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ABSTRACT

Maximum mean discrepancy (MMD) flows suffer from high computational costs
in large scale computations. In this paper, we show that MMD flows with Riesz
kernels K(x, y) = −∥x− y∥r, r ∈ (0, 2) have exceptional properties which allow
their efficient computation. We prove that the MMD of Riesz kernels, which is
also known as energy distance, coincides with the MMD of their sliced version. As
a consequence, the computation of gradients of MMDs can be performed in the
one-dimensional setting. Here, for r = 1, a simple sorting algorithm can be applied
to reduce the complexity from O(MN+N2) to O((M+N) log(M+N)) for two
measures with M and N support points. As another interesting follow-up result,
the MMD of compactly supported measures can be estimated from above and
below by the Wasserstein-1 distance. For the implementations we approximate the
gradient of the sliced MMD by using only a finite number P of slices. We show that
the resulting error has complexity O(

√
d/P ), where d is the data dimension. These

results enable us to train generative models by approximating MMD gradient flows
by neural networks even for image applications. We demonstrate the efficiency of
our model by image generation on MNIST, FashionMNIST and CIFAR10.

1 INTRODUCTION

With the rise of generative models, the field of gradient flows in measure spaces received increasing
attention. Based on classical Markov chain Monte Carlo methods, Welling & Teh (2011) proposed
to apply the Langevin dynamics for inferring samples from a known probability density function.
This corresponds to simulating a Wasserstein gradient flow with respect to the Kullback-Leibler
divergence, see Jordan et al. (1998). Closely related to this approach are current state-of-the-art
image generation methods like score-based models (Song & Ermon, 2019; 2020) or diffusion models
(Ho et al., 2020; Song et al., 2021), which significantly outperform classical generative models
like GANs (Goodfellow et al., 2014) or VAEs (Kingma & Welling, 2014). A general aim of such
algorithms (Arbel et al., 2021; Ho et al., 2020; Wu et al., 2020) is to establish a path between input
and target distribution, where "unseen" data points are established via the randomness of the input
distribution. Several combinations of such Langevin-type Markov chain Monte Carlo methods with
other generative models were proposed in (Ben-Hamu et al., 2022; Hagemann et al., 2023; Wu et al.,
2020). Gradient flows on measure spaces with respect to other metrics are considered in (di Langosco
et al., 2022; Dong et al., 2023; Grathwohl et al., 2020; Liu, 2017; Liu & Wang, 2016) under the name
Stein variational gradient descent.

For approximating gradient flows with respect to other functionals than the KL divergence, the
authors of (Altekrüger et al., 2023; Ansari et al., 2021; Alvarez-Melis et al., 2022; Bunne et al.,
2022; Fan et al., 2022; Gao et al., 2019; Garcia Trillos et al., 2023; Heng et al., 2023; Mokrov
et al., 2021; Peyré, 2015) proposed the use of suitable forward and backward discretizations. To
reduce the computational effort of evaluating distance measures on high-dimensional probability
distributions, the sliced Wasserstein metric was introduced in (Rabin et al., 2012). The main idea
of the sliced Wasserstein distance is to compare one-dimensional projections of the corresponding
probability distributions instead of the distributions themselves. This approach can be generalized to
more general probability metrics (Kolouri et al., 2022) and was applied in the context of Wasserstein
gradient flows in (Bonet et al., 2022b; Liutkus et al., 2019).
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Figure 1: Left: Comparison of run time for 1000 gradient evaluations of naive MMD and sliced
MMD with different number of projections P in the case d = 100. Middle and right: Relative error
of the gradients of sliced MMD and MMD with respect to the number P of projections and the
dimension d. The results show the relative error behaves asymptotically as O(

√
d/P ) as shown in

Theorem 4.

For many generative gradient-flow methods it is required that the considered functional can be
evaluated based on samples. For divergence-based functionals like the Kullback-Leibler or the
Jensen-Shannon divergence, a variational formulation leading to a GAN-like evaluation procedure is
provided in (Fan et al., 2022). In contrast, the authors of (Altekrüger et al., 2023; Arbel et al., 2019;
Glaser et al., 2021) use functionals based on the maximum mean discrepancy (MMD) which can be
directly evaluated based on empirical measures. For positive definite kernels, it can be shown under
some additional assumptions that MMD defines a metric on the space of probability distributions, see
e.g., (Gretton et al., 2012; Sriperumbudur et al., 2011; 2010). If the considered kernel is smooth, then
Arbel et al. (2019) proved that Wasserstein gradient flows can be fully described by particles. Even
though this is no longer true for non-smooth kernels (Hertrich et al., 2023b), Altekrüger et al. (2023)
pointed out that particle flows are Wasserstein gradient flows at least with respect to a restricted
functional. In particular, we can expect that particle flows provide an accurate approximation of
Wasserstein gradient flows as long as the number of particles is large enough.

Contributions. The computational complexity of MMD between two empirical measures with N
and M support points depends quadratically on N and M , which makes large scale computations
impossible. In this paper, we focus on the MMD with Riesz kernels

K(x, y) = −∥x− y∥r, r ∈ (0, 2), (1)

also known as energy distance (Sejdinovic et al., 2013; Székely, 2002; Székely & Rizzo, 2013). We
show that Riesz kernels have the outstanding property that their MMD coincides with the sliced
MMD of univariate Riesz kernels. It is this property that enables us to reduce the computation of
(gradients of) MMD to the one-dimensional setting. In the case of r = 1, we propose a simple and
computationally very efficient sorting algorithm for computing the gradient of the one-dimensional
MMD with complexity O((M +N) log(M +N)). Considering that our numerical examples use
between 10.000 and 50.000 particles, this leads to an incredible speed-up for gradient computations of
(sliced) MMD as illustrated in the left plot of Figure 1. Our approach opens the door to applications
in image processing, where we have usually to cope with high dimensional data.

In practice, sliced probability metrics are evaluated by replacing the expectation over all projections by
the empirical expectation resulting in a finite sum. In the case of sliced MMD with Riesz kernels and
r = 1, we prove that the error induced by this approximation behaves asymptotically as O(

√
d/P ),

where d is the data dimension and P the number of projections, see the middle plot in Figure 1
for an illustration. The square root scaling of the error in the dimension d ensures that an accurate
computation of the sliced MMD with Riesz kernels is possible even in very high dimensions as
demonstrated in the right plot in Figure 1. Taking into account the number of projections, the overall
complexity of the computation of the derivatives of MMD is O(dP (M +N) log(M +N)).

We apply the cheap evaluation of MMD gradients to compute MMD particle flows starting with
samples from an initial probability measure µ0 to samples from a predefined target distribution ν,
which is given by samples. Finally, we derive a generative model by training a sequence (Φl)

L
l=1 of

neural networks, where each Φl approximates a certain number of steps of the particle flow. This
allows us to train our network iteratively. In particular, during the training and evaluation procedure,
we always consider only one of the networks Φl at the same time. This allows an efficient training
with relatively low resources even though all networks Φl together have a large number of parameters.
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We demonstrate the efficiency of our generative sliced MMD flows for image generation on MNIST,
FashionMNIST and CIFAR10.

Related Work. Gradient flows with respect to MMD functionals are considered in (Altekrüger et al.,
2023; Arbel et al., 2019; Hertrich et al., 2023b; Kolouri et al., 2022). However, due to the quadratic
complexity of the computation of the derivative of MMD functionals in the number of support points
of the involved measures, these papers have a rather theoretical scope and applications are limited
to measures supported on a few hundred points. In order to reduce the dimension of the problem,
Kolouri et al. (2022) consider a sliced version of MMD. This is motivated by the success of sliced
Wasserstein distances (Rabin et al., 2012), which were used for deriving gradient flows in (Bonet
et al., 2022b; Liutkus et al., 2019; Nguyen et al., 2023; 2021). In particular, Kolouri et al. (2022)
observe that the sliced MMD is again a MMD functional with a different kernel. We use this result
in Section 2. Vayer & Gribonval (2023) bound Wasserstein distances and MMD against each other.
However, they use strong assumptions on the kernel, which are not fulfilled for the negative distance
kernel. In very low dimensions, fast evaluations of MMD and their gradients were proposed in (Gräf
et al., 2012; Teuber et al., 2011) based on fast Fourier summation using the non-equispaced fast
Fourier transforms (NFFT), see (Plonka et al., 2018, Sec. 7) and references therein. Unfortunately,
since the complexity of the NFFT depends exponentially on the data-dimension, these approaches
are limited to applications in dimension four or smaller. In a one-dimensional setting, the energy
distance is related to the Cramer distance, see (Székely, 2002). In the context of reinforcement
learning, Lhéritier & Bondoux (2021) developed fast evaluation algorithms for the latter based on the
calculation of cumulative distribution functions.

Finally, the authors of (Bińkowski et al., 2018; Dziugaite et al., 2015; Li et al., 2017; 2015) apply
MMD for generative modelling by constructing so-called MMD-GANs. However, this is conception-
ally a very different approach since in MMD-GANs the discriminator in the classical GAN framework
(Goodfellow et al., 2014) is replaced by a MMD distance with a variable kernel. Also relevant is
the direction of Sobolev-GANs (Mroueh et al., 2018) in which the discriminator is optimized in a
Sobolev space, which is related to the RKHS of the Riesz kernel. Similar to GAN ideas this results in
a max-min problem which is solved in an alternating fashion and is not related to gradient flows.

Outline of the Paper. In Section 2, we prove that the sliced MMD with the one-dimensional Riesz
kernel coincides with MMD of the scaled d-dimensional kernel. This can be used to establish an
interesting lower bound on the MMD by the Wasserstein-1 distance. Then, in Section 3 we propose
a sorting algorithm for computing the derivative of the sliced MMD in an efficient way. We apply
the fast evaluation of MMD gradients to simulate MMD flows and to derive a generative model in
Section 4 . Section 5 shows numerical experiments on image generation. Finally, conlusions are
drawn in Section 6. The appendices contain the proofs and supplementary material.

2 SLICED MMD FOR RIESZ KERNELS

Let P(Rd) denote the set of probability measures on Rd and Pp(Rd) its subset of measures with
finite p-th moment, i.e.,

∫
Rd ∥x∥pdµ(x) < ∞. Here ∥ · ∥ denotes the Euclidean norm on Rd. For

a symmetric, positive definite kernel K : Rd × Rd → R, the maximum mean discrepancy (MMD)
DK : P(Rd)×P(Rd)→ R is the square root ofD2

K(µ, ν) := EK(µ−ν), where EK is the interaction
energy of signed measures on Rd defined by

EK(η) :=
1

2

∫
Rd

∫
Rd

K(x, y) dη(x)dη(y).

Due to its favorable properties, see Appendix E, we are interested in Riesz kernels

K(x, y) = −∥x− y∥r, r ∈ (0, 2).

These kernels are only conditionally positive definite, but can be extended to positive definite kernels
by K̃(x, y) = K(x, y)−K(x, 0)−K(0, y), see also Remark 13. Then it holds for µ, ν ∈ Pr(Rd)
that DK(µ, ν) = DK̃(µ, ν), see (Neumayer & Steidl, 2021, Lemma 3.3 iii)). Moreover, for Riesz
kernels, DK is a metric on Pr(Rd), which is also known as so-called energy distance (Sejdinovic
et al., 2013; Székely & Rizzo, 2013). Note that we exclude the case r = 2, since DK is no longer a
metric in this case.
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However, computing MMDs on high dimensional spaces is computationally costly. Therefore, the
sliced MMD SD2

k : P2(Rd)× P2(Rd)→ R was considered in the literature, see e.g., Kolouri et al.
(2022). For a symmetric 1D kernel k: R× R→ R it is given by

SD2
k(µ, ν) := Eξ∼USd−1

[D2
k(Pξ#µ, Pξ#ν)]

with the push-forward measure Pξ#µ := µ ◦ P−1
ξ of the projection Pξ(x) := ⟨ξ, x⟩ and the uniform

distribution USd−1 on the sphere Sd−1. By interchanging the integrals from the expectation and the
definition of MMD, Kolouri et al. (2022) observed that the sliced MMD is equal to the MMD with an
associate kernel K: Rd × Rd → R. More precisely, it holds

SD2
k(µ, ν) = D2

K(µ, ν), with K(x, y) := Eξ∼USd−1
[k(Pξ(x), Pξ(y))].

By the following theorem, this relation becomes more simple when dealing with Riesz kernels, since
in this case the associate kernel is a Riesz kernel as well.
Theorem 1 (Sliced Riesz Kernels are Riesz Kernels). Let k(x, y) := −|x − y|r, r ∈ (0, 2). Then,
for µ, ν ∈ Pr(Rd), it holds SD2

k(µ, ν) = D2
K(µ, ν) with the associated scaled Riesz kernel

K(x, y) := −c−1
d,r∥x− y∥r, cd,r :=

√
πΓ(d+r

2 )

Γ(d2 )Γ(
r+1
2 )

.

The proof is given in Appendix A. The constant cd,r depends asymptotically with O(dr/2) on the
dimension. In particular, it should be “harder” to estimate the MMD or its gradients in higher
dimensions via slicing. We will discuss this issue more formally later in Remark 5. For r = 1, we
just write cd := cd,1 and can consider measures in P1(Rd). Interestingly, based on Theorem 1, we
can establish a relation between the MMD and the Wasserstein-1 distance on P1(Rd) defined by

W1(µ, ν) := min
π∈Π(µ,ν)

∫
∥x− y∥ dπ(x, y),

where Π(µ, ν) denotes the set of measures in P1(Rd × Rd) with marginals µ and ν. This also shows
that Conjecture 1 in (Modeste & Dombry, 2023) can only hold for non-compactly supported measures.
The proof is given in Appendix B.
Theorem 2 (Relation between DK andW1 for Distance Kernels). Let K(x, y) := −∥x− y∥. Then,
it holds for µ, ν ∈ P1(Rd) that 2D2

K(µ, ν) ≤ W1(µ, ν). If µ and ν are additionally supported on
the ball BR(0), then there exists a constant Cd > 0 such thatW1(µ, ν) ≤ CdR

2d+1
2d+2DK(µ, ν)

1
d+1 .

The fact that the sample complexities of MMD and Wasserstein-1 are O(n−1/2) (Gretton et al., 2012,
Chapter 4.1) and O(n−1/d) (Peyré & Cuturi, 2020, Chapter 8.4.1) suggests, that the exponent of DK

in Theorem 2 cannot be improved over 1/d.

3 GRADIENTS OF SLICED MMD

Next, we consider the functional Fν : P2(Rd)→ R given by

Fν(µ) := EK(µ) + VK,ν(µ) = D2
K(µ, ν) + constν , (2)

where VK,ν(µ) is the so-called potential energy

VK,ν(µ) := −
∫
Rd

∫
Rd

K(x, y) dν(y) dµ(x)

acting as an attraction term between the masses of µ and ν, while the interaction energy EK is a
repulsion term enforcing a proper spread of µ. For the rest of the paper, we always consider the
negative distance kernel K(x, y) := −∥x− y∥, which is the Riesz kernel (1) with r = 1. Then, we
obtain directly from the metric property of MMD that the minimizer of the non-convex functional Fν

is given by ν. We are interested in computing gradient flows of Fν towards this minimizer. However,
the computation of gradients in measure spaces for discrepancy functionals with non-smooth kernels
is highly non-trivial and computationally costly, see e.g., (Altekrüger et al., 2023; Carrillo et al., 2020;
Hertrich et al., 2023b).
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As a remedy, we focus on a discrete form of the d-dimensional MMD. More precisely, we assume that
µ and ν are empirical measures, i.e., they are of the form µ = 1

N

∑N
i=1 δxi

and ν = 1
M

∑M
j=1 δyj

for
some xj , yj ∈ Rd. Let x := (x1, . . . , xN ) and y := (y1, . . . , yM ). Then the functional Fν reduces
to the function Fd(·|y) : RNd → R given by

Fd(x|y) = −
1

2N2

N∑
i=1

N∑
j=1

∥xi − xj∥+
1

MN

N∑
i=1

M∑
j=1

∥xi − yj∥ (3)

= D2
K

( 1

N

N∑
i=1

δxi
,
1

M

M∑
j=1

δyj

)
+ consty.

In order to evaluate the gradient of Fd with respect to the support points x, we use Theorem 1 to
rewrite Fd(x|y) as

Fd(x|y) = cdEξ∼USd−1
[F1(⟨ξ, x1⟩, ..., ⟨ξ, xN ⟩|⟨ξ, y1⟩, ..., ⟨ξ, yM ⟩)].

Then, the gradient of Fd with respect to xi is given by

∇xiFd(x|y) = cdEξ∼USd−1
[∂iF1(⟨ξ, x1⟩, ..., ⟨ξ, xN ⟩|⟨ξ, y1⟩, ..., ⟨ξ, yM ⟩)ξ], (4)

where ∂iF1 denotes the derivative of F1 with respect to the i-th component of the input. Consequently,
it suffices to compute gradients of F1 in order to evaluate the gradient of Fd.

A Sorting Algorithm for the 1D-Case. Next, we derive a sorting algorithm to compute the gradient
of F1 efficiently. In particular, the proposed algorithm has complexity O((M +N) log(M +N))
even though the definition of F1 in (3) involves N2 +MN summands.

To this end, we split the functional F1 into interaction and potential energy, i.e., F1(x|y) = E(x) +
V (x|y) with

E(x) := − 1

2N2

N∑
i=1

N∑
j=1

|xi − xj |, V (x|y) := 1

NM

N∑
i=1

M∑
j=1

|xi − yj |. (5)

Then, we can compute the derivatives of E and V by the following theorem which proof is given in
Appendix C.
Theorem 3 (Derivatives of Interaction and Potential Energy). Let x1, ..., xN ∈ R be pairwise disjoint
and y1, ..., yM ∈ R such that xi ̸= yj for all i = 1, ..., N and j = 1, ...,M . Then, E and V are
differentiable with

∇xiE(x) =
N + 1− 2σ−1(i)

N2
, ∇xiV (x|y) = 2#{j ∈ {1, ...,M} : yj < xi} −M

MN
,

where σ : {1, ..., N} → {1, ..., N} is the permutation with xσ(1) < ... < xσ(N).

Since V is convex, we can show with the same proof that

2#{j ∈ {1, ...,M} : yj < xi} −M

MN
∈ ∂xi

V (x|y),

where ∂xi
is the subdifferential ov V with respect to xi whenever xi = yj for some i, j. By Theorem 3,

we obtain that∇F1(x|y) = ∇E(x) +∇V (x|v) can be computed by Algorithm 1 and Algorithm 2
with complexity O(N log(N)) and O((M + N) log(M + N)), respectively. The complexity is
dominated by the sorting procedure. Both algorithms can be implemented in a vectorized form for
computational efficiency. Note that by Lemma 9 from the appendix, the discrepancy with Riesz
kernel and r = 1 can be represented by the cumulative distribution functions (cdfs) of the involved
measures. Since the cdf of an one-dimensional empirical measure can be computed via sorting, we
also obtain an O((N +M) log(M +N)) algorithm for computing the one-dimensional MMD itself
and not only for its derivative.

Stochastic Approximation of Sliced MMD Gradients for r = 1. To evaluate the gradient of Fd

efficiently, we use a stochastic gradient estimator. For x1, ..., xN , y1, ..., yM ∈ Rd, we define for
P ∈ N the stochastic gradient estimator of (4) as the random variable

∇̃PFd(x|y) =
(
∇̃P,xi

Fd(x|y)
)N
i=1

(6)
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Algorithm 1 Derivative of the interaction energy E from (5).
Input: x1, ..., xN ∈ R with xi ̸= xj for i ̸= j.
Algorithm:
Compute σ1, ...σN = argsort(x1, ..., xN ).

Compute gi = −
2σ−1

i −1−N

N2 .
Output: (g1, ..., gN ) = ∇E(x1, ..., xN ).

Algorithm 2 Derivative of the potential energy V from (5).
Input: x1, ..., xN ∈ R, y1, ..., yM ∈ R with xi ̸= yj .
Algorithm:
Compute σ1, ..., σN+M = argsort(x1, ..., xN , y1, ..., yM )

Initialize h̃1 = · · · = h̃M+N = 0.
for j = 1, ...,M do

Set h̃σ(N+j) = 1.
end for
Set h = 2 cumsum(h̃)− 1
for i = 1, ..., N do

Set gi =
hσ−1(i)

MN ,
end for
Output: (g1, ..., gN ) = ∇V (x1, ..., xN |y1, . . . , yM ).

where

∇̃P,xi
Fd(x|y) :=

cd
P

P∑
p=1

∂iF1(⟨ξp, x1⟩, ..., ⟨ξp, xN ⟩|⟨ξp, y1⟩, ..., ⟨ξp, yM ⟩)ξp,

for independent random variables ξ1, ..., ξP ∼ USd−1 . We obtain by (4) that ∇̃Fd is unbiased,
i.e., E[∇̃PFd(x|y)] = ∇Fd(x|y). Moreover, the following theorem shows that the error of ∇̃PFd

converges to zero for a growing number P of projections. The proof uses classical concentration
inequalities and follows directly from Corollary 12 in Appendix D.

Theorem 4 (Error Bound for Stochastic MMD Gradients). Let x1, ..., xN , y1, ..., yM ∈ Rd. Then, it
holds

E[∥∇̃PFd(x|y)−∇Fd(x|y)∥] ∈ O
(√ d

P

)
.

To verify this convergence rate numerically, we draw N = 1000 samples x1, ..., xN from a Gaussian
mixture model with two components and M = 1000 samples y1, ..., yM from a Gaussian mixture
model with ten components. The means are chosen randomly following a uniform distribution in
[−1, 1]d and the standard deviation is set to 0.01. Then, we compute numerically the expected relative
approximation error between ∇̃PFd and ∇Fd for different choices of P and d. The results are
illustrated in the middle and in the right plot of Figure 1. We observe that this numerical evaluation

underlines the convergence rate of O
(√

d
P

)
. In particular, the error scales with O(

√
d/P ), which

makes the approach applicable for high-dimensional problems.

Remark 5 (Computational Complexity of Gradient Evaluations). The appearance of the
√
d in the

error bound is due to the scale factor cd between the MMD and the sliced MMD, which can be
seen in the proof of Theorem 4. In particular, we require O(d) projections in order to approximate
∇Fd(x|y) by ∇̃PFd(x|y) up to a fixed expected error of ϵ. Together with the computational
complexity of O(dP (N +M) log(N +M)) for ∇̃PFd(x,y), we obtain an overall complexity of
O(d2(N +M) log(N +M)) in order to approximate∇Fd(x|y) up to an expected error of ϵ. On the
other hand, the naive computation of (gradients of) Fd(x|y) has a complexity of O(d(N2 +MN)).
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Consequently, we improve the quadratic complexity in the number of samples to O(N log(N)). Here,
we pay the price of quadratic instead of linear complexity in the dimension.

4 GENERATIVE MMD FLOWS

In this section, we use MMD flows with the negative distance kernel for generative modelling.
Throughout this section, we assume that we are given independent samples y1, ..., yM ∈ Rd from a
target measure ν ∈ P2(Rd) and define the empirical version of ν by νM := 1

M

∑M
i=1 δyi

.

4.1 MMD PARTICLE FLOWS

In order to derive a generative model approximating ν, we simulate a gradient flow of the functional
Fν from (2). Unfortunately, the computation of gradient flows in measure spaces for Fν is highly
non-trivial and computationally costly, see (Altekrüger et al., 2023; Hertrich et al., 2023b). Therefore,
we consider the (rescaled) gradient flow with respect to the functional Fd instead. More precisely, we
simulate for Fd from (3), the (Euclidean) differential equation

ẋ = −N ∇Fd(x|y), x(0) = (x
(0)
1 , ..., x

(0)
N ), (7)

where the initial points x
(0)
i are drawn independently from some measure µ0 ∈ P2(Rd). In our

numerical experiments, we set µ0 to the uniform distribution on [0, 1]d. Then, for any solution
x(t) = (x1(t), ..., xN (t)) of (7), it is proven in (Altekrüger et al., 2023, Proposition 14) that the curve
γM,N : (0,∞)→ P2(Rd) defined by γM,N (t) = 1

N

∑N
i=1 δxi(t) is a Wasserstein gradient flow with

respect to the function

F : P2(Rd)→ R ∪ {∞}, µ 7→

{
FνM

, if µ = 1
N

∑N
i=1 δxi

for some xi ̸= xj ∈ Rd,

+∞, otherwise.

Hence, we can expect for M,N →∞, that the curve γM,N approximates the Wasserstein gradient
flow with respect to Fν . Consequently, we can derive a generative model by simulating the gradient
flow (7). To this end, we use the explicit Euler scheme

x(k+1) = x(k) − τN∇Fd(x
(k)|y), (8)

where x(k) = (x
(k)
1 , ..., x

(k)
N ) and τ > 0 is some step size. Here, the gradient on the right-hand side

can be evaluated very efficiently by the stochastic gradient estimator from (6).

Momentum MMD Flows. To reduce the required number of steps in (8), we introduce a momentum
parameter. More precisely, for some given momentum parameter m ∈ [0, 1) we consider the
momentum MMD flow defined by the following iteration

v(k+1) = ∇Fd(x
(k)|y) +mv(k)

x(k+1) = x(k) − τN v(k+1),
(9)

where τ > 0 is some step size, x(0)
i are independent samples from a initial measure µ0 and v

(0)
i = 0.

Note that the MMD flow (8) is a special case of the momentum MMD flow (9) with m = 0.

In Figure 2, we illustrate the momentum MMD flow (9) and MMD flow (8) without momentum from
a uniform distribution on [0, 1]d to MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky, 2009).
The momentum is set to m = 0.9 for MNIST and to m = 0.6 for CIFAR10. We observe that the
momentum MMD flow (9) converges indeed faster than the MMD flow (8) without momentum.

4.2 GENERATIVE MMD FLOWS

The (momentum) MMD flows from (8) and (9) transform samples from the initial distribution µ0

into samples from the target distribution ν. Therefore, we propose to train a generative model
which approximates these schemes. The main idea is to approximate the Wasserstein gradient flow
γ : [0,∞) → P2(Rd) with respect to Fν from (2) starting at some latent distribution µ0 = γ(0).
Then, we iteratively train neural networks Φ1, ...,ΦL such that γ(tl) ≈ Φl#γ(tl−1) for some tl with

7
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Figure 2: Samples and their trajectories from MNIST (left) and CIFAR10 (right) in the MMD flow
with momentum (9, top) and without momentum (8, bottom) starting in the uniform distribution
on [0, 1]d after 2k steps with k ∈ {0, ..., 16} (for MNIST) and k ∈ {3, ..., 19} (for CIFAR10).
We observe that the momentum MMD flow (9) converges faster than the MMD flow (8) without
momentum.

0 = t0 < t1 < · · · < tL. Then, for tL large enough, it holds ν ≈ γ(tL) ≈ (ΦL ◦ · · · ◦ Φ1)#γ(0)
with γ(0) = µ0. Such methods learning iteratively an "interpolation path" are exploited several
times in literature, e.g., Arbel et al. (2021); Fan et al. (2022); Ho et al. (2020). To implement this
numerically, we train each network Φl such that it approximates Tl number of steps from (8) or (9).
The training procedure of our generative MMD flow is summarized in Algorithm 3 in Appendix F.
Once the networks Φ1, ...,ΦL are trained, we can infer a new sample x from our (approximated)
target distribution ν as follows. We draw a sample x(0) from µ0, compute x(l) = x(l−1)−Φl(x

(l−1))
for l = 1, ..., L and set x = x(L). In particular, this allows us to simulate paths of the discrepancy
flow we have not trained on.
Remark 6 (Iterative Training and Sampling). Since the networks are not trained in an end-to-end
fashion but separately, their GPU memory load is relatively low despite a high number of trainable
parameters of the full model (Φl)

L
l=1. This enables training of our model on an 8 GB GPU. Moreover,

the training can easily be continued by adding additional networks Φl, l = L+1, ..., L′ to an already
trained generative MMD flow (Φl)

L
l=1, which makes applications more flexible.

5 NUMERICAL EXAMPLES

In this section, we apply generative MMD flows for image generation on MNIST, FashionMNIST
(Xiao et al., 2017),CIFAR10 and CelebA (Liu et al., 2015). The images from MNIST and Fashion-
MNIST are 28× 28 gray-value images, while CIFAR10 consists of 32× 32 RGB images resulting
in the dimensions d = 784 and d = 3072, respectively. For CelebA, we centercrop the images to
140 × 140 and then bicubicely resize them to 64 × 64. We run all experiments either on a single
NVIDIA GeForce RTX 3060 or a RTX 4090 GPU with 12GB or 24GB memory,respectively. To
evaluate our results, we use the Fréchet inception distance (FID) (Heusel et al., 2017)1 between

1We use the implementation from https://github.com/mseitzer/pytorch-fid.

Figure 3: Generated samples of our generative MMD Flow.
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Table 1: FID scores for different datasets and various methods.

Method MNIST FashionMNIST CIFAR10 CelebA
Auto-encoder based

CWAE (Knop et al., 2020) 23.6 50.0 120.0 49.7
SWF+ Autoencoder + RealNVP (Bonet et al., 2022b) 17.8 40.6 - 90.9

2-stage VAE (Dai & Wipf, 2019) 12.6 29.3 72.9 44.4
GLF (Xiao et al., 2019) 8.2 21.3 88.3 53.2

Adversarial
WGAN (Arjovsky et al., 2017; Lucic et al., 2018) 6.7 21.5 55.2 41.3

MMD GAN (Bińkowski et al., 2018) 4.2 - 48.1 29.2
Score-based

NCSN (Song & Ermon, 2019) - - 25.3 -
Flow based

SWF (Liutkus et al., 2019) 3 225.1 207.6 - 91.2
SIG (Dai & Seljak, 2021) 4.5 13.7 66.5 37.3
ℓ-SWF (Du et al., 2023) - - 59.7 38.3

Generative Sliced MMD Flow (ours) 3.1 ± 0.06 11.3± 0.07 54.8 ± 0.26 32.1± 0.17

10K generated samples and the test dataset. Here, a smaller FID value indicates a higher similarity
between generated and test samples.

We choose the networks (Φl)
L
l=1 to be UNets (Ronneberger et al., 2015), where we use the implemen-

tation from (Huang et al., 2021) based on (Ho et al., 2020). Then, we run the generative MMD flow
for L = 55 (MNIST), L = 67 (FashionMNIST), L = 86 (CIFAR10) and L = 71 (CelebA) networks.
The exact setup is described in Appendix H. We compare the resulting FIDs with other gradient-
flow-based models and various further methods in Table 1. We computed the standard deviations
by independently sampling ten times from one training run and computing the corresponding FID.
We observe that we achieve excellent performance on MNIST and FashionMNIST as well as very
good results on CIFAR10 and CelebA. Generated samples are given in Figure 3 and more samples
are given in Appendix I. The L2-nearest neighbors of the generated samples on MNIST are also
illustrated in Figure 8 in Appendix I.

6 CONCLUSIONS

Discussion. We introduced an algorithm to compute (gradients) of the MMD with Riesz kernel
efficiently via slicing and sorting reducing the dependence of the computational complexity on the
number of particles from O(NM +N2) to O((N +M) log(N +M)). For the implementations,
we approximated the gradient of sliced MMD by a finite number of slices and proved that the
corresponding approximation error depends by a square root on the dimension. We applied our
algorithm for computing MMD flows and approximated them by neural networks. Here, a sequential
learning approach ensures computational efficiency. We included numerical examples for image
generation on MNIST, FashionMNIST and CIFAR10.

Limitations. One of the disadvantages of interacting particle methods is that batching is not easily
possible: The particle flow for one set of training points does not give a helpful approximation for
another set of training points. This is due to the interaction energy and a general problem of particle
flows. Furthermore, taking the projections involves multiplication of every data point with a "full"
projection and therefore scales with the dimension d. Taking "local" projections like in (Du et al.,
2023; Nguyen & Ho, 2022) can be much more efficient.

Outlook. Our paper is the first work which utilizes sliced MMD flows for generative modelling.
Consequently the approach can be extended in several directions. Other kernels are considered in
the context of slicing in the follow-up paper (Hertrich, 2024). From a theoretical viewpoint, the
derivative formulas from Theorem 3 can be extended to the non-discrete case by the use of quantile
functions, see (Bonaschi et al., 2015; Hertrich et al., 2023a) for some first approaches into this
direction. Towards applications, we could extend the framework to posterior sampling in Bayesian
inverse problems. In this context, the fast computation of MMD gradients can be also of interest for
applications which are not based on gradient flows, see e.g., Ardizzone et al. (2019). Finally, the
consideration of sliced probability metrics is closely related to the Radon transform and is therefore
of interest also for non-Euclidean domains like the sphere, see e.g., (Bonet et al., 2022a; Quellmalz
et al., 2023).

3values taken from Bonet et al. (2022b)
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A PROOF OF THEOREM 1

Let USd−1 be the uniform distribution on Sd−1 and let k(x, y) = −|x − y|r for x, y ∈ R, x ̸= y
and r ∈ (0, 2). Moreover, denote by e = (1, ..., 0) ∈ Sd−1 the first unit vector. Then, we have for
x, y ∈ Rd that

K(x, y) := −
∫
Sd−1

|⟨ξ, x⟩ − ⟨ξ, y⟩|rdUSd−1(ξ) = −∥x− y∥r
∫
Sd−1

∣∣∣∣〈ξ, x− y

∥x− y∥

〉∣∣∣∣r dUSd−1(ξ)

= −∥x− y∥r
∫
Sd−1

|⟨ξ, e⟩|rdUSd−1(ξ) = −∥x− y∥r
∫
Sd−1

|ξ1|rdUSd−1(ξ)︸ ︷︷ ︸
=:c−1

d,r

.

It remains to compute the constant cd,r which is straightforward for d = 1. For d > 1 the map

(t, η) 7→ (t, η
√

1− t2)

defined on [−1, 1)× Sd−2 is a parametrization of Sd−1. The surface measure on Sd−1 is then given
by

dσSd−1(ξ) = (1− t2)
d−3
2 dσSd−2(η)dt,

see (Atkinson & Han, 2012, Eq. 1.16). Furthermore, the uniform surface measure USd−1 reads as

dUSd−1(ξ) =
1

sd−1
(1− t2)

d−3
2 dσSd−2(η)dt,

where sd−1 is the volume of Sd−1. Hence

c−1
d,r =

∫
Sd−1

|ξ1|rdUSd−1(ξ) =
1

sd−1

∫
Sd−2

∫ 1

−1

|t|r(1− t2)
d−3
2 dtdσSd−2(η) (10)

=
sd−2

sd−1
2

∫ 1

0

tr(1− t2)
d−3
2 dt =

sd−2

sd−1
B

(
r + 1

2
,
d− 1

2

)
,

where B(z1, z2) is the beta function and we used the integral identity

B(z1, z2) = 2

∫ 1

0

t2z1−1(1− t2)z2−1dt.

Finally, noting that sd−1 = 2πd/2

Γ( d
2 )

and B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

, (10) can be computed as

c−1
d,r =

Γ(d2 )√
πΓ(d−1

2 )

Γ( r+1
2 )Γ(d−1

2 )

Γ( r+d
2 )

=
Γ(d2 )Γ(

r+1
2 )

√
πΓ(d+r

2 )

Taking the inverse gives the claim. □

Remark 7 (Extension to P r
2
(Rd)). We can extend Theorem 1 to P r

2
(Rd). To this end, we first show,

how we can deduce from (Modeste & Dombry, 2023, Prop 2.14) that the MMD DK̃ with respect to
the extended Riesz kernel K̃(x, y) = −∥x−y∥r +∥x∥r +∥y∥r defines a metric on P r

2
(Rd). Second,

we will see that Theorem 1 can be extended to P r
2
(Rd) as well.

(i) By (Steinwart & Christmann, 2008, Thm 4.26) the MMD

D2
K̃
(µ, ν) =

∫ ∫
K̃(x, y)d(µ− ν)(x)d(µ− ν)(y)

is finite onMK̃ = {µ ∈M(Rd) :
∫ √

K̃(x, x)d|µ| <∞}, whereM(Rd) is the space of

all signed measures on Rd. Since K̃(x, x) = 2∥x∥r, we have thatMK̃ = {µ ∈ M(Rd) :∫
∥x∥ r

2 d|µ| < ∞} such thatMK̃ ∩ P(Rd) = P r
2
(Rd). Now, inserting K̃ (Modeste &

Dombry, 2023, Prop 2.14) states that DK̃ is a metric onMK̃ ∩ P(Rd) = P r
2
(Rd), where

the assumptions of the proposition are checked in (Modeste & Dombry, 2023, Ex 2, Ex 3)
and K̃ is named kH with H = r

2 .
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(ii) Let K̃ = c−1
d,rK̃ be a rescaled and k̃(x, y) = −|x− y|r + |x|r + |y|r be the one-dimensional

version of the extended Riesz kernel K̃. With the same calculations as in the proof of
Theorem 1 we can show that

K̃(x, y) =

∫
Sd−1

k̃(⟨ξ, x⟩, ⟨ξ, y⟩)dUSd−1(ξ).

Thus, we also have that SDk̃ = DK̃ on P r
2
(Rd).

B PROOF OF THEOREM 2

In the first part of the proof, we will use properties of reproducing kernel Hilbert spaces (RKHS), see
(Steinwart & Christmann, 2008) for an overview on RKHS. For the second part, we will need two
lemmata. The first one gives a definition of the MMD in terms of the Fourier transform (characteristic
function) of the involved measures, where µ̂(ξ) = ⟨e−ixξ, µ⟩ =

∫
Rd e

−i⟨ξ,x⟩dµ(x). Its proof can be
found, e.g., in (Székely & Rizzo, 2013, Proposition 2). Note that the constant on the right hand-side
differs from (Székely & Rizzo, 2013, Proposition 2), since we use a different notion of the Fourier
transform and the constant 1

2 in the MMD.
Lemma 8. Let µ ∈ P1(R) and K(x, y) = −∥x− y∥. Then its holds

D2
K(µ, ν) =

Γ(d+1
2 )

2π
d+1
2

∫
Rd

|µ̂(ξ)− ν̂(ξ)|2

∥ξ∥1+d
dξ.

For the next lemma, recall that the cumulative density functions (cdf) of µ ∈ P(R) is the function
Fµ : R→ [0, 1] defined by

Fµ(x) := µ((−∞, x]) =

∫
R
χ(−∞,x](y)dµ(y), χA(x) =

{
1, if x ∈ A,

0, otherwise.

We will need that the Cramer distance between probability measures µ, ν with cdfs Fµ and Fν

defined by

ℓp(µ, ν) :=

(∫
R
|Fµ − Fν |pdx

) 1
p

,

if it exists. The Cramer distance does not exist for arbitrary probability measures. However, for
µ, ν ∈ P1(R) is well-known that

ℓ1(µ, ν) =W1(µ, ν) (11)
and we have indeed Fµ − Fν ∈ L2(R). The following relation can be found in the literature, see,
e.g., Székely (2002). However, we prefer to add a proof which clearly shows which assumptions are
necessary.
Lemma 9. Let µ, ν ∈ P1(R) and k(x.y) = −|x− y|. Then it holds

ℓ2(µ, ν) = Dk(µ, ν).

Proof. By Lemma 8, we know that

D2
k (µ, ν) = −

1

2

∫
R

∫
R
|x− y|d(µ− ν)(x)d(µ− ν)(y) =

1

2π

∫
R

|µ̂(ξ)− ν̂(ξ)|2

ξ2
dξ. (12)

For µ, ν ∈ P1(R), we have Fµ − Fν ∈ L2(R) and can apply Parseval’s equality

ℓ22(µ, ν) =

∫
R
|Fµ(t)− Fν(t)|2 dt =

1

2π

∫
R
|F̂µ(ξ)− F̂ν(ξ)|2 dξ. (13)

Now we have for the distributional derivative of Fµ that DFµ = µ, which can be seen as follows:
using Fubini’s theorem, we have for any Schwartz function ϕ ∈ S(R) that

⟨DFµ, ϕ⟩ = −⟨Fµ, ϕ
′⟩ = −

∫
R

∫
R
χ(−∞,x](y)ϕ

′(x) dµ(y) dx = −
∫
R

∫
R
χ(−∞,x](y)ϕ

′(x) dxdµ(y)

= −
∫
R

∫ ∞

y

ϕ′(x) dxdµ(y) =

∫
R
ϕ(y) dµ(y) = ⟨µ, ϕ⟩.
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Then we obtain by the differentiation property of the Fourier transform (Plonka et al., 2018) that

µ̂(ξ) = D̂Fµ(ξ) = −iξF̂µ(ξ).

Finally, (13) becomes

ℓ22(µ, ν) =
1

2π

∫
R

|µ̂(ξ)− ν̂(ξ)|2

ξ2
dξ,

which yields the assertion by (12).

Now we can prove Theorem 2.

Proof. 1. To prove of the first inequality, we use the reproducing property

⟨f, K̃(x, ·)⟩HK̃
= f(x)

of the kernel in the associated RKHSHK̃ . For any f ∈ HK̃ with ∥f∥HK̃
≤ 1 and any π ∈ Π(µ, ν),

we use the estimation∣∣∣ ∫
Rd

f(x)d(µ− ν)(x)
∣∣∣ = ∣∣∣ ∫

Rd

∫
Rd

f(x)− f(y)dπ(x, y)
∣∣∣ ≤ ∫

Rd

∫
Rd

|f(x)− f(y)|dπ(x, y)

=

∫
Rd

∫
Rd

|⟨f, K̃(x, ·)− K̃(y, ·)⟩HK̃
|dπ(x, y)

≤
∫
Rd

∫
Rd

∥K̃(x, ·)− K̃(y, ·)∥HK̃
dπ(x, y),

which is called “coupling bound” in (Sriperumbudur et al., 2010, Prop. 20). Then, since ∥K̃(x, ·)−
K̃(y, ·)∥2HK̃

= K̃(x, x) + K̃(y, y) − 2K̃(x, y) = 2∥x − y∥ and using Jensen’s inequality for the
concave function

√
·, we obtain∣∣∣ ∫

Rd

f(x)d(µ− ν)(x)
∣∣∣ ≤ √2∫

Rd

∫
Rd

∥x− y∥ 1
2 dπ(x, y) ≤

(
2

∫
Rd

∫
Rd

∥x− y∥dπ(x, y)
) 1

2

.

By the dual definition of the discrepancy 2DK(µ, ν) = sup∥f∥H
K̃

≤1

∫
Rd fd(µ− ν), see Novak &

Wozniakowski (2010), and taking the supremum over all such f and the infimum over all π ∈ Π(µ, ν),
we finally arrive at

2D2
K(µ, ν) ≤ W1(µ, ν).

2. The second inequality can be seen as follows: by Bonnotte (2013, Lemma 5.1.4), there exists a
constant cd > 0 such that

W1(µ, ν) ≤ cdR
d

d+1SW1(µ, ν)
1

d+1 = cdR
d

d+1
(
Eξ∼USd−1

[
W1

(
Pξ#µ, Pξ#ν

)]) 1
d+1 .

Further, we obtain by (11), the Cauchy-Schwarz inequality and Lemma 9 that
Eξ∼USd−1

[
W1

(
Pξ#µ, Pξ#ν

)]
= Eξ∼USd−1

[
l1
(
Pξ#µ, Pξ#ν

)]
≤ Eξ∼USd−1

[
(2R)

1
2 l2
(
Pξ#µ, Pξ#ν

)]
= (2R)

1
2Eξ∼USd−1

[
Dk
(
Pξ#µ, Pξ#ν

)]
≤ (2R)

1
2

(
Eξ∼USd−1

[
D2

k

(
Pξ#µ, Pξ#ν

)]) 1
2 ,

and finally by Theorem 1 that

Eξ∼USd−1

[
W1

(
Pξ#µ, Pξ#ν

)]
≤ (2R)

1
2DK(µ, ν) = (2R)

1
2

(
Γ(d2 )√
πΓ(d+1

2 )

) 1
2

DK(µ, ν).

In summary, this results in

W1(µ, ν) ≤ cd

(
2Γ(d2 )√
πΓ(d+1

2 )

) 1
2(d+1)

R
2d+1
2d+2DK(µ, ν)

1
d+1 .

Under some additional assumptions, similar bounds have been considered in Chafaï et al. (2018) for
the Coloumb kernel K(x, y) = ∥x− y∥2−d.
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C PROOF OF THEOREM 3

Interaction Energy: This part of the proof is similar to (Teuber et al., 2011, Sec. 3). Using that σ is a
permutation and by reordering the terms in the double sum, we can rewrite the interaction energy by

E(x) = − 1

2N2

N∑
i=1

N∑
j=1

|xi − xj | = −
1

2N2

N∑
i=1

N∑
j=1

|xσ(i) − xσ(j)|

= − 1

N2

N∑
i=1

N∑
j=i+1

xσ(j) − xσ(i) =

N∑
i=1

N − (2i− 1)

N2
xσ(i) =

N∑
i=1

N − (2σ−1(i)− 1)

N2
xi.

Since the xiare pairwise disjoint, the sorting permutation σ is constant in a neighborhood of x. Hence,
E is differentiable with derivative

∇xi
E(x) =

N + 1− 2σ−1(i)

N2
.

Potential Energy: For any x ̸= y ∈ R it holds

∇x|x− y| = χ(x, y), where χ(x, y) =

{
1, if x > y,

−1, if x < y.

Thus, we have that

∇xi
V (x|y) = 1

MN

M∑
j=1

χ(xi, yj)

=
1

MN

(
#{j ∈ {1, ...,M} : yj < xi} −#{j ∈ {1, ...,M} : yj > xi}

)
Using that #{j ∈ {1, ...,M} : yj > xi} = M −#{j ∈ {1, ...,M} : yj < xi} the above expression
is equal to

1

MN

(
2#{j ∈ {1, ...,M} : yj < xi} −M

)
=

2#{j ∈ {1, ...,M} : yj < xi} −M

MN
.

□

D PROOF OF THEOREM 4

In this section, we derive error bounds for the stochastic estimators for the gradient of MMD as
defined in (6) for the Riesz kernel with r = 1. To this end, we employ concentration inequalities
(Vershynin, 2018), which were generalized to vector-valued random variables in Kohler & Lucchi
(2017). We will need the following Lemma which is the Bernstein inequality and is stated in (Kohler
& Lucchi, 2017, Lemma 18).

Lemma 10 (Bernstein Inequality). Let X1, ..., XP be independent random vectors with mean
zero,∥Xi∥ ≤ µ and E[∥Xi∥22] ≤ σ2. Then it holds for 0 < t < σ2

µ that

P
[∥∥∥ 1

P

P∑
i=1

Xi

∥∥∥
2
> t
]
≤ exp

(
−P t2

8σ2
+

1

4

)
.

Now we can use Lemma 10 to show convergence of the finite sum approximation to the exact gradient.

Theorem 11 (Concentration Inequality). Let x1, ...xN , y1, ..., yM ∈ Rd. Then, it holds

P
[
∥∇̃PFd(x|y)−∇Fd(x|y)∥ > t

]
≤ exp

(
− P t2

32 (cd + 1)2
+

1

4

)
.
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Proof. Let ξ1, ..., ξP ∼ USd−1 be the independent random variables from the definition of ∇̃P in (6).
We set

Xi,l := cd∇lF1(⟨ξi, x1⟩, ..., ⟨ξi, xN ⟩|⟨ξi, y1⟩, ..., ⟨ξi, yM ⟩)ξi

and define the dN -dimensional random vector Xi = (Xi,1, · · ·Xi,N ). Then, we have by (4) that

E[Xi] = ∇Fd(x|y) =
(
∇x1

Fd(x|y), · · · ,∇xN
Fd(x|y)

)
.

By Theorem 3, we know that ∥Xi,l∥2 ≤ 2cd
N , and by (3) it holds

∥E
[
Xi,l

]
∥2 = ∥∇xl

Fd(x|y)∥2 ≤
2

N
.

Let X̃i = Xi − E[Xi]. Then it holds

∥X̃i∥2 ≤
N∑
l=1

∥X̃i,l∥2 ≤
N∑
l=1

2cd + 2

N
= 2cd + 2

and thus E
[
∥X̃i∥22

]
≤ 4(cd + 1)2. Since we have E[X̃i] = 0 for all i = 1, ..., P , we can apply

Lemma 10 and obtain

P
[∥∥∥ 1

P

P∑
i=1

Xi −∇Fd(x|y)
∥∥∥ > t

]
= P

[∥∥∥ 1
P

P∑
i=1

X̃i

∥∥∥ > t
]
≤ exp

(
− P t2

32 (cd + 1)2
+

1

4

)
.

Since we have by definition that

1

P

P∑
i=1

Xi = ∇̃PFd(x|y)

this yields the assertion.

Finally we can draw a corollary which immediately shows Theorem 4.

Corollary 12 (Error Bound for Stochastic Gradients). For x1, ..., xN , y1, ..., yM ∈ Rd, it holds

E[∥∇̃PFd(x|y)−∇Fd(x|y)∥] ≤
exp(1/4)

√
32π(
√
d+ 1)

2
√
2 P

.

Proof. Denote by X the random variable

X = ∥∇̃PFd(x|x)−∇Fd(x|y)∥.

Then, we have by Theorem 11 that

P[X > t] ≤ exp

(
− P t2

32 (cd + 1)2
+

1

4

)
.

Thus, we obtain

E[X] =

∫ ∞

0

P[X > t]dt ≤ exp(1/4)

∫ ∞

0

exp

(
− P t2

32 (cd + 1)2

)
dt =

exp(1/4)
√
32π(cd + 1)

2
√
P

,

where the last step follows from the identity
∫∞
0

exp(−t2)dt =
√
π
2 .

Now we proceed to bound the constant cd in the dimensions. By Theorem 1 we have that cd =
√
πΓ( d+1

2 )

Γ( d
2 )

. Now the claim follows from the bound Γ( d+1
2 )

Γ( d
2 )
≤
√

d
2 +

√
3
4 − 1 proven by Kershaw

(1983).
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E COMPARISON OF DIFFERENT KERNELS IN MMD

Next we compare the MMD flows of the Riesz kernels with those of the positive definite kernels

KG(x, y) := exp
(
− ∥x− y∥2

2σ2

)
(Gaussian),

KIM(x, y) :=
1√

∥x− y∥2 + c
(Inverse Multiquadric),

KL(x, y) := exp
(
− ∥x− y∥

σ

)
(Laplacian).

The target distribution is defined as the uniform distribution on three non-overlapping circles and the
initial particles are drawn from a Gaussian distribution with standard deviation 0.01, compare Glaser
et al. (2021). We recognize in Figures 4 and 5 that in contrast to the Riesz kernel, the other MMD
flows

• heavily depend on the parameters σ and c (stability against parameter choice);
• cannot perfectly recover the uniform distribution; zoom into the middle right circles to see

that small blue parts are not covered (approximation of target distribution).

Moreover, in contrast to the other kernels, the Riesz kernel with r = 1 is positively homogeneous
such that the MMD flow is equivariant against scalings of initial and target measure.

Finally, it is interesting that the Riesz kernel is related to the Brownian motion by the following
remark, see also Modeste & Dombry (2023) for the more general fractional Brownian motion.
Remark 13. In the one-dimensional case, the extended Riesz kernel with r = 1 reads as

K(x, y) = −|x− y|+ |x|+ |y| = 2min(x, y),

which is the twice the covariance kernel of the Brownian motion. More precisely, let (Wt)t>0 be a
Brownian motion and s, t > 0. Then, it holds

Cov(Ws,Wt) = min(s, t) =
1

2
K(x, y).

F TRAINING ALGORITHM OF THE GENERATIVE SLICED MMD FLOW

In Algorithm 3 we state the detailed training algorithm of our proposed method.

G ABLATION STUDY

We consider the FID for different number of networks and different number of projections. We run
the same experiment as in Section 5 on MNIST. Here we choose a different number of projections P
between 10 and 1000. In Figure 6 we illustrate the progress of the FID value for an increasing number
of networks and a different number of projections. Obviously, the gradient of the MMD functional
is not well-approximated by just using P = 10 or P = 100 projections and thus the MMD flow
does not converges. Once the gradient of the functional is well-approximated, a higher number of
projections leads only to a small improvement, see the difference between P = 500 and P = 1000.

H IMPLEMENTATION DETAILS

The code is available online at https://github.com/johertrich/sliced_MMD_flows.

We use UNets (Φ)Ll=1
2 with 3409633 trainable parameters for MNIST and FashionMNIST and

2064035 trainable paramters for CIFAR10. The networks are trained using Adam (Kingma & Ba,

2modified from https://github.com/hojonathanho/diffusion/blob/master/
diffusion_tf/models/unet.py

21
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Figure 4: Comparison of the MMD flow with Gaussian kernel (top) and inverse multiquadric kernel
(bottom) for different hyperparameters.

2015) with a learning rate of 0.001. All flows are simulated with a step size τ = 1. We stop the
training of our generative sliced MMD flow when the FID between the generated samples and some
validation samples does not decrease twice. Then we take the network with the best FID value to the
validation set. The validation samples are the last 10000 training samples from the corresponding
dataset which were not used for training the generative sliced MMD flow. The training of the
generative MMD flow takes between 1.5 and 3 days on a NVIDIA GeForce RTX 2060 Super GPU,
depending on the current GPU load by other processes. To avoid overfitting, we choose a relatively
small number of optimization steps within the training of the networks Φl, which corresponds to an
early-stopping technique.

MNIST. We draw the first M = 20000 target samples from the MNIST training set and N = 20000
initial samples uniformly from [0, 1]d. Then we simulate the momentum MMD flow using P = 1000
projections for 32 steps and train the network for 2000 optimizer steps with a batch size of 100.
After each training of the network, we increase the number of flow steps by min(25+l, 2048) up to a
maximal number of 30000 steps, where l is the iteration of the training procedure, see Algorithm 3.
We choose the momentum parameter m = 0.7 and stop the whole training after L = 55 networks.

FashionMNIST. Here we draw the first M = 20000 target samples from the FashionMNIST training
set and N = 20000 initial samples uniformly from [0, 1]d. Then we simulate the momentum MMD
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Figure 5: Comparison of the MMD flow with Laplacian kernel (top) and Riesz kernel (bottom) for
different hyperparameters.
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Figure 6: Illustration of the FID value of the Sliced MMD Flow on MNIST for different number of
projections.

flow using P = 1000 projections for 32 steps and train the network for 2000 optimizer steps with
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Algorithm 3 Training of generative MMD flows

Input: Independent initial samples x(0)
1 , ..., x

(0)
N from µ0, momentum parameters ml ∈ [0, 1) for

l = 1, ..., L.
Initialize (v1, ..., vN ) = 0.
for l = 1, ..., L do

- Set (x̃(0)
1 , ..., x̃

(0)
N ) = (x

(l−1)
1 , ..., x

(l−1)
N ).

- Simulate Tl steps of the (momentum) MMD flow:
for t = 1, ..., Tl do

- Update v by

(v1, ..., vN )← ∇Fd(x̃
(t−1)
1 , ..., x̃

(t−1)
N |y1, ..., yM ) +ml(v1, ..., vN )

- Update the flow samples:

(x̃
(t)
1 , ..., x̃

(t)
N ) = (x̃

(t−1)
1 , ..., x̃

(t−1)
N )− τN (v1, ..., vN )

end for
- Train Φl such that x̃(Tl) ≈ x̃

(0)
i − Φl(x̃

(0)
i ) by minimizing the loss

L(θl) =
1

N

N∑
i=1

∥Φl(x̃
(0)
i )− (x̃

(0)
i − x̃

(Tl)
i )∥2.

- Set (x(l)
1 , ..., x

(l)
N ) = (x

(l−1)
1 , ..., x

(l−1)
N )− (Φl(x

(l−1)
1 ), ...,Φl(x

(l−1)
N )).

end for

a batch size of 100. After each training of the network, we increase the number of flow steps by
min(25+l, 2048) up to a maximal number of 50000 steps, where l is the iteration of the training
procedure. The momentum parameter m is set to 0.8. We stop the whole training after L = 67
networks.

CIFAR. We draw the first M = 30000 target samples from the CIFAR10 training set. Here we
consider a pyramidal schedule, where the key idea is to run the particle flow on different resolutions,
from low to high sequentially. First, we downsample the target samples by a factor 8 and draw
N = 30000 initial samples uniformly from [0, 1]

d
64 . Then we simulate the momentum MMD flow in

dimension d = 48 using P = 500 projections for 32 steps and train the network for 5000 optimizer
steps with a batch size of 100. After each training of the network, we increase the number of flow
steps by min(25+l, 1024) up to a maximal number of 30000 steps, where l is the iteration of the
training procedure. The momentum parameter m is increased after each network training by 0.01
up to 0.8, beginning with m = 0 in the first flow step. We increase the resolution of the flow after
600000 flow steps by a factor 2 and add Gaussian noise on the particles in order to increase the
intrinsic dimension of the images, such that the second resolution is of dimension d = 192. Following
here the same procedure as before for the second resolution and the third resolution of d = 768, we
change the projections in the final resolution of d = 3072. Instead of using projections uniformly
sampled from Sd−1, we consider locally-connected projections as in (Du et al., 2023; Nguyen &
Ho, 2022). The idea is to extract patches of the images xk at a random location in each step k and
instead consider the particle flow in the patch dimension. In order to apply these locally-connected
projections at different resolutions, we also upsample the projections to different scales. Here we
choose a patch size of 7× 7 and consider the resolutions 7, 14, 21, 28. We stop the whole training
after L = 86 networks.

Note that herewith we introduced an inductive bias, since we do not uniformly sample from [0, 1]d,
but empiricially this leads to a significant acceleration of the flow. A more comprehensive discussion
can be found in (Du et al., 2023; Nguyen & Ho, 2022)

CelebA. We draw the first M = 20000 target samples from the CelebA training set. Again, we
consider a pyramidal schedule as for CIFAR10, but we increased the number of flow steps by
min(25+l, 8192) up to a maximal number of 100000 steps. We increase the resolutions of the flow
after 700000, 900000 and 700000 flow steps by a factor 2 and add Gaussian noise on the particles in
order to increase the intrinsic dimension of the images. We also use locally-connected projections
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Table 2: FID scores of generated samples for training set and test set

MNIST FashionMNIST CIFAR10 CelebA
training set 2.7 10.6 53.0 32.7

test set 3.1 11.3 54.8 32.1

with a patch size of 7 × 7 and consider the resolutions 7, 14, 21, 28 for resolution 32 × 32 and
7, 14, 21, 28, 35, 42, 49 for resolution 64× 64. We stop the whole training after L = 71 networks.

I ADDITIONAL EXAMPLES

In Figure 7 we show more generated samples of our method for MNIST, FashionMNIST and
CIFAR10.

In Figure 8, we compare generated MNIST samples with the closest samples from the training set.
We observe that they are significantly different. Hence, our method generates really new samples
and is not just reproducing the samples from the training set. In contrast, in Figure 9 we compare
the particle flow samples with the closest samples from the training set. Obviously, the samples of
the particle flow approximate exactly the training samples. This highlights the important role of the
networks: We can interpolate between the training points in order to generalize the dataset.
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(a) MNIST

(b) FashionMNIST

(c) CIFAR10

(d) CelebA

Figure 7: Additional generated samples (from top to bottom) of MNIST, FashionMNIST, CIFAR10
and CelebA.
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(a) MNIST

(b) FashionMNIST

(c) CIFAR10

(d) CelebA

Figure 8: Generated samples (top), L2-closest samples from the training set (middle) and the pixelwise
distance between them (bottom).

Figure 9: Samples of the particle flow (top), closest samples from the training set (middle) and the
pixelwise distance between them (bottom). The mean PSNR between these flow samples and the
corresponding closest training images is 82.29.
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