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Abstract

Data scarcity and underspecification are 2 common issues in machine learning
for healthcare. Data scarcity impedes the performance and generalizability of
neural networks. Underspecification (where the training process can produce many
different models that achieve the same train/test performance but represent differ-
ent functions) may lead to issues with generalization and poor model behavior in
deployment settings. In this work, we add an auxiliary objective to a brain age
prediction model that significantly improves model performance and generaliza-
tion in low-data regimes. We evaluate the impact of the auxiliary objective on
model specification and particularly quantify how random variations in the training
process affect a model’s representations and predictions. Our results show that
while the auxiliary objective enhances generalization and performance, especially
in data-limited settings, it also reduces model specification. These findings un-
derscore the trade-off between improving generalization with added constraints
such as auxiliary losses, and their reduction in model specification in low-data
neuroimaging applications.

1 Introduction

Data scarcity is a common issue in machine learning for healthcare due to the high costs associated
with data labeling. Models trained on these small datasets demonstrate mixed performance and often
do not generalize well [1]. A related issue is underspecification, where the training process can
produce many different models that achieve the same train/test performance but represent different
functions and thus focus on different features [2]. This makes it hard to select a model purely based
on a model’s validation performance. Underspecification can also affect generalization because each
function may have learned features that do or do not transfer well. Given that these models may
essentially exhibit the same performance, it is impossible to choose any model over the other. This
can cause issues when models need to generalize to real-life datasets that are dissimilar from the
training set.

Addressing data scarcity and underspecification will lead to more effective healthcare machine
learning solutions across a broad range of modalities and applications. With the abundance of
covariates that can have negative effects on algorithmic fairness in healthcare applications of AI [3],

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



it is especially important to increase the specification of neural networks in healthcare settings to
ensure that the impact of potentially harmful covariates are reduced across all trained models.

In this work, we add an extra objective to a brain age prediction model’s loss function to improve
model performance and generalizability. We also assess whether the auxiliary objective leads to
an increase in model specification. We focus on brain age prediction from 3D structural magnetic
resonance imaging (sMRI) because it is commonplace in the field of neuroimaging [4, 5, 6], and has
a clear ground truth. Our work in measuring two aspects of underspecification is impactful in other
MRI prediction settings, such as Alzheimer’s progression prediction [7], a clinically important field
of study where neural networks have become commonplace.

Background In auxiliary learning, a second objective (auxiliary task) is added to a neural network’s
loss to help guide it toward consistently learning relevant features. Specifically, previous work [8]
has proposed a method to automatically reweigh auxiliary tasks by reducing the distance between
gradients of the two loss terms. Follow-up work [9] applied the adaptive reweighing scheme to
improve the performance of multiple myeloma classification in data scarcity settings.

Some studies have also proposed methods to mitigate underspecification. Distilling features learned
from multiple models into a global model can help improve out-of-distribution performance [10].
Moreover, using minimal preprocessing, model regularization, and data augmentation can enhance
generalizability and robustness in brain age prediction [11]. However, no works have looked at
either improving brain age prediction with an auxiliary objective function or the evaluation of both
generalization and underspecification performance. This is important because, in real-life settings,
it is essential to be able to pick a specific model, even under training variations (e.g. random
initializations).

2 Method

Model To study underspecification in neuroimaging, we use a simple yet powerful model called
the simple fully convolutional network (SFCN) [4]. The original model consists of 7 modules,
where the first 5 modules are made up of a 3 x 3 x 3 3D convolution, batchnorm, maxpool, and a
ReLU activation. The 6th module consists of a 1 x 1 x 1 3D convolution, batchnorm, and a ReLU
activation. The final module consists of an average pooling, dropout, 1 x 1 x1 3D convolution,
and a softmax. We remove the maxpool layers from the 5th module to accommodate the size of
our preprocessed data. The first 6 modules are feature extraction layers. The final module linearly
maps the model’s representations to a probability distribution over the ages. The SFCN model [4]
minimizes a Kullback–Leibler divergence loss between the predicted probability and a Gaussian
distribution centered at the true age with a standard deviation of 1.

Measuring underspecification and generalization First, to measure underspecification, we cal-
culate the similarity between model representations and predictions across random initializations
and training data variations. In this case, representations refer to activations from the last feature
extraction layer, before a prediction is made with the last 1-by-1-by-1 convolutional layer. We
calculate the linear de-biased pairwise centered kernel alignment (linear CKA) [12] between pairs of
representations of the same subject from the same model trained with different initializations and
different training distributions. We also calculate the average absolute difference of age predictions
of the same subject made between pairs of the same model trained with different initializations and
training distributions.

Models are more specified if there is less variation in the representation space (indicated by higher
CKA) and when predictions are more similar (indicated by a lower average absolute difference).
Second, to measure generalization performance, we test how model performance generalizes to a
new data distribution with unseen age ranges.

Auxiliary learning An auxiliary task is a second objective that is added to a neural network’s
loss to help guide it toward consistently learning relevant features. In low-data regimes, a model
may find it difficult to learn to find the same global minimum across different runs, resulting in
underspecification. To help the model, we add an easier classification objective. The auxiliary loss
we propose forces the model to predict one of five quantiles of a subject’s age. Specifically, we add
a linear map (a 1-by-1-by-1 3D convolution) that maps the model’s representation to 5 logits. The

2



auxiliary loss is calculated as the negative log-likelihood of the logits under the target age’s quantile.
This loss is added to the Kullback–Leibler divergence loss from the SFCN model.

With the auxiliary loss term, the model is not only pushed to learn the exact age but also to predict a
rough guess of a person’s age. We hypothesize that this improves performance in low-data settings
because the model may converge to the auxiliary loss better when few subjects are available.

For underspecification, the auxiliary loss can either increase model specification by smoothing the
loss landscape or decrease model specification by increasing the number of local minima. Since the
minimum for the original loss function is included in the minimum of the auxiliary loss, i.e. predicting
someone’s age is harder than predicting their general age range, the loss landscape may become
smoother. However, adding multiple objectives also makes the training dynamics less predictable,
and can add noise to the training process that may exacerbate underspecification. We explore the
effect of the auxiliary task on model specification.

For the remaining sections, let an auxiliary model be a model that uses a sum of the Kullback–Leibler
divergence loss and auxiliary loss as its loss term. Let a baseline model be a model that uses only the
Kullback–Leibler divergence loss as its loss term.

3 Experiments

Dataset and experimental settings Following the SFCN paper, we use the UKBiobank dataset,
but with an SPM pre-processing pipeline that follows previous work [13]. Each sMRI volume
after pre-processing is 121-by-145-by-121 voxels and is smoothed with a 6mm full width at half
maximum (FWHM). To select the training and validation data, we use stratified sampling based on
the 5 quantiles of the age in the full dataset (N=37852). Each training/validation set is split 80/20
respectively. Both the auxiliary and baseline models are run across 5 training/validation set sizes,
{100, 250, 500, 1000, 2000}, 10 random seeds, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and 5 randomly sampled
folds. This results in 10 ∗ 5 ∗ 5 = 250 runs for both the baseline and auxiliary model (500 runs
total). Each instantiation of a model is trained for 200 epochs. As a test set, we use 5200 unseen
volumes (200 volumes per age) with a uniform age distribution. Although the original training set
is distributed according to the proportion of the 5 quantiles of ages in the full dataset, our test set
has a uniform distribution to thoroughly test model performance and model specification on each
age. Additionally, we create an out-of-distribution dataset that consists of 3400 unseen volumes, 100
volumes per age, with unseen age ranges. Specifically, the training, validation, and test set consists of
ages that range from 50 to 75, and the out-of-distribution set consists of ages that range from 47 to 80.

Auxiliary learning improves model performance To understand how well the models perform on
a normal generalization task, we evaluate the MAE (mean absolute error) on the test set. Especially
when little data is available, as shown in Table 1, the auxiliary model significantly outperforms
the baseline model. Specifically, for data regimes with a size less than 2000, the auxiliary model
outperforms the baseline model. We see that the gap between the MAE of the auxiliary model and
baseline model is greatest when 250 samples are available. Interestingly, the gap between the models
with 100 samples is minimal. For this data regime, it’s likely hard to converge for both the baseline
and auxiliary models.

Table 1: Average MAE. Each significance result is based on a paired two-sided t-test. Values where
the auxiliary model performs significantly better than the baseline model are made bold.

Train/val size Auxiliary model Baseline model p-value
100 6.1136 6.1814 3.70E-2
250 5.0248 5.172 2.54-4
500 4.5513 4.6713 8.69E-4
1000 3.8176 3.9455 1.51E-14
2000 3.4521 3.4489 6.76E-1

Auxiliary learning improves out-of-distribution predictions To test whether the representations
the model has learned can generalize to unseen age ranges, we create an out-of-distribution dataset
with unseen age ranges and volumes. Each volume in this out-of-distribution set is embedded into a
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representation, and we train an ElasticNet model on the representations by splitting the representations
into a stratified training and test set (80/20 ratio). The ElasticNet performs cross-validation across
5 folds on the training set. As shown in Table 2, for train/val sets with fewer than 1000 samples,
the auxiliary model significantly outperforms the baseline model both on out-of-distribution ages
specifically, and across all other unseen volumes as well.

Table 2: Mean R-squared score, predicting out of distribution ages. Each significance result is based
on a paired two-sided t-test. Values where the auxiliary model performs significantly better than the
baseline model are made bold.

Predicting all ages Predicting OOD ages
Data regime Aux Baseline p-value Aux Baseline p-value
100 0.512 0.497 0.0656 0.578 0.557 0.0684
250 0.629 0.61 1.29E-10 0.746 0.722 1.81E-09
500 0.669 0.648 3E-10 0.791 0.769 1E-12
1000 0.736 0.724 4E-7 0.841 0.837 0.175
2000 0.766 0.768 0.0468 0.858 0.864 9E-06

Auxiliary learning reduces model specification across random initializations To calculate model
specification across random model initializations, we embed all volumes from the test set to obtain the
model’s representations and age predictions. Then, we calculate all pairwise similarities (linear CKA)
between representations of the same subject from the same model but trained with different random
initializations. Additionally, we calculate the pairwise absolute difference between predictions of
the same subject from the same model but trained with different random initializations. As shown
in Table 3, for train/val sets of size greater than 250, the auxiliary model’s representations and
predictions are less similar across random seeds. This indicates that the model is less specified.

Table 3: Average similarity between the same models trained with different random initializations.
Similarity is both calculated on the model’s representations (CKA) and predicted age (average
absolute difference). Values where the auxiliary model performs significantly worse than the baseline
model are made bold.

representation CKA ↑ predicted age (avg absolute diff) ↓
Data regime Aux Baseline p-val Aux Baseline p-val
100 0.9380 0.9374 0.95 0.4616 0.4278 0.397
250 0.9781 0.9684 1.25E-3 0.4725 0.4958 0.302
500 0.9764 0.9847 3.78E-19 0.4983 0.4624 8.36E-3
1000 0.9594 0.9739 9.91E-61 0.7588 0.5879 5.90E-61
2000 0.9489 0.9635 2.86E-58 0.9081 0.7643 4.04E-73

Auxiliary learning reduces model specification across training folds To calculate model speci-
fication across training distributions, we embed all volumes from the test set to obtain the model’s
representations and age predictions. Just as in the previous experiment, we calculate all pairwise
similarities (linear CKA) between representations of the same subject from the same model but
trained with different folds. Next, we calculate the pairwise absolute difference between predictions
of the same subject from the same model but trained with different folds. As shown in Table 4, for
train/val sets of size greater than 100, the auxiliary model’s representations and predictions are less
similar across random seeds. This indicates that the model is less specified.
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Table 4: Average similarity between the same models trained with different training distributions.
Similarity is both calculated on the model’s representations (CKA) and predicted age (average
absolute difference). Values where the auxiliary model performs significantly worse than the baseline
model are made bold.

representation CKA ↑ predicted age (avg absolute diff) ↓
Data regime Aux Baseline p-val Aux Baseline p-val
100 0.8841 0.9136 0.045 0.7086 0.8917 1.13E-3
250 0.9302 0.9512 7.11E-6 0.7803 0.6659 3.58E-4
500 0.9115 0.9649 5.14E-37 1.0416 0.8570 8.53E-07
1000 0.8638 0.9174 1.88E-39 1.4249 1.1257 7.82E-23
2000 0.8469 0.8848 4.78E-52 1.5902 1.3555 5.42E-51

4 Conclusion

This work explores the utility of an auxiliary objective added to brain age prediction models. We
find that while the auxiliary objective improves model performance and generalization to out-of-
distribution data, the objective also amplifies underspecification. Specifically, models trained with
an auxiliary loss exhibit more variability in both learned representations and predictions across
different random initializations and training folds. Thus, our hypothesis underlining the added noise
introduced in the training dynamics is more likely to be true. Future work should continue to explore
methods that both increase model specification and model generalization. Our code is available at
https://github.com/donghyunkm/multitaskNeuro.
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