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ABSTRACT

Recently, the development of foundation models has garnered attention in sci-
entific computing, with the goal of creating general-purpose simulators that can
rapidly adapt to novel physical systems. This work introduces a mutual trans-
fer learning framework for operator learning by leveraging the diversity of both
model architectures and physical data. First, we introduce Semi-Supervised Mu-
tual Learning for Operators (SSMO) and demonstrate that mutual learning be-
tween architecturally diverse models yields significant improvements in accuracy.
Second, we validate that pre-training an operator on a wide range of physical
dynamics enables substantially more data-efficient and rapid adaptation to new
tasks. Our findings reveal that both cross-architecture mutual learning and cross-
physics pre-training are effective, distinct strategies for developing more robust
and efficient scientific foundation models. We believe that integrating these two
strategies presents a promising pathway toward foundational models for scientific
computing.

1 INTRODUCTION

Neural operators, which learn mappings between infinite-dimensional function spaces, have recently
emerged as a powerful tool in scientific computing (Kovachki et al., 2023). Architectures such as
the Fourier Neural Operator (FNO) and DeepONet have shown impressive performance in solving
entire families of partial differential equations (PDEs) (Li et al., 2020; Lu et al., 2021).

Despite this progress, two significant limitations persist: (1) models often require retraining from
scratch when faced with new physical parameters or operators (Yang et al., 2023), and (2) their gen-
eralization to out-of-distribution (OOD) regimes remains limited (Benitez et al., 2024; Subramanian
et al., 2023).

To address these challenges, recent studies have explored pre-training on diverse physical dynamics,
aiming to build general-purpose simulators that can adapt quickly to previously unseen systems
(Pathak et al., 2022; Rasp & Thuerey, 2021; Yang et al., 2023; Subramanian et al., 2023; Chen et al.,
2024).

To develop more adaptable and data-efficient pretrained neural operators, we investigate two key
aspects: architectural diversity and data diversity.

Architectural diversity leverages the distinct strengths of different model types. For example, FNOs
capture global dynamics via spectral representations, while U-Nets excel at resolving local features
through convolutional structures. Combining such models can enhance accuracy, but direct col-
laboration between heterogeneous architectures is non-trivial—standard techniques, such as Deep
Mutual Learning (DML) (Zhang et al., 2018), rely on probabilistic outputs, which are absent in
deterministic operator learning. This motivates our proposed framework, Semi-Supervised Mutual
Learning for Operators (SSMO), which enables effective mutual learning between diverse architec-
tures.

Data diversity, on the other hand, focuses on pre-training operators across a wide range of physical
systems. This transfer learning approach equips models with a broad understanding of physical
dynamics, enabling them to adapt more efficiently to new tasks with less data.
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In this work, we introduce a novel framework that addresses the limitations of existing operator
learning methods and highlights two distinct strategies:

1. We leverage architectural diversity through Semi-Supervised Mutual Learning for Oper-
ators (SSMO), a framework that enables mutual learning between heterogeneous models.
By comparing pointwise prediction errors relative to the ground truth, SSMO enables each
model to selectively learn from its more accurate peer, thereby improving overall general-
ization.

2. We exploit data diversity via transfer learning, demonstrating that pre-training on a broad
range of physical systems enables models to internalize underlying physical laws, resulting
in faster and more data-efficient adaptation to new PDE tasks without the need for extensive
task-specific retraining.

Our findings reveal that cross-architecture mutual learning (enabled by SSMO) and cross-physics
pre-training are effective and independent strategies for building the next generation of robust and
efficient scientific simulators. This paper introduces a unified framework and provides empirical
evidence supporting both approaches, with subsequent sections detailing the SSMO algorithm, ex-
perimental setup, and quantitative results.

2 RELATED WORK

2.1 NEURAL OPERATORS AND GENERALIZATION

Neural operators aim to learn mappings between infinite-dimensional function spaces and have
emerged as a powerful approach to solving parameterized PDEs (Kovachki et al., 2023). Early
works, such as the Fourier Neural Operator (FNO) (Li et al., 2020) and DeepONet (Lu et al., 2021),
have demonstrated that neural networks can approximate solution operators directly, thereby by-
passing traditional numerical solvers. More recent architectures, including Galerkin Transformers
(Cao, 2021), U-shaped Neural Operators (UNO) (?), and GNOT (Hao et al., 2023), incorporate
transformer mechanisms or hierarchical designs to improve expressiveness.

Despite their success, neural operators often struggle to generalize to out-of-distribution regimes, re-
quiring retraining when physical conditions change. In practice, this often necessitates the repeated
use of traditional PDE solvers, which limits their efficiency as surrogate models.

2.2 MUTUAL LEARNING

Deep Mutual Learning (DML), introduced by Zhang et al. (2018), enables multiple models to collab-
oratively enhance their performance by aligning their probabilistic outputs using KL-divergence. In
contrast to traditional knowledge distillation methods (Hinton et al., 2015), which adopt a static
teacher-student hierarchy, DML facilitates dynamic and reciprocal knowledge exchange among
peer models throughout the training process. Subsequent research has expanded upon this con-
cept: Rényi-divergence-based Mutual Learning (RDML) leverages alternative divergence measures
for improved training convergence (Huang et al., 2023). On the other hand, contrastive mutual
learning incorporates auxiliary contrastive objectives to strengthen feature representations and gen-
eralization capabilities (Yang et al., 2022). Moreover, Dynamic Mutual Training (DMT) integrates
mutual learning principles with pseudo-labeling strategies to enhance model performance in semi-
supervised settings (Feng et al., 2022).

Extending mutual learning into the domain of operator learning, we propose Semi-Supervised Mu-
tual Learning for Operators (SSMO). This framework improves performance by enabling effective
collaborative training among neural operators. Further details and methodology will be presented in
Section 3.

2.3 FOUNDATION MODEL STRATEGIES FOR SCIENTIFIC OPERATOR LEARNING

Limitations of existing operator learning methods, such as poor generalization to unseen regimes
and inefficiency in adapting to new tasks, have motivated research into developing foundation mod-
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els through transfer learning, in-context learning, and pretraining techniques (Benitez et al., 2024;
Subramanian et al., 2023; Chen et al., 2024).

Transfer learning in scientific domains aims to leverage knowledge gained from one set of physical
systems to accelerate learning on new tasks. Pretraining neural operators on large and diverse phys-
ical datasets has been shown to improve data efficiency and generalization (Pathak et al., 2022; Sub-
ramanian et al., 2023; Chen et al., 2024). For example, Context-Aware Neural Operators (CANO)
(Yang et al., 2023) utilize frozen embeddings and condition on inputs to adapt across tasks. Simi-
larly, FourCastNet (Pathak et al., 2022), trained on atmospheric data, demonstrates that foundation
model concepts can be adapted to PDE-like dynamics.

Our work builds on this line of research, demonstrating that diverse physical pretraining acts as an
effective inductive mechanism, enabling faster adaptation with fewer training samples.

3 METHODOLOGY

Our methodology comprises two complementary components: (1) Semi-Supervised Mutual
Learning for Operators (SSMO), a collaborative training scheme that pairs architecturally di-
verse neural operators, and (2) Physics-Pretrained Neural Operators (PPNO), a transfer-learning
pipeline that initializes models on broad physical dynamics and subsequently fine-tunes them for
new PDE tasks.

3.1 LEVERAGING ARCHITECTURAL DIVERSITY — SSMO

Figure 1: SSMO schematic. Two models, G1 and G2, predict outputs for input aj . Point-
wise errors |G1(aj) − GT (aj)| and |G2(aj) − GT (aj)| and signs sgn(G1(aj) − GT (aj)) and
sgn(G2(aj) − GT (aj)) are computed to partition inputs into subsets S1 (where G2 is more ac-
curate and signs differ), S2 (where G1 is more accurate and signs differ), and S3 (where signs are
the same). Losses L1 and L2 are computed as squared differences between model predictions in S1

and S2, respectively, and with ground truth in S3, guiding parameter updates.

3.1.1 BASELINE FORMULATION

Let D ⊂ Rd be a bounded, open set, with Banach spaces:

A = A(D;Rda), U = U(D;Rdu).

Let GT : A → U be a non-linear map. Given observations {(aj , uj)}Nj=1, where aj ∼ µ are i.i.d.
samples from a probability measure µ on A, and uj = GT (aj) (possibly noisy), we define two
parametric approximations:
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G1 : A×Θ1 → U , G2 : A×Θ2 → U ,

where Θ1 and Θ2 are parameter spaces.

For each aj , we compute predictions G1(aj) and G2(aj), evaluating pointwise errors:

|G1(aj)−GT (aj)|, |G2(aj)−GT (aj)|,

and signs:

sgn(G1(aj)−GT (aj)), sgn(G2(aj)−GT (aj)).

We define the following three subsets. Let ∆j(ai) = Gj(ai)−GT (ai), for j = 1, 2. Then:

S1 = {ai | sgn(∆1(ai)) ̸= sgn(∆2(ai)), |∆1(ai)| > |∆2(ai)|} ,
S2 = {ai | sgn(∆1(ai)) ̸= sgn(∆2(ai)), |∆1(ai)| ≤ |∆2(ai)|} ,
S3 = {ai | sgn(∆1(ai)) = sgn(∆2(ai))} .

The subsets partition inputs based on relative error magnitudes and sign differences, enabling G1 to
learn from G2 in S1 (where G2 is more accurate), and vice versa in S2, with both models learning
from ground truth in S3.

Parameters are updated by minimizing:

L1 =
1

|S1|
∑
a∈S1

(G1(a)−G2(a))
2 +

1

|S3|
∑
a∈S3

(G1(a)−GT (a))
2,

L2 =
1

|S2|
∑
a∈S2

(G1(a)−G2(a))
2 +

1

|S3|
∑
a∈S3

(G2(a)−GT (a))
2.

The first term encourages models to align predictions where one is more accurate, while the second
ensures alignment with ground truth when errors have the same sign. Equal weighting (1/|Si|)
balances contributions, empirically tuned for stability.

3.1.2 SEMI-SUPERVISED LEARNING

SSMO is semi-supervised, as ground truth is used only to compare model errors for forming S1 and
S2, not in the loss terms. This contrasts with the general supervised loss:

General loss: L =
1

|A|
∑
a∈A

(G1(a)−GT (a))
2
,

Our loss: L1 =
1

|S1|
∑
a∈S1

(G1(a)−G2(a))
2

+
1

|S3|
∑
a∈S3

(G1(a)−GT (a))
2
.

The first term is unsupervised, and the second term is supervised in our loss. Thus, we can give
more weight to the part that needs to learn more information, such as S1, by comparing G1(a) and
G2(a).

3.1.3 REDUCING OVERFITTING

We reduce overfitting by selectively using information. For example, when computing
L1, we exclude points where G1 is more accurate than G2 (i.e., {ai : sgn(∆1(ai)) ̸=
sgn(∆2(ai)), |∆1(ai)| ≤ |∆2(ai)|}). SSMO provides meaningful information to G1 and G2 by
comparing predictions, mitigating overfitting to ground truth.
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Figure 2: Reducing Overfitting. As shown in Figure 2, we reduce overfitting by freezing the con-
nections (red lines) to the better-performing output during training. This means that the model does
not update weights that contribute to the already accurate prediction. Instead, learning is focused
on the worse-performing part, encouraging the model to improve where it is weak and preventing it
from overfitting to what it already does well.

Algorithm 1 Semi-Supervised Mutual Learning for Operators
Input: Training pairs {(ai, ui)}Ni=1, learning rate γt, tolerance rate ε
Parameter: Θ1, Θ2 for models G1, G2

Output: Trained models G1, G2

1: Let t = 0.
2: while L1 < ε do
3: t← t+ 1
4: Sample mini-batch {(aj , uj)}
5: for each aj in mini-batch do
6: Compute predictions: û1 = G1(aj), û2 = G2(aj)
7: Compute errors: e1 = |û1 − uj |, e2 = |û2 − uj |
8: Compute signs: s1 = sgn(û1 − uj), s2 = sgn(û2 − uj)
9: Assign aj to S1, S2, or S3 based on e1, e2, s1, s2

10: end for
11: Compute losses L1, L2 using Equations (5) and (6)
12: Update: Θ1 ← Θ1 − γt

∂L1

∂Θ1

13: Update: Θ2 ← Θ2 − γt
∂L2

∂Θ2

14: end while
15: return G1, G2

3.1.4 OPTIMIZATION

SSMO is applied in each mini-batch during training. At each iteration, predictions from G1 and G2

are computed, and parameters are updated to minimize L1 and L2 (Equations 5 and 6). The process
continues until convergence, as detailed in Algorithm 1.

3.2 EXPLOITING PHYSICAL-DATA DIVERSITY — PPNO

To leverage the knowledge contained in diverse physical systems, we propose the Physics-Pretrained
Neural Operator (PPNO) pipeline. This is a two-stage transfer learning framework designed to build
a foundational understanding of physical laws that can be rapidly adapted to new tasks.

1. Pre-training Stage: A committee of expert operators is trained on a wide range of funda-
mental PDE families to learn a robust set of ”physical priors.”

2. Fine-tuning Stage: The knowledge from these pre-trained experts is then transferred to
a novel, unseen target task. We employ a specialized ensemble method where the pre-
trained experts are frozen, and a small, trainable error-correction model learns the residual
dynamics of the new system.

5
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This framework is designed to overcome the limitations of task-specific training by improving the
data efficiency and transferability of neural operators. The empirical validation of the SSMO and
PPNO frameworks is presented in Section 4.1 and Section 4.2, respectively.

4 EXPERIMENTS AND RESULTS

4.1 SSMO

4.1.1 4.1.1 DATASETS AND MODELS

Burgers’ Equation: We consider the 1D viscous Burgers’ equation on the spatial domain (0, 1) and
time interval t ∈ (0, T ]:

∂tu(x, t) + u(x, t) ∂xu(x, t) = ν ∂xxu(x, t),

x ∈ (0, 1), t ∈ (0, T ].

We impose periodic boundary conditions:

u(0, t) = u(1, t), ∀t ∈ (0, T ],

and the initial condition:

u(x, 0) = u0(x), x ∈ (0, 1).

Here, u(x, t) denotes the velocity field, ν > 0 is the viscosity coefficient, and u0(x) is the initial
condition sampled from a given distribution (e.g., Gaussian processes or smooth random fields). The
spatial domain is periodic, i.e., x ∈ T1 (1D torus).

Darcy Flow: We consider the steady-state 2D Darcy Flow equation on the unit box, a second-order,
linear, elliptic PDE:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2.

where a ∈ L∞((0, 1)2;R+) is the diffusion coefficient and f ∈ L2((0, 1)2;R) is the forcing func-
tion.

4.1.2 MODELS

We evaluate three architectures, selected for their complementary strengths: FNO excels in cap-
turing global PDE dependencies, U-Net leverages convolutional efficiency for local patterns, and
DeepONet offers a flexible framework for learning nonlinear operators:

Fourier Neural Operator (FNO) (Li et al., 2020): Uses Fourier transforms to approximate mappings
between function spaces, ideal for PDEs.

U-Net: A convolutional neural network with a U-shaped architecture, widely used in image tasks
(Ronneberger et al., 2015).

DeepONet: A neural operator framework that represents operators as compositions of branch and
trunk networks, enabling learning from function-input pairs (Lu et al., 2021).

4.1.3 EXPERIMENTAL SETUP

We use datasets consisting of 1,000 training and 100 test samples for both the 1D Burgers’ equa-
tion and 2D Darcy Flow, obtained from Kaggle and the neuralop.datasets module of the
neuralop Python library (v1.0.2), respectively (Kossaifi et al., 2024). The baseline model (FNO)
is implemented using neuralop, ensuring standardized architectures and data preprocessing (Kos-
saifi et al., 2024). The other models are implemented independently. Model architectures are de-
scribed in Section A.1.
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Figure 3: Figure 3 presents a representative example comparing the independently trained FNO and
U-Net models with their counterparts trained using the SSMO framework. The plot shows the test
MSE loss evaluated from epoch 200 to 1000, illustrating the performance improvement achieved by
SSMO.

All models are trained using the Adam optimizer with an initial learning rate of 0.001 for 1,000
epochs. Mini-batch sizes of 32 and 16 are used for the Burgers’ and Darcy Flow datasets, respec-
tively. Training is conducted on an NVIDIA RTX 6000 GPU. Mean Squared Error(MSE) Loss (%)
is computed as:

MSE Loss =
∑N

i=1(ûi − ui)
2

N
× 100,

where û is the predicted solution and u is the ground truth.

4.1.4 4.1.2 RESULTS ON BURGERS’

Table 1 reports the MSE loss (%) on the Burgers’ dataset. Across all model pairs, SSMO consis-
tently reduces errors compared to independent training, with improvements ranging from 0.002% to
0.12%. The most substantial gains are observed in heterogeneous model pairs (e.g., FNO & Deep-
ONet), likely due to their complementary representational capacities. In contrast, homogeneous
pairs (e.g., U-Net & U-Net) show worse gains. This may be because models with identical archi-
tectures tend to extract similar features, limiting the benefit of mutual knowledge exchange. These
findings suggest that architectural diversity plays an important role in enhancing the effectiveness of
SSMO, and leveraging complementary inductive biases may be key to maximizing performance.

Table 1: MSE loss (%) on the Burgers’ dataset.
Model Types Independent SSMO

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

FNO FNO 0.020 0.020 0.018 0.018
U-Net FNO 2.63 0.020 2.57 0.012
DeepONet FNO 0.43 0.020 0.32 0.007
U-Net U-Net 2.63 2.63 2.65 2.65
DeepONet U-Net 0.43 2.63 0.34 2.57
DeepONet DeepONet 0.43 0.43 0.33 0.33

7
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4.1.5 4.1.3 RESULTS ON DARCY FLOW

Table 2 reports the MSE loss (%) on the Darcy Flow dataset. Across all model pairs, SSMO con-
sistently reduces errors compared to independent training, with improvements ranging from 0.02%
to 1.262%. The most substantial gains are observed in heterogeneous model pairs (e.g., U-Net &
FNO), likely due to their complementary representational capacities. In contrast, homogeneous
pairs (e.g., U-Net & U-Net) show similar gains with the independent case. This may be because
models with identical architectures tend to extract similar features, limiting the benefit of mutual
knowledge exchange. These findings suggest that architectural diversity plays an important role in
enhancing the effectiveness of SSMO, and leveraging complementary inductive biases may be key
to maximizing performance.

Table 2: MSE loss (%) on the Darcy Flow dataset.
Model Types Independent SSMO

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

FNO FNO 0.320 0.320 0.283 0.285
U-Net FNO 1.33 0.320 0.075 0.204
DeepONet FNO 1.01 0.320 0.99 0.198
U-Net U-Net 1.33 1.33 1.33 1.33
DeepONet U-Net 1.01 1.33 0.99 0.068
DeepONet DeepONet 1.01 1.01 0.97 0.97

4.2 PPNO

4.2.1 4.2.1 EXPERIMENTAL SETUP-PPNO

4.2.2 DATASETS

Our experiments utilize both existing benchmarks and newly generated data.

• Pre-training Datasets: For the PPNO framework, we use 1D datasets from the PDEBench
benchmark (Takamoto et al., 2022). We specifically train three expert models on the Ad-
vection, Diffusion, and Burgers’ equation datasets, respectively, to form our committee of
experts (GAdv , GDiff , GBurgers).

• Fine-tuning Datasets:To evaluate the adaptability of our frameworks, we use three unseen
target tasks chosen for their distinct physical properties: the Kuramoto-Sivashinsky (K-S)
equation for its chaotic dynamics, the Wave Equation for its linear, second-order nature,
and the Korteweg-de Vries (KdV) equation for its solitonic behavior. We generated the
data for these tasks using high-fidelity pseudospectral numerical solvers.

4.2.3 ARCHITECTURES

For our experiments, we employ the one-dimensional Fourier Neural Operator (FNO1d) as our pri-
mary architecture. The FNO is selected for its strong performance in capturing global dependencies
through operations in the frequency domain, which is well-suited for modeling the dynamics of
PDEs.

4.2.4 IMPLEMENTATION OF PROPOSED FRAMEWORKS

• SSMO Implementation: In experiments testing architectural diversity, an FNO and a U-
Net are trained collaboratively on a single PDE task using the SSMO loss functions, as
defined in Section 3.1.

• PPNO Fine-tuning Implementation: For the transfer learning experiments, we adapt the
pre-trained experts (GAdv , GDiff , GBurgers) to the target task. The final adapted model,
GAdapted, is defined as:

GAdapted(a) = GEnsemble(a) +GError(a;ϕ),

where GEnsemble(a) =
∑

i wiGexpert,i(a) is the prediction from the frozen expert com-
mittee, and GError is a small, trainable operator parameterized by ϕ that learns the residual
dynamics. Only the parameters ϕ are updated during fine-tuning.

8
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4.2.5 EVALUATION

We benchmark our proposed frameworks against a standard baseline: an identical operator archi-
tecture trained from scratch on the same (often limited) target dataset. Performance is primarily
evaluated based on the relative L2 error. We also analyze data efficiency by comparing the perfor-
mance of fine-tuned models on small fractions of the target data against the baseline.

4.2.6 4.2.2 EXPERIMENTAL RESULTS

This section presents the empirical results for our proposed transfer learning strategy, the Physics-
Pretrained Neural Operator (PPNO) framework. We demonstrate the benefits of leveraging data
diversity for adapting to novel PDE tasks.

4.2.7 4.2.3 DATA DIVERSITY: PPNO PERFORMANCE

The core hypothesis of the PPNO framework is that pre-training on diverse physical dynamics en-
hances data efficiency and adaptability. We test this by fine-tuning our committee of pre-trained
experts on the unseen KdV equation, using varying fractions of the available training data. Our
results on PPNO are detailed in Appendix ??.

5 CONCLUSION AND FUTURE WORK

This paper introduces SSMO, a novel semi-supervised mutual learning framework for operator
learning, addressing the challenge of adapting DML to tasks with single-value predictions. Experi-
ments on Burgers’ and Darcy Flow datasets demonstrate that SSMO reduces MSE Loss by 0.002%
to 1.262% across diverse model pairs. These results highlight SSMO’s ability to enhance model
collaboration and mitigate overfitting, particularly when combining architecturally distinct models
like U-Net and FNO.

SSMO’s significance lies in enabling knowledge sharing in operator learning, where traditional
DML is inapplicable due to the lack of prediction distributions. By using ground truth only for
error comparison, SSMO aligns with semi-supervised learning, reducing dependency on labeled
data. However, limitations include reliance on ground truth for the subset(e.g.S3). Future work
could explore unsupervised variants of SSMO, extend the framework to 3D PDEs, or apply it to
non-operator tasks like time-series forecasting, where predictions can be treated as time-dependent
functions. Incorporating multiple models for ensemble-like learning could further enhance perfor-
mance.
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A APPENDIX

A.1 MODEL ARCHITECTURES

Model architectures for 4. Experiments and Results
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A.1.1 FOURIER NEURAL OPERATOR (FNO)

• Input: (B, 3, H ×W ), e.g., (B, 3, 4096) for 64× 64 grids
• Input lifting: Conv1d(3, 128)→ ReLU→ Conv1d(128, 64)

• FNO Blocks (4 layers):
– SpectralConv: 4 × SpectralConv(64, 64), weight shape: [64, 64, 12, 7]
– Skip Connections: 4 × Conv1d(64, 64, kernel=1)
– Channel MLPs: 4 × Conv1d(64, 32)→ ReLU→ Conv1d(32, 64)
– Soft Gating: 4 × SoftGating

• Projection: Conv1d(64, 128)→ ReLU→ Conv1d(128, 1)

A.1.2 UNET

• Input: (B, 1, H,W ), e.g., (B, 1, 64, 64)

• Encoder:
– enc1: Conv2d(1, 64)→ ReLU→ Conv2d(64, 64)→ ReLU
– enc2: Conv2d(64, 128)→ ReLU→ Conv2d(128, 128)→ ReLU
– enc3: Conv2d(128, 256)→ ReLU→ Conv2d(256, 256)→ ReLU

• Middle Block: Conv2d(256, 512)→ ReLU→ Conv2d(512, 512)→ ReLU

• Decoder:
– upconv3: ConvTranspose2d(512, 256)
– dec3: Conv2d(512, 256)→ ReLU→ Conv2d(256, 256)→ ReLU
– upconv2: ConvTranspose2d(256, 128)
– dec2: Conv2d(256, 128)→ ReLU→ Conv2d(128, 128)→ ReLU
– upconv1: ConvTranspose2d(128, 64)
– dec1: Conv2d(128, 64)→ ReLU→ Conv2d(64, 64)→ ReLU

• Final: Conv2d(64, 1)

• Pooling: MaxPool2d(kernel=2)

A.1.3 DEEPONET

• Input:
– Branch Net: (B, 16384), e.g., flattened 2D function sampled on 128× 128 grid
– Trunk Net: (B, 2), coordinate queries (e.g., (x, y))

• Branch Network (MLP):
– Linear(16384, 200)→ ReLU
– Linear(200, 200)→ ReLU
– Linear(200, 100)

• Trunk Network (MLP):
– Linear(2, 200)→ ReLU
– Linear(200, 200)→ ReLU
– Linear(200, 100)

A.2 TARGET PDE FORMULATIONS AND NUMERICAL SCHEME

The data for the three unseen target tasks were generated using a pseudospectral method, which
is well-suited for periodic boundary conditions and provides high accuracy. This method utilizes
the Fast Fourier Transform (FFT) to compute spatial derivatives in the frequency domain. Time
integration was performed using the solve-ivp function from SciPy with a fourth-order Runge-Kutta
(RK45) scheme.

The governing equations are defined on a spatial domain x ∈ [0, L] with periodic boundary condi-
tions.
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A.2.1 KURAMOTO-SIVASHINSKY (K-S) EQUATION

A non-linear equation known for chaotic behavior, given by:

∂tu+ u∂xu+ ∂xxu+ ∂xxxxu = 0

A.2.2 WAVE EQUATION

A linear, hyperbolic PDE with a second-order time derivative:

∂tu = c2∂xxu

where c is the wave speed. For the numerical solver, this was reformulated as a system of two
first-order equations.

A.2.3 KORTEWEG-DE VRIES (KDV) EQUATION

A non-linear equation modeling solitonic waves, notable for its third-order spatial derivative:

∂tu+ 6u∂xu+ ∂xxxu = 0

B EXPERIMENT DETAILS

In this section, we present detailed results on fine-tuning tasks on the PPNO framework. Table 3,
show a clear advantage for the PPNO approach. When fine-tuned on only 10% of the target data, the
PPNO model already outperforms the baseline model trained on the full dataset. This demonstrates a
significant improvement in data efficiency. Furthermore, as illustrated in Figure 4, the PPNO model
converges much more rapidly and to a lower final error, confirming that the pre-trained physical
priors provide a powerful foundation for adapting to new tasks.

Table 3: Relative L2 error (%) on the KdV equation for the PPNO framework compared to a baseline
FNO trained from scratch.

Training Data Scratch FNO (%) PPNO (Proposed) (%)

1% 35.82 15.23
10% 18.45 8.91
100% 9.12 6.77
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Figure 4: Example learning curves on the KdV task (10% data). The PPNO model (blue) converges
significantly faster and to a lower error compared to the model trained from scratch (orange), high-
lighting the benefits of pre-training.
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