑

i
λi

1−λi
(P(ŷ = i | y = i)−µi). But this formula doesn’t detect almost uninformative

models. We summarize these considerations in the following definition.
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Definition 11.

Balanced accuracy = 1
m

∑
i

P(ŷ = i | y = i)

J = 1
m− 1(mbalanced accuracy − 1) = 1

m− 1
∑

i

P(y = ŷ = i) − λiµi

λi

4.3 Boundary between Decent and Bad Models in the ROC Space

When m = 2, uninformative models separate decent and bad models in the ROC space. We show that this
is no longer the case if m ≥ 3 by describing precisely the boundary between these two types of models. The
ROC space is defined below as a subset of [0, 1]m

2
with the usual Euclidean topology. And for any subset B

of Rm2 , its boundary is B ∩Bc where B denotes the closure of B.
Definition 12. The set of row stochastic matrices, that is square matrices with m rows and m columns, with
non-negative coefficients and whose sum of each row is 1, is called ROC space. For any model ŷ of a target
variable y, we call "normalized confusion matrix" the matrix of conditional probabilities (P(ŷ = j | y = i))i,j,
which is an element of the ROC space. By abuse of terminology, we refer to a decent (resp. uninformative,
bad) model in the ROC space to designate the normalized confusion matrix associated with such a model.

A first geometric remark can be made about decent or uninformative models: they form a convex subset of
the ROC space, as can be seen immediately from the first condition of Definition 9.

Edwards et al. (2005) show that the hypervolumes under the ROC hypersurface of a perfect model and a
random classifier are equal to 0 when m ≥ 3 in a particular coordinate system: the diagonal elements of the
matrix (P(ŷ = j | y = i))i,j are linear combinations of the off-diagonal entries, so they use the m(m − 1)
values (P(ŷ = j | y = i))i,j with i different from j as the coordinate system in ROC space (with constraints:
the sum of off-diagonal entries in each row is less than or equal to 1). When m = 2, these coordinates are
(1 − specificity, 1 − sensitivity). According to the authors, "this suggests that hypervolume may not be a
useful performance metric in N-class classification task for N > 2". This conclusion needs to be qualified:
in the proposition that follow, we show that uninformative models are only a tiny subset of the topological
boundary between decent models and bad models when m ≥ 3. It is therefore more appropriate to compare
the volumes occupied by these two categories of models, which we do in the next section when m = 3.

We can see from Example 3 that it’s easy to distort an uninformative model a little into a decent or bad
model, so these models are a subset of the boundary between decent and bad models. And they form a
low-dimensional set: according to Proposition 5, the normalized confusion matrices of these models have all
their rows equal. The example below shows that the boundary considered is strictly larger.

Example 7. Let Ct = 1
4

2t 3 − 2t 1
1 2 1
1 1 2

 be a normalized confusion matrix with 0 ≤ t ≤ 1. It is never the

matrix of an uninformative model, since the last two rows are not proportional. The matrix Ct is that of a
decent model for any t ≥ 0.5 and that of a bad model otherwise. So C0.5 is a boundary point of the set of
decent or uninformative models in the ROC space, and it’s not an uninformative model. Note also that we
have κ = J = t

4 ≥ 0. This shows that in the multiclass case, a classical metric can be zero or positive even
when the model is bad.

The proposition below formalizes the observations made in the previous example.
Definition 13. In the ROC space, we denote E the set of decent or uninformative models, that is E =
{(Mi,j)i,j |∀j,maxi Mi,j = Mj,j}. And for any k and l ̸= k, let Ek,l = {(Mi,j)i,j ∈ E|Mk,l = Ml,l}.
Proposition 7. The boundary of E is

⋃
k ̸=l Ek,l and the set of uninformative models is

⋂
k ̸=l Ek,l.

Proof. Let M be an element of the boundary of the set of decent or non-informative models. This means that
there is a sequence (D(n))n of decent or uninformative models such that limn→∞ D(n) = M and a sequence
(B(n))n of bad models such that limn→∞ B(n) = M . Denoting (D(n)i,j)i,j the normalized confusion matrix
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of D(n), we have the equations maxi D(n)i,j = D(n)j,j for any j. By letting n tend to infinity, we deduce
that M is decent or uninformative.

Moreover, for any n, there exist i(n) and j(n) ̸= i(n) such that B(n)i(n),j(n) > B(n)j(n),j(n). There are at
most m(m− 1) distinct pairs (i(n), j(n)), there is therefore at least one pair (I, J) for which there exists an
infinite subsequence of (i(n), j(n))n taking this value (I, J). We replace the sequence (i(n), j(n))n by this
subsequence, giving B(n)I,J > B(n)J,J for any n. When n goes to infinity, we get MI,J ≥ MJ,J and since
M is decent or uninformative, we actually have MI,J = MJ,J and M ∈ EI,J .

Conversely, if we have M ∈ EI,J , for any integer n ≥ 1 we define a matrix (B(n))n as follows:

• If MI,J = MJ,J = 1 (and therefore MJ,j = 0 for any j ̸= J), we pose BJ,J = MJ,J − 1
n , BJ,I = 1

n
and Bk,l = Mk,l otherwise. In particular, we have BI,J = MI,J = 1 > BJ,J .

• If MI,J = MJ,J < 1, there exists k ̸= J with MI,k > 0. Let BJ,J = MJ,J , BI,J = MI,J + 1
n >

MI,J = MJ,J = BJ,J , BI,k = MI,k − 1
n and Bk,l = Mk,l otherwise. For n large enough we have

BI,J ≤ 1 and BI,k ≥ 0.

We thus obtain a sequence of row stochastic matrices corresponding to bad models, such that limn→∞ B(n) =
M . Moreover, by definition, the point M is an element of E, so it’s a boundary point of E. Finally, the
statement on

⋂
k ̸=l Ek,l is clear.

In the binary case, we have E0,1 = E1,0 and the boundary between decent and bad models is equal to the
set of uninformative models.

4.4 Volume Under the ROC Surface for Three Classes

In this section, we allow ourselves an abuse of language: to follow the notations and terminology of Ferri
et al. (2003), we speak of volume under the ROC surface. This is in fact the volume occupied by bad models
in the ROC space, we never consider a particular ROC surface associated with a predictive score.

To our knowledge, there is only one article in the literature that mentions necessary and sufficient conditions
for a multiclass model to be decent. In Ferri et al. (2003), we find a characterization of bad models for m = 3,

noting (P(ŷ = j | y = i))i,j =

ya x3 x5
x1 yb x6
x2 x4 yc

: there exists ha ≥ 0, hb ≥ 0, hc ≥ 0 with ha + hb + hc = 1

such that x1 ≥ ha, x2 ≥ ha, x3 ≥ hb, x4 ≥ hb, x5 ≥ hc, x6 ≥ hc.

Models that meet these criteria are indeed uninformative or bad models: we find ya = 1 −x3 −x5 ≤ 1 −hb −
hc = ha, and similarly yb ≤ hb and yc ≤ hc. So ya ≤ min(x1, x2), yb ≤ min(x3, x4) and yc ≤ min(x5, x6).
But these criteria are incorrect because they are too restrictive, as we can see with the balanced confusion

matrix

0 2 1
0 1 2
1 1 1

. The proportion of correctly classified observations is equal to 2
9 <

1
m , so we have J < 0

and this model is neither decent nor uninformative. The reader can easily check that all diagonal lifts are
strictly less than 1 (in other words, all three One versus Rests models are wrong), which also implies that
MCC and κ are negative. But we have r1 = min(x1, x2) = min(0, 1

3 ) = 0, r2 = min(x3, x4) = min( 2
3 ,

1
3 ) = 1

3 ,
r3 = min(x5, x6) = min( 1

3 ,
2
3 ) = 1

3 and r1 + r2 + r3 = 2
3 < 1. It is therefore not possible to find a triplet

(ha, hb, hc) that satisfies the above conditions.

When m = 2, the maximum (resp. minimum) area under a ROC curve is that of a perfect probabilistic (resp.
random) model, and is 1 (resp. 0.5). For the three-class case, their analogues are VUSmax

3 and VUSmin
3 ,

noting VUS as the Volume Under the ROC Surface: VUSmax
3 is the volume of the set of all models in the

ROC space and VUSmin
3 is the volume of the set of all bad models. The maximum volume calculated in Ferri

et al. (2003) is VUSmax
3 = 1

8 = 0.125 . We also find a Monte-Carlo estimate of VUSmin
3 ≃ 0.0055, but the

latter value is too low because the number of bad models is underestimated. We obtain a new Monte-Carlo
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estimate for 100,000,000 points: VUSmin
3 ≃ 0.1125. Its exact value is calculated below, and shows that bad

models occupy 90% of the space of all three-class models.
Proposition 8.

VUSmin
3 = 9

80 = 0.9 VUSmax
3

Proof. Consider the normalized confusion matrix X =

x00 x01 x02
x10 x11 x12
x20 x21 x22

 subject to the following conditions:

0 ≤ xij ≤ 1 for any i and j and
∑

j xij = 1 for any i. In the volume calculations below, we can impose that
the xij are all distinct. All these matrices occupy a hypersurface of dimension 6 of volume VUSmax

3 . We
want to calculate the volume VUSdecent

3 of matrices X where the maximum value of each column j is reached
in row j. By symmetry, we have V = 6 VUSdecent

3 where V is the volume of matrices X where the maximum
values of each column are reached in distinct rows. So W = VUSmax

3 −V is the volume of matrices X where
the maximum values of each column are reached in two of the three rows. Indeed, we can’t have the three
maximum values of each column in a single row, because of the constraints

∑
j xij = 1. Again by symmetry,

we have W = 9U with U the volume of matrices X where the maximum values of the first two columns
are reached in the first row. Finally, we have VUSmin

3 = VUSmax
3 − VUSdecent

3 = 5
6 VUSmax

3 + 3
2U . All that

remains is to calculate U , the constraints being 0 ≤ x10 < x00, 0 ≤ x20 < x00, 0 ≤ x11 < x01, 0 ≤ x21 < x01,
x00 + x01 ≤ 1, x10 + x11 ≤ 1 and x20 + x21 ≤ 1. The last two inequalities are consequences of the other
inequalities, which gives

U =
∫ 1

0
dx00

∫ 1−x00

0
dx01

∫ x00

0
dx10

∫ x00

0
dx20

∫ x01

0
dx11

∫ x01

0
dx21

=
∫ 1

0
x2

00 dx00

∫ 1−x00

0
x2

01 dx01 =
∫ 1

0
x2 dx

∫ 1−x

0
y2 dy = 1

3

∫ 1

0
x2(1 − x)3 dx

= 1
3

∫ 1

0
(x2 − 3x3 + 3x4 − x5) dx = 1

3

(
1
3 − 3

4 + 3
5 − 1

6

)
= 1

3

(
1
6 − 3

20

)
= 1

180

We deduce VUSmin
3 = 5

6
1
8 + 3

2
1

180 = 1
12

5
4 + 1

12
1

10 = 1
12

27
20 = 9

80 .

There are several possible extensions of the ROC curve to the multiclass setting and other definitions of
ROC space, VUS and multiclass AUC, which may be more useful in practice (see Kleiman & Page 2019 or
Aguilar-Ruiz & Michalak 2024 for example). We won’t discuss these variants, as they stray too far from the
subject of our article.

4.5 Weak Multiclass Classifiers

In this final section, we show how inequalities on likelihood ratios can be used to define weak multiclass
classifiers. We state the next proposition using balanced accuracy, which is a linearly transformed version
of Youden’s J according to Definition 11 (but in no case do we assume that the data sets considered are
balanced). We have already pointed out in the discussion following Definition 10 that if we restrict ourselves
to decent models, a value of J close to 0, that is a balanced accuracy close to 1

m , means that the model
is not very informative. And if the balanced accuracy is is nearly equal to its maximum value 1, then the
normalized confusion matrix is very close to the diagonal identity matrix and the model is almost perfect.
Proposition 9. Let δ > 0 and γ > 1 be such that 1 + δ ≤ LRi,j ≤ γ for any distinct i and j. Then

1
m

+ δ
m− 1

m(m+ δ) = 1 + δ

m+ δ
≤ balanced accuracy ≤ γ

m

Proof. We have LRj,j = 1, so LRi,j ≤ γ for any i and j. Theorem 1 leads to Lift(y = j, ŷ = j) ≤ γ, that is
P(ŷ = j | y = j) ≤ γµj for any j. We deduce balanced accuracy ≤ γ

m by summing over j.
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For i fixed and any j ̸= i, we have P(ŷ = j | y = j) ≥ (1 + δ)P(ŷ = j | y = i), and we also have P(ŷ = i | y =
i) = (1+δ)P(ŷ = i | y = i)−δP(ŷ = i | y = i). Summing over j, we get m balanced accuracy ≥ 1+δ−δP(ŷ =
i | y = i). Then we sum over i, which gives m2 balanced accuracy ≥ m(1 + δ) − δm balanced accuracy.
Dividing by m we finally find (m+ δ) balanced accuracy ≥ 1 + δ.

The assumptions in the previous proposition guarantee that the model does better than chance, and they
allow us to control how close or how far the balanced accuracy of the model is to that of a random model.
Such inequalities can therefore be a good starting point for defining weak multiclass classifiers used, for
example, by a boosting algorithm. These inequalities could also remove a theoretical barrier: in Schapire

& Freund (2012), we find an example of two weak classifiers h1 =

1 0 0
1 0 0
0 0 1

 and h2 =

0 1 0
0 1 0
0 0 1

 "with

accuracy significantly better than the random guessing rate of 1
m , but for which no boosting algorithm

can exist that uses such weak classifiers to compute a combined classifier with perfect (training) accuracy".
The authors add that "This difficulty turns out to be provably unavoidable when the performance of the
weak learner is measured only in terms of error rate". This led them to completely change their approach,
abandoning weak multiclass classifiers and reducing the multiclass problem to several binary problems. We
immediately check that LR1,0(h1) = LR0,1(h2) = 1. So this counter-example doesn’t apply if we no longer
use accuracy but rather likelihood ratios as in the previous proposition to define the weakness of a classifier.
It may then be possible to design a multiclass boosting algorithm as close to perfection as desired on the
training sample.

5 Conclusion

We obtain a characterization of decent multiclass models based on two assumptions: being decent is a
characteristic of the model, independent of the frequency of each class of the target variable. And a decent
model must have decent One versus Rest binary versions. This gives us some very simple necessary and
sufficient conditions, which generalize in a natural way various well-known criteria for two-class problems.
These criteria have enabled us to correct or relativize several previous results, and they also pave the way
for the design of new algorithms for aggregating multiclass weak classifiers.

Decent models are more complex to understand intuitively when m > 2. Even if we restrict ourselves to
balanced data sets, the rate of correct classification no longer tells us whether a model is decent or not.
Merging certain classes can transform a decent model into a bad one, unless we apply a One versus Rest
merger. Uninformative models no longer form the boundary between decent and bad models. And there’s no
natural way to generalize binary metrics into global multiclass metrics, unless you want to preserve particular
properties of the metric.

Unexpectedly, we show that the classical metrics seen in the binary case actually hide two groups of metrics.
We have families of pointwise metrics, associated with each cell of the confusion matrix: lifts, diagnostic
odds ratios and likelihood ratios. The latter are used to define decent multiclass models. We also have global
metrics such as Matthews’ correlation coefficient, Cohen’s κ and Youden’s J., they take on positive values
on decent models.
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