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Abstract

In the past few years, FaaS has gained significant popularity
and became a go-to choice for deploying cloud applications
and micro-services. FaaS with its unique ‘pay as you go’
pricing model and key performance benefits over other cloud
services, offers an easy and intuitive programming model to
build cloud applications. In this model, a developer focuses
on writing the code of the application while infrastructure
management is left to the cloud provider who is responsible
for the underlying resources, security, isolation, and scaling
of the application. Recently, a number of commercial and
open-source FaaS platforms have emerged, offering a wide
range of features to application developers. In this paper, first,
we present measurement studies demystifying various fea-
tures and performance of commercial and open-source FaaS
platforms that can help developers with deploying and con-
figuring their serverless applications. Second, we discuss the
distinct performance and cost benefits of FaaS and interesting
use cases that leverage the performance, cost, or both aspects
of FaaS. Lastly, we discuss challenges a developer may face
while developing or deploying a serverless application. We
also discuss state of the art solutions and open problems.

1 Introduction

Function-as-a-Service (FaaS) has emerged as a new paradigm
that makes the cloud-based application development model
simple and hassle-free. In the FaaS model, an application de-
veloper focuses on writing code and producing new features
without worrying about infrastructure management, which
is left to the cloud provider.' FaaS was first introduced by
Amazon in 2014 as AWS Lambda [3], and since then, other
commercial cloud providers have introduced their serverless
platforms, i.e. Google Cloud Function (GCF) [22] from
Google, Azure Function [14] from Microsoft, and IBM Cloud
Function [23] from IBM. There are also several open-source
projects like Apache OpenWhisk, Knative, OpenLambda,
Fission, and others.

At the time of the inception of the Internet, applications
were built and deployed using dedicated hardware acting as
servers, which needed a high degree of maintenance and of-
ten lead to under-utilization of resources [60,61]. Moreover,

'We assume Faa$ is a computing service provided by a serverless plat-
form managed by a cloud provider.
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adding/removing physical resources to scale to varying de-
mand, and debugging an application, was a cumbersome task.
Under-utilization of resources and higher cost of maintenance
led to the invention of new technologies like virtualization
and container-based approaches. These approaches not only
increased resource utilization but also made it easy to develop,
deploy, and manage applications. Many tools [60,61,79,119]
were built to help users orchestrate resources and manage
the application. Although virtualization and container-based
approaches lead to higher utilization of resources and ease
of building applications, developers still have to manage and
scale the underlying infrastructure of an application, i.e. vir-
tual machines (VMs) or containers, despite the availability of
a number of approaches that would perform reactive or pre-
dictive scaling [47,69,92,98, 105, 128]. To abstract away the
complexities of infrastructure management and application
scaling, serverless computing emerged as a new paradigm to
build, deploy, and manage cloud applications. The serverless
computing model allows a developer to focus on writing code
in a high-level language (as shown in Table 1) and producing
new features of the application, while leaving various logis-
tical aspects like the server configuration, management, and
maintenance to the FaaS platform [122].

Even though FaaS has been around for only a few years,
this field has produced a significant volume of research.
This research addresses various aspects of FaaS from bench-
marking/improving the performance of various FaaS plat-
forms/applications, porting new applications into a serverless
model, to suggesting altogether new serverless platforms. As
serverless computing is still an evolving field, there is a sig-
nificant need for systematization of the knowledge (SoK)
particularly from the perspective of an application developer.
We believe that for an application developer, an ideal SoK
paper should address three main aspects: 1) current state of
FaaS platforms, e.g. performance and features, 2) what makes
serverless computing ideal for certain classes of applications,
and 3) and future research directions for helping a developer
leverage the full potential of FaaS with her limited control
over the FaaS platform.

Previous SoK papers are generally written from the per-
spective of the service provider. Castro et al. [56] present an
overview of serverless computing and discuss the serverless
architecture, development, and deployment model. Heller-
stein et al. [77], Jonas et al. [82] and Baldini et al. [52]
also provide an overview of serverless computing, and dis-
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cuss potential challenges that a serverless provider should
address for the popularization of serverless computing. Sim-
ilarly, in [110], challenges and potential research directions
for serverless computing are discussed. Eismann et al. [65]
perform a systematic review of serverless applications and
provide useful insights into the current usage of serverless
platforms. Eyk et al. [118] give perspectives on how server-
less computing can evolve and identify adoption challenges.
Lynn et al. [90] give an overview of various features provided
by popular serverless platforms. The aforementioned works
generally take the perspective of a service provider and dis-
cuss the challenges and optimizations that it should introduce
to improve and popularize the FaaS platform and have limited
to no discussion from an application developer’s perspective.

In this paper, we take a closer look at the three aforemen-
tioned aspects of FaaS from an application developer’s per-
spective. We assess previous work related to measurements,
performance improvement, and porting of applications into
the FaaS computing model, and augment this with our own
experimental results and insights. While we mainly take an
application developer’s perspective viewing the FaaS platform
as a closed-loop feedback control system, we also discuss im-
provements and optimizations that a provider can introduce
(as a developer can be a provider too in the case of open-
source FaaS platforms) to provide a more holistic view to the
reader. In this paper, we make the following contributions to
the SoK:

e We categorize the decisions that an application developer
can make during one life cycle of an application into two
categories: one-time decisions and online decisions, and
discuss their performance and cost implications.

e We show that the quick provisioning time, on-demand
scaling, and true “pay as you go” pricing model are key
factors for FaaS adoption for various classes of applica-
tions and discuss potential challenges.

o In Section 7, we discuss the challenges and open issues
that a developer may face while employing FaaS for
her cloud applications. We discuss building tools and
strategies for FaaSification and decomposition of legacy
applications to better suit the FaaS computing model,
optimizing code, tuning resources for serverless applica-
tions, and usage of FaaS in conjunction with other cloud
services for cost savings.

The rest of the paper is organized as follows. We first de-
scribe the FaaS computing model and its important features
(Section 2). We then present a developer’s view of a FaaS
platform as a closed-loop feedback control system (Section 3).
Next, we look at various measurement studies that investigate
different aspects of commercial and open-source FaaS plat-
forms (Section 4). Then we present an economic model of

FaaS (Section 5) and compare it with traditional Infrastructure-
as-a-Service (IaaS), and identify suitable classes of applica-
tions that can leverage serverless computing for its perfor-
mance/cost (Section 6). Lastly, we discuss future challenges
and research directions to make FaaS adoption efficient and
easy (Section 7).

2 Background

Serverless computing was initially introduced to handle less
frequent and background tasks, such as triggering an action
when an infrequent update happens to a database. However,
the ease of development, deployment, and management of
an application and the evolution of commercial and open-
source FaaS$ platforms have intrigued the research community
to study the feasibility of the serverless computing model
for a variety of applications [72, 94, 128, 129]. Moreover,
there are systems whose aim is to help developers port their
applications to a serverless programming model [62, 114].

In a serverless computing model, a developer implements
the application logic in the form of stateless functions (hence-
forth referred to as serverless functions) in the higher-level
language. We show various runtimes supported by popular
FaaS platforms in Table 1. The code is then packaged to-
gether with its dependencies and submitted to the serverless
platform. A developer can associate different triggers with
each function, so that a trigger would cause the execution of
the function in a sandbox environment (mostly containers)
with specified resources, i.e. memory, CPU-power, etc. The
setup time of the sandbox environment is referred to as cold
start. In a typical case, the output of the serverless function
is then returned as the response to the trigger. As serverless
functions are stateless, a developer has to rely on external
storage (like S3 from AWS), messages (HTTP requests) or
platform API [32] to persist any data or share state across
function instances’. The serverless computing model is dif-
ferent from traditional dedicated servers or VMs in a way
that these functions are launched only when the trigger is
activated, while in the traditional model, the application is
always running (hence the term “serverless”).

Serverless computing abstracts away the complexities of
server management in two ways. First, a developer, only
writes the logic of an application in a high-level language,
without worrying about the underlying resources or having to
configure servers. Second, in case the demand for an applica-
tion increases, a serverless platform scales up the instances of
the application without any additional configuration or cost
and has the ability to scale back to zero (discussed in Sec-
tion 4.4). While FaaS platforms provide typical CPU and
memory power to serverless applications, it is their ability
to scale quickly (in orders of milliseconds) that gives them

2Note that most approaches [45,91, 113, 116] to improve the inter-
function/storage communication can only be implemented by the cloud
provider.
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a performance advantage over other cloud services. On the
contrary, in IaaS, an application developer not only has to
specify the additional scaling policies but there can be an
additional cost for deploying such autoscaling services and it
can take up to minutes to scale up.

In Table 1, we show some of the key features provided by
popular commercial Faa$S platforms’. While providing simi-
lar services, specific features can vary significantly from one
platform to another. Generally, these platforms only allow
memory as a configurable resource for the sandbox environ-
ment with the exception of GCF which also allows a developer
to specify the CPU power. AWS Lambda allocates CPU in
proportion to the memory allocated [6]. IBM Cloud Function
seems to have a constant allocation of the CPU share regard-
less of the memory allocation as increasing memory does not
improve runtime significantly [93]. Azure Function does not
allow any configurable resource and charges the user based
on the execution time and memory consumption [11]. While
these platforms initially supported applications written in spe-
cific languages, they currently support more languages and
custom runtimes, making it possible to run any application
using FaaS.

An important feature of the serverless computing model
is that serverless platforms follow the “pay as you go” pric-
ing model. This means a user will only pay for the time a
serverless function is running. This model charges a user
for the execution time of the serverless function based on
the resources configured for the function. A user will not be
charged for deploying the function or for idle times. Even
though all of the cloud providers follow a similar pricing
model, the price for the unit time (Billing Interval) of execu-
tion can vary significantly from one cloud provider to another.

In the serverless computing model, the abstraction of infras-
tructure management comes at the cost of little to no control
over the execution environment (and underlying infrastruc-
ture) of the serverless functions. Depending on the platform,
a user can control limited configurable parameters, such as
memory size, CPU power, and location to get the desired
performance. Since the introduction of serverless platforms,
there has been a large body of research work that aims to
demystify the underlying infrastructure, resource provision-
ing, and eviction policies for commercial serverless platforms.
Besides, these works have also looked at different aspects
of performance, namely cold-starts, concurrency, elasticity,
network, and I/O bandwidth shares. These research studies
are helpful for the research and developer community to find
a suitable serverless platform for their application and also
inspire future research.

3Features listed on official documentation as of 7/30/2021.
AWS Lambda: https://aws.amazon.com/lambda
Azure Functions: https://azure.microsoft.com/services/functions
Google Cloud Functions: https://cloud.google.com/functions
IBM Cloud Functions: https://www.ibm.com/cloud/functions

3 Developer’s View of FaaS

Serverless platforms are largely black-boxes for application
developers, who submit the code of their application (with a
few configurations) and in turn, the code gets executed upon
the specified triggers. A user has little to no control over
the execution environment, underlying resource provisioning
policies, hardware, and isolation. A user has control over
limited configurations through which they can control the per-
formance of their serverless application. In what follows we
categorize the decisions a developer can make for their server-
less applications to get the desired performance or optimize
their cost.

One-Time Decisions: These are the decisions that a devel-
oper can make before developing and deploying an applica-
tion and include selecting the serverless platform, program-
ming language, and location of deployment. These decisions
can be dictated by the features that a serverless platform offers
such as underlying infrastructure, pricing model, elasticity, or
performance metrics — for example, certain languages may
have lower cold-start latency or the location of deployment
can affect the latency to access the application. We believe
changing any of these aspects would incur significant devel-
opment and deployment cost, hence a developer can make
such a decision only once in the life cycle of the application.

Online Decisions: A developer has more freedom to
change other parameters without a serious effort, including
resources (memory, CPU) and concurrency limit. As we show
later in this section, these parameters can affect the perfor-
mance and cost of a serverless application. A developer can
employ a more proactive technique to configure her serverless
function based on the desired performance metric. Configur-
ing these parameters is also important as serverless platforms
provide no Service-Level Objective (SLO), i.e. guarantee
on the performance of the serverless function, and a devel-
oper’s only recourse to get the desired performance is through
the careful configuration of these parameters. Later in Sec-
tion 7, we discuss the challenges of designing proactive ap-
proaches by employing feedback control systems. These
systems would continually monitor the performance of a
serverless application and make these online decisions for
the application, as shown in Figure 1.

There have been several measurement studies conducted by
academic researchers and independent developers that have
attempted to demystify different aspects of commercial and
open-source serverless platforms. These studies help a devel-
oper make one time decisions by identifying the underlying
resources, i.e. operating system, CPUs, virtualization tech-
nique, and by benchmarking various performance aspects of
serverless platforms. Moreover, these studies also look at the
effect of configurable parameters (online decisions) on the
performance and cost of serverless functions establishing the
need to configure these parameters carefully.
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and Python 3.9/3.8/3.7/3.6
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Table 1: Popular commercial FaaS platforms
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Figure 1: Feedback control systems to configure serverless
functions

4 Measurement Studies

In Table 2, we present a classification of previous measure-
ment studies. In this classification, we correlate the decisions
(both one time and online) that a developer or a researcher can
make in terms of picking the serverless platform, scripting
language, and configurations, with different performance as-
pects, such as cold-start delay, runtime, cost, etc. Every cell in
the table indicates the peer-reviewed studies that have looked
at the relationship between the controlled variable (decision)
and the dependent parameters (performance). In what follows,
we describe in greater detail the findings of these measure-
ment studies* and explain the effect of choices on different
performance aspects. As our main focus in this paper is the
main observations and insights of these measurement studies,
we do not discuss other aspects such as the reproducibility of
these studies. To this end, Scheuner and Leitner [106] present
a comprehensive analysis of various measurement studies and
discuss the flaws and the gaps in the FaaS measurement and
benchmarking literature.

4Results of these measurement studies are subjected to changes if cloud
provider decides to update hardware or other policies.

4.1 Cold Starts

This is perhaps the most studied aspect of serverless platforms.
There have been several peer-reviewed studies attempting to
quantify and remedy the effect of cold starts. The cold start
comes from the fact that if a function is not being invoked
recently for an amount of time set by the platform (called in-
stance recycling time, and discussed later in this section), the
platform destroys the sandbox environment (i.e. container) to
free up the resources. On a subsequent new request, the plat-
form will (re-)initialize the sandbox environment and execute
the function, hence an extra delay would be incurred. Studies
have found that cold starts can be affected by various online
and one-time decisions.

o Choice of language: These studies show that usually,
interpreted languages (Python, Ruby, Javascript) have
significantly less (100x) cold-start delays as compared
to compiled runtimes (Java, .NET, etc.) [17, 95, 122].
This can be due to the fact that a compiled runtime, as
in Java, requires the initiation of a compute-intensive
JVM, which can incur significant delay [123]. Another
aspect to consider is that although interpreted languages
may have less of an initial cold start, they suffer from
lower execution performance compared to compiled run-
times [33].

e Serverless provider: Studies have shown that different
providers can have different cold-start delays depending
on their underlying infrastructure or resource provision-
ing strategy [87,95,97,122]. For example, AWS Lambda
tends to place function instances from a user on the same
underlying VM [97, 122], hence causing contention and
increasing the cold start. Similarly, Azure instances are
always assigned 1.5GB of memory, possibly increasing
the cold-start time.

e Resources: Cold start is also impacted by the resources
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Parameters
Control — Serverless Platform Language Memory/CPU | Location
Measured |
Cold Start [45,87,93,95,97,122] [93,95,122] [87,95,122] X
Cost/Performance [45,51,85,87,93,95,97,122] [122] [44,88,122,127] [44,68]
Concurrency [85,87,88,122] [93] X X
I/O throughput [85,122,123] X [44,122,123] X
Network throughput [85,122,123] X [122] X
Instance Lifetime [88,120,122] X [122] X
Underlying Infrastructure [87,122] X [88] X

Table 2: Measurement Studies — each cell identifies the studies establishing relation between the respective column (decision)
and row (performance/platform characteristics) — ‘x’ means no documented relation between decision and performance

available to the function, i.e. memory/CPU [17,95, 122].
This can be because of the fact that more resources lead
to a faster setup of the execution environment [122].

e Code Package: Studies [17,123] have shown that code
package size, i.e. code and the libraries it uses, can
affect the cold-start latency. This is due to the fact that
the bigger the code package size, the longer it will take
to load into memory [78].

The above insights can help a user develop an application in
a particular language, and also configure resources based on
the application’s needs. If an application is latency-sensitive,
a developer may choose to use a scripting language and con-
figure more resources for the serverless function. One has to
be careful with configuring more resources for the serverless
function to remedy cold start, as it can increase the cost of run-
ning the serverless function as explained later in Section 4.3.
Based on the finding reported in [122] on commercial server-
less platforms, AWS Lambda has the least cold-start delays.
Approaches to circumvent the cold start can be divided into
two categories:

1) For serverless platforms: Serverless platforms can im-
prove the cold-start latency by having fast sandboxing tech-
niques, efficient function instance” placement/scheduling and
by keeping the sandbox instances warm for a longer time.
While the last approach can be significantly expensive for
the platform as it can potentially lead to resource under-
utilization (discussed in more detail in Section 4.2), there has
been a significant body of research focused on improving the
cold-start latency through the first two. Advanced container-
management/sandboxing techniques [45,54,63,97,100, 113]
employ container reuse, loose isolation between function in-
stances, and memory snapshotting and restoring to achieve a
cold-start latency that is as low as 10ms or less [113]. Other
approaches suggest optimized routing schemes [43], package-
aware scheduling [49], efficient capacity planning [74] and
reuse of resources [115] to reduce the cold-start latencies.

SFunction instance refers to the sandbox environment executing the code
of a serverless function.

2) For the developers: The aforementioned fast sandbox-
ing approaches will only work if a developer has complete
control over the serverless platform. In case a developer is
using a commercial serverless platform, their approach to
mitigate cold start will be different. In addition to carefully
selecting the language and serverless platform to develop
and deploy their application based on previous findings, they
can also control cold start through carefully configuring re-
sources for the application. There are several articles pub-
lished [2, 18,30,40,86], which suggest certain design changes
in the application to avoid unnecessary cold starts such as
sending dummy requests to the serverless function that per-
form early exit without performing any computation. While
these approaches may keep the function warm, they can also
introduce extra cost (discussed in Section 4.3) as there is a
fixed cost charged for each request and some FaaS platforms
round up the execution time to the nearest 100ms, so even if
the function performs early exit, the user would be charged
some cost. A recent feature from FaaS platforms, such as
AWS Lambda [36] and Azure Function [10], allows their user
to specify a minimum number of function instances to be kept
warm all the time to avoid unnecessary cold starts but a user
is charged for enabling this feature.

Summary: Cold start can be impacted by the virtualiza-
tion techniques and function eviction policies employed
by the serverless platform. From a developer’s perspec-
tive, the impact of cold start can be controlled through
the configurable resources and careful choice of the pro-
gramming language.

4.2 Instance Recycling Time and Lifetime

When a serverless function is first executed, the serverless
platform creates the sandbox environment, loads the func-
tion’s code in it, and executes the code. After the code has
been executed, the sandbox environment is kept in a warm
state for a certain amount of time (called instance-recycling-
time) to serve any subsequent request for the same function. If
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during that time, no subsequent request arrives, the sandbox
environment is terminated so as to reuse the resources. A
serverless platform may decide to terminate the sandbox envi-
ronment after it has been in use for a certain period regardless
of the usage. This time is called instance-lifetime.

Both instance recycling time and instance lifetime are very
critical values to configure for not only the serverless platform
but also for the users. A low value for these variables would
mean that a serverless platform can free the resources quickly
and re-purpose them for other applications while increasing
the utilization of underlying resources, but for users, it can
be devastating as the serverless functions would experience
unnecessary cold starts hence degrading the performance of
their serverless application. For a commercial serverless plat-
form, it can lead to potential revenue loss by losing customers.
While from the user’s perspective, longer values would be
ideal as their application would always find their serverless
functions warm, hence reducing the latencies, but this may
end up reducing the utilization of the underlying resource for
the serverless platform °.

For open-source serverless platforms [26, 111], a user can
configure these values on their own and there have been stud-
ies suggesting using popularity analysis to configure these
values on a per-application basis [73,111]. But in commercial
serverless platforms, these values are decided by the platform
and a user has no control over the instance-recycling-time
and instance-lifetime. There have been several peer-reviewed
studies that looked at this aspect of commercial serverless
platforms. Most of these studies followed a similar technique
to infer the values for instance-recycling-time and instance-
lifetime. Commercial serverless platforms allow a serverless
function to use a limited amount of persistent storage for
the time a sandbox environment is in use. Previous stud-
ies [87, 120, 122] use this storage to store an identifier for the
serverless function when the function is invoked for the first
time. Later they invoke the same function again and check if
the identifier is still present; if it is not, then the sandbox envi-
ronment was destroyed and the latter execution was done in
a new environment. They show that different serverless plat-
forms have different instance-recycling times, with Google
Cloud Function having the longest of all (more than 120 min-
utes). AWS Lambda’s recycling time is reported to be around
26 minutes. The authors could not find a consistent value
for Azure Functions. Another recent study [17] claims this
value to be 20-30 min for Azure Function, 5-7 min for AWS
Lambda, and 15 min for Google Cloud Function. Hence, if a
serverless function stays inactive for this instance-recycling-
time, the subsequent request would incur an extra delay equal
to a cold start.

In an independent study [37], the authors established a rela-
tion between instance-recycling-time and resources (i.e. mem-
ory) configured for the serverless function on AWS Lambda.

6Remember a user does not pay for idle times in serverless computing,
hence this is a lose-lose situation for the serverless platform or cloud provider.

They found that a large value of memory configured for the
serverless function tends to give it a small instance-recycling-
time.

Regarding instance lifetime, in [122], using a similar tech-
nique, the authors found that Azure Function has the longest
instance-lifetime as compared to AWS Lambda and Google
Cloud Function. They also found that in the case of Google
Cloud Function, the lifetime of an instance can be affected by
the resources configured for the function. It is reported that
instance-lifetime of an instance with 128 MB and 2,048 MB
memory is 3-31 minutes and 19-580 minutes, respectively.

Summary: For a serverless function, instance-recycling-
time is decided by the serverless platform. A serverless
platform can employ more pro-active approaches to con-
figure instance-recycling-time based on the application’s
popularity, as suggested in [111]. For an application de-
veloper, a low value for instance-recycling-time would
affect performance by incurring extra cold-start delays.
A developer can reduce the effect of cold starts by care-
fully choosing the language of the application and con-
figurable resources.

4.3 Cost and Performance

The cost of cloud usage for one execution of a serverless func-
tion on a commercial serverless platform p can be calculated
as follows:

coSs Tper_exec = T(m) X C(P, m) + G(P) (1)

where T (m) is the run time of the serverless function given
resources m and C(p,m) is cost per unit time of resources m
from the platform p. G(p) denotes the fixed cost such as API
gateway for AWS Lambda; if there is no fixed cost, G(p) can
be considered zero. Equation (1) shows that the cost of cloud
usage directly depends on the run time of the serverless func-
tion and the price per unit time for resources m [7,11,21,25].
Hence all the factors that can impact the run time of a func-
tion will also impact the cost of cloud usage. To observe

runtime
cost

resources resources

Figure 2: Performance and cost on AWS Lambda

the effect of configurable resources on the performance of
a serverless function, we deployed various (I/O-intensive,
memory-intensive, and CPU-intensive) functions on AWS
Lambda and invoked them with varying resource configu-
rations e.g. memory (more details in [44]). We show the
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observed trends in the performance and cost with respect to
the resources in Figure 2, across all function types. It can
be seen that more resources lead to faster execution of the
serverless function but the performance gain is limited after a
certain point. Note that the performance of I/O-intensive and
CPU-intensive functions also improves with more memory al-
location. It is because of the fact that AWS Lambda allocated
CPU share in proportion to the memory allocated [4]. This ob-
servation also confirms previous findings made in [44,64,93],
which report a similar effect of resources on the performance.

Other factors that can affect the performance are summa-
rized below:

Cold Starts: A serverless platform may decide to terminate
the sandbox environment if it has been inactive for a certain
amount of time, as explained in Section 4.2. Hence, serverless
functions with less frequent invocations may incur the extra
latency of cold start.

Concurrency: Previous studies [85,87, 88, 122] looked at
the effect of concurrency on the performance of serverless
functions and found that the performance can be negatively
impacted by a higher concurrency level. This is due to the
particular resource provisioning policies of the serverless
platforms as reported in [122]. In particular, AWS Lambda
and Azure Function try to co-locate the function instances,
hence causing more contention for resources. Recent work
[108] shows that concurrency configurations can also impact
the performance of serverless functions running on the open-
source serverless platform Knative [27].

Co-location: Previous studies [44, 122] show that co-
location of serverless functions on the same underlying re-
source can also result in significant performance degradation.
Our preliminary experiment on OpenWhisk also confirms
these findings. This is due to the fact that multiple function
instances hosted on the same VM compete for resources such
as disk I/O and network bandwidth, and this competition can
adversely affect performance.

Underlying Infrastructure and Policies: As discussed in
Section 4.6, the underlying infrastructure of commercial
serverless platforms consists of diverse resources, and in ad-
dition to that, resource provisioning policies for the execution
of a serverless function can also vary significantly from one
platform to the other [122]. Hence, these aspects can also
introduce significant uncertainty in performance.

Keeping in mind the tightly coupled nature of performance
and cost of serverless functions, it is really important to find
the “best" configuration of parameters (online decisions), e.g.
memory, CPU, concurrency, such that they not only meet
performance expectations but also optimize the cost of cloud
usage. Previous approaches [44,64,68, 108] use various ma-
chine learning and statistical learning approaches to configure
parameters, e.g. memory, CPU, concurrency and location,
for serverless applications deployed on commercial and open-
source serverless platforms. We discuss these approaches in
more detail in Section 7.3.

Summary: The performance of a serverless function
can be impacted by its configurable resources, choice
of programming language, and the choice of serverless
platform. The usage cost is calculated based on the
configurable resources, the execution time, and the unit-
time cost specified by the serverless platform.

4.4 Concurrency or Elasticity

Concurrency is the number of function instances serving re-
quests for the serverless function at a given time. On-demand
scaling by the serverless platforms — i.e. in case the de-
mand for the serverless application increases, the serverless
platform initializes more function instances to serve these
requests concurrently — is one of the distinct features of the
serverless computing model. Unlike IaaS, a user does not
have to specify the scaling policies, rather the serverless plat-
forms provision more function instances of the serverless
function to cater to increasing demand. Most serverless plat-
forms can scale up to a certain limit and en-queue any sub-
sequent requests until one of the previous requests finishes
execution and resources are freed. A platform’s ability to
scale quickly, and the maximum concurrency level that it
can achieve, can be very critical to applications with fluctu-
ating demand. To observe the maximum concurrency level
that a commercial platform can support, Wang et al. [122]
performed a comprehensive measurement study on three ma-
jor cloud providers: AWS Lambda, GCF, and Azure Func-
tion. They found that out of all three, AWS Lambda was the
best, achieving a maximum concurrency level of 2007, while
GCF and Azure Functions were unable to achieve advertised
concurrency levels. FaaSdom [93], a recent benchmarking
suite for serverless platforms, also found that AWS Lambda
achieves the best latency in the face of an increased request
rate for a serverless application — demonstrating its ability
to quickly scale out. They also found that one time deci-
sions, such as language and underlying operating system, can
also affect the scalability of a serverless application. Another
study [85] found that AWS Lambda and GCF perform better
for varying demand when compared to IBM Cloud Function
and Azure Function. We believe a platform’s inability to
scale well can come from the fact that scale-out is decided
based on measured CPU load, a queue length, or the age of a
queued message, which can take time to be logged. On the
other hand, AWS Lambda launches a new function instance
for a new request if current function instances are busy pro-
cessing requests, as reported in [12,85]. Using this proactive
approach, AWS Lambda can scale out quickly without relying
on any other measured indicator. As elasticity is one of the
most advertised features of serverless computing, commer-
cial serverless platforms are striving to improve their service

7This study was conducted in 2018. We believe higher concurrency levels
can be achieved now given system upgrades.
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by offering higher concurrency limits. AWS Lambda’s re-
cent documentation indicates that concurrency limits have
increased significantly (>3000) and a user can request further
increase [31].

Serverless platforms, such as Apache Openwhisk and Kna-
tive from Kubernetes, allow a user to configure a container-
level concurrency limit, i.e. number of requests that a function
instance can serve in parallel (where each request runs as a
separate thread) [28,35]. On the other hand, Azure Function
allows a user to configure a maximum number of function
instances that can be launched on a single VM to avoid the
possibility of running out of underlying VM resources [13].
Schuler et al. [96] show that the container-level concurrency
limit can affect the application’s performance. They also
suggest an Al-based (reinforcement learning) technique to
configure the concurrency limit for Knative. The fact that a
user can configure this particular concurrency limit on the fly
also makes this limit an online decision. A user should be
careful with configuring the container-level concurrency limit,
as function instances running prior to making the configura-
tion change will keep running with the old configuration (until
terminated by the platform based on its settings), and only the
new instances will assume the new concurrency limit. A user
should wait for the system to be stable with the new configu-
ration (i.e., all function instances with the old configuration
are terminated) before making any further changes.

Summary: Serverless applications can elastically scale
without any additional configurations. The maximum
number of function instances that can run in parallel
is determined by the serverless platform and can vary
based on the cloud provider. Studies have found that
among commercial serverless platforms, AWS Lambda
scales best in terms of throughput.

4.5 CPU, Network and I/O

While using FaaS, a user can only configure certain param-
eters, e.g. memory, CPU-power, location, and concurrency,
other resources such as CPU-, network- and I/O-share are
decided by the serverless platform. In [122], the authors find
that in case there is no contention, empirical results show that
AWS Lambda puts an upper bound on the CPU share for a
function with memory m of 2m/3328, while in the case of
co-location, function instances share the CPU fairly and each
instance’s share becomes slightly less than, but still close to
the upper bound. Similarly, Google also allocates the CPU
share according to the memory allocated to the function. CPU
allocation in proportion to memory assigned to a function is
also specified in AWS Lambda and GCF’s documentation [4].
Contrary to GCF and AWS Lambda, IBM Function does not
allocate the CPU share in proportion to memory allocated to
the function, as reported in [93], rather it keeps it constant as
an increase in memory does not affect the performance of the

function.

On the other hand, with Azure Function, the CPU share
allocated to a function was found to be variable with the
serverless function getting the highest CPU share when placed
on 4-vCPU VMs. Note placement of function instances on
VMs can be random from a user’s perspective. In the case of
co-location, the CPU share of co-located instances can drop.
Similar to CPU share, disk I/O and network performance can
also be affected by the resources configured for the serverless
function and co-location, as reported in [44, 85, 122]. The
performance usually improves when function instances are
allocated more resources [123]. Measuring the network per-
formance of Faa$S platforms can be a challenging task consid-
ering the constantly changing network conditions and the mul-
tiple geographical regions that a developer can choose from,
to deploy her serverless applications. A developer should opt
for a geographical region that is closer to the intended users
to reduce the access latency [123]. Our preliminary experi-
ments also confirm this for the I/O performance, where the
performance of I/O-intensive serverless functions improves
when allocated more memory, as illustrated in Figure 2.

Summary: The CPU, Network, and I/O bandwidth of a
serverless function can be impacted by the co-location
of multiple functions on the same underlying resource
(VM) and the instance placement policies of the server-
less platform. An application developer can run various
benchmarks (or consult measurement studies) to find the
most suitable provider for her application.

4.6 Underlying Infrastructure

In a serverless computing model, a user only focuses on writ-
ing the code, and it is the serverless platform’s responsibility
to execute this code on any infrastructure/hardware. A user
has no control over the underlying resources (types of VM
where the application code would be executed). A developer
may be interested in knowing the underlying infrastructure
where their serverless application would be running to opti-
mize the performance of their applications or to make other
assumptions about the running environment of their applica-
tion.

There have been several studies that tried to demystify the
underlying virtual infrastructure for commercial serverless
platforms. Lloyd et al. [87] discovered that serverless func-
tions have access to the “/proc" file system of underlying
VMs running the Linux operating system. By inspecting
"/proc/cpuinfo", the authors discovered that the underlying
VMs run Amazon Linux [1] and use CPUs that are simi-
lar to those of EC2 instances. Wang et al. [122] went one
step further and using a similar approach, the authors con-
ducted a wide study on all the big commercial serverless
platforms, i.e. AWS Lambda, Google Cloud Function, and
Azure Functions. They found that Google Cloud Function
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successfully hides the underlying resources and the only infor-
mation they could obtain was that there are four unique types
of underlying resources. By inspecting **/proc/cpuinfo” and
“/proc/meminfo”, they found that AWS Lambda uses five
different types of VMs having different vCPUs and memory
configurations, mostly 2 vCPUs and 3.75GB physical RAM,
which is the same as c4.large instances from EC2. The au-
thors also noticed that Azure Function has the most diverse
underlying infrastructure. While inspecting the contents of
“/proc/*", they came across VMs with 1, 2, or 4 vCPUs, and
the vCPU is either Intel or AMD model.

Knowing the underlying infrastructure can be helpful for
developers to identify various performance-related issues.
One example of that could be, a serverless function, run-
ning on Azure Function, placed on a VM with 4 vCPUs, can
have more CPU share as compared to when placed on other
types of VMs. Also, knowing the diversity of the underlying
infrastructure can help the researcher explain the variability
in performance for a given serverless platform.

Summary: Serverless platforms have diverse underlying
infrastructure and this can introduce significant variabil-
ity in the performance of a serverless function even when
executed with the same configurable resources. Careful
selection of the serverless platform by the application
developer, and the usage of more pro-active approaches
such as COSE [44] to dynamically configure resources
for serverless functions, can mitigate this variability in
performance.

5 Serverless Economic Model

As discussed earlier, FaaS platforms provide two main fea-
tures: 1) the ability to scale quickly in the order of millisec-
onds without any additional configuration, and 2) a unique
“pay as you go" pricing model, i.e., a user only pays for the
time the code is executing and not the idle time. The first
feature helps with catering to bursty demands, i.e. when the
demand suddenly increases for a short duration of time. In
this section, we will have a detailed look at the latter feature
and compare it with the traditional IaaS pricing model. [aaS
services like Amazon’s EC2 and Google’s VM, have pricing
models that not only charge based on minutes and seconds
of usage but also have a different price per unit time as com-
pared to their FaaS counterparts. In addition to the price
factor, these VMs take extra labor to configure and maintain.

Previous works [44, 64, 68, 109] use various statistical, ma-
chine learning, and measurement-based methods to build the
per-execution performance and cost model of serverless ap-
plications for a given platform. In this paper, we explain a
more general analytical cost model, which in addition to per-
request cost, considers the overall cost of deployment taking
into account the demand.

Given the execution model of a serverless application for
a certain serverless platform, pricing model, and demand
(request per second), one can estimate the cost of deploy-
ing a serverless application on a commercial FaaS platform.
Similarly, a user can calculate the cost of deploying a cloud
application by renting VMs from a commercial cloud provider.
In [16,103], the authors present an economic model of deploy-
ing an application on commercial serverless platforms (FaaS),
such as AWS Lambda, and compare it with the economic
model when only IaaS resources (VMs) are used to deploy
the application.

Specifically, the cost of FaaS based deployment can be
described as:

N
COSTraas = (cos Tper_exec) )

i=1

where COS T, is the total cost (per second) of running an
application on a serverless platform. This cost depends on
the rate of function invocations (V) and cost per execution
from Equation (1), for platform p and resources m allocated
to each request.

Similarly, the cost for IaaS based deployment (COS Tyaas)
can be calculated as follows:

COSTraas =T 1% Cypu(p) 3

VMrimux

where N is the request arrival rate, VM, ., is the maximum
number of requests that a VM can accommodate without
violating SLO, and Cyy(p) is the cost of renting a particular
virtual machine VM from platform p.

Note, in the above cost models, we do not consider the
free tiers provided by the cloud provider. For example, AWS
Lambda provides 1 million requests per month and 400,000
GB-seconds of compute time per month for free [7].

The key takeaways from the studies in [16, 103], following
the cost models given by (2) and (3), are:

e FaaS platforms are cost-effective to deploy an applica-
tion when the demand (request arrival rate) is below a
certain threshold, referred to as Break-Even Point (BEP).
Beyond BEP, IaaS resources are cheaper to use for their
relatively lower cost per unit time.

e The authors also consider the different execution times
and resources allocated to each request for the appli-
cation on both IaaS and FaaS, and show that resources
allocated for the execution of each request can also affect
the value of BEP. Previous studies such as [44,46,64,68]
address the issue of finding the optimal resources for an
application in the FaaS and the IaaS model.

The cost effectiveness of FaaS for low-rate and bursty com-
putations has been observed and reported by various studies



Journal of Systems Research (JSys)

2021

[42,66,67] and has been leveraged by frameworks like LI-
BRA [103] and Spock [76]. This unique FaaS economic
model has revenue and performance implications for both the
cloud provider and the application developer.

From the cloud provider perspective, serverless applica-
tions are stateless, run for shorter times and a user only pays
for the actual utilization of resources. This is in contrast to
traditional cloud applications which are generally stateful,
run for longer times and a user pays for the lease duration
irrespective of the usage. To maximize its revenue, a cloud
provider may host multiple serverless applications from users
on the same infrastructure and periodically evict applications
based on its policies, as discussed in Section 4.2. Moreover,
the particular pricing model allows a cloud provider to rent
out infrastructure for as little as 1ms. FaaS offering also pro-
vides greater flexibility in terms of selecting/managing the
underlying infrastructure, e.g., operating system, communica-
tion protocols within the datacenter, security measures, and
hardware types [67].

From an application developer’s perspective, there can
be multiple implications of using FaaS. First, there is an
extra cost of building an application for FaaS as a traditional
application may not work in this computing model. Moreover,
depending on the provider, the development of serverless
applications can differ significantly, i.e. code/dependency
packaging is based on the runtime offered. So, a developer
can suffer from vendor lock-in. Second, not only FaaS can
be expensive if the demand stays high for a longer period
of time, some platforms round up the execution time to, say,
the nearest 100ms for cost calculation and a developer may
end up paying for unused compute time, for example, if the
function only runs for S0ms. Also, because of the provider’s
eviction policies, an application may experience frequent
cold-starts, which in turn affect performance and cost. Lastly,
FaaS platforms provide no strict SLO and an application can
suffer from variable performance and outages [42, 107]. So, a
developer should carefully consider all the performance and
cost implications before opting for FaaS.

Summary: Serverless is more economical/efficient for
applications with a low invocation rate and bursty de-
mand. A developer should carefully anticipate the de-
mand for her application and project the cost to decide
whether FaaS is a cost-effective option for her applica-
tion.

6 FaaS Usage

Even though serverless computing is a relatively new
paradigm and still evolving, it has become a popular choice
to deploy cloud applications. We believe that the following
distinct features of serverless computing are the main reasons
for its adoption and increasing popularity.

10

F1 Development Model: FaaS allows developers to build
cloud applications in high-level languages and provides
API/CLISs [29, 38] to package code, along with depen-
dencies, and to deploy it on the platform, thereby facil-
itating CI/CD (continuous integration and continuous
delivery). Most platforms also provide integrated log-

ging systems [5,9, 19,24] for debugging and monitoring.

F2 No Back-end Maintenance: The serverless computing
model offloads all back-end management from the ap-
plication developer to the FaaS platform, which is re-
sponsible for the set-up and maintenance of underlying

resources as well as scalability.

F3 Pricing Model: As mentioned earlier, FaaS platforms
offer a unique “pay as you go” pricing model. A user
does not pay for deploying their application or for idle
times. On the other hand, in an IaaS model, if a user has

rented a VM, she pays regardless of the usage.

F4 On-Demand Scalability: Unlike IaaS, where a devel-
oper has to configure scaling policies, serverless plat-
forms assume the responsibility of scaling an application

in case there is an increase in demand.

F5 Quick Provisioning: Serverless platforms use advanced
virtualization techniques, such as containers, to pro-
vision new instances of the application, which can
be provisioned in the order of 10s of milliseconds
[45,54,63,100,113,122]. This feature allows a serverless
application to scale out, in case of increasing demand,

without suffering from performance degradation.

6.1 Interesting Use Cases

Considering the above development, cost, performance, and
management advantages, FaaS is becoming a popular service
to deploy cloud applications. Developers have employed
FaaS to deploy rather simple DevOps to full production scale
applications [20, 65,82, 110]. We only present here some of
the interesting use cases of serverless computing/FaaS.
Malawski et al. [94] show that AWS Lambda and GCF can
be used to run scientific workflows. Serverless computing
can also be employed to solve various mathematical and op-
timization problems [50, 112, 124]. Moreover, on-demand
computation and scalability provided by serverless comput-
ing can be leveraged by biomedical applications [80, 83, 84].
MArk [128], Spock [76], Cirrus [55] and others [81, 117]
explore deploying various machine learning applications us-
ing FaaS platforms. The authors in [70, 121] leverage the
higher level of parallelism offered by serverless platforms
to train machine learning models. FaaS for its on-demand,
cost-effective computation power and elasticity has also been
explored to deploy stream processing applications [39, 89].
Video processing is one such example, where a user may
want to extract useful information from an incoming video
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stream (video frames), where for each new incoming frame
a serverless function can be spawned. Sprocket, ExCamera
and others [48,71, 129] describe the implementation of video
processing frameworks using serverless functions. Authors
in [59, 101, 102] explore the possibility of using serverless
computing for IoT applications and services. Yan et al. [125]
use serverless computing to build chatbots. Aditya et al. [41]
present a set of general requirements that a cloud computing
service must satisfy to effectively host SDN- and NFV-based
services. Chaudhry et al. [58] present an approach to improve
QoS on the edge by employing virtual network functions
using serverless computing.

Next, we explain the development, deployment, and man-
agement challenges of a FaaS application using ML inference
modeling as an example application.

6.2 ML Inference Models using FaaS

Since the advent of serverless computing, there have been sev-
eral efforts exploring the possibility of using this computing
model to deploy machine learning applications.

ML inference models are one such application, where an
application developer can deploy a pre-trained ML model.
When a user submits her query through an API, the infer-
ence model runs in a cloud service and the result is returned
to the user. For QoS purposes, the inference model should
return the results within a certain amount of time hence the
model execution has an SLO [75]. Traditionally, developers
have employed IaaS and other specific services, e.g., Azure
MLaaS [34], and AWS Sagemaker [8], to deploy such models
but recently, approaches such as MArk [128], Spock [76] and
others [81,117] show that FaaS can also be leveraged for such
applications for its quick provisioning time and pricing model
(pay per request).

To deploy such an application, a developer implements the
model in a high-level language such as Python and submits
this code to the FaaS platform along with any dependen-
cies/libraries [F1]. Usually, these models are Neural Net-
works (NN) and pre-trained models are either packaged with
the code or placed in the external storage (S3 in case of AWS).
When a user submits the query, the code along with the depen-
dencies is loaded into a sandbox, and in case of cold start, it
only takes few milliseconds [F5]. A developer does not have
to worry about the underlying resources where the sandbox
is placed as its managed by the FaaS platform [F2]. Queries
can be submitted via HTTP request or other methods such
as storage event, CLI, SDK, and triggers allowed by the plat-
form. This code then downloads the model from the storage,
processes the query in a serverless function, and the results
are returned to the user or trigger event. A developer does
not pay for the idle time in case the demand goes to zero
and precisely pays for the time the model is serving queries
[F3]. Moreover, when demand increases, the FaaS platform
increases the number of sandbox instances, and scales back
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when demand decreases [F4].

During the development cycle, a developer has to make
decisions related to the language as it can affect performance
(cold-start and elasticity as mentioned earlier). A developer
can also optimize the code by removing the extra dependen-
cies and library code that is not being used by the application
to improve the cold-start latency. Also, the queries have per-
formance requirements (SLO), the amount of resources, such
as memory and CPU, configured for the sandbox environment
is crucial to get the desired performance. Lastly, based on
the query arrival rate, after a certain point, FaaS may not be
the most economical option to process these queries, hence
using an alternate [aaS based deployment can save substantial
costs for a developer. We discuss these challenges and their
possible solutions in the next section.

Summary: The main driving factors for serverless adop-
tion are simple development/deployment model, quick-
provisioning time, on-demand scaling, abstraction of
back-end management, and true “pay as you go” pricing
model. While serverless adoption is increasing, there
are certain challenges that need to be addressed.

7 Developer’s Challenges

In the previous section, we discussed the suitability of the
serverless computing model for various classes of cloud ap-
plications. In this section, we will take a closer look at the
challenges that a developer may face while importing their
application into the FaaS model, and optimizations that can
leverage the serverless computing model efficiently. We will
particularly focus our discussion on the challenges that a de-
veloper can address with limited control (one-time and online
decisions). We will also discuss the state of the art solutions
suggested to tackle these challenges and what remains un-
solved. The discussion and insights presented in this section
can help both the developer and researcher to optimize the
FaaS usage and build new tools.

7.1 FaaSification and Decomposition

FaaS development and computing models significantly differ
from traditional IaaS models. Hence, to deploy a legacy appli-
cation using FaaS, a developer has to translate the application
into this unique model. Recently, there have been approaches
such as [62, 104, 114] that aim to automate this process for
applications written in various languages. As pointed out by
Yao et al. [126], these approaches either work for selected
parts of the application or fail to leverage some of the key
performance benefits offered by FaaS. In particular, these
approaches replace a selected part of an application with a
Remote Procedure Call (RPC) and deploy the selected part
as a serverless function. While helpful to quickly deploy
legacy applications using FaaS, these approaches miss taking
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advantage of the elasticity feature offered by FaaS. We be-
lieve that an ideal FaaSification tool should not only consider
producing the FaaS counterpart of the application but also
leverage the elasticity offered by FaaS platforms. For exam-
ple, through static/dynamic code analysis, the tool should
identify the parts of an application that can be parallelized
and generate corresponding serverless functions.

Now, given a FaaSified version of an application, how can
a developer leverage multiple FaaS platforms to optimize
performance and cost?

FaaS platforms offer diverse features, e.g., elasticity lim-
its, supported languages, configurable parameters, pricing
models, etc. Moreover, as we have seen in Section 4, these
platforms have varying underlying infrastructure and resource
provisioning policies [122]. As a result, the performance and
cost of the same application can vary significantly across dif-
ferent serverless platforms. In [51], the authors show that
serverless functions with different bottlenecks, such as mem-
ory and computation, may have an ideal serverless platform
on which they perform the best. This shows that serverless
platforms are not one-for-all. Considering an application,
which comprises multiple serverless functions with varying
compute, memory, I/O bottlenecks, one platform may not
suit all of the individual functions. We suggest investigating
this idea further, where automated tools may help developers
decompose their application into multiple serverless functions
and then find the ideal serverless platform for each serverless
function. This may require a sophisticated tool to perform
code analysis [53] and measurement tools [93, 127] which
can benchmark serverless platforms for different kinds of
workload/computations.

Moreover, serverless platforms allow users to configure
resources for each component of an application (if deployed
as separate serverless functions), which may not be possible
for a monolithic application deployed over a VM. In [127],
the authors show that decomposing a monolithic application
into multiple micro-services, instead of deploying the whole
application as one unit, can lead to significant performance
and cost gains. The authors also show an example application
where decomposition leads to better performance and less
cost. We also believe that decomposing an application would
allow developers to cost-effectively fine-tune resources for
various parts of the application.

To the best of our knowledge, we did not come across any
previous work that suggests decomposing monolithic server-
less applications across multiple providers to optimize the
cost or performance. Costless [68] is the closest approach that
suggests deploying a serverless application split across two
platforms (edge and core) but it assumes that the application
is already decomposed into multiple serverless functions.

7.2 Code Pruning

Another optimization that a developer can introduce is to
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optimize the code of the serverless application and remove
any extra dependencies or unused library code. Usually, de-
velopers package a whole library along with the code even
when the application is utilizing a small portion of it. This
can adversely affect performance — as the application code
is loaded into the sandbox environment at run time, stud-
ies [15,78] have shown that the code package size can affect
the cold start. Moreover, because the sandbox environment
has limited resources, pruning extra code can also improve
the performance of a serverless application. Nimbus [57]
is one such framework that performs code optimization for
serverless applications written in Java. We believe that this ap-
proach can be extended to other more popular languages used
for serverless applications such as Python and JavaScript.

7.3 Parameter Tuning

On commercial serverless platforms, a user can only specify
limited configurable parameters, such as memory, CPU, and
location, for a serverless function. In Section 4, we discussed
that measurement studies show that these configurable param-
eters can affect the cost of cloud-usage and the performance
of serverless functions. As serverless platforms do not pro-
vide any guarantee (SLO) on the performance of serverless
functions, configuring the parameters becomes even more
crucial to get the desired performance of an application and
optimize cost.

There have been a number of proposals suggesting vari-
ous offline and online techniques to configure these parame-
ters. Costless [68], given a workflow consisting of multiple
functions, proposes a technique to efficiently distribute these
functions across the edge- and core-cloud while reducing the
cost of cloud usage and meeting the performance require-
ment. This approach relies on (one time) profiling of the
performance of a serverless function in the workflow under
possible memory configurations. It suggests suitable config-
urable parameters (memory) based on the profiling results,
however, it fails to capture the dynamicity of the execution
model. In [108], the authors show that the per-container
concurrency limit in Knative can affect the throughput and
latency of serverless functions. They suggest a reinforcement
learning-based approach to find the optimal concurrency limit
for a given deployment of the application. Even though this
approach is adaptive, it only targets configuring the concur-
rency limit, but as discussed earlier, other parameters such
as memory, CPU, and location can also impact performance.
Moreover, we noticed that the authors did not address the
feedback delay issue, which for Knative, in our experience,
can be up to several minutes depending on the configuration.
Sizeless [64] uses resource-consumption data from thousands
of synthetic serverless functions to build a representative per-
formance model. Then, using the performance model and
performance logs of the target function, it suggests the best
memory configuration. This approach may incur significant
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cost overhead for running thousands of synthetic functions to
get the required data to build the performance model. This
approach also requires changes in the serverless application
to collect the performance logs and only targets configuring
memory for a function written in Node.js and deployed over
AWS Lambda.

We believe that an ideal configuration finder should be a
feedback control system, as illustrated in Figure 1, It should
continually monitor the performance of serverless applica-
tions and configure these parameters on the fly if needed.
There are a number of challenges for designing such systems:
1) serverless platforms have varying underlying infrastruc-
ture, resource provisioning policies, sandboxing techniques,
and every time a serverless function is invoked, even with the
same configurable parameters, performance can vary based on
the co-location of functions and underlying resources. This
makes it hard to predict the performance of the serverless
function; 2) Our experiences with GCF and Kubernetes Kna-
tive, show that there can be a significant delay in the feedback
loop, i.e. after the configuration is changed and until the
new configuration takes effect (up to minutes as mentioned in
Section 4.4). This excessive feedback delay can lead to per-
formance instability as the state of the system might change
during that time; 3) The impact of the changes in allocated
resources on the performance of a serverless function can
vary depending on the underlying serverless platform. In our
experiments, we noticed that while an increase in allocated
memory/CPU improves the performance of a serverless func-
tion on AWS Lambda and GCeF, it did not significantly affect
the performance on Apache OpenWhisk and IBM Function.
Maissen et al. [93] make a similar observation about IBM
Cloud Functions.

COSE [44] is an online statistical learning technique to
configure various configurable parameters for delay-bounded
chains of serverless functions or single functions. COSE not
only achieves the desired performance for a serverless appli-
cation but also reduces the cost of cloud usage. It can capture
the dynamic changes in the execution model stemming from
co-location and variable underlying infrastructure. COSE can
be easily adapted for other parameters and platforms because
it works as a stand-alone system that requires no changes
to the serverless application. While COSE addresses most
challenges of parameter configuration, it considers similar
input sizes across multiple function invocations. COSE may
not perform well if the input of the serverless application has
large variations as the input size can affect the execution time.

7.4 Multi-Cloud Usage

Serverless functions are executed in light-weight sandbox
environments, which can be launched in as few as 10s of
milliseconds. So, in case an application experiences a sudden
increase in demand, it can seamlessly scale out to cater to the
increasing demand. This is a feature of serverless comput-
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ing that has been leveraged by previous approaches, such as
MArk [128], Spock [76], and FEAT [99], to hide the SLO
violations for cloud applications deployed using traditional
cloud services such as VMs. These approaches redirect a
portion of the demand to the serverless counterpart of the ap-
plication while scaling up traditional cloud resources which
can take up to minutes to start up. These approaches may
improve the performance of an application by reducing the
number of SLO violations during scaling, at the expense of
introducing a substantial development cost for a developer to
build the serverless counterpart of the application. To reduce
the development cost, a developer can employ an automated
approach to build the serverless version of the application,
similar to the approach suggested in [62, 114]. Another lim-
itation of these approaches is that they suggest a one time
configuration of resources for the serverless version of the
application, which can lead to variations in the performance
as explained in Section 7.3. As the goal of such approaches
is to reduce the SLO violations, this variation in performance
can adversely affect the application.

Load
Balancer

Figure 3: A balanced approach

[
Q

Applications

We believe that in addition to performance, serverless com-
puting also offers a unique pricing model, and as discussed
in Section 5, serverless computing can be cost-effective for
certain demand. For applications with large variations in de-
mand, deploying them on VMs for the periods when demand
is low can lead to sub-optimal cost. We propose to build
a hybrid framework (Load Balancer, as illustrated in Fig-
ure 3) that leverages both aforementioned features of server-
less computing, i.e. performance and economic model, by
using serverless computing as: (1) an alternative to traditional
cloud resources for a certain portion of the demand (consis-
tently instead of only while scaling up VM resources), and
(2) a fallback to the serverless counterpart of the application
when demand is below BEP. To address the performance
uncertainty in the serverless platform, we suggest that in addi-
tion to the multi-cloud framework, the developer should also
employ more pro-active approaches, similar to COSE [44],
to configure resources for the serverless counterpart of the
application. COSE suggests the configuration for a serverless
application that not only reduces the cost of cloud usage but
also meets the specified SLO.

We also believe that serverless functions can be used as an
alternative to VMs to offload the lightweight computations
in a distributed application such as scientific workflows [94],
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where small tasks requiring more concurrency and elasticity
can be implemented as serverless functions while keeping
the tasks with longer computation time and requiring more
resources on VMs. One can leverage the “utilization” of
the computation, i.e. how long the computation is and how
often it needs to be executed, to decide whether the computa-
tion should be directed (and executed) over a dedicated VM
or a serverless platform. The problem is how to optimally
distribute computations to minimize the total cost. This is
a challenging problem given the inherent performance-cost
tradeoffs: VMs are cheaper for high-utilization (long-running
and frequent) computations, on the other hand, serverless plat-
forms are cheaper for low-utilization (short-running and less
frequent) computations and have the advantage of elasticity.

Finally, developers have indeed started to leverage services
from different cloud providers. A case study is presented
in [20], where an invoicing application is built using vari-
ous best-in-class services from different commercial cloud
providers. The application is built using Google’s Al and im-
age recognition services along with two of Amazon’s services
(Lambda and API Gateway).

Summary: During the life cycle of a serverless appli-
cation, a developer has to address various challenges
starting from developing/porting the application in/to a
relatively new programming model. To further optimize,
a developer can also perform application decomposi-
tion and code pruning. She can also rely on various
online/offline techniques to configure resources for her
application to get the desired performance and optimize
cost. Finally, depending on the usage, FaaS may not be
the most economical option to run the cloud application,
hence a multi-cloud scenario can help applications with
fluctuating demand, without compromising on cost and
performance.

8 Conclusion

Serverless computing has gained significant popularity in re-
cent years. It offers an easy development model, back-end
management, along with key performance benefits and a “pay
as you go" pricing model. There is a significant amount
of research articles addressing various aspects of serverless
computing such as benchmarking/improving performance of
commercial and open-source serverless platforms, new vir-
tualization techniques for the execution environment, and
studying the feasibility of serverless computing for a variety
of cloud applications. In this paper, we look at these stud-
ies from an application developer’s perspective and discuss
how these studies can help her make informed decisions re-
garding her serverless application. We argue that serverless
computing is becoming a popular choice to deploy various
cloud applications for its distinct cost and performance bene-
fits. While serverless adoption is pacing up, there are still a
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number of challenges that need to be addressed. We identify
potential challenges and open issues that must be addressed
to make serverless computing a viable option to deploy cloud
applications. We argue that pro-active approaches to config-
ure resources for serverless functions can address the perfor-
mance uncertainty issue, while frameworks to decompose
serverless applications and to leverage various cloud services
at the same time can reduce the operational cost as well as
enhance the performance of cloud applications.
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