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ABSTRACT

Adversarial training (AT) has become a dominant defense paradigm by enforcing
the model’s predictions to be locally invariant to adversarial examples. Being a
simple technique, Label smoothing (LS) has shown its potential for improving
model robustness. However, the prior study shows the benefit of directly combining
two techniques together is limited. In this paper, we aim to better understand the
behavior of LS and explore new algorithms for more effective LS on improving
adversarial robustness. We first show both theoretically and empirically that strong
smoothing in AT increases local smoothness of the loss surface which is beneficial
for robustness but sacrifices the training loss which influences the accuracy of
samples near the decision boundary. Based on this result, we propose surface
smoothing adversarial training (SSAT). Specifically, much stronger smoothness is
used on the perturbed examples farther away from the decision boundary to achieve
better robustness, while weaker smoothness is on those closer to the decision
boundary to avoid incorrect classification on clean samples. Meanwhile, LS builds
a different representation space among data classes in which SSAT differs from
other AT methods. We study such a distinction and further propose a cooperative
defense strategy termed by Co-SSAT. Experimental results show that our Co-SSAT
achieves the state-of-the-art performances on CIFAR-10 with `∞ adversaries and
also has a good generalization ability of unseen attacks, i.e., other `p norms, or
larger perturbations due to the smoothness property of the loss surface.

1 INTRODUCTION

Adversarial examples (Szegedy et al., 2014; Biggio et al., 2013) are ubiquitous in Deep Neural
Networks (DNNs), incurring attacking risks across various areas from classification (Goodfellow
et al., 2015), object detection (Chen & Martin, 2018) and especially face recognition (Song et al.,
2021). Among the techniques for improving robustness of DNNs against adversarial examples (Xu
et al., 2018; Samangouei et al., 2018; Meng & Chen, 2017), adversarial training (AT) (Madry et al.,
2018) has shown its dominance via solving a min-max game through a conceptually simple process:
train the model on adversarial examples rather than clean samples. Since adversarial examples are
crafted around the original input, AT trains a robust model whose predictions are locally invariant
to a neighborhood of its inputs, i.e. smoothing the local loss surface. Based on the idea of local
smoothness, many adversarial training methods are proposed to further improve model robustness,
such as TRADES (Zhang et al., 2019) which minimizes the difference between the prediction of the
original model and robust model, and LLR (Qin et al., 2019) which designs a novel regularization
method to increase the local linearity of the loss surface.

Label smoothing (LS), as a popular way of regularization, recently shows its potential in improving
model robustness (Shafahi et al., 2019a; Pang et al., 2021; Stutz et al., 2020). Then it is attractive
to combine LS with adversarial training (AT) to achieve even better robustness. However, Pang
et al. (2021) shows the limited benefit of such a combination. These intriguing results motivate us to
consider: Why LS can improve model robustness? But why does LS in AT NOT work well?

For the first question, we theoretically show that LS can smooth the loss surface through narrowing
bounds of local gradients of models w.r.t adversarial perturbations. Then we design an input-specific
adaptive LS strategy to smooth the loss surface efficiently and achieve higher robustness.
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For the second question, we discover that LS has a side-effect of lifting the whole loss surface.
Since adversarial examples are more likely to be misclassified than clean ones, LS would push
those adversarial examples closer to the decision boundary and even cross it. Therefore, we propose
a heuristic AT method, i.e., surface smoothing adversarial training (SSAT), applying an adaptive
LS to each adversarial example based on its distance towards the decision boundary. Specifically,
stronger smoothness is imposed on the perturbed examples closer to the clean samples to achieve
better smoothness because it’s less likely to find its adversarial perturbation that can mislead model’s
decision. Second, weaker smoothness is given on the perturbed example closer to the original decision
boundary. Otherwise, raw hard labels are kept for the rest of adversarial examples which cross the
decision boundary to alleviate the cost of LS.

The recent study (Müller et al., 2019) empirically shows that LS enforces the examples of the same
class group in a tighter cluster, separating equidistantly from all the other classes’ examples compared
to those without LS. Since adversarial examples fool classifiers by perturbing original representations,
we assume that our SSAT works fundamentally differently from other AT methods in terms of defense.
Our further evidence shows that responses of SSAT to targeted and untargeted attacks are distinct to
each other and SSAT shows better robustness against untargeted attacks to targeted attacks. Following
this result, we propose cooperative SSAT (Co-SSAT), i.e., SSAT cooperates with another robust
classifier against various adversaries together. Experiments show that Co-SSAT fully exploits each of
its models to defend against different types of adversarial attacks and Co-SSAT boosts SSAT.

Our contributions are in four-folds: 1) We first analyze the theoretical relationship between LS
and loss surface smoothing and demonstrate our statement through statistical analysis; 2) Based on
our theoretical analysis, we propose a new AT method, i.e., SSAT (Surface Smoothing Adversarial
Training). 3) We further study differences between SSAT and other AT methods and propose the
cooperative defense strategy, i.e., Co-SSAT against multiple adversaries together. 4) Empirically, our
Co-SSAT achieves the state-of-the-art robustness on CIFAR-10. We show that our model can also
successfully defend attacks outside the `p bounded ball which otherwise can hardly be handled by
other AT methods.

2 BACKGROUNDS AND RELATED WORKS

Adversarial training. Adversarial training (Madry et al., 2018) trains classifiers on the adversarial
examples instead of clean data to improve model robustness. Specifically, given a K-class dataset
D = {(x,y)} with input x and one-hot label y (and ground truth ygt), the problem can be formulated:

min
θ
Ex,y max

‖δ‖p≤ε
L (fθ(x+ δ),y) , (1)

where ε means the radius of the `p ball centered at the clean training sample x, fθ(·) represents the
neural network with parameters θ, and L(·) is the cross-entropy loss.

We adopt the framework of free adversarial training (Shafahi et al., 2019b), in which the training
process leverages the adversarial example from every iteration in a PGD attack. This framework
naturally fits our goal of building a local smooth loss surface: during the iterative process, these
intermediate adversarial examples gradually converge to the decision boundary. Thus we assign an
adaptive LS degree to each of the following such optimization trajectories from the original data
point to its decision boundary (even across the boundary), resulting in a more smooth loss surface.

Label smoothing for robustness. LS converts ‘one-hot’ label vectors into ‘soft’ vectors with a
low-confidence classification, as a common technique to reduce over-fitting on general classifications.
For a K-class classification problem, the one-hot label vector y can be smoothed by:

ys = y − s× (y − 1/K) , (2)

where s ∈ [0, 1] controls the smoothing level. We can get a hard decision vector without smoothing
when s = 0, while s = 1 represents the uniform choice of labels. To our knowledge, (Shafahi et al.,
2019a) first uses LS to mimic the mechanism of AT, which shows the great potential for improved
robustness. Later, (Pang et al., 2021) explores a bag of techniques of AT and finds only a narrow
range of smoothing degrees has limited benefit for robustness, but in our experiments, a slightly
larger or smaller degree is ineffective or even failed, (see Fig. 6). (Cheng et al., 2020) design an
adaptive strategy in adjusting the decision boundary and adopts simple LS with it together to get
good results. However, few studies have explored why LS is effective to improve robustness, and why
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simply combining LS with AT cannot work. In this paper, we try to fill these two gaps and propose
our model and theory to improve the robustness.

3 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of the relationship between label smoothing(LS) and
model robustness. We first define the loss surface smoothness, then prove that LS builds a smoother
loss surface, and thus improves model robustness.

3.1 LOSS SURFACE SMOOTHNESS

Given a loss function L(·) and ∀ (x,y) ∈ D, we use the bound of local gradients with respect to x to
represent the smoothness of the loss surface. Suppose a small perturbation in the neighborhood of
the original inputs, the bounded local gradient indicates the bounded change of the loss. That is to
say, even the attacker has the access to the gradients, it becomes harder for the attacker to fool the
classifier if the bound of the local gradient is tighter. Conceptually, it is consistent with the argument
that smoothness is an indispensable property of robust models (Cisse et al., 2017).

In the next subsection, we will illustrate that given an (x,y), two classifiers fθ and fθ̃ trained by the
cross-entropy (CE) loss L(·) without and with LS respectively, the loss surface with LS is smoother
than that without LS, which is specified as:

|∂L(x,y, θ̃)
∂xi

| < |∂L(x,y, θ)
∂xi

| (3)

for the dimension i = 1, 2, . . . , n. Here n is the total number of dimensions for x.

3.2 RELATIONSHIP BETWEEN LS AND LOSS SURFACE SMOOTHNESS

Let p̃ denote the prediction confidence of fθ̃, z̃ denote its logit representation (before softmax
activation). Likewise, p denotes the prediction confidence of fθ. Based on Eq. 2, s is the label
smoothing degree, t is the index of the ground-truth label and K is the number of classes.
Lemma 1. Optimizing CE loss L(·) with the soft label ys is a logit regularization problem:

min
θ̃
L(x,ys, θ̃) = min

θ̃
L(x,y, θ̃) + s ·RK(θ̃) (4)

where the regularization term is RK(θ̃) = 1
K

∑
i 6=t(z̃i − z̃t).

Lemma 1 shows that LS acts as a regularizer, constraining the margin between any logit z̃i (i 6= t)
and z̃t . As such, a strong label smoothing degree s refrains the bound of {∇xz̃i, i ∈ [K]} from being
enlarged. We further corroborate it by empirically estimating local Lipschitzness of our classifier fθ̃
based on (Yang et al., 2020). The detailed results and analyses are given in Appendix B.

Remark: Lemma 1 also reveals that such a regularization term penalizes model’s over-fitting on
ground-truth label, i.e., lowering confidence on true label. As such, under the same perturbation δ,
x+ δ is easier to cross the boundary of fθ̃ than that of fθ. That is to say, LS may harm the accuracy
of samples near the decision boundary. This guides the design of adaptive LS (see Eq. 6 and 7) to
alleviate such cost.
Theorem 1. Label smoothing improves loss surface smoothness by narrowing bounds of loss gradi-
ents w.r.t inputs, as stated in Eq. 3.

According to the chain rule, the gradients of L(·) w.r.t x can be derived as: ∂L(x,y,θ̃)
∂x =

∑
i(p̃i −

yi) · ∇xz̃i = (p̃− y) · ∇xz̃, where
∑
i p̃i = 1, yt = 1. We analyze the relationship between ∇xz̃

and ∂L(x,y,θ̃)
∂x and prove that if the bound of ∇xz̃ shrinks as stated in Lemma 1, we can obtain a

tighter bound of ∇xL(x,y, θ̃) than that of ∇xL(x,y, θ), and as a result, achieve a smoother loss
surface. The proof is given in Appendix A.

4 METHODOLOGY: SURFACE SMOOTHING ADVERSARIAL TRAINING
Based on the above analysis, label smoothing is used for AT to obtain a smooth loss surface at the
cost of lower confidence on the true label. As a result, we design a novel adaptive LS technology for
adversarial training, i.e., Surface Smoothing Adversarial Training (SSAT), as detailed in Alg. 1. In
this section, we show the learning objective of SSAT as well as its algorithmic implementation.
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4.1 OBJECTIVE DESIGN

Let ỹ(δ∗) be the adaptive LS function on the hard label y. We modify the framework of vanilla AT
and propose our objective of SSAT as follows:

min
θ
E(x,y)L (fθ(x+ δ∗), ỹ(δ∗))

δ∗ = arg max
‖δ‖p≤ε

L (fθ(x+ δ),y)
(5)

where ỹ(δ∗) depends on the current perturbation δ∗. In general, the constraint ensures that ỹ(δ∗)
applies weaker LS with increasing ‘size’ of δ. We defer the definition of ỹ(δ) to Eq. 6.

Different from vanilla AT using the same loss for both adversarial example generation (inner maxi-
mization) and weight updating (outer minimization), our training scheme leverages the loss based on
LS in the outer minimization but keeps the hard label based loss in the adversarial generation step.
The reason is that the adversary does not know the mechanism of how to smooth labels in training. In
another word, the potential strong attacks would be performed on hard labels on the attacker’s side.
As a result, we design the same data generation process on the defender’s side as the potential attacks.

4.2 IMPLEMENTATIONS OF SSAT
Algorithm 1 Surface Smoothing Adversarial Train-
ing (SSAT).
Require: Training samples X , perturbation bound ε,

learning rate τ , hop stepsm, clip ratio γ, two smoothing
levels α0 and αε, training epoch # N ;
for all epoch= 1, . . . , N/m do

for all minibatch B ⊂X do
δ ∼ Uniform(−γ ∗ ε, γ ∗ ε);
for all step = 1, . . . ,m do

* Outer Minimization to update θ:
Obtain adaptive label ỹ by Eq. 6 for B;
gθ ← E(x,y)∈B∇θL(fθ(x+ δ), ỹ(δ));
θ ← θ − τgθ;

* Inner Maximization to update δ:
gadv ← E(x,y)∈B∇xL(fθ(x+ δ),y);

δ ← Proj
(
δ + β · sign(gadv)

)
;

end for
end for

end for

(a) Adversarial Perturb (b) Adaptive Degree
Figure 1: With the iterative generation of adversar-
ial perturbations, the degree of LS decreases with a
piecewise linear function.

The key idea of SSAT is to adopt different LS
strategies for the adversarial examples gener-
ated in each iteration. This is based on the
analysis of Lemma 1 and Theorem 1 on the
premise of correct classification. We first di-
vide adversarial examples into two subsets:
inside the decision boundary BI and outside:
BO. The set of adversarial examples in BI is
defined as:

BI(x) = {δ|fθ(x+ δ) = y, ‖ δ ‖p≤ ε},

which represents the predicted label of the ad-
versarial example is the same as its ground
truth label. BO(x) is the complement of
BI(x). The strategies applied on these two
subsets are as follows:

ỹ(δ) =

{
y δ ∈ BO(x)

y − λ(δ)× (y − 1
K ) δ ∈ BI(x)

(6)
where hard labels are used to those outside the
decision boundary, and smooth labels, which
are adaptive to the current perturbations with
λ(δ), are applied to those inside the decision
boundary. In detail, for adversarial samples
near the original data point, strong LS is used
to improve the smoothness of the loss surface.
Meanwhile, we adopt weak LS for adversarial
samples near the decision boundary. More-
over, λ(δ) is a non-decreasing function w.r.t
the distance of adversarial examples towards
the decision boundary. It is not trivial to com-
pute the distance of an example to its decision
boundary. For simplicity, we calculate the size of δ to measure such distance. Our intuition is that
when δ is gradually far away from the original point with more iterations, i.e., its size gets larger, the
input x perturbed by δ is more easily misclassified, which means its distance towards the decision
boundary becomes smaller. Here we propose a heuristic function for δ ∈ BI(x) as:

λ(δ) = (λ1 − λ0)×
‖ δ ‖p
ε

+ λ0 (7)
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Figure 2: (a) Prediction confidence difference of SSAT. Compared with other AT-based methods(e.g.
Madry and TRADES), SSAT has a much lower mean confidence on the Top-1 category but much
higher mean confidence on Top-2 to Top-10 on CIFAR10. For visualization simplicity, the prediction
confidence of all images is sorted in its own decreasing order and averaged together. (b) t-SNE results
of PGD-based transfer and white-box attacks on SSAT. Yellow and blue dots mean transfer attacks
generated by other AT models and the green star represents the white-box attacks based on SSAT. For
each kind of attack, 2000 data points are randomly sampled over the whole dataset CIFAR-10. (c)
t-SNE results of white-box attacks on SSAT with the same data points as (b). Adversarial data points
with different labels are colored differently for clarity.

where λ0, λ1 ∈ [0, 1] satisfying λ0 ≥ λ1. Eq. 7 suggests that for a correctly predicted clean sample,
when it is added with a perturbation generated by adversarial attack, the perturbed sample will be
closer to the decision boundary even the prediction is correct. As a result, a stronger LS can be
applied on the clean sample to achieve better smoothness, while a weaker one can be applied on the
perturbed sample to alleviate the side-effect of label smoothing on model confidence as stated in
Lemma 1. As shown in Fig. 1(b), the adaptive smoothing degree is a piecewise linear function to
guide the model to obtain a smoother loss surface on the premise of correct classification. Then, we
train the model with the adaptive smoothing label, which can be specified as

min
θ
E(x,y)L (fθ(x+ δ), ỹ(δ)) (8)

where δ is the generated adversarial perturbation with the framework of Free AT (Shafahi et al.,
2019b). Besides, the above method with LS focuses more on the smoothness of CE loss surface,
which may ignore the attack of target adversarial example. So we add a regularization term of a target
attack loss to increase the smoothness of the target loss surface. We discuss it in detail in Appendix C.

Why Free AT? In maximization of Eq. 5, we follow free AT (Shafahi et al., 2019b) instead of
standard AT (Madry et al., 2018) to optimize δ, where we take all of its intermediate examples
from each iteration as inputs and assign adaptive LS values to them for the outer minimization.
As discussed in Lemma 1, LS can help to improve the surface smoothness but sacrifice model
confidence on the true label. If we apply strong LS to adversarial examples generated with many
iterations, since those adversarial examples are closer (or even across) the decision boundary, LS may
harm clean accuracy. Thus, we apply strong LS to the intermediate examples at the beginning of
perturbation optimization and gradually apply weaker LS to them with more iterations to achieve
the goal of smoothing loss surface on the premise of correct classification. As shown in Fig. 1(a),
in one PGD-like attack, the optimization trajectory of those intermediate examples, δ1, δ2, . . . , δm,
is towards the decision boundary, i.e., with more iteration steps, the attack becomes stronger where
weaker LS is then applied (see Fig. 1(b)). In other words, we focus more on the intrinsic robustness
of different adversarial examples. For the adversarial example which is located far from the decision
boundary, we adopt stronger LS while we use weaker LS or hard label for adversarial examples near
or across the decision boundary to avoid misclassification, as one of the key differences compared
with other methods e.g. CAT (Cheng et al., 2020). A detailed comparison of existing works is given
in Appendix D, which hopefully sheds more insights on the novelty and motivation of this work.

5 MODELING COOPERATION FOR SSAT
As discussed above, SSAT can improve robust accuracy with a smooth CE loss surface. In this
section, we show that there exists great differences between SSAT and other AT-based models. This
allows us to better understand SSAT and gives us motivation for devising a cooperative model.

5.1 DIFFERENCE BETWEEN SSAT AND AT-BASED MODELS

The difference in prediction confidence. As discussed in Sec. 4.2, SSAT requires a strong LS near
the clean images, which makes the prediction confidence of SSAT distribute more uniformly on every
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Figure 4: Accuracy with training epoch(Fig. 4(a)) and prediction confidence of clean and adversarial
examples based on Madry and SSAT(Fig. 4(b) and Fig. 4(c)). The example in Fig. 4(b) and Fig. 4(c)
is randomly selected from CIFAR10 and its adversarial examples are generated by PGD and CW
attacks.

label than that of AT-based methods. Fig. 2(a) shows the mean prediction confidence of different
models on the whole data of CIFAR10. As Lemma 1 stated, compared with Madry and TRADES,
SSAT has a lower confidence in the top-1 category, which is sacrificed to improve the smoothness of
the loss surface.

Figure 3: The different loss trends for Madry and
SSAT by varying the perturbation of PGD and
CW attacks. Each row represents one defense
model, and each column means one type of the
attack. Each figure represents one attack applied
on one defense model with different perturbations.
The perturbation δ is varied within the range of
(−2.0ε, 2.0ε). Note that negative value means the
reversed direction.

The difference on transfer and white-box at-
tacks. The recent study (Müller et al., 2019)
empirically shows that LS enforces the exam-
ples of the same class group in a tighter clus-
ter, separating equidistantly from all the other
classes’ examples compared to those without LS.
The distinction in embedding space drives us to
study different responses of SSAT to various ad-
versarial attacks. As shown in Fig. 2(b), transfer
attacks based on Madry and TRADES exhibit
different distribution compared with white-box
attacks based on SSAT. Many of their adversar-
ial examples(yellow and blue dots) are around
the center, separating from the surrounding clus-
ters. Even around one cluster, their data points
still gather differently from those of SSAT. For
better comparison, we visualize data points of
SSAT in Fig. 2(c). Fig. 2(c) also reveals good
robustness of SSAT: adversarial examples with
different labels are still grouped into different
clusters, increasing the difficulty of adversarial
attacks. For a fair comparison, we apply transfer and white-box attacks on Madry and visualize the
t-SNE results. The figures and analyses are given in Appendix E.

The difference on the targeted/untargeted loss trends. Most AT-based methods have similar trends
for CE and CW losses. CW loss is given as follows (Carlini & Wagner, 2017):

LCW = max{[max
i 6=t

zi − zt],−k} (9)

where k is a positive hyperparameter, which controls how confident the adversarial example is
misclassified. In Fig. 3, we find that SSAT exhibits different responses to adversarial attacks in terms
of CW and CE losses compared with Madry. For example, by varying perturbations from PGD attack,
CE loss increases but CW loss decreases for SSAT. For CW attack, CE and CW loss of SSAT also
shows the opposite direction of change. It reveals that SSAT and Madry have completely different
defense mechanisms for targeted and untargeted adversarial examples.

5.2 COOPERATION BETWEEN SSAT AND AT MODELS

The three aspects of difference above reveals that SSAT has inherently different defense mechanisms
from other AT methods. Especially, in terms of different attack types, the distinguishing difference
between SSAT and other AT models motivates us to propose a cooperative defense strategy to work
together against both targeted and untargeted attacks, achieving better robustness.

The idea is that given two models(i.e., SSAT and another AT model, a.k.a, defense partner) and an
input, the cooperative model can judge which model is more convincing when the two models make
different predictions. A direct way is judging by the prediction confidence, in which the predicted
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label with higher confidence of the two models is chosen. However, it does not work well as shown
in Table 11 in Appendix H.2. By making use of the distinguishing features of different attack types,
we design a detector to decide the attack type and propose a novel cooperative strategy: different
adversarial examples are assigned to SSAT and the partner model respectively, such that one of them
defends successfully against those examples with a higher confidence than the other model.
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Figure 5: Frequency of DLR defined in
Eq. 10 which is used to distinguish the
targeted or untargeted attack.

Targeted attack detection. As shown in Fig. 4(a), we find
the difficulty for SSAT to defend against the white-box
targeted attacks. Given the analysis of Fig. 3, we assume
that targeted and untargeted attack can be detected based
on SSAT’s response to them. We further analyze difference
between targeted and untargeted attacks in terms of the
prediction confidence as shown in Fig. 4(b) and Fig. 4(c)
and observe that for SSAT, the targeted attack works in
a different way from the untargeted attack. Specifically,
under CW attack, the confidences of top-1 and top-2 label
grow together, driving the whole distribution more steep
while under PGD attack, the confidence distribution tends
to be more uniform. This is a distinct characteristic of
SSAT by comparing with the other AT methods. In order
to quantify this characteristic, we modify the Difference
of Logit Ratio (DLR) (Croce & Hein, 2020a) to distinguish the two attack types by:

DLR(x) =
zπ1
− zπ2

zπ2
− zπ3

(10)

where πi is the rank i-th component in the descending order of z w.r.t x. As shown in Fig. 5, most
DLR values from the targeted attack are close to 0 and overall, the DLR of an untargeted attack is
greater than that of a targeted attack. Thus, we can distinguish the targeted and untargeted attacks
with a threshold τ . That is to say, when DLR(x) ≤ τ , x belongs to targeted attacks. Besides, we
propose a simple yet effective voting strategy combined with several similar threshold-based methods
for better detection (see Appendix G.2).

Cooperative defense Given the SSAT model fSSAT and the defense partner fbase, our cooperative
defense model fCo−SSAT can be formulated as

fCo−SSAT (x) = d · fbase(x) + (1− d) · fSSAT (x) (11)

Algorithm 2 Cooperative Surface Smoothing Adver-
sarial Training (Co-SSAT).

Input: A set of examples X, well-trained model fSSAT ,
another well-trained robust model as defense partner
fbase, threshold τ ;
Output: The prediction results S
Initialize the NULL set S;
for all x ∈ X do

Obtain the logit z based on model fSSAT w.r.t x;
if DLR(x) ≤ τ then

Predict x with fbase as y and append it into S;
else

Predict x with fSSAT as y and append it into S;
end if

end for

where d = 1DLR(x)≤τ is the characteristic
function for detection. After making a distinc-
tion between targeted and untargeted attacks,
we cooperate SSAT with other AT methods
such as Madry (Madry et al., 2018). When
SSAT believes an adversarial example is from
an untargeted attack, we choose the SSAT’s
prediction directly. Otherwise, Madry is used
for prediction. For clean images, we make
predictions in the same way. Note that the
lower bound of clean accuracy of Co-SSAT
depends on the lower bound of the two models
in cooperation. Pseudocode is given in Alg. 2.
Details for how to determine the threshold are
given in Appendix G.1.

6 EXPERIMENTS AND DISCUSSION

Dataset and model structure. Experiments are performed on CIFAR10 (Krizhevsky et al., 2009).
We use (PreAct)ResNet-18 (He et al., 2016) and Wide ResNet. For Wide ResNet, we follow the
same architecture with (Shafahi et al., 2019b; Zhang et al., 2019). For reproducibility, we use the
checkpoints of those AT models collected by RobustBench (Croce et al., 2020). We perform attacks
both inside and beyond the l∞ norm constrained ball, such as l2 norm attack. Experiments run on
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Figure 6: Robust accuracy under CW and PGD attacks for ablation study. SSAT is compared with
SSAT model without considering subset dividend(w/o DB), without adaptive label(w/o Adap LS),
without both DB and adaptive LS(Free AT), and with target regularization by varying the label
smoothing degree.

Table 1: White box robust accuracy (%) for seen and unseen attacks under WideResNet-34-10. All
adversarial examples are generated using the cross-entropy (CE) loss.

defense
attack clean seen (ε = 8/255) unseen (ε = 12/255) unseen (ε = 16/255) `2 (ε = 2) `1(ε = 24)

FGSM PGD10 PGD20 FGSM PGD20 FGSM PGD20 PGD20 PGD20
Madry (2018) 87.3 67.68 64.99 56.34 64.03 42.74 61.00 30.51 15.84 63.68

Free AT (2019b) 81.35 54.87 60.61 48.09 41.46 28.38 31.82 14.72 05.14 68.08
MMA (2020) 84.36 62.05 61.39 54.72 57.51 46.29 54.48 39.73 32.09 67.11

TRADES (2019) 84.22 61.26 65.23 56.92 50.17 39.53 41.64 25.51 7.18 62.95
MART (2020) 84.17 68.89 72.07 64.43 58.99 49.43 49.99 34.85 13.31 72.01
SSAT (ours) 88.5 77.28 85.31 84.2 66.91 81.19 58.64 76.07 75.22 86.14

Intel(R) Xeon(R) CPU E5-2678 v3 CPUs (2.50GHz) and 8 GTX 2080 TI GPUs. More training
details of SSAT are given in Appendix J.

Measuring adversarial robustness via white-box and black-box attacks. We measure robustness
under PGD attacks (Madry et al., 2018). Specifically, each model is evaluated by white-box PGD
attacks and transfer-based black-box attacks.

Measuring robustness via unseen attacks. Typically robustness is only reasonable in the given
threat model, i.e., the `p norm bound and the gained robustness does not extrapolate to unseen attacks
such as larger `∞ norm attacks or `1 norm attacks. However, since we obtain a relatively smoother
loss surface, we will test it on the unseen perturbation tolerances ε and unseen attacks with different
norms.

6.1 EXPERIMENTAL RESULTS OF SSAT
White box attack results. For CIFAR10, we evaluate all the models under different perturbation
tolerances and step numbers of PGD attacks. Specifically, we use untargeted PGDn (n-step PGD
with 5 random-starts) and targeted attack CW under l∞ to measure robustness. Note that Free AT is
the baseline of our model, which shares the same training hyperparameters with SSAT.

We show that our model performs well for both seen and unseen attacks. In Table 1, we train the
model with ε = 8/255 and test it with ε = 12/255 and 16/255. For larger perturbation tolerances,
our model achieves higher robust accuracy than other models. Besides, SSAT outperforms mostly
with the highest clean accuracy under FGSM attack, PGD10 and PGD20. For other norm bounds such
as `1 and `2, SSAT still achieves the highest robustness, showing its generalization ability. Results
with much stronger attacks e.g. PGD100 are given in Appendix H.1.

Table 2: Robust accuracy (%) of Co-SSAT.

models
attack white-box attack half-white-box attack

PGD-20 CW-20 PGD-20 CW-20
SSAT 84.2 32.16 84.2 32.16

Madry (2018) 56.34 47.81 56.34 47.81
Co-SSAT (Madry) 73.28 48.13 87.77 78.2
TRADES (2019) 56.71 54.13 56.71 56.58

Co-SSAT (TRADES) 71.37 53.55 85.82 78.95
MART (2020) 62.91 59.15 62.91 59.15

Co-SSAT (MART) 73.79 58.71 87.66 83.09

Black box attack results. Following the crite-
rion of evaluating transfer attacks by (Athalye
et al., 2018), 10, 000 adversarial examples are
generated from standard training model ResNet-
50 to evaluate the robustness of the targeted
model. Table 3 shows that SSAT overwhelms
other baselines on both targeted and untargeted
transfer attacks, except for FGSM attack. Note
that for other AT methods, FGSM attack is still stronger than iterative gradient-based attacks, which
shows FGSM attack has better transferability. For the performance gap under FGSM attacks, this is
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Table 3: Black box robust accuracy (%) for seen and unseen attacks under WideResnet-34-10.
Adversarial examples with FGSM and PGD20 attacks are generated by CE loss while CW10 is
generated by CW loss.

defense
attack seen attack (ε = 8/255) unseen attack (ε = 12/255) unseen attack (ε = 16/255) `2 (ε = 2) `1 ε = 24

FGSM CW20 PGD20 FGSM CW20 PGD20 FGSM CW20 PGD20 PGD20 PGD20
Madry (2018) 82.77 83.84 83.32 81.64 83.63 83.09 80.50 83.64 82.90 82.46 83.91
MMA (2020) 81.74 83.34 82.89 79.73 82.59 81.97 77.14 81.71 80.77 81.10 83.58

TRADES (2019) 82.93 84.20 83.69 81.53 83.92 83.31 79.80 83.52 82.74 82.59 84.51
MART (2020) 85.37 86.62 86.17 83.52 86.16 85.62 81.03 85.78 84.68 84.82 86.86

Free AT (2019b) 84.93 86.81 86.27 83.24 86.64 85.81 80.84 86.22 84.72 84.82 86.88
SSAT (ours) 84.80 87.14 86.28 79.02 87.02 85.61 74.79 86.63 85.11 85.15 87.34

Co-SSAT(Madry) 84.32 86.15 85.68 82.42 86.08 85.39 80.33 86.05 84.87 84.52 86.13

perhaps because LS sacrifices the confidence of our model on the true label, and the gap between true
label and other labels is naturally smaller than other AT methods. As such, the single FGSM attack
especially with larger `p bound (ε = 12

255 ,
16
255 ), would more easily push the adversarial example

across the decision boundary while such weakness can be remedied by Co-SSAT as shown in Table 3.

Ablation study. Fig. 6 shows the necessity of every component of SSAT. Recall that the adaptive
LS range of SSAT is [λ1, λ0], (see Fig. 1(b)). In Fig. 6, we fix λ0 = 1 and vary λ1 on x-axis with
stronger LS. In Fig. 6(a), with a larger smoothing degree, the robustness of SSAT with regularization
performs the best among others. Without considering the decision boundary, SSAT quickly decreases
to 0. In Fig. 6(b), robustness of all methods decays by increasing the smoothing degree, but SSAT
with regularization decreases relatively slower. Thus, we adopt SSAT with regularization as the final
model. We also analyze the effect of varying λ0 with λ1 = 0 and find adjusting the magnitude of λ1
is more effective in building local smoothness of SSAT with λ0 = 0. See more results in Appendix I.

6.2 EXPERIMENTAL RESULTS OF CO-SSAT.
White Box results. Co-SSAT contains three parts: the detector, SSAT and the partner. We design
a white-box attack on both detector and the two classifiers to evaluate its robustness by Eq. 11.
The attacker has the knowledge of decisions made by the detector, such that the attacker can craft
adversarial examples based on the model selected by the detector. In Table 2, under white-box attacks,
Co-SSAT still achieves better performance under PGD attacks and has similar performance against
CW attacks compared with other baselines.

Half-white Box results. White-box attacks are usually used to estimate the worst-case robustness
of networks, which is less practical. We propose a new attack protocol by fusing both white and
black attacks, which is more of practical use in real world. In particular, the attacker only has access
to SSAT without knowledge of the detector as well as the partner. Table 2 shows that under the
half-white box setting, Co-SSAT further boosts robustness of both of the two models under two attack
types.

Black Box results. Black-box results are shown in Table 3. Exactly Co-SSAT does not significantly
improve robustness against black-box attacks except the FGSM based attack, which confirms that our
detector fully exploits the advantages of the two models in cooperation to achieve a better robustness.

The results of autoattack. We evaluate our model with stronger attacks: autoattack (AA) (Croce &
Hein, 2020b) to show the superiority of Co-SSAT. The results are given in Appendix H.2. In case
when our detector is known, Co-SSAT with Madry achieves better robustness than Madry alone.
While the robustness of Co-SSAT degrades a little when combined with TRADES and MART. In our
analysis, this is because the attacker knows the decisions of the detector and then perturb inputs to
fool Co-SSAT when our detector makes a wrong decision. Moreover, if the detector is inaccessible
by the attacker, Co-SSAT consistently boosts the robustness of our two models, especially obtaining
an impressive accuracy over about 19% on Madry.

7 CONCLUSION

In this paper, we have taken a deep dive into the mechanism and effect of LS on AT, whose underlying
theory and empirical study are still in their relatively early stage. We give both experimental and
theoretical justification to our proposed sample-aware adaptive LS method, i.e., surface smoothing
adversarial training (SSAT). SSAT builds a smoother loss surface via assigning stronger (or weaker)
LS degree to adversarial data which is inherently farther away from (or closer to) the decision
boundary, which can be readily reused either as a plugin or standalone model for AT.
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APPENDIX

A PROOF ABOUT THEOREM 1

For simplicity, we write the Lemma 1 and Theorem 1 here first.

Lemma 1. Optimizing CE loss L(·) with the soft label ys is a logit regularization problem:

min
θ̃
L(x,ys, θ̃) = min

θ̃
L(x,y, θ̃) + s ·RK(θ̃) (12)

where the regularization term is RK(θ̃) = 1
K

∑
i 6=t(z̃i − z̃t).

Theorem 1. Label smoothing improves loss surface smoothness by narrowing bounds of loss
gradients w.r.t inputs, as stated in Eq. 3.

Given a K-class problem, two robust classifiers fθ and fθ̃ trained with the cross-entropy loss L(·) by
the hard label and the soft label with a degree of λ, let p denote the prediction probability of fθ w.r.t
x, ygt denote the ground-truth label and yatt denote the misclassified label. Likewise p̃ represents
the prediction probability of fθ̃ w.r.t x. Assume that pgt = α and p̃gt = β.
Assumption 1. For the robust classifier fθ without label smoothing, based on the overconfidence
property of neural networks (Guo et al., 2017), the probability condifence of fθ after being attacked
becomes (α, 0, . . . , 1− α, . . . , 0), i.e., pgt = α and patt = 1− α with α ≈ 0.
Assumption 2. For the robust classifier fθ̃ with label smoothing, based on Lemma 1 and statistical
analysis on Table 6, the probability confidence of fθ̃ satisfies smooth constraint due to the logit
regularization, i.e., p̃ = ( 1−2βK−2 , . . . , β,

1−2β
K−2 , . . . ,

1−2β
K−2 , β, . . . ,

1−2β
K−2 ), where p̃gt ≈ p̃att = β and

p̃i,i 6=gt,att =
1−2β
K−2 .

Proof. We’d like to prove that:

|∂L(x,y, θ̃)
∂xi

| < |∂L(x,y, θ)
∂xi

|. (13)

for the dimension i = 1, 2, . . . , n. Here n is the dimension number of x.

The gradients of L(·) w.r.t x can be derived as ∂L(x,y,θ̃)
∂x =

∑
i(p̃i − yi) · ∇xz̃i = (p̃ − y) · ∇xz̃,

where
∑
i p̃i = 1, ygt = 1. For any i ∈ [n], to obtain the bound of |∂L(x,y,θ̃)∂xi

|, we have:

∇xi
z̃ = argmax

v
(p̃− y) · v

= ci ∗ (p̃− y)
(14)

where ci represents the positive bound constant w.r.t. |∇xi
z̃|.

Let c̃i denote the bound w.r.t. |∇xi
z̃| with label smoothing while ci represents that bound without

label smoothing. Lemma 1 tells that label smoothing constrains the bound c̃i with a smaller magnitude,
i.e., c̃i < ci. Based on Eq. 14, we have:

|∂L(x,y, θ̃)
∂xi

| = ci ∗ ||p̃− y||22 (15)

From Eq. 15, we next prove that c̃i ∗ ||p̃ − y||22 < ci ∗ ||p − y||22. Since we have c̃i < ci, we next
prove

||p̃− y||2 < ||p− y||2 (16)

From Assumption 1, we have:

||p̃− y||2 =

√
(β − 1)2 + β2 +

(1− 2β)2

(K − 2)2
∗ (K − 2)

< (1− 2β)

√
K − 1

K − 2

(17)

12
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From Assumption 2, we have:

||p− y||2 =
√

(α− 1)2 + (1− α)2

=
√
2(1− α)

(18)

To prove Eq. 16, we prove the upper bound of Eq. 17 is smaller than Eq.18:

β >
1

2
(1−

√
2(K − 2)

K − 1
(1− α)) (19)

Assumption 1 tells that patt = 1 − α is close to 1, so Eq. 19 naturally holds since we only need
β > 0. Finally based on Eq. 19, we prove Eq. 13.

B EMPIRICAL STUDY ABOUT LEMMA 1

We start from the definition of local Lipschitz continuity of a classifier f :

Definition: Let (X , dist) be a metric space. A function f :X → RC is L-locally Lipschitz at radius r
if for each i ∈ [C], we have |f(x)i − f(x′)i| ≤ L ∗ dist(x, x′) for all x′ with dist(x, x′) ≤ r.

As f is locally bounded by L so its gradient is locally bounded by L as well.

We demonstrate that with stronger LS, the bound of ∇xz̃i, i = 1, . . . , n would shrink into a
smaller range, indicating a smoother loss surface through local Lipschitz continuity. In specific,
we use the empirical Lipschitz constant proposed by Yang et al (Yang et al., 2020) to evaluate such
bound.

1

n

n∑
i=1

max
x′
i∈B∞(xi,ε)

‖ f(x′i)− f(xi) ‖1
‖ x′i − xi ‖∞

(20)

A lower value of the empirical Lipschitz constant implies a smoother classifier. We also calculate the
lower bound of this constant by minimizing the above formula.

We perform two experiments to verify local smoothness brought by our adaptive LS. First, we compare
SSAT with other baselines on this metric and SSAT has the highest degree of local smoothness among
them as the table 4 below shows.

Table 4: Local Lipschitz Bound of baselines and SSAT on CIFAR-10 dataset

Defense Local Lipschitz Lower Bound Local Lipschitz Upper Bound
Madry 67.197 395.6494
MMA 67.4459 374.3057

TRADES 22.6532 134.7732
Free AT 40.4731 232.6561

SSAT(ours) 14.5584 76.1627

Furthermore, we dive deeply into LS itself. As table 5 shows, with varying λ0 from 0.9 to 0, the
smoothing degree gets lower and the corresponding local Lipschitz constant gets larger, which
demonstrates that our proposed LS strategy indeed improves loss surface smoothness.

C A TARGET REGULARIZATION ON SSAT

Regularizing the optimization with targeted loss. We regularize the adversarial optimization with
targeted loss L (fθ(x+ δ∗),y′):

min
θ
E(x,y)(1 + β) ∗ L (fθ(x+ δ∗), ỹ)− β ∗ L (fθ(x+ δ∗),y′) , (21)
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Table 5: Local Lipschitz Bound with varying LS degree on SSAT

λ0 λ1 Local Lipschitz Lower Bound Local Lipschitz Upper Bound
0.9 0 15.1433 80.4687
0.8 0 15.8073 84.1924
0.7 0 16.3493 88.3815
0.6 0 17.2021 92.6672
0.5 0 17.8826 97.0716
0.3 0 20.4229 111.0398
0 0 36.5391 205.1484

where
δ∗ = arg max

‖δ‖p≤ε
(1 + β) ∗ L (fθ(x+ δ),y)− β ∗ L (fθ(x+ δ),y′) . (22)

L(·, ·) is the cross-entropy (CE) loss and y′ denotes the targeted label.

Similar to the training proposed in Sec. 4.1, we generate adversarial examples with Eq. 22 and train
the model with Eq. 21. From the perspective of label smoothing, in our original implementation,
label weights are uniformly distributed among all labels except the true one. By contrast, this
regularization term explicitly assigns a penalty weight on the targeted label and hence can be viewed
as an adaptive ununiform allocation strategy of label weights. In implementation, the targeted label is
adaptively selected as the second most convincing label except the true one. Experiment results (see
the ’SSAT+Reg’ line in Fig. 6) show that our regularization strategy exactly increases robustness of
both targeted and untargeted attacks.

D COMPARISONS WITH RELATED AT METHODS.

Adversarial training with label smoothing Some existing AT methods utilize label smoothing.
Wang (2019) perturbs both the image and label during training without considering the geometric
property of images. CAT (Cheng et al., 2020) proposes to adjust the perturbation level adaptively
to better handle the trade-off between robustness and clean accuracy. It argues that for images near
the decision boundary, hard label may harm generalization so it adopts a smaller LS degree with a
larger perturbation bound. However, our motivation of adaptive LS is intrinsically different from
CAT. We aim to build a smoother loss surface. As such, a larger LS degree is adopted near the clean
images while for images near(or across) the decision boundary, we adopt a weaker soft(or hard) label
to strengthen the discriminative power of our model: in our statement, LS would harm clean accuracy
by lowering classifier’s confidence especially for those images near the decision boundary. Further,
in implementation, the LS of CAT is deterministic with the given perturbation bound while given a `p
norm bound, our LS varies adaptively in a bi-level along the optimization trajectory.

Adversarial training with instance dependent reweighting Recent studies treat adversarial data
differently based on the fact that every data point has different intrinsic robustness. For example,
MMA (Ding et al., 2020) proposes to directly maximize the margins to generate instance-dependent
perturbation bounds. MART (Wang et al., 2020) revisits the misclassified examples outside of
the decision boundary to improve the robustness. GAIRAT (Zhang et al., 2021) explicitly assigns
different weights on the objective loss of each adversarial data. Since all of them emphasize the
decision boundary to distinguish the adversarial data, our SSAT can be naturally combined with any
of them to further boost performance. For example, GAIRAT assigns adaptive weights on the original
CE loss while SSAT can adaptively apply LS on the true label vector in the original CE loss: both
GAIRAT and our SSAT define and make use of the geometric properties of adversarial data but the
object on which they operate is different.

E T-SNE RESULTS OF MADRY

Different from Fig. 2, first Fig. 7(b) shows that the projections of data points with different labels are
spread more broadly and different clusters of data points with different labels even intersect with each
other, which means Madry exhibits less robustness under adversarial attacks. Fig. 7(a) shows that
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Figure 7: (a) t-SNE results of PGD-based transfer and white-box attacks on Madry. Yellow and blue
dots mean transfer attacks generated by other AT models and green star represents the white-box
attacks based on Madry. For each kind of attack, 2000 data points are randomly sampled over the
whole dataset CIFAR-10. (b) t-SNE results of white-box attacks on Madry with the same data points
as (b). Adversarial data points with different labels are colored differently for clarity.

Table 6: prediction confidence of SSAT and Madry over CIFAR-10.
Model attack top 1 top 2 top 3 top 4 top 5 top 6 top 7 top 8 top 9 top 10 KL Div

SSAT
clean 0.1793 0.1237 0.1066 0.0962 0.0896 0.0851 0.0826 0.0809 0.0792 0.0769 0.0027
PGD 0.1418 0.1202 0.1104 0.1025 0.0957 0.0901 0.0865 0.0844 0.0839 0.0844 0.0015
CW 0.1452 0.1481 0.1151 0.0993 0.0909 0.0846 0.0809 0.0788 0.0784 0.0788 0.0030

Madry
clean 0.9373 0.0425 0.0108 0.0044 0.0022 0.0012 0.0007 0.0004 0.0003 0.0002 0.3471
PGD 0.2554 0.3477 0.1392 0.0768 0.0561 0.0399 0.0283 0.0218 0.0196 0.0152 0.0555
CW 0.1942 0.521 0.1168 0.0521 0.0364 0.0259 0.0201 0.013 0.011 0.0094 0.0876

the distribution of the transfer attacks and white-box attacks on Madry is similar to each other with
less distinction. Both of Fig. 7(a) and (b) further demonstrate that our SSAT has inherently different
defense mechanisms from other AT methods.

F FURTHER ANALYSES ON THE WHOLE DATASET FROM SEC. 5

We average the prediction confidence over the whole dataset CIFAR-10 and also calculate the KL
divergence between confidence distribution and uniform distribution to show the effects of different
types of adversarial attacks on the original confidence distribution. In Table 6, we first list prediction
confidence w.r.t. clean input in descending order, predictions under PGD and CW attack are sorted in
the same order for comparison. Observations on the whole dataset are consistent with Figure 4(c),
specifically:

1. For clean inputs, the distribution of predicted labels of SSAT is much smoother than Madry’s.

2. untargeted attacks,i.e. PGD attack, on SSAT behave differently from Madry’s by lowering
confidence on the top-1 label and increasing that on other labels, which makes distribution
closer to uniform. This phenomenon reveals a significant characteristic of the attack.

3. Targeted attacks on SSAT can be evaded by a small margin of 0.003 overall. It tends
to increase the confidence of the top-2 label and decrease the confidence of the rest. By
contrast, after performing the untargeted attack, the confidence of top2 also shrinks by 0.003
to 0.1202. Such difference motivates us to propose cooperative defense to defend against
targeted attack on Sec. 5.2.

Besides, we measure Kullback–Leibler Divergence (KL Div) between each prediction confidence
and uniform distribution to uncover different characteristics resulted from targeted and untargeted
attacks. For Madry’s, both targeted and untargeted attacks result in smaller KL Div values while for
SSAT, under PGD attack the value of KL Div is smaller than that with clean inputs, which verifies
our observations above.
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G IMPLEMENTATION DETAILS OF CO-SSAT FROM SEC. 5.2

G.1 REALIZATION OF OUR DETECTOR

The detector is treated as a two-class linear classifier and the threshold, i.e. the decision boundary is
determined by referring to the ROC curve. We would like to choose a threshold that has both good
recall rate and accuracy, i.e., to recognize as many as targeted adversarial examples as possible while
reducing the number of misclassified untargeted adversarial examples since we expect our SSAT to
defend against untargeted attacks.

To be specific, first, we perform untargeted and targeted attacks on the training set, where examples
under untargeted attacks are labeled as negative with those under targeted attacks being labeled
as positive. Then, we calculate the DLR of each sample and draw the ROC curve. Our goal is to
select as many positive samples as possible and send them to the surrogate model for defense, so we
expect to obtain a relatively high True Positive Rate (TPR), i.e. recall. We also would like to select
most of negative samples, i.e. adversarial examples under untargeted attack, to our SSAT to defend
against. Finally, by grid search, we find a threshold with a relatively high recall and accuracy. So it is
model-dependent.

As for classification accuracy, the table 7 shows the trade-off between recall and accuracy. Results
are based on adversaries generated by AutoAttack. We finally selected the threshold with which the
detector achieves TPR of 0.8606 and Accuracy of 0.8819 as the criterion.

Table 7: Performance of our threshold based detector

TPR(Recall) FPR Precision Accuracy
0.9822 0.6228 0.7973 0.8091
0.9282 0.2959 0.8867 0.8641
0.8606 0.0651 0.9706 0.8819
0.8037 0.0163 0.9919 0.8552
0.7544 0.0074 0.9961 0.8226

0.71 0.0044 0.9975 0.7917
0.6251 0.0015 0.9991 0.732
0.5878 0.0015 0.999 0.7053
0.4312 0 1 0.594

G.2 CONFIDENCE BOUNDED VOTING STRATEGY

Apart from Difference of Logit Ratio (DLR) introduced in Sec. 5.2, to gain a better estimation
of whether an adversarial example is untargeted or targeted, we use a simple yet effective voting
mechanism to make the final decision. Including DLR, we define five metrics in total: Top-1, Top-2,
KL-Div, and CW-abs. For each sample, only when the number of votes exceeds half of the committee
members (> 3 in our setting), we assert it as targeted attack.

1. Top-1(x) = zπ1

2. Top-2(x) = zπ2

3. KL-Div(x) = KL(P (x), ~u)

4. CW-abs(x) = zπ1 − zπ2

where P (x) is the probability distribution of z w.r.t x, ~u is a unit vector scaled by 1
K , and KL(·, ·) is

the Kullback–Leibler divergence of the two distributions.

The intuition that we choose the metrics above is similar: the feedbacks of robust neural networks
trained by SSAT over the two types of adversarial attacks: untargeted and targeted, as shown in Figure
4. We analyze such difference from two levels: label-level and distribution-level. Top-1 and Top-2
belong to the label-level, which vary with the attack direction. Furthermore, KL-Div, CW-abs, and
DLR all belong to the distribution-level, which also shows the distinction of targeted and untargeted
attacks.
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Figure 8: Frequency histogram of untargeted and targeted attack over different metrics.Note all the
above methods can roughly distinguish targeted attacks and untargeteded attacks. We adopt voting
strategy to improve the distiguishment.

Table 8: Robustness (%) with PGD-100 for white box seen and unseen attacks under WideResNet-
34-10. Best in bold.

Defense seen ε = 8/255 unseen ε = 12/255 unseen ε = 16/255 L2 ε = 2 L1 ε = 24
Free AT 45.6 24.29 10.11 1.5 55.74
Madry 47.77 31.12 17.07 3.63 51.06
MMA 51.42 41.43 33.76 23.73 64.75
MART 62.8 44.31 26.98 4.48 53.72

TRADES 55.37 35.34 19.83 2.46 39.39
SSAT(ours) 81.67 71.81 58.72 41.17 86.05

Table 9: Robustness (%) with PGD-100 for black box seen and unseen attacks under WideResNet-34-
10.

Defense seen ε = 8/255 unseen ε = 12/255 unseen ε = 16/255 L2 ε = 2 L1 ε = 24
Free AT 86.18 85.33 84.52 84.63 86.75
Madry 83.36 82.66 81.96 81.95 83.53
MMA 82.73 81.41 80.04 80.99 83.37
MART 86.01 85.28 83.87 84.32 86.62

TRADES 83.71 83.04 82.14 81.9 84.3
SSAT(ours) 86.44 85.37 84.01 84.46 87.01

As the Figure 8 shows, the difference of untargeted and targeted examples is distinct under each
metric and we calculate the ROC score for each metric: 0.86 (DLR), 0.89 (Top-1), 0.85 (Top-2), 0.80
(CW-abs), and 0.89 (KL-Div), both of which confirm the effectiveness of the chosen metrics. So by
ensembling the five metrics together, we obtain a good detector of telling the features of the attack.

H EVALUATION RESULTS UNDER STRONGER ATTACKS

H.1 BLACK-BOX AND WHITE-BOX PGD-100 ATTACK

The table 8 and 9 show results of the white and black box PGD-100 attack respectively. Detailed
experiment settings are given in Sec. 6. Results boldfaced denote the best among all defense methods,
which show that SSAT outperforms with the besy

H.2 BENCHMARKING THE STATE-OF-THE-ART ROBUSTNESS AGAINST AUTOATTACK (AA)

AutoAttack (AA) (Croce & Hein, 2020a) is an ensemble of three white-box attacks (APGD-CE (Croce
& Hein, 2020a), APGD-CLR (Croce & Hein, 2020a), and FAB) and one black-box attack (Square
Attack).

We test our Co-SSAT against AA to gain a reliable and thorough estimation of robustness. For
Co-SSAT, we apply AA to our robustly trained model MSSAT and Mbase and generate twice the size
of adversarial samples that it has on one model. Then we use our detector to predict and dispatch those
adversarial examples to one of our two models to make the final decision. Here for fair comparison
with baseline methods, we report the two results with combined two baselines (see experiment details
in Sec. 6). The results in Table 11 demonstrate that our method outperforms other baselines even
when faced with the ensemble of strong attacks.
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Table 10: Co-SSAT by AA under the setting of white-box and half-white-box attack.

models
attack white-box attack half-white-box attack

AA(%) AA(%)
SSAT 23.67 23.67
Madry 43.36 43.36

Co-SSAT (Madry) 46.65 65.74
TRADES 53.36 53.36

Co-SSAT (TRADES) 51.37 64.8
MART 57.11 57.11

Co-SSAT (MART) 55.74 69.77

Table 11: The white-box robust accuracy against AA of a vanilla cooperative strategy based on base-
line methods. The cooperative strategy works by choosing which prediction with higher confidence
of any of the two models.

models Roubst Accuracy(%) based on AA
Madry 43.36

TRADES 53.36
MART 57.11

Madry + TRADES 44.48
Madry + MART 45.23

TRADES + MART 56.95

I ABLATION STUDY ON HYPER-PARAMETERS λ0 AND λ1

The corresponding values of the SSAT curve in Fig. 6 are given in the table 12. With stronger LS,
i.e. larger λ1, clean accuracy and robust accuracy under targeted attack (i.e. CW-10) get lower while
robust accuracy under untargeted attack gets higher, which shows a trade-off between robustness and
accuracy. It is worth noting that very strong LS (i.e. λ1 = 0.9) may harm training, degrading general
performance on accuracy and robustness.

Furthermore, we did an ablation study on the effectiveness of λ0 with λ1 = 1. The table 13 shows
that with smaller λ0, we can obtain a little better clean accuracy while robustness under untargeted
attack (i.e. PGD-10) degrades. For robustness under targeted attack (i.e. CW-10), the effect of λ0 can
be negligible.

In addition, the two tables above show that adjusting the magnitude of λ1 is more effective on building
local linearization of SSAT with a big value of λ0 (i.e. λ0 = 1.0 in our implementation).

J IMPLEMENTATION DETAILS

We adopt the framework of free AT to build the local smoothness of loss surface. To achieve the
effectiveness of our method, we just have several simple yet critical rules to follow such that we do
not need to tune hyper-parameters.

1. Clip after Initialization: For each new minibatch, instead of directly reusing the perturba-
tion from the previous one, we reset the perturbation by uniformly sampling from the ε ball
and clip it to ensure that the adversary starts attack near the clean example. The clip ratio γ
is set as a fixed value 0.3 for all experiments on Resnet-18 and WideResNet-34-10.

Table 12: Performance of SSAT by varying λ1.

λ0 λ1 Clean FGSM PGD-10 CW-10
1.0 0.9 0.7251 0.6973 0.5749 0.2146
1.0 0.8 0.7837 0.7609 0.6996 0.3466
1.0 0.7 0.7976 0.7699 0.6558 0.4104
1.0 0.6 0.7975 0.7618 0.6038 0.4372
1.0 0.5 0.7999 0.757 0.571 0.4468
1.0 0.3 0.8236 0.7749 0.5364 0.4293
1.0 0.0 0.8242 0.767 0.5059 0.445

Table 13: Performance of SSAT by varying λ0.

λ0 λ1 Clean FGSM PGD-10 CW-10
1.0 0 0.8242 0.767 0.5059 0.445
0.9 0 0.8139 0.7538 0.4834 0.4426
0.8 0 0.8153 0.751 0.4782 0.4472
0.7 0 0.8114 0.7514 0.4715 0.4453
0.6 0 0.8168 0.754 0.467 0.4445
0.5 0 0.8168 0.7533 0.4607 0.4456
0.3 0 0.8201 0.7536 0.4563 0.4447
0 0 0.8271 0.7579 0.4476 0.4416
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2. Maximum Iterations Bounded Step Size: To make full use of every intermediate adversar-
ial example on each minibatch, we simply set the relative step size as 1

m during m iterations
on the same minibatch to ensure that we can fully smoothe the whole region within the ε
ball for each minibatch.

3. Strong Label Smoothing Degree: The key that strong LS works is that adversarial exam-
ples are treated differently based on their relationship with the decision boundary. Based on
that, for the smoothing bound (λ0, λ1) shown in Eq. 6, we simply set λ0 as 0, and λ1 as 0.3
for Resnet-18 and 0.4 for WideResNet-34-10 with a larger model capacity.

4. Small Targeted Regularization Loss Weight: Experiments have shown that we only need
apply a small weight on our targeted regularization loss as shown in Eq. 22 to achieve a
better trade-off of robust accuracy between untargeted attack and targeted tar attack. Here
we set β as 0.2 for Resnet-18 and 0.1 for WideResNet-34-10.

Furthermore, to speed up AT, we adopt cyclic learning rate and mixed precision arithmetic from the
DAWNBench competition adopted by (Wong et al., 2020). We adopt the same learning rate setting
as (Wong et al., 2020): the learning rate linearly increases from zero to the maximum value 0.04
and then back down to zero. To achieve a better smoothness of local loss surface, we use longer
training epochs. Specifically, for Resnet-18, the number of training epochs N is 20 while the number
of minibatch replays m is 8. For WideResNet-34-10, N is set as 24 with m as 4. All the models are
trained using SGD with momentum 0.9, weight decay 5× 10−4.
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