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Abstract
Neural Architecture Search (NAS) aims to au-
tomate deep neural network design across vari-
ous applications, while a good search space de-
sign is core to NAS performance. A too-narrow
search space may fail to cover diverse task re-
quirements, whereas a too-broad one can escalate
computational expenses and reduce efficiency. In
this work, we aim to address this challenge by
leaning on the recent advances in generative mod-
elling – we propose a novel method that can navi-
gate through an extremely large, general-purpose
initial search space efficiently by training a two-
level generative model hierarchy. The first level
uses Conditional Continuous Normalizing Flow
(CCNF) for micro-cell design, while the second
employs a transformer-based sequence genera-
tor to craft macro architectures aligned with task
needs and architectural constraints. To ensure
computational feasibility, we pre-train the genera-
tive models in a task-agnostic manner using a met-
ric space of graph and zero-cost (ZC) similarities
between architectures. We show our approach can
achieve state-of-the-art performance among other
low-cost NAS methods across different tasks on
CIFAR-10/100, ImageNet and NAS-Bench-360.

1. Introduction
Designing more accurate and efficient deep neural networks
(DNNs) has been one of the primary areas of focus in ma-
chine learning research in recent years. However, devel-
oping a novel architecture is often accompanied by bur-
densome trial-and-error in an attempt to find an optimal
DNN configuration. More recently, this process has been
aided by a broad family of algorithms designed to automate
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optimizing a machine learning (ML) system.

Neural Architecture Search (NAS), as described by Zoph &
Le (2017), is a process designed to automatically identify
the most effective deep neural network configurations from
a specified, discrete group of options, commonly known
as a search space. NAS methodologies have demonstrated
their efficacy and surpassed the performance of manually
designed networks in many tasks. However, the practical
application of NAS is constrained by various challenges,
including search efficiency, robustness, and the ability to
transfer findings effectively across diverse datasets or tasks,
as noted by White et al. (2023)

In this paper, we focus on advancing NAS by tackling one of
the challenges that remain somewhat overlooked, possibly
due to its particular complexity – the challenge of being
limited by the initial NAS search space, which is often rigid
and hand-crafted. In practice, although carefully designed
search spaces can improve NAS performance (Radosavovic
et al., 2020), e.g. decreasing search time or improving the
chance of finding good-performing architectures, it limits
the applicability of NAS approaches to those tasks where
strong/sensible search spaces are available. More impor-
tantly, by definition, the performance of any NAS approach
is strictly associated with the quality of its search space –
even the best searching algorithm can only produce results
as good as the best candidate model from within the search
space.

This inherent relationship between the statistical properties
of a search space and the cost-performance trade-off in NAS
is well-known. It has motivated researchers to explore the
problem of designing better search spaces, resulting in sev-
eral methods attempting to automate this process (Zhou
et al., 2021; Hu et al., 2021; 2020). Generally speaking,
automated search space design methods can be seen as map-
pings from one search space to another, S → A, where
typically A ⊂ S and |A| ≪ |S|. In other words, these
methods focus on identifying a subset (A) of a larger search
space (S) that exhibits desired statistical properties, which
is then used by a chosen NAS algorithm to find individual
models. Compared to performing NAS directly on S, they
are more efficient due to the relaxed objective in the first
stage, effectively resulting in hybrid systems combining
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coarse and fine-grained searching.

However, these approaches still need to carefully design the
initial search space S (e.g., as a pre-defined super network
in Zhou et al. (2021); Hu et al. (2021; 2020)), start with a
large enough initial search space that includes final optimal
search space during shrink process (Hu et al., 2021; 2020),
or begin with existing success network structure to ensure
the final optimal search space can efficiently emerged, limit-
ing the final NAS performance in a way similar to classical
methods. On the other hand, existing approaches that fo-
cus on pruning or evolving a large initial S often rely on
repeating a variation of the NAS process multiple times to
provide feedback for updating S. This is also subject to
bias, e.g. when assessing the fitness of different subspaces,
and will almost certainly result in non-negligible additional
cost (Zhou et al., 2021; Ci et al., 2021). In contrast, our goal
is to scale the initial search space S to the sizes unattainable
(∼10390) by previous works, in an attempt to provide a more
general-purpose mechanism with less dependence on the
initial design of S. Simply put, we want to include as many
models in S as possible without worrying too much about
the resulting computational cost or human effort of doing
so. Furthermore, we want to navigate a reasonable subspace
from such an unconstrained initial search space based on
the task conditions that provide an optimal configuration for
the NAS process without repeating and feedback.

To navigate the resulting large space efficiently and in a
context-dependant way, we are inspired by the recent ad-
vances in generative ML (Grathwohl et al., 2019), which
shows impressive results in modelling highly-dimensional
conditional distributions of various modalities such as im-
ages, text or speech. To extend this high-level idea to dis-
tributions of neural networks, we propose a hierarchical ap-
proach which breaks down the generation into several steps:
1) first, we learn a reversible, continuous latent space of mi-
cro/cell designs in which “similar” designs cluster together
– this is achieved by training a Graph Variational Autoen-
coder (G-VAE) regularized by the zero-cost (ZC) similarity
of different graphs; 2) then, we introduce a Conditional
Continuous Normalizing Flow (CCNF) model as a way of
finding “synonymous designs” in the G-VAE space effi-
ciently; 3) finally, a decoder-only sequence generator (SG)
is trained to design macro architectures – for user-defined
conditioning, it outputs a sequence of cells to form a full
model, with architectural details of individual cells being
abstracted away through the notion of a “cell type” obtained
from the previous steps. The full process is schematically
depicted in Fig. 1 with Sec. 4 discussing each step in detail.
In summary, our work contributes in the following ways:

• We extend existing ZC proxies into a multidimensional
vector form, studying their clustering behaviour on
network graphs and their effectiveness.

• We employ semi-supervised learning for a G-VAE to
achieve a reversible encoding of graphs into a latent
space, preserving the property of the ZC space and
we further perform clustering. This approach further
enables us to quantize the graph design space into
multiple “synonyms” sets without compromising graph
performance and costs.

• We use a CCNF model to efficiently navigate the latent
space of the G-VAE, which results in efficiently gener-
ated candidate cell (graph) architectures under specific
conditions.

• We construct a decoder-only transformer to integrate
with graph generation, forming a hierarchical network
architecture generation mechanism that supports user-
defined conditioning.

2. Related Work
Automated NAS Search Space Design. Optimizing NAS
search spaces in an automated manner has attracted exten-
sive interest recently, e.g. by progressively constraining the
degree of freedom of the network design space (Radosavovic
et al., 2020), interchangeably shrinking and expanding the
initial search space (Ci et al., 2021), or employing evolu-
tionary algorithms to evolve the initial space to an optimal
subspace (Zhou et al., 2021). Schrodi et al. (2023) proposed
a unifying framework to design hierarchical NAS search
spaces with context-free grammars and used Bayesian op-
timization to search efficiently. Despite their differences
in how to find the optimized subspaces, most of the exist-
ing approaches still need to iteratively evaluate the fitness
of subspaces, i.e., assessing the performance of models
within them, which often results in significant cost A large
body of work has been developed to speed up model per-
formance evaluation in general NAS context (Pham et al.,
2018; White et al., 2021a; Dudziak et al., 2020), e.g., zero-
cost proxies (Abdelfattah et al., 2021; Mellor et al., 2021;
Xiang et al., 2023a) have been shown to correlate well with
final trained accuracies, with negligible cost to compute.

Flow-based Models. Compared to other types of generative
models (Creswell et al., 2018; Kingma & Welling, 2013),
flow-based models are more efficient to sample, while being
more stable to train and free of mode collapse and conver-
gence issues, showcasing impressive performance in various
generation tasks (Abdal et al., 2021; Yang et al., 2019; Li
et al., 2022). Existing works often consider the continuous
normalizing flows (CNF, Grathwohl et al. (2019)) based on
neural ODEs (Chen et al., 2018), which are able to impose
conditions during the sampling process, and thus control
certain properties of the generated output, e.g., generat-
ing attribute-semantic edits (Abdal et al., 2021) or super-
resolving images (Lugmayr et al., 2020). Our work is based
on the existing works on flow-based models, but to the best
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of our knowledge, we are the first to show that it is feasible
to employ CCNFs to generate optimized neural architec-
tures, balancing performance and efficiency.

Neural Architecture Generation. Neural architecture gen-
eration (NAG) has recently become a popular topic in the
NAS community (Lee et al., 2021; Yu et al., 2023; An et al.,
2023). Compared to conventional NAS, NAG methods often
resort to some forms of generative models, such as diffusion
models (An et al., 2023) or Generative Pre-Trained (GPT)
models (Yu et al., 2023), aiming to generate candidate ar-
chitectures with desired properties. Our work bears some
resemblance to these methods, but is fundamentally differ-
ent: 1) instead of direct search/generation, we consider a hi-
erarchical paradigm to efficiently explore the tremendously
large initial search space; 2) we consider a synonymous
micro design approach leveraging the clustering properties
of architectures, to effectively discover high-performing
cells from given references; and 3) we use a vector form of
zero-cost proxies throughout the micro and macro design,
achieving desired trade-off between cost to compute and
transferability across different tasks.

3. Search Space Design and Challenge
As discussed in the introduction, the cost of the NAS pro-
cess is strongly related to the search space size. In practice,
to allow the search results to be suitable for a more diverse
range of tasks, the previous search space design is typically
large and suitable for specific NAS algorithms. This section
starts by introducing the design details of our less-constraint
initial search space, called GraphNet, and its overall search
space size. Then, compared with large search space designs
in previous NAS works designed for relatively general pur-
poses, to show the challenge of the previous approach on
GraphNet.

3.1. GraphNet Search Space Design

Micro search space. Our micro design space consists of
any directed graph with up to 6 operation nodes, 1 input
node and 1 output node. Operation nodes can be assigned
one of 28 operations from the literature (9 op. types with 3
kernel size each + skip connection), and the nth node can
have up to n inputs – one for each previous node; values
of different inputs are added before executing a selected
operation. Each cell design includes the number of channels
and strides as hyperparameters – operations within a cell are
not allowed to change dimensions of intermediate results
(unless internal to an operation), and a relevant projection
is performed automatically before executing a cell to ad-
just input channels and possibly reduce spatial dimensions.
Overall, without accounting for isomorphism and cell hyper-
parameters, the micro design space spans approximately up
to 1017 configurations. Formally, the micro space is a set of

pairs Ω = { (A,F) } where A ∈ {0, 1}8×8 is an adjacency
matrix and F ∈ {0, 1}8×13 is a feature matrix encoding
operation type and kernel size (1-hot over the first 10 and
last 3 dimensions). Details about operations can be found in
App. C.

Macro search space. The macro search space is then de-
fined as a sequence of up to 20 different cells xi ∈ Ω, with
each cell being additionally parametrized by the number of
channels ci ∈ C = {8, 16, ..., 1024} and stride si ∈ {1, 2},
for i = 1, 2, ..., 20. Suppose we assume different triples
ti = [xi, ci, si] to be unique designs. In that case, the
overall search space is a set of all sequences of any 20 such
triples S = (Ω×C×{1, 2})20 and we can estimate the total
number of points to be up to (|Ω| ∗ 127 ∗ 2)20 ≈ 10390. We
will use α(t1, t2, ..., t20) ∈ S to refer to particular design
points in the overall search space.

3.2. Challenges for NAS on GraphNet Design Space

We started to survey the previous NAS works that aimed
to design a large search space for diverse NAS tasks, A
detailed Table 9 is located in Appendix.G.

Previous efforts, such as those in the reinforcement learning
approaches, used graph-based search spaces, such as De-
pict Network Topologies(Zoph & Le, 2017) and NASNet-
A(Zoph et al., 2018), which required intensive computa-
tional resources. For instance, the Depict Network Topol-
ogy requires approximately 537,600 GPU hours to explore
a search space size of 1.12× 1089. On the other hand, Dif-
ferentiable Architecture Search (DARTS) has significantly
reduced the search cost by constraining the search space
and adopting supernet strategies. However, these supernet
strategies heavily rely on memory resources as a trade-off,
posing significant challenges in scaling up for much larger
search spaces. Recently, Zero-Cost NAS approaches, such
as ZenNAS, have demonstrated substantial improvements
in managing large search spaces with relatively lower eval-
uation costs. Nevertheless, they still require considerable
repetitive evaluation during each NAS run under different
conditions. This indicates a significant potential for optimiz-
ing costs through a more rational search space design.

Our GraphNet design space, as illustrated in the previous
subsection, proposes a hierarchical search space that inte-
grates sequential and graph-based elements, expanding the
search space to an unprecedented scale of approximately
1 × 10390 and not specifically designed for weight shar-
ing strategy that causes methods mentioned above can be
extremely time-consuming and resource expensive in our
GraphNet search space.
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Figure 1. Overview of the proposed approach. 1 We start from a large micro search space Ω, and 2 train a G-VAE with triplet margin
loss and use a GMM to partition the latent space into clusters. 3 A CCNF model is then trained to generate synonym cells given
a reference r. 4 We explore the high-level search space Ŝ with ageing evolution and the trained CNF, and 5 the set of explored
architectures {α} is used to train a SG, which is able to generate the desired α̂ given a condition token (CT) y. 6 The final architecture is
then generated from α̂ using the CCNF and G-VAE decoder.

4. Method
This section outlines the technical details of our method
and search space. We begin by discussing the clustering of
similar micro designs in an invertible fashion in Sec. 4.1,
then follow with synonym generation using a CCNF model
in Sec. 4.2. Finally, we discuss full model generation with a
decoder-only transformer in Sec. 4.3.

4.1. Clustering micro designs

Training a macro model generator to find high-quality mod-
els directly in such a large search space is obviously chal-
lenging. In order to simplify this task, we want to abstract
away details of individual designs by automatically identify-
ing families of similar cells. Later, the sequence generator
only has to decide a family for each cell and the task of find-
ing high-performance designs within each selected family
is delegated to a lower-level search in the hierarchy.

Formally, given a metric space of micro designs (Ω, d),
where d(a, b) is a distance metric between designs a and b
proportional to their relative quality, our goal is twofold: 1)
to partition Ω into a finite number of K clusters Ω̂k=1,...,K

based on the metric d; 2) to be able to sample new designs
from each cluster easily.

The first important choice here is the metric d - naively rely-
ing on accuracy is undesired for two reasons: 1) computing
accuracy for a large number of models can be extremely

expensive, a common challenge in NAS, but also 2) it is
known that different models can exhibit very different per-
formance on different downstream tasks (Duan et al., 2021;
Tu et al., 2022) – since we want to avoid bias towards any
particular downstream task, we need something else.1 To
address this, we propose to use a generalized form of ZC
proxies instead, by computing a vector of P proxies for a
semi-fixed point from S. Specifically, for a micro design
x ∈ Ω, we define its ZC vector z : Ω → RP as:

z(x) =
[
z(1)αx

, z(2)αx
, ..., z(P )

αx

]
, (1)

where: αx = α(t1, t2, ..., t17) s.t.

ti = [x, ci, si], ci = 16 ∗ 2⌊ i
6 ⌋, si =

{
2 if i ∈ {6, 12}
1 otherwise

and z
(i)
αx refers to computing the ith zero-cost proxy for the

model αx obtained by stacking the same cell design into the
above predefined macro-structure. Note that the ZC vector,
while related to the original ZC metrics, serves a fundamen-
tally different purpose – instead of strictly ordering models,
which is a challenging task, we only use it to cluster designs
that are likely to train to similar performance. Although the
difference might seem nuanced, it is crucial for our method.
Consider a simple proxy of the number of parameters. For
example, sometimes very large models are desired if work-

1Conceptually, we could also consider a vector of accuracies
on a diverse set of uncorrelated tasks, but that becomes even more
expensive.
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ing with large datasets, and sometimes small ones might
be a better option. While there is no universal answer to
choosing the right model size, we can reasonably expect
if one small model works well, other small models should
not be fundamentally wrong choices, and vice versa. This
reasoning is the foundation for our design clustering. Given
z, the metric d is then defined as d(a, b) = L1(z(a), z(b)).
We will refer to this particular form as ZC-similarity2. In
our experiments, we use a vector of 4 common proxies:
1) NASWOT (Mellor et al., 2021), 2) SNIP-SSNR (Xiang
et al., 2023b), 3) number of parameters (Ning et al., 2021),
4) FLOPS.

Following the choice of the metric d, we employ a Gaussian
Mixture Model (GMM) to identify different clusters in the
ZC space. Specifically, we fit a mixture of multivariate
normal distributions, parameterized with factors πi and their
means and variances µi, σi, to the observed values of z:

p(z) =

K∑
i=1

πiN (z|µi, σi), (2)

using the expectation-maximization algorithm. After that,
models are assigned to clusters based on which component
of the mixture they are most likely to belong to – this means
one cluster is modelled by one component of the GMM
with µi as its centre. The number of clusters is decided by
plateauing Bayesian and Akaike information criteria.

The above provides us with a way of identifying families of
cells, as shown in Fig. 2(a), but navigating the space Ω is
still hard since we do not have a way of quickly providing
designs that would belong to a certain family. To address
this, we further learn an invertible mapping to a continues
latent space f : Ω → Rm in which L1 distance approx-
imates d, i.e., (F,L1) ≈ (Ω, q), where F = {f(x)}x∈Ω
is the set of embedded designs in this latent space and
∀a,b∈ΩL1(f(a), f(b)) ∝ d(a, b). This is done by train-
ing a G-VAE model (Kipf & Welling, 2016) additionally
regularized with a triplet margin loss (Balntas et al., 2016)
and an auxiliary ZC predictor q which tries to predict z(x)
from f(x):

LVAE = −
reconstruction (BCE)︷ ︸︸ ︷

Ep(f |x)log p(x̃|f)+

VAE regularization︷ ︸︸ ︷
KL[p(f |x) || p(f)]

+ Ex,a,b max
{
d(x, a)2 − d(x, b)2 +m, 0

}︸ ︷︷ ︸
triplet margin

+ Ex(q(f(x))− z(x))2︸ ︷︷ ︸
predictor (MSE)

,

(3)

where p(f |x) and p(x̃|f) are distributions of encoded and
reconstructed points, respectively; m is a margin term and

2Strictly speaking, ZC-similarity should be understood as the
opposite of the L1 distance since similar models should be close,
i.e., ↑ similarity =↓ L1.

triples x, a, b ∈ Ω3 are chosen s.t. for an anchor x, a and b
are positive and negative examples, respectively. In practice,
to ensure the decoder of the G-VAE can correctly decode
as many points in the latent space as possible, it is impor-
tant to scale its training set as much as possible. However,
computing z(x) and related distances d(a, b) might easily
become a bottleneck; therefore, we decided not to compute
the regularization term in Eq. 3 all the time and only limit
it to a relatively small random subset of all training points.
After the G-VAE is trained, we can approximate f and f−1

with its encoder and decoder, respectively.

Given the G-VAE and the GMM, we can efficiently realize
all required functionality of identifying clusters, finding a
cluster to which a model belongs and sampling from clusters.
The resultant latent space and its clustering properties w.r.t.
z when trained naively vs. using our proposed regularization
is illustrated in Fig. 2(b)-(c) – clearly, the regularized space
preserves original clustering much better.

4.2. Generating synonymous micro designs

At this point, we have identified K different families of cells
and have an easy way of sampling from Ω in a structured
way thanks to our latent space. However, recall that we
aim to be able to find high-performance designs in each
family efficiently – this is still challenging since K ≪ |Ω|,
meaning each cluster is still extremely big. To make the
problem more approachable, for now, we will relax it to the
problem of robustly finding synonyms of different designs –
assuming we already know an example high-performance
reference design r, we want p(x|r) to be a distribution of
designs with their accuracy centred around that of r. This
problem is much simpler and should in fact be solvable by
directly leveraging the properties of our latent space. In
particular, p(x|r) could be realized by sampling a neigh-
borhood of r in the latent space: f−1(f(r) + ϵ), ϵ ∼ N .
However, we observe that even in a simple case of CIFAR-
10 classification as a downstream task, a naive sampling
strategy like this leaves some room for improvement, which
we attribute to the sheer amount of possible models and
imperfections of the VAE latent space.

To further improve sampling, let us first denote p(x|r) in the
latent space of the G-VAE as p(f |r). We follow (Liu et al.,
2019b) and utilize a CCNF formulation (Chen et al., 2018;
Abdal et al., 2021) to map N to p(f |r) by running forward
in time from u→0 = ϵ to u→T = u→0 +

∫ T

t=0
g(ut, t, z(r))dt,

according to the dynamics parameterized by a neural net-
work g. By repeating the forward process for different sam-
ples ϵ and a given reference r we can obtain a distribution
of generated designs: p(u→T |r). To ensure p(u→T |r) approx-
imates p(f |r), parameters of g are fit to minimize negative
log-likelihood of generating f(r) from z(r), following the
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Figure 2. (a) Example of 4 clusters of micro designs identified with a GMM w.r.t. the ZC vectors z. (b) t-SNE visualization of the latent
space obtained from a G-VAE trained naively vs. (c) using triplet loss regularization (the same 4 clusters highlighted). Unregularized
space does not preserve ZC similarity of the models.

reverse process:

LCCNF = Ep(r) − log p(u←T |r) = (4)

Ep(r)

[
− log p(u←0 ) +

∫ T

t=0

Tr
(
Jut

g(ut, t, z(r))
)
dt
]
,

where: u←T = f(r), u←0 = u←T −
∫ T

t=0

g(ut, t, z(r))dt,

and Jutg is Jacobian of g w.r.t. ut. Conditioning on the ref-
erence r is done using the same z(r) encoding as in Sec. 4.1
for consistency with the G-VAE. We use Hutchinson’s trace
estimator to efficiently estimate the trace in Eq. 4 (Grath-
wohl et al., 2019) and optimize using gradient descent via
the adjoint method (Chen et al., 2018). Furthermore, similar
to training the G-VAE, to scale training of the CCNF with-
out evaluating z(r) for the excessive amount of models, we
utilize the previously trained predictor q.

After training finishes, p(x|r) is recovered by simply ap-
plying the G-VAE decoder to the samples generated by the
CCNF. The overall training and sampling process is sum-
marized in Appendix. B. We validate the quality of designs
generated by the CCNF and compare it to naive sampling
in the latent space in Apprndix. BTab. 8 and Tab. 7. No-
tably, by sampling with a CCNF, we are able to find a better
design, while neighbourhood sampling fails to achieve this.

4.3. Macro architecture generation

Clustering the micro design space and being able to generate
high-performance architectures from each cluster efficiently
enables us to factorize the search space S into a two-level
hierarchy by replacing individual points from Ω with iden-
tified clusters: Ŝ = ({Ω̂k}Kk=1 × C × {1, 2})20. This, in
turn, reduces the space of macro designs from c. 10390 to
(K|C||S|)20 ≈ 1078. We will refer to Ŝ as a higher-level
(HL) search space to distinguish it from the original S. Sim-
ilarly, we will call elements of Ŝ HL designs/sequences and
denote them with α̂(t̂1, ..., t̂20).

Within the HL search space, each triple t̂ represents a large

number of different possible triples t, depending on which
design x is selected from a cluster x̂ ∈ {Ω̂k}Kk=1. We want
to use our CCNF to resolve this, but we face the problem
of selecting a reference point – if we already know a strong
design point, we can use it and focus our search towards sim-
ilar designs; this is related to summarizing each cluster with
an approximation of minx∈x̂ L(αx). However, knowing
good designs in advance is a strong assumption. Therefore,
we opt for a simpler but more realistic approach of using the
most representative models from each cluster as reference –
this is conveniently done by conditioning the CCNF on each
cluster’s mean µi, and is more closely related to considering
Ex∈x̂L(αx). Formally, for the HL design α̂ ∈ Ŝ, a random
design α(α̂) ∈ S can be defined as:

α(α̂) = α(t1, ..., t20), where: ti = [ω(x̂i), ĉi, ŝi], (5)

ω(x̂) = f−1
(
ϵ+

∫ T

t=0

g(ut, t, µ(x̂))
)
, (6)

[x̂i, ĉi, ŝi] = t̂i are elements of HL design α̂ and µ(x̂) is the
mean of cluster x̂.

Having chosen a strategy to sample from each cluster, we
then start considering different HL designs for the purpose
of training a macro architecture generator. Our goal is to
train a sequence generator (SG) h that would propose differ-
ent parametrized cells in an autoregressive fashion, given a
starting condition y: t̂i = h(..., t̂i−1, y). The conditioning
token y is similar to the one used for CCNF and guides the
generation process towards macro designs with high-level
parameters similar to those in y. In particular, in our experi-
ments, we use y to constrain FLOPs and parameters. We use
decoder-only transformer (Radford et al., 2018) model for
h. Specifically, we fine-tune a pretrained GPT-Neo-125M
model provided by Black et al. (2021), by minimizing the
negative log-likelihood of generating observed macro se-
quences from their relevant values of y. However, naively
training the SG on a random sample of models would re-
sult in effectively performing a random search among the
models meeting the requested y. To mitigate this, we run
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an evolutionary search (ES) in the HL space (using a CCNF
to construct cells) to find designs that maximize T-CET, a
state-of-the-art zero-cost proxy (Xiang et al., 2023b), for
various size constraints. We then train the SG on the history
of the ES, resulting in a bias towards models navigating the
trade-off between T-CET and parameters:

LSG = Eα̂∈H
∑
i

−log p(t̂i|..., t̂i−1, y), (7)

where: y = z(α(α̂)),

H ≈ argmax
α̂

T-CET(α(α̂)),

t̂i are elements of sequence α̂ and Eq. 4.3 refers to perform-
ing the ES (details of the HL-Evo algorithm can be found
in Algo. 1). Overall, after the training has finished, the dis-
tribution of architectures generated for a given condition y
can be summarized as:

p(α|y) = p(α(α̂)), (8)

where α̂ = [t̂1, ..., t̂20], t̂i = h(..., t̂i−1, y),

and randomness is introduced through ϵ in α(α̂) (see Eq. 5-
6). Note that we employ deterministic sampling at the macro
level.

Details of our HL-EVO Algorithm Alg. 1 summarizes our
HL evolutionary search algorithm (HL-EVO), which com-
bines evolutionary search with the pre-trained CCNF to dis-
cover good-performing macro architectures. Our HL-EVO
considers only mutations – parents are randomly selected,
while the offspring with low fitness are dropped. In practice,
mutations may occasionally produce child architectures that
do not satisfy the pre-defined constraints – they are simply
discarded by the algorithm, which then moves forward to
the next iteration. In particular, our HL-EVO operates in
two phases, exploration and exploitation, with the equal
budget on the number of iterations. In the exploration phase,
we allow the search to mutate across different cell families
for each x̂i ∈ α̂(t̂1, ..., t̂20), so it can explore various com-
binations of cell families in the macro sequence. On the
other hand, in the later exploitation phase, we restrict the
search to fix the current sequence of cell families x̂i, but
only mutate channel ĉi and stride ŝi, in hope to keep the
already explored promising macro sequences, while relying
on the CCNF to subsequently exploit good-performing final
architectures from these macro sequences α(α̂).

In our experiments, we use T = 20000 and N = 512.
We choose a relatively small initial architecture α0 as
[(x̂(5), 32, 1), (x̂(5), 64, 2), (x̂(5), 64, 1)], where x̂(5) is the
mean of the 5-th cluster (cell family).

Final model selection. The above sampling procedure is
supposed to produce a small, optimized search space for
a given conditioning y. As such, it should be used with a

Algorithm 1 HL-Evo
input Search space S (with related Ŝ and {Ω̂k}Kk=1),

objective L, total number of iteration T ,
population size N , initial architecture α0,
a trained CCNF model g and a G-VAE decoder f−1

output A selected architecture α⋆, search history H

1: function GenCell(Ω̂)
2: ϵ ∼ N
3: x← f−1

(
ϵ+

∫ T

t=0
g(ut, t, µ(Ω̂))dt

)
4: return x
5: end function
6: function Mutate(α, exploration)
7: take random cell t = [x, c, s] ∈ α
8: let x̂ be the cluster to which x belongs
9: select random mutation m

10: if m = change channels then
11: sample new c ∼ U{C}
12: else if m = change stride then
13: sample new s ∼ U{1, 2}
14: else if m = change cell design then
15: generate new x← GenCell(x̂)
16: else if exploration and m = change cell type then
17: sample new cluster x̂ ∼ U{Ω̂k}
18: generate new cell x← GenCell(x̂)
19: end if
20: replace t in α with its modified version
21: return modified α
22: end function
23: H = {α0}
24: P ← H
25: for e ∈ { true, false } do
26: for i← 0 to T/2 do
27: take random model from the population α ∼ U{P}
28: α′ = Mutate(α, e)
29: if |P | ≥ N then
30: α′′ ← argmaxx∈P L(x)
31: P ← P \ {α′′}
32: end if
33: P ← P ∪ {α′}
34: H ← H ∪ {α′}
35: end for
36: end for
37: α⋆ ← argminx∈H L(x)

separate searching algorithm on top of the generated models.
Although many approaches could be tried for simplicity and
to keep the cost low, we opted to use a simple selection
based on T-CET in our experiments. Different searching
strategies are compared in App. F.1.

5. Evaluation
We evaluate our method on the typical datasets: CIFAR-10,
CIFAR-100 (Krizhevsky, 2009) and ImageNet-1k (Deng
et al., 2009), abbreviated C-10, C-100 and IN-1k, respec-
tively. To test the generalizability of our method to less-
studied tasks, we also evaluate the recently proposed NAS-
Bench-360 (NB360, (Tu et al., 2022)). Details about pre-
training architecture, hyperparameters and cost can be found

7
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Table 1. Comparison with SOTA ZC NAS. All methods were run using the same protocol: up to “ZC evals.” models were scored using a
selected ZC proxy, where the model selection was guided with either evolution, HL evolution, or our SG. The top-N models according
to each proxy were trained, and the best one is reported – for CIFARs, N=10, for IN-1k, N=1. Constraints were denoted under each
dataset’s name, and models that violated these were discarded. “Cost” refers to searching cost in GPU hours.

Design Space Method Pretraining
time

ZC
evals.

C-10
(1M param.)

C-100
(1M param.)

IN-1k
(450M FLOPs)

Acc.(%) Cost Acc.(%) Cost Acc.(%) Cost

ZenNet‡
Evo(Zen) - 480,000 96.2 14 80.1 14 - -
Evo(ZiCo) - 480,000 97.0 10 80.2 10 - -
Evo(T-CET) - 480,000 97.2 19 80.4 19 - -

GraphNet
Evo(T-CET) - 480,000 96.4 22 79.6 22 77.6 20
HL-Evo(T-CET)+CCNF 5 20,000 97.4 3.6 80.9 3.6 78.4 6
SG+CCNF 30 100 97.6 0.08 81.0 0.08 78.5 0.08

in App. A.

5.1. Systematic comparison on CIFAR and ImageNet

We begin by comparing our method to other approaches
based on zero-cost proxies in a controlled setting where all
models are trained using exactly the same protocol, archi-
tecture constraints and (max) search budget. We also ablate
our method by progressively adding different components
and quantifying their effects when performing a search in
our search space (which we call GraphNet). The results
are presented in Tab. 1.

We compare to evolution-based ZC NAS approaches: Zen-
NAS (Lin et al., 2021), ZiCo (Li et al., 2023) and T-CET (Xi-
ang et al., 2023b). We do not compare to supernet-based
ZC NAS, such as TE-NAS (Chen et al., 2021) or Zero-Cost-
PT (Xiang et al., 2023a), since constructing a supernet for
those methods is impossible in our search space. Overall,
we can see that models designed in the GraphNet search
space using our proposed generative models achieve su-
perior performance – we attribute this simply to the fact
that our search space is much larger, i.e., it is a strict su-
perset of ZenNet design space. However, we can also see
that simply increasing the search space size is not enough
– when naively using existing methods in our large space,
the performance is likely to drop even for a fairly large com-
putational budget (e.g., Evo(T-CET), which is the best on
ZenNet, drops by 0.8 percentage points on both C-10 and
C-100 when run in the GraphNet space). Compared to these
methods, by utilizing our G-VAE and CCNF and running
evolution in the HL space, we can already improve upon
all existing methods while being significantly cheaper (HL-
Evo) – this is primarily due to the informative organization
of the search space (Sec. 4.1). Finally, we can amortize the
cost of running the HL ES each time by training our SG,
which then allows us to achieve comparable, if not slightly
better, performance in a matter of minutes – this property is
desired since it allows us to mitigate the “cold start” prob-
lem in NAS, addressed by some recent work (Zhao et al.,

2023). More experiments using different algorithms on our
GraphNet space can be found in App. F.2.

5.2. Open-world comparison on ImageNet

Here we compare to other NAS approaches that can be
found in the literature without requiring them to run in an
aligned setting – the only common trait is the models should
be (roughly) smaller than 450M FLOPs. Our focus is on
positioning our work w.r.t. the state-of-the-art approaches in
the 3 most relevant lines of work: 1) zero-cost and low-cost
NAS, 2) automated search space design, and 3) generative
NAS. We present a detailed comparison in Tab. 2, includ-
ing our best effort to highlight any differences in search
spaces and training schemes. We can see that our method
achieves very strong performance while requiring minimal
computation resources. The only two methods that achieve
better results are OFA (when initialized with weights from
the supernet) and GPT NAS. However, the former requires
extensive pretraining while the latter is almost 33× larger
(the authors do not report FLOPs so we included the model
size, but it probably violates the FLOPs constraint as well).
The results of our method are averaged by searching 3 times,
each time training the resulting network once.The architec-
ture and further discussion can be find in App. F

5.3. Architecture Discovered and Further Discussion on
Performance

We present our SG+CCNF architecture for ImageNet 1k
tasks with constrained budgets of 450M and 600M FLOPs,
as shown in Fig. 4 and 5 at App.F. For the macro-structures
satisfying FLOP constraints, most blocks use stride 2 to
reduce feature map size. In the 600M model, the last block
uses stride 1, leveraging the higher FLOP allowance.

From a microstructure perspective, mbconv is the predomi-
nant choice, with dil conv also frequently used. Dense resid-
ual connections are prevalent, ensuring gradient flow during
training. Each graph in the proposed networks is sampled
from the Pareto Front of zc scores to the flops/param cost,
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Table 2. Comparison with various NAS approaches on ImageNet-1k for budgets of 450M, 600M and 1000M FLOPs. All numbers other
than “Ours” are directly taken from relevant papers. OS – One-Shot, SN – supernet, ZC – zero-cost. Cost in GPU hours.

Model Design space Training scheme Pre-cost Search cost Acc.(%) Params.(M) FLOPs(M) Approach

OFA (Cai et al., 2020) MobileNetv3 Custom 1,200 40 79.1 ? 389 OS + predictor
OFA scratch (Cai et al., 2020) MobileNetv3 Custom 1,200 40 77.0 ? 389 OS + predictor
OFA scratch (Moons et al., 2021) MobileNetv3 EfficientNet 1,200 40 77.7 ? 389 OS + predictor
GPT NAS (Yu et al., 2023) Custom ? ? 96 79.1 110.9 ? GPT gen.
NSENet† (Ci et al., 2021) Custom EfficientNet ? c. 4,000 77.3 7.6 333 SN evo. + OS
NSENet-GPU (Ci et al., 2021) Custom EfficientNet ? c. 4,000 77.9 15.7 ? SN evo. + OS
AutoSpace† (Zhou et al., 2021) Custom ? 960 ? 77.5 5.7 380 SN evo. + OS
TE-NAS (Chen et al., 2021) DARTS ? 0 4.1 75.5 5.4 <600 ZC + SN
Zero-Cost-PT (Xiang et al., 2023a) Proxyless Proxyless 0 1.0 76.4 8.0 ? ZC + SN
ZenNet (400M-SE) (Lin et al., 2021) MobileNetv2 ZenNAS 0 12 78.0 5.7 410 ZC evo.
ZiCo (450M) (Li et al., 2023) MobileNetv2 ZenNAS 0 9.6 78.1±0.3 ? 448 ZC evo.
Ours GraphNet ZenNAS 30 0.08 78.3±0.2 4.3 429 ZC gen. + ZC sel.

ZiCo (600M) (Li et al., 2023) MobileNetv2 ZenNAS 0 9.6 79.4±0.3 ? 603 ZC evo.
Ours GraphNet ZenNAS 30 0.08 79.5±0.1 7.0 593 ZC gen + ZC sel.

ZiCo (1000M) (Li et al., 2023) MobileNetv2 ZenNAS 0 9.6 80.5±0.2 ? 1005 ZC evo.
Ours GraphNet ZenNAS 30 0.08 80.6±0.4 8.2 964 ZC gen + ZC sel.

aiming to maximize zc scores while minimizing cost. The
cluster distribution in the zero-cost vector space is illustrated
in Fig. 6 at App.F .

While our method may not significantly improve accuracy
alone, it effectively amortizes search cost and enhances ac-
curacy, a challenging achievement. Considering ImageNet
is a well-studied task, we adhered to previous training pro-
cedures for fair comparison, acknowledging that substantial
improvements are not expected.

5.4. NAS-Bench-360

Table 3. Results on the tasks from NB360. Metrics and baselines
follow what is reported by (Shen et al., 2022). Lower is bet-
ter for all tasks. Best in bold, second best underlined. We use
WRN (Zagoruyko & Komodakis, 2016) as a reference and con-
sider Ours better than DASH (Shen et al., 2022) for the ECG task
due to the lower search cost.
Method Spherical Darcy Flow PSICOV Cosmic NinaPro ECG Satellite DeepSEA

Expert 67.41 0.008 3.35 0.13 8.73 0.28 19.8 0.30
WRN 85.77 0.073 3.84 0.24 6.78 0.43 15.49 0.40
DASH 71.28 0.008 3.30 0.19 6.60 0.32 12.28 0.28
Ours 65.72 0.011 3.02 0.14 6.30 0.32 18.11 0.50

To run on NB360, we first have to decide on sensible condi-
tioning for our SG. Unfortunately, unlike the previous bench-
marks, NB360 does not have well-established constraints
that we could use and compare to other methods with a
similar budget — to resolve this, we decided to use #params
and #FLOPs of the Wide-ResNet (WRN) as this is the most
basic baseline considered by (Tu et al., 2022). Specifically,
we use WRN for each task backbone structure (backbone
is different for each task, on hyper-parameters like stride
size, etc.) to CIFAR100 task and calculate zero-cost metrics
for WRN. Then, for each task, use network generate to gen-

erate candidates’ networks based on the zero-cost metrics
we have as reference conditions. Afterwards, we adopted
the candidates’ networks with current task output layers,
calculated zero cost metrics for each task data, ranked the
candidates with zero cost metrics, and selected and trained
top-10 models. We report the best model we obtained from
validation. We compare to DASH (Shen et al., 2022), a
recent NAS method designed specifically with NB360 in
mind, and expert-designed networks in Tab. 3. We can
see our generative approach achieves very competitive per-
formance. Significantly, we can improve upon the WRN
reference in 6/8 cases. Moreover, we improve upon DASH
in 4/8 cases, despite DASH performing supernet training
and HPO for each task, whereas we do not use any feedback.
Note that due to the amortised cost of training the SG, we
are also much faster — generating models for new tasks
takes minimal time. Still, there is room for improvement,
considering our method fails noticeably on DeepSEA and
Satellite tasks. We leave investigating those failure cases for
future work.

6. Conclusion
We have presented a novel method to efficiently generate
high-performance DNN architectures for user-defined ar-
chitectural constraints by using an elaborated hierarchy
of generative models guided by the clustering properties
of zero-cost proxies. Our approach achieves state-of-the-
art performance on common tasks, including avg. 78.3%,
79.5% and 80.6% top-1 accuracy on ImageNet-1k for the
budgets of 450M, 600M and 1000M FLOPs. We hope our
work serves as a proof of concept that generative methods
can be successfully used for NAS without incurring pro-
hibitive costs. We include more discussion on limitations of
our approach and future work in App. H.
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A. Pretraining: architectures,
hyperparameters and cost

The total pretraining cost is around 30 GPU hours on a
single V100 GPU, and the most time-consuming part is
running the ES for training the SG (14 GPU hours). On the
other hand, training the G-VAE and the CCNF takes only
5.5 GPU hours in total. Note that the cost is paid once for
all reported experiments.

Hidden cost. Additionally, to the NAS-specific cost above,
our method relies on having access to a trained GPT. Al-
though GPTs have become increasingly available, if a model
like that had to be trained from scratch (e.g., due to legal is-
sues), it would incur relatively high additional costs. Specif-
ically, (Brown et al., 2020) report total compute to train
GPT-3 125M to be 2.25 × 1020 FLOPs, which translates
to approx. 910 GPU hours using a A100 GPU (assuming
FP32 with 44% of the peak tensor utilisation, c.f. Tab. 1 by
(Narayanan et al., 2021)).

In this section, we furnish an overview of the hyper-
parameters employed in each component, along with the
training parameters utilized during their respective training
procedures. We also provide a detailed overview of the cost
of different steps of our method in Tab. 5.

The G-VAE is configured with four graph convolution lay-
ers (Kipf & Welling, 2017), utilizing a hidden state of size
512 and projecting to an output latent space of size 256 for
the metrics predictor. This metrics predictor is structured
as a two-layer MLP with ReLU activation. The first layer
serves as a hidden state, mirroring the size of the latent space
at 256, and the subsequent layer produces four conditions,
aligning with our target outcomes.

In terms of training, the metrics predictor undergoes
joint training with the G-VAE. The AdamW opti-
mizer (Loshchilov & Hutter, 2019), combined with a cosine
annealing schedule (Loshchilov & Hutter, 2017), is em-
ployed, initiating with a learning rate of 1e-3 and decaying
to a minimum value of 0. A weight decay is also incor-
porated, set at 5e-4. The training procedure is constrained
by a maximum of 500,000 steps and incorporates an early
stopping mechanism. This mechanism ceases training if a
reduction in loss is not observed over a span of 10 epochs.

The Continuous Conditional Normalizing Flow (CCNF) in-
corporates nine Concat+Squash+Linear layers, each having
a hidden dimension of 512. The input layer is structured to
accommodate a latent feature size of 256 and is engineered
to project these latent features into a Gaussian distribution,
preserving the identical dimensional size of 256.

For training, we utilize 400,000 unlabeled graphs as our
dataset. These graphs generate latent features through G-
VAE, which are further predicted into ZC vectors by the met-

rics predictor. The CCNF is trained with a fixed learning rate
of 1e-3 and a batch size of 256. Weight decay is set at 0.01,
serving as the default value for the Adam optimizer (Kingma
& Ba, 2015). The latent features are then transformed into a
standard Gaussian distribution, which acts as the prior distri-
bution by minimizing log-likelihood. Notably, the network
employs the “dopri5” ODE solver (Hairer et al., 1993) with
both absolute and relative tolerance set to 1e-5.

For training the sequence generator, GPT-Neo-125M (Black
et al., 2021) is employed as the foundation through pre-
trained checkpoints. The model consists of 12 transformer
blocks (Vaswani et al., 2017) using GELU (Hendrycks &
Gimpel, 2016) and LayerNorm (Ba et al., 2016). We fine-
tune this model with a consistent learning rate of 1e-3, uti-
lizing the 60,000 networks and zc-vectors gathered from the
HL-Evo procedure and maintaining a batch size of 1. To
augment the dataset and mitigate the risk of overfitting, we
enhance our condition token by randomly dropping tokens
from the set that includes Param, Flops, and ZC values.

For details of our hyperparameters, please refer to Tab. 6.

Table 4. Detailed hyperparameters of each component.

G-VAE Predictor CCNF Seq. Gen.

Data gen. 5 14
Training 0.5 0.5 11

Table 5. Detailed cost of running each step of our method All cost
in GPU hours assuming execution on a V100 GPU.

B. CCNF Sample Experiments Details
The overall training and sampling process is summarized
in Fig. 3. We validate the quality of designs generated by
the CCNF and compare it to naive sampling in the latent
space in Tab. 8. We can see that samples from the CCNF are
focused closer to the reference compared to naive sampling
of the neighbourhood – this results in almost 1 percentage
point higher average accuracy of the sampled models and
better best- and worst-case performance.

To demonstrate the rationale of clustering micro designs,
we choose to sample 10 graphs from each of the following
clusters:

• cluster 9: containing graphs with the lowest
params/Flops and zc-scores

• cluster 1 containing graphs with the highest
nwot/SNIP-SNR scores

• cluster 2 containing graphs neighbour to those in clus-
ter 1in zc-vector space with larger param/flops sizes
but relatively smaller nwot/SNIP-SNR sco
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Table 6. Detailed hyperparameters of each component.

G-VAE Metrics Predictor CCNF Seq. Gen.

A
R

C
H

Main Operation GCN Linear Cat + Squash + Linear Transformer
Number of layers 4 2 9 12
Input dimension [9× 9, 15× 9] 256 256 64
Hidden dimension 512 256 512 2048
Output dimension 256 4 256 768
Activation fn ReLU ReLU tanh GELU
Normalisation LayerNorm - Moving BatchNorm LayerNorm
Prior Gaussian - Gaussian -

T
R

A
IN

Tr. samples 400K unlabelled + 50k labelled 400k 60k
Batch size 64 256 1
Learning rate 3.5e4 1e3 1e3
Learning rate schedule CosineAnnealingLR fixed fixed
Weight decay 5e-4 0.01 0.05
Optimizer AdamW Adam Adam
Loss Triplet + BCE + KLD + MSE logp CE

Augmentations - -
randomly drop condition tokens

from set of [param, flops zc ]

Others Trained jontly
solver=’dopri5’

atol=1e-5
rtol=1e-5

GPT-neo-125

• cluster 17: containing graphs with similar param/flops
sizes with those in cluster 1 but significantly lower
zc-scores

• cluster 30: containing graphs with similar zc
scores with those in cluster 2 but significantly small
param/flops sizes

The statistical properties of sampled graphs from each clus-
ter are shown in Tab. 7. As we cluster each cluster based
on zc-vector space, we also plot the graphs scatter plot in
zc-vector space to illustrate their relative information in Fig-
ure D. To investigate the relationship between performance
and clusters; we train the architecture across three distinct
tasks: CIFAR100, Ninapro and DarcyFlow; the statistics are
shown as follows:

From the results, we can see that the performance across dif-
ferent clusters has followed a relative relationship learned
from zero-cost space, which followed previous research
on zero-cost metrics that zero-cost metrics correlate with
model performance. Specifically, cluster 1 has better results
while neighbour cluster 2 performs relatively similarly over
three tasks compared to other apart clusters. Compared
with cluster 17, even though graph 17 has a similar cost
compared with cluster 1, the performance is significantly
different since their NWOT/SNIP-SSNR are different from
794.68 compared to cluster 1 at 918.51 on NWOT while
also for SNIP SSNR cluster 1 has 259.23 compared clusters
average at 98.27. As for cluster 30, even though it has a
much smaller cost since its NWOT/SNIP-SSNR is relatively
higher than cluster 17, it has a slightly better average per-

formance than cluster 17. A significantly worse cluster is
cluster 9, with the smallest param/flops and smallest ZC-
scores, the performance ranked bottom overall clusters we
have selected.

C. Operations included in the design sapce
This section introduces the foundational operations incorpo-
rated in our graph design space. Our design space consists
of nine basic operations, listed as follows:

• avg pool: Average Pooling is a downsampling tech-
nique utilized to reduce the spatial dimensions of a
feature map. It calculates the average value of the el-
ements within a specified local region determined by
the kernel size and stride.

• conv: The Convolutional Layer starts with a ReLU pre-
activation and ends with a batch normalization (Ioffe
& Szegedy, 2015) layer. This operation is pivotal for
learning spatial hierarchies of features and is widely
employed in deep learning models.

• sep conv (Niklaus et al., 2017): Separable Convolution
is an efficient variant of the standard convolution. It
factorizes a standard convolution into a depthwise spa-
tial convolution followed by a pointwise convolution,
reducing the computational costs.

• dil conv (Yu & Koltun, 2016): Dilated Convolution
introduces gaps to the convolutional kernel, effectively
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Table 7. Experiments on Sampling Overall Different Clusters and Trained Diverse Tasks
Cluster Params (1e6) Flops (1e9) SNIP-SNR NWOT C100 NinaPro DarcyFlow

9 0.09 ± 0.09 0.02 ± 0.03 3.84 ± 0.79 712.9 ± 81.27 45.33 ± 10.46 70.13 ± 8.37 0.098 ± 0.017
1 1.44 ± 0.18 0.47 ± 0.06 259.23 ± 12.09 918.51 ± 8.58 75.33 ± 1.56 92.37 ± 1.14 0.014 ± 0.005
2 1.99 ± 0.2 0.59 ± 0.05 190.16 ± 37.5 864.17 ± 15.54 71.13 ± 2.04 91.23 ± 1.55 0.027 ± 0.006

17 1.59 ± 0.18 0.46 ± 0.05 98.27 ± 20.88 794.68 ± 39.61 59.47 ± 11.34 77.33 ± 9.14 0.056 ± 0.019
30 0.153 ± 0.05 0.05 ± 0.03 129.57 ± 42.36 797.32 ± 21.8 63.56 ± 15.19 79.15 ± 10.77 0.051 ± 0.021

Encoder DecoderLatent 
Space

G-VAE trained with 
triplet loss regularisation

Input cells 
(graph)

Condition

Sampling

Training

Sampling

…

… …

CCNF

Reconstructed 
cells (graph)

Generated cells x
Ref cell r

Gaussian prior 
N(0,1)

Predicted z(r)

z(r)

Figure 3. Training and sampling processes of the proposed G-VAE and CCNF models.

increasing the receptive field without increasing the
number of parameters, making it suitable for tasks
requiring the incorporation of larger contextual infor-
mation.

• mbconv (Yu & Koltun, 2016): The MobileNetV2-
inverted bottleneck convolution has three variants with
expand sizes at [2, 3, 6]. It employs an inverted resid-
ual structure, aiding in building efficient and compact
models suitable for mobile applications.

• bconv (He et al., 2016): The Bottleneck Convolution
comes in two types with shrink rates in the bottleneck
at [0.5, 0.25]. It utilizes a bottleneck structure to re-
duce dimensionality, thereby decreasing computational
requirements.

In addition to the basic operation types introduced above,
we also offer three choices of kernel sizes – {1, 3, 5} – for
each operation. This variety ensures coverage of the most
prevalent network design paradigms, allowing for versatile
adaptability and exploration within our graph design space.

D. Code
Code will be available upon acceptance.

E. More experiments

F. ImageNet-1k Architectures and
Micro-design cluster Proposed

This section presents architectures for the ImageNet-1k task
under different Flops constraints. Figure 4 illustrates the

architecture searched with a 450M flops constraint, while
Figure 5 depicts the architecture searched with a 600M
flops constraint. Additionally, Figure 6 presents the cluster
proposed by the SG.

F.1. Alternative final search algorithm

As mentioned at the end of Section 4, after our method
generates a small number of promising models, there re-
mains the question of the final selection. Although we opted
for simple selection using T-CET in our main experiments,
other approaches are also possible, although they are likely
to increase the overall cost. To further explore this direction,
we also include an approach of running a typical baseline
— evolutionary search with reduced-training proxy (Zhou
et al., 2020). For this purpose, we utilised training scheme
similar to the one used by NATS-Bench-201 (Dong et al.,
2021), with batch size 256 and 50 epochs on CIFAR-100.
Using this scheme, training a single model takes approx.
0.5h, so we are able to train 40 models for a common budget
of 20h presented in Tab. 1. Given the budget of 40 models,
we run evolution using a population size of 8, to allow for
a reasonable number of mutations. We run this baseline
on the optimised search space obtained from generating 5
models from the same macro sequence and mixing different
instances of cells between the 5 models. In our experiment,
this resulted in the space of 54 models. The best model
according to the reduced-training proxy was trained fully
using the same training procedure as the rest of methods in
Tab. 1. The final performance turned out to be 97.3 — this
is somewhat noticeably lower than selection with T-CET
(97.6), especially considering much higher searching cost,
but also much higher compared to using a similar reduced-
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Table 8. Comparison of different approaches of sampling the G-VAE latent space. Neighbourhood and CCNF are reference-based (see
Sec. 4.2) and we test them by giving the best cell from NATS-Bench-TSS (Dong et al., 2021) as a reference. All macro models constructed
using αx from Eq. 1.

Sampling
method

Gen.
success

ZC vec. C-10 Acc.

NASWOT SNIP Params. (M) FLOPs (M) Min Mean Max

Random 9/20 793±49 104±64 0.3±0.3 111±113 10.00 75.00±28.37 93.86

NATS-Bench ref. 783 80 1.15 327 94.24

Neighbourhood 20/20 793±49 92±29 0.7±0.3 220±86 89.76 92.15±1.13 94.13
CCNF 20/20 788±10 78±13 0.6±0.3 189±100 91.89 93.08±0.85 94.55
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Figure 4. Architeture searched on ImageNet-1k task under 450M flops constraint
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Figure 5. Architeture searched on ImageNet-1k task under 600M Flops constraint
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training proxy directly on the large GraphNet space (see
below). In general, the results suggest our SG+CCNF can
indeed help a searching a lot by shortlisting promising ar-
chitectures, although it is probably not the best idea to use
reduced training to select the final model.

F.2. More baselines on the big GraphNet space

In section 5 we show that Evo(T-CET) on the GraphNet
space achieves inferior performance. But what about other
search strategies? Here, we again include a common base-
line of running a standard evolutionary algorithm with the
same reduced-training proxy as above. Given the same
searching budget of around 20 GPU hours, this baseline
achieved an accuracy of 90.32, a significant shortcoming
compared to 96.4 of Evo(T-CET) and 97.6 of our SG+CCNF.
This showcases the challenges of using a popular off-the-
shelf black-box optimiser in very large search spaces like
ours.

G. Survey on Other Search Space and Typical
NAS Cost

Table.9 compares diverse NAS methods based on their
search space characteristics, including size and type, typi-
cal optimization techniques employed, evaluation strategies,
the scale of model evaluations, and the associated com-
putational expense measured in GPU hours. GraphNet,
our proposed method, is highlighted, which introduces a
novel hierarchical search space combining sequential and
graph-based elements, illustrating its unprecedented scale
and complexity.

H. Limitations, discussion and future work
Reliance on ZC proxies. Our method heavily relies on
ZC proxies – we do that in order to organise a large search

space like ours in a meaningful way without incurring a
prohibitively large comp. cost; to the best of our knowledge,
there is no better alternative at the moment. Having said
that, ZC proxies are known to not always produce faith-
ful scoring of networks (White et al., 2021b; Ning et al.,
2021). Although we try to avoid the most common failure
cases by relying on clustering rather than strict ordering,
our assumptions might still not generally hold. On the other
hand, due to the paradigm shift in our work, we show a new
direction for future research on ZC proxies focused on rela-
tive performance – our work shows that this approach can
be more powerful even in settings where existing proxies
are known to work well (e.g., CIFAR). Another possible
direction would be to incorporate a feedback mechanism to
adjust network generation online efficiently.

Conditioning. Currently, microcells are generated based
on cluster centres – this is simple and shown to work well
in our case, but in the end, it leaves room for improvement.
The method could also be extended to include more ex-
plicit conditioning on the target task (currently #FLOPs and
#params).

On-device performance. On-device performance is impor-
tant for the practical deployment of models, but we did not
consider it a direct objective for simplicity, instead relying
on device-agnostic metrics such as a number of parameters
and FLOPs. Extending our work to be able to design net-
works optimized for a particular device is a very sensible
direction for future work.

Transformers. Although transformers keep playing an in-
creasingly important role, for the time being, we do not
consider them in our search space. Extending our code-
base to support hybrid convolution-attention models is an
exciting direction for future work.
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Table 9. Comparative Overview of Neural Architecture Search Methods.
SearchSpace Search Space type SearchSpace Size Typical Methods Evaluation Types Model Evaluated GPU-Cost(GPU-hours)

Depict Network Topologies-39 layers (Zoph & Le, 2017) Graph 1.12e89 Reinforce Learning Trained 12800 537600
NASNet-A(Zoph et al., 2018) Graph 1.99e28 Reinforce Learning Trained 20,000 2000

DARTS (Liu et al., 2019a) Graph 1e19 Differentiable Trained None 96
ZenNet-16 layers (Lin et al., 2021) Sequential 9.6e22 Aging Evolution Zero-cost NAS 480000 12

GraphNet(our) Hierachical(Sequential + Graph) ∼1e390 / / / /
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